2018年河北省中考数学模拟试卷含答案(b卷)
2018年河北省中考数学模拟试题及答案(5套)-精选.doc
2018年河北省中考数学模拟试题及答案(5套)河北省 2018 年中考数学模拟试题(1) 注意事项: 1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,30 分;第Ⅱ卷为非选择题,90 分;全卷共6 页,满分 120 分.考试时间为120 分钟. 2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题纸密封线内的项目填写清楚. 3.第Ⅰ卷、第Ⅱ卷每小题做出答案后,必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分.:一、选择题:(本题 2 12 小题,1 1--6 6 每小题 2 2 分,7 7- -2 12 每小题 3 3 分,共0 30 分)在每小题给出的四个选项中,只有一项是符合题目要求的. 1、cos30=() A.12 B.22C.32 D. 3 2、如图,点 A、B、C、D、O 都在方格纸的格点上,若△ COD 是由△ AOB 绕点 O按逆时针方向旋转而得,则旋转的角度为()(A)30 (B)45 (C)90 (D)135 3、两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的主视图是()(A)两个外离的圆(B)两个外切的圆(C)两个相交的圆(D)两个内切的圆 4、如图,半径为 10的⊙O 中,弦 AB 的长为 16,则这条弦的弦心距为()(A)6 (B)8 (C)10 (D)125、下列说法中①一个角的两边分别垂直于另一个角的两边,则这两个角相等②数据 5,2,7,1,2,4 的中位数是 3,众数是 2 ③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC 中,C=90,两直角边 a,b 分别是方程 x 2 -7x+7=0 的两个根,则 AB 边上的中线长为1352 正确命题有() A.0 个 B.1 个 C.2 个 D.3 个 6、不等式 3 1 2 x的解集在数轴上表示正确的是( ) 7、如图,小聪在作线段 AB 的垂直平分线时,他是这样操作的:分别以 A 和 B 为圆心,大于12AB 的长为半径画弧,两弧相交于 C、D,则直线 CD 即为所求.根据他的作图方法可知四边形ADBC 一定是... A.矩形 B.菱形 C.正方形 D.等腰梯形水平面主视方向(第 3 题) AB OCD(第 2 题)(第 4 题) A BO0 -2 0 -1 -2 0 0 -2A B C D B A C D 7 题8、一个几何体的三视图如下:其中主视图都是腰长为 4、底边为 2 的等腰三角形,则这个几何体的侧面展开图的面积为() A. 2 B.12C. 4 D. 8 9、如图,小红居住的小区内有一条笔直的小路,小路的正中间有一路灯,晚上小红由 A 处径直走到 B 处,她在灯光照射下的影长 l与行走的路程 s 之间的变化关系用图象刻画出来,大致图象是( ) 10、一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是()(A)2010 (B)2011(C)2012 (D)2013 第 8 题图 4 2 2 4 左视图右视图俯视图 A B 9题 olsolsA B ols olsC D ...。
2018年中考数学试卷(有答案)
2018年中考数学试卷(有答案)2018年中考数学试卷(有答案)全卷满分120分,考试时间120分钟)一、选择题(本大题共8个小题,每题只有一个正确的选项,每小题3分,满分24分)1.一元二次方程 x^2-4=0 的解是()A。
x=2B。
x=-2C。
x1=2,x2=-2D。
x1=-2,x2=22.二次三项式 x^2-4x+3 配方的结果是()A。
(x-2)^2+7B。
(x-2)^2-1C。
(x+2)^2+7D。
(x+2)^2-13.XXX从上面观察下图所示的两个物体,看到的是(删除该段)4.人离窗子越远,向外眺望时此人的盲区是()A。
变小B。
变大C。
不变D。
以上都有可能5.函数 y=kx 的图象经过 (1,-1),则函数 y=kx-2 的图象是(删除该段)6.在直角三角形 ABC 中,∠C=90°,a=4,b=3,则 sinA 的值是()A。
5/4B。
4/5C。
3/5D。
4/37.下列性质中正方形具有而矩形没有的是()A。
对角线互相平分B。
对角线相等C。
对角线互相垂直D。
四个角都是直角8.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是(删除该段)二、填空题(本大题共7个小题,每小题3分,满分21分)9.计算tan60°=√3.10.已知函数 y=(m-1)x^(m-2) 是反比例函数,则 m 的值为3.11.若反比例函数 y=k/x^2 的图象经过点 (3,-4),则此函数在每一个象限内 y 随 x 的增大而减小。
12.命题“直角三角形两条直角边的平方和等于斜边的平方”的逆命题是“如果两条直角边的平方和不等于斜边的平方,则三角形不是直角三角形”。
13.有两组扑克牌各三张,牌面数字分别为 2,3,4,随意从每组中牌中抽取一张,数字和是 6 的概率是 1/9.14.依次连接矩形各边中点所得到的四边形是长方形。
15.如图,在△ABC中,BC=8 cm,AB 的垂直平分线交AB 于点 D,交边 AC 于点 E,△BCE 的周长等于 18 cm,则AC 的长等于 10 cm。
历届河北省中考数学试卷含详细解答(历年真题)
2018年河北省中考数学试卷一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.103.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l44.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(3分)图中三视图对应的几何体是()A.B.C.D.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 414.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.216.(2分)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值,”甲的结果是c=1,乙的结果是c=3或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=.18.(3分)若a,b互为相反数,则a2﹣b2=.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(9分)如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α.(1)求证:△APM ≌△BPN ;(2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(10分)如图,直角坐标系xOy 中,一次函数y=﹣12x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4).(1)求m 的值及l 2的解析式;(2)求S △AOC ﹣S △BOC 的值;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,直接写出k 的值.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省中考数学试卷参考答案与试题解析一、选择题(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分)1.(3分)下列图形具有稳定性的是()A.B.C.D.【解答】解:三角形具有稳定性.故选:A.2.(3分)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为()A.4B.6C.7D.10【解答】解:∵8.1555×1010表示的原数为81555000000,∴原数中“0”的个数为6,故选:B.3.(3分)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【解答】解:该图形的对称轴是直线l3,故选:C.4.(3分)将9.52变形正确的是()A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.52【解答】解:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选:C.5.(3分)图中三视图对应的几何体是()A.B.C.D.【解答】解:观察图形可知选项C符合三视图的要求,故选:C.6.(3分)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠB.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠC.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣ⅠD.①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ【解答】解:Ⅰ、过直线外一点作这条直线的垂线;Ⅰ、作线段的垂直平分线;Ⅰ、过直线上一点作这条直线的垂线;Ⅰ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅰ,②﹣Ⅰ,③﹣Ⅰ,④﹣Ⅰ.故选:D.7.(3分)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是()A.B.C.D.【解答】解:设的质量为x,的质量为y,的质量为:a,假设A正确,则,x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选:A.8.(3分)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C【解答】解:A、利用SAS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;C、利用SSS判断出△PCA≌△PCB,∴CA=CB,∠PCA=∠PCB=90°,∴点P在线段AB的垂直平分线上,符合题意;D、利用HL判断出△PCA≌△PCB,∴CA=CB,∴点P在线段AB的垂直平分线上,符合题意,B、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B.9.(3分)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁【解答】解:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s甲2=s丁2<s乙2=s丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐,综上,麦苗又高又整齐的是丁,故选:D.10.(3分)图中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个B.3个C.4个D.5个【解答】解:①﹣1的倒数是﹣1,原题错误,该同学判断正确;②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误;④20=1,原题正确,该同学判断正确;⑤2m2÷(﹣m)=﹣2m,原题正确,该同学判断正确;故选:B.11.(2分)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°【解答】解:如图,AP∥BC,∴∠2=∠1=50°.∠3=∠4﹣∠2=80°﹣50°=30°,此时的航行方向为北偏东30°,故选:A.12.(2分)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(a+4)cm D.(a+8)cm 【解答】解:∵原正方形的周长为acm,∴原正方形的边长为a4 cm,∵将它按图的方式向外等距扩1cm,∴新正方形的边长为(a4+2)cm,则新正方形的周长为4(a4+2)=a+8(cm),因此需要增加的长度为a+8﹣A=8cm.故选:B.13.(2分)若2n+2n+2n+2n=2,则n=()A.﹣1B.﹣2C.0D.1 4【解答】解:∵2n+2n+2n+2n=2,∴4•2n=2,∴2•2n=1,∴21+n=1,∴1+n=0,∴n=﹣1.故选:A.14.(2分)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁【解答】解:∵x2−2xx−1÷x21−x=x2−2xx−1•1−xx2=x2−2xx−1•−(x−1)x2=x(x−2)x−1•−(x−1)x=−(x−2)x=2−x x,∴出现错误是在乙和丁,故选:D.15.(2分)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5B.4C.3D.2【解答】解:连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID ,∴∠BAI=∠AID ,∴AD=DI ,同理可得:BE=EI ,∴△DIE 的周长=DE +DI +EI=DE +AD +BE=AB=4,即图中阴影部分的周长为4,故选:B .16.(2分)对于题目“一段抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点,若c 为整数,确定所有c 的值,”甲的结果是c=1,乙的结果是c=3或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确【解答】解:∵抛物线L :y=﹣x (x ﹣3)+c (0≤x ≤3)与直线l :y=x +2有唯一公共点∴①如图1,抛物线与直线相切,联立解析式{y =−x(x −3)+c y =x +2得x 2﹣2x +2﹣c=0△=(﹣2)2﹣4(2﹣c )=0解得c=1②如图2,抛物线与直线不相切,但在0≤x ≤3上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c ≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(3分)计算:√−12−3=2.【解答】解:√−12−3=√4=2,故答案为:2.18.(3分)若a,b互为相反数,则a2﹣b2=0.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.故答案为:0.19.(6分)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而90°2=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是14;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是21.【解答】解:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:360180−2x=18090−x,以∠APB为内角的正多边形的边数为:360 x,∴图案外轮廓周长是=18090−x﹣2+360x﹣2+360x﹣2=18090−x+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时图案定为会标,则会标的外轮廓周长是=18090−30+72030﹣6=21,故答案为:14,21.三、解答题(本大题共7小题,共计66分)20.(8分)嘉淇准备完成题目:发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?【解答】解:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6;(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得:a=5.21.(9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5(3)因为4册和5册的人数和为27,即最多补查了3人.故答案为3.22.(9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.【解答】解:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.23.(9分)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.【解答】(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵{∠A=∠BPA=PB∠APM=∠BPN,∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.24.(10分)如图,直角坐标系xOy中,一次函数y=﹣12x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)求S△AOC ﹣S△BOC的值;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.【解答】解:(1)把C (m ,4)代入一次函数y=﹣12x +5,可得4=﹣12m +5,解得m=2, ∴C (2,4),设l 2的解析式为y=ax ,则4=2a , 解得a=2,∴l 2的解析式为y=2x ;(2)如图,过C 作CD ⊥AO 于D ,CE ⊥BO 于E ,则CD=4,CE=2,y=﹣12x +5,令x=0,则y=5;令y=0,则x=10,∴A (10,0),B (0,5), ∴AO=10,BO=5,∴S △AOC ﹣S △BOC =12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx +1的图象为l 3,且11,l 2,l 3不能围成三角形,∴当l 3经过点C (2,4)时,k=32;当l 2,l 3平行时,k=2;当11,l 3平行时,k=﹣12;故k 的值为32或2或﹣12.25.(10分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB̂,使点B 在O 右下方,且tan ∠AOB=43,在优弧AB ̂上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB̂上一段AP ̂的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB̂所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.【解答】解:(1)如图1中,由n⋅π⋅26180=13π,解得n=90°, ∴∠POQ=90°, ∵PQ ∥OB , ∴∠PQO=∠BOQ ,∴tan ∠PQO=tan ∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ 与⊙O 相切时时,x 的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设QH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5不合题意舍弃.此时x的值为﹣31.5.综上所述,满足条件的x的值为﹣16.5或31.5或﹣31.5.26.(11分)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t (秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.【解答】解:(1)由题意,点A (1,18)带入y=kx得:18=k1∴k=18设h=at 2,把t=1,h=5代入 ∴a=5 ∴h=5t 2(2)∵v=5,AB=1 ∴x=5t +1 ∵h=5t 2,OB=18 ∴y=﹣5t 2+18 由x=5t +1则t=15(x −1)∴y=﹣15(x −1)2+18=−15x 2+25x +895当y=13时,13=﹣15(x −1)2+18解得x=6或﹣4 ∵x ≥1 ∴x=6 把x=6代入y=18xy=3∴运动员在与正下方滑道的竖直距离是13﹣3=10(米) (3)把y=1.8代入y=﹣5t 2+18 得t 2=8125解得t=1.8或﹣1.8(负值舍去)∴x=10∴甲坐标为(10,1.8)恰好落在滑道y=18 x上此时,乙的坐标为(1+1.8v乙,1.8)由题意:1+1.8v乙﹣(1+5×1.8)>4.5∴v乙>7.52017年河北省中考数学试卷一、选择题(本大题共16小题,共42分。
2018年河北省中考数学试题和答案
2018年河北省中考数学试题和答案河北省2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是()A. B.C.D.2.一个整数8155500用科学记数法表示为108.155510,则原数中“0”的个数为()A.4 B.6 C.7 D.103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l B.2l C.3l D.4l1答案:C4.将29.5变形正确的是()A.222=+9.590.5B.29.5(100.5)(100.5)=+-C.222=+⨯+9.5990.50.59.5102100.50.5=-⨯⨯+ D.2225.图2中三视图对应的几何体是()A. B.C. D.6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A.B.C.D.8.已知:如图4,点P在线段AB外,且PA PB.求证:点P在线段AB的垂直平分线上.在证明该结论时,需添加辅助线,则作法不.正确的是()A.作APB∠的平分线PC交AB于点CB.过点P作PC AB⊥于点C且AC BC=C.取AB中点C,连接PCD.过点P作PC AB⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:13x x==甲丙,15 x x==乙丁;22 3.6s s==甲丁,22 6.3s s==乙丙.则麦苗又高又整齐的是()A.甲 B.乙 C.丙 D.丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是()A.2个 B.3个 C. 4个D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm),得到新的正方形,则这根铁丝需增加()A.4cm B.8cm C.(4)+a cmD.(8)+a cm13.若22222nn n n +++=,则n =( )A.-1 B .-2 C .0 D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)=--+≤≤与直L y x x c x线:2=+有唯一公共点.若c为整数,确定所有c l y x的值.”甲的结果是1c=,乙的结果是3c=或4,则()A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简:22++-++发现系数“”印刷不清楚.x x x x68)(652)(1)他把“”猜成3,请你化简:22++-++;x x x x(368)(652)(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用k(k为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50∠=∠=︒,P为AB中点,点M为射A B线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设BPNα∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式; (2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x =≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k,并用表示h;(2)设5v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及13y=时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v米/秒.当甲距x轴1.8米,且乙位乙于甲右侧超过4.5米的位置时,直接..写出的值及的范围.v乙。
模拟测评2022年河北省石家庄市中考数学模拟真题 (B)卷(含答案及详解)
2022年河北省石家庄市中考数学模拟真题 (B )卷 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下四个选项表示某天四个城市的平均气温,其中平均气温最高的是( )A .3-℃B .15-℃C .10-℃D .1-℃ 2、若分式23x -有意义,则x 的取值范围是( ) A .3x ≠ B .3x = C .3x < D .3x > 3、下列计算:① 0﹣(﹣5)=0+(﹣5)=﹣5; ② 5﹣3×4=5﹣12=﹣7;③ 4÷3×(﹣13)=4÷(﹣1)=﹣4; ④ ﹣12﹣2×(﹣1)2=1+2=3.其中错误的有( ) A .1个 B .2个 C .3个 D .4个 4、下列各式:22311,,,5,,7218a b x x y a x π++-中,分式有( ) A .1个 B .2个 C .3个 D .4个 5、有下列四种说法: ①半径确定了,圆就确定了;②直径是弦; ③弦是直径;④半圆是弧,但弧不一定是半圆. ·线○封○密○外其中,错误的说法有( )A .1种B .2种C .3种D .4种6(b ﹣5)2=0,那么这个等腰三角形的周长为( )A .13B .14C .13或14D .97、多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8-8、如图所示,AB ,CD 相交于点M ,ME 平分BMC ∠,且104AME ∠=︒,则AMC ∠的度数为( )A .38︒B .30︒C .28︒D .24︒ 9、在2201922(8),(1),3,|1|,|0|,5--------中,负数共有( )个. A .4 B .3 C .2 D .110、某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A .60006000405x x =+- B .60006000405x x =-- C .60006000405x x =++ D .60006000405x x =-+ 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1cm ,则这个直角三角形的斜边长为________cm ,面积为________ 2cm .2、(1)定义“*”是一种运算符号,规定a b=2a b *-+2015,则()1*-2=________. (2)宾馆重新装修后,准备在大厅的主楼梯上铺设一种红地毯,已知这种地毯每平方米售价40元,主楼梯道宽2米,其侧面如图所示,则买地毯至少需要___________________ 元.3、已知点O 在直线AB 上,且线段OA =4 cm ,线段OB =6 cm ,点E ,F 分别是OA ,OB 的中点,则线段EF =________cm.4、若不等式组220x a b x ->⎧⎨->⎩的解集是-1<x <1,则(a +b )2019=________.5、311,46y xy x xyz -,的最简公分母是_______________. 三、解答题(5小题,每小题10分,共计50分) 1、已知抛物线y =﹣12x 2+x . (1)直接写出该抛物线的对称轴,以及抛物线与y 轴的交点坐标;(2)已知该抛物线经过A (3n +4,y 1),B (2n ﹣1,y 2)两点.①若n <﹣5,判断y 1与y 2的大小关系并说明理由;②若A ,B 两点在抛物线的对称轴两侧,且y 1>y 2,直接写出n 的取值范围. 2、已知抛物线2y ax bx c =++的顶点为()3,4,且过点()0,13. (1)求抛物线的解析式; (2)将抛物线先向左平移2个单位长度,再向下平移()0m m >个单位长度后得到新抛物线. ·线○封○密·○外①若新抛物线与x 轴交于A ,B 两点(点A 在点B 的左侧),且3OB OA =,求m 的值;②若()11,P x y ,()25,Q y 是新抛物线上的两点,当11n x n -≤≤时,均有12y y ≤,请直接写出n 的取值范围.3、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB .(1)=a ______,b =______;(2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数;(3)动点M 从A 出发,以每秒1个单位的速度沿数轴在A ,B 之间运动,同时动点N 从B 出发,以每秒2个单位的速度沿数轴在A ,B 之间往返运动,当点M 运动到B 时,M 和N 两点停止运动.设运动时间为t 秒,是否存在t 值,使得OM ON =?若存在,请直接写出t 值;若不存在,请说明理由.4、如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角尺(∠M =30°)的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)若将图1中的三角尺绕点O 以每秒5°的速度,沿顺时针方向旋转t 秒,当OM 恰好平分∠BOC 时,如图2.①求t 值;②试说明此时ON 平分∠AOC ;(2)将图1中的三角尺绕点O 顺时针旋转,设∠AON =α,∠COM =β,当ON 在∠AOC 内部时,试求α与β的数量关系; (3)如图3若∠AOC =60°,将三角尺从图1的位置开始绕点O 以每秒5°的速度沿顺时针方向旅转.当ON 与OC 重合时,射线OC 开始绕点O 以每秒20°的速度沿顺时针方向旋转,三角尺按原来的速度和方向继续旋转,当三角板运动到OM 边与OA 第一次重合时停止运动.当射线OC 运动到与OA 第一次重合时停止运动.设三角形运动的时间为t .那么在旋转的过程中,是否存在某个时刻,使得ON ,OM 两条边所在的射线及射线OC ,三条射线中的某一条射线是另两条射线的角平分线?若存在,直接写出所有满足条件的t 的值,若不存在,请说明理由. 5、在平面直角坐标系中,抛物线222y x mx m =-+(m 为常数)的顶点为M ,抛物线与直线1x m =+交于点A ,与直线3x =-交于点B ,将抛物线在A 、B 之间的部分(包含A 、B 两点且A 、B 不重合)记作图象G . (1)当1m =-时,求图象G 与x 轴交点坐标. (2)当AB ∥x 轴时,求图象G 对应的函数值y 随x 的增大而增大时x 的取值范围. (3)当图象G 的最高点与最低点纵坐标的差等于1时,求m 的取值范围. (4)连接AB ,以AB 为对角线构造矩形AEBF ,并且矩形的各边均与坐标轴垂直,当点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分时,直接写出m 值.-参考答案- 一、单选题1、D 【分析】 根据负数比较大小的概念逐一比较即可. 【详解】 ·线○封○密○外解析:131015->->->-℃℃℃℃.故选:D【点睛】本题主要考查了正负数的意义,熟悉掌握负数的大小比较是解题的关键.2、A【解析】试题解析:根据题意得:3-x≠0,解得:x≠3.故选A.考点:分式有意义的条件.3、C【分析】根据有理数的减法法则可判断①;先算乘法、再算减法,可判断②;根据有理数的乘除运算法则可判断③;根据有理数的混合运算法则可判断④,进而可得答案.【详解】解:()05055--=+=,所以①运算错误;5345127-⨯=-=-,所以②运算正确; 4÷3×(﹣13)=4×13×(﹣13)=﹣49,所以③运算错误;﹣12﹣2×(﹣1)2=-1-2×1=-3,所以④运算错误.综上,运算错误的共有3个,故选:C.【点睛】本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键.4、B【分析】根据分式的定义判断即可.【详解】 解:3a ,11x 是分式,共2个, 故选B . 【点睛】 本题考查分式,解题的关键是正确理解分式的定义,本题属于基础题型. 5、B 【分析】 根据弦的定义、弧的定义、以及确定圆的条件即可解决. 【详解】 解:圆确定的条件是确定圆心与半径,是假命题,故此说法错误; 直径是弦,直径是圆内最长的弦,是真命题,故此说法正确; 弦是直径,只有过圆心的弦才是直径,是假命题,故此说法错误; ④半圆是弧,但弧不一定是半圆,圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫半圆,所以半圆是弧.但比半圆大的弧是优弧,比半圆小的弧是劣弧,不是所有的弧都是半圆,是真命题,故此说法正确. 其中错误说法的是①③两个. 故选B . 【点睛】 本题考查弦与直径的区别,弧与半圆的区别,及确定圆的条件,不要将弦与直径、弧与半圆混淆. 6、C·线○封○密·○外【分析】首先依据非负数的性质求得a ,b 的值,然后得到三角形的三边长,接下来,利用三角形的三边关系进行验证,最后求得三角形的周长即可.【详解】解:根据题意得,a ﹣4=0,b ﹣5=0,解得a =4,b =5,①4是腰长时,三角形的三边分别为4、4、5,∵4+4=8>5,∴能组成三角形,周长=4+4+5=13,②4是底边时,三角形的三边分别为4、5、5,能组成三角形,周长=4+5+5=14,所以,三角形的周长为13或14.故选C .【点睛】本题主要考查的是非负数的性质、等腰三角形的定义,三角形的三边关系,利用三角形的三边关系进行验证是解题的关键.7、B【分析】合并同类项后使得二次项系数为零即可;【详解】解析:()()23232835+3257=3(28)812x x x mx x x m x x -++-+++-+,当这个多项式不含二次项时,有280m +=,解得4m =-.故选B .【点睛】本题主要考查了合并同类项的应用,准确计算是解题的关键.8、C【分析】先求出76BME ∠=,再根据角平分线的性质得到76EMC BME ∠=∠=,由此即可求解.【详解】 解:∵104AME ∠=,180AME BME ∠+∠=, ∴18010476BME ∠=-=, ∵ME 平分BMC ∠, ∴76EMC BME ∠=∠=, ∴AMC AME EMC ∠=∠-∠1047628=-= 故选C . 【点睛】 本题主要考查了角平分线的性质,解题的关键在于能够熟练掌握相关知识进行求解. 9、A 【分析】首先将各数化简,然后根据负数的定义进行判断.【详解】解:∵-(-8)=8,2019)1(1=--,293=--,-|-1|=-1,-|0|=0,224=-55-, ∴负数共有4个. 故选A . 【点睛】·线○封○密○外此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断.负数是指小于0的数,注意0既不是正数,也不是负数.10、C【分析】首先设甲种陀螺单价为x 元,则乙种陀螺单价为(5)x +元,根据关键语句“单独买甲种比单独买乙种可多买40个”可得方程60006000405x x =++. 【详解】首先设甲种陀螺单价为x 元,则乙种陀螺单价为(5)x +元, 根据题意可得:60006000405x x =++, 故选:C .【点睛】本题考查由实际问题抽象出分式方程,解题的关键是正确解读题意,抓住题目中的关键语句,找出等量关系,列出方程.二、填空题1、【详解】试题解析:由勾股定理得,直角三角形的斜边长=;直角三角形的面积=122.故答案为2、2019; 800.【分析】(1)利用已知的新定义计算即可得到结果;(2)根据题意,结合图形,先把楼梯的横竖向上向左平移,构成一个矩形,再求得其面积,则购买地毯的钱数可求. 【详解】 解:(1)∵a b=2a b *-+2015 ∴()1*-2=2-(-2)+2015=2019; (2)如图,利用平移线段,把楼梯的横竖向上向左平移,构成一个矩形,长宽分别为6米,4米, ∴地毯的长度为6+4=10米,地毯的面积为10×2=20平方米, ∴买地毯至少需要20×40=800元. 故答案为:(1)2019;(2)800. 【点睛】 (1)本题考查有理数的混合运算,熟练掌握运算法则是解本题的关键. (2)本题考查平移的性质,,解题的关键是要利用平移的知识,把要求的所有线段平移到一条直线上进行计算. 3、1或5 【分析】 根据题意,画出图形,此题分两种情况; ·线○封○密○外①点O 在点A 和点B 之间(如图①),则1122EF OA OB =+;②点O 在点A 和点B 外(如图②),则1122EF OA OB =-. 【详解】如图,(1)点O 在点A 和点B 之间,如图①,则11522EF OA OB cm =+=.(2)点O 在点A 和点B 外,如图②, 则11122EF OA OB cm =-=.∴线段EF 的长度为1cm 或5cm.故答案为1cm 或5cm.【点睛】此题考查两点间的距离,解题关键在于利用中点性质转化线段之间的倍分关系.4、-1【解析】【分析】解出不等式组的解集,与已知解集﹣1<x <1比较,可以求出a 、b 的值,然后代入即可得到最终答案.【详解】解不等式x ﹣a >2,得:x >a +2,解不等式b ﹣2x >0,得:x 2b <.∵不等式的解集是﹣1<x <1,∴a +2=﹣1,2b=1,解得:a =﹣3,b =2,则(a +b )2019=(﹣3+2)2019=﹣1.故答案为:﹣1.【点睛】本题考查了解一元一次不等式组,已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数. 5、312x yz 【分析】 确定最简公分母的方法是: (1)取各分母系数的最小公倍数; (2)凡单独出现的字母连同它的指数作为最简公分母的一个因式; (3)同底数幂取次数最高的,得到的因式的积就是最简公分母. 【详解】 解:311,46y xy x xyz ,的分母分别是xy 、4x 3、6xyz ,故最简公分母是312x yz . 故答案为312x yz . 【点睛】 本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作为公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂. 三、解答题 1、 (1)直线x =1,(0,0) ·线○封○密○外(2)①y1<y2,理由见解析;②﹣1<n<﹣1 5【分析】(1)由对称轴公式即可求得抛物线的对称轴,令x=0,求得函数值,即可求得抛物线与y轴的交点坐标;(2)①由n<﹣5,可得点A,点B在对称轴直线x=1的左侧,由二次函数的性质可求解;(3)分两种情况讨论,列出不等式组可求解.(1)∵y=﹣12x2+x,∴对称轴为直线x=﹣112()2⨯-=1,令x=0,则y=0,∴抛物线与y轴的交点坐标为(0,0);(2)x A﹣x B=(3n+4)﹣(2n﹣1)=n+5,x A﹣1=(3n+4)﹣1=3n+3=3(n+1),x B﹣1=(2n﹣1)﹣1=2n﹣2=2(n﹣1).①当n<﹣5时,x A﹣1<0,x B﹣1<0,x A﹣x B<0.∴A,B两点都在抛物线的对称轴x=1的左侧,且x A<x B,∵抛物线y=﹣12x2+x开口向下,∴在抛物线的对称轴x=1的左侧,y随x的增大而增大.∴y1<y2;②若点A在对称轴直线x=1的左侧,点B在对称轴直线x=1的右侧时,由题意可得3412111(34)(21)1n n n n +<⎧⎪->⎨⎪-+<--⎩, ∴不等式组无解, 若点B 在对称轴直线x =1的左侧,点A 在对称轴直线x =1的右侧时, 由题意可得:3412111(21)341n n n n +>⎧⎪-<⎨⎪-->+-⎩, ∴﹣1<n <﹣15, 综上所述:﹣1<n <﹣15. 【点睛】 本题考查了抛物线与y 轴的交点,二次函数的性质,一元一次不等式组的应用,利用分类讨论思想解决问题是本题的关键. 2、 (1)2613y x x =-+ (2)①8m =②25n -≤≤ 【分析】 (1)二次函数的顶点式为224()24b ac b y a x a a -=++,将点坐标代入求解,,a b c 的值,回代求出解析式的表达式; (2)①平移后的解析式为()()2232414y x m x m =-++-=-+-,可知对称轴为直线1x =,设B 点坐标到对称轴距离为t ,有A 点坐标到对称轴距离为t ,1OA t =-,1OB t =+,可得()131t t +=⨯-,解得2t =,可知B 点坐标为()3,0,将坐标代入解析式解得m 的值即可;②由题意知该抛物线图像开口向·线○封○密○外上,对称轴为直线1x =,Q 点关于对称轴对称的点的横坐标为'x ,知'512x +=,解得'3x =-,由11n x n -≤≤时,均有12y y ≤可得315n n -≤-⎧⎨≤⎩计算求解即可 (1)解:∵2y ax bx c =++的顶点式为224()24b ac b y a x a a -=++ ∴由题意得23244413b a ac b a c ⎧-=⎪⎪-⎪=⎨⎪=⎪⎪⎩解得0a =(舍去),1a =,6b =-,13c =∴抛物线的解析式为2613y x x =-+.(2)解:①()234y x =-+平移后的解析式为()()2232414y x m x m =-++-=-+-∴对称轴为直线1x =∴设B 点坐标到对称轴距离为t ,A 点坐标到对称轴距离为t∴1OA t =-,1OB t =+∵3OB OA =∴()131t t +=⨯-解得2t =∴B 点坐标为()3,0 将()3,0代入解析式解得8m =∴m 的值为8.②解:由题意知该抛物线图像开口向上,对称轴为直线1x =,Q 点关于对称轴对称的点的横坐标为'x , ∴'512x += 解得'3x =- ∵11n x n -≤≤时,均有12y y ≤ ∴315n n -≤-⎧⎨≤⎩ 解得25n -≤≤ ∴n 的取值范围为25n -≤≤. 【点睛】 本题考查了二次函数的解析式、图象的平移与性质、与x 轴的交点坐标等知识.解题的关键在于对二次函数知识的熟练灵活把握. 3、 (1)5,6- (2)点R 行驶的总路程为25.5;R 停留的最后位置在数轴上所对应的有理数为17 (3)13t =或113或7或11 【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R 三点重合,则只需计算P 点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1) ·线○封○密·○外()2560a b ++-=5,6a b ∴=-= 故答案为:5,6-(2)当点P 到达原点O 时,动点R 从原点O 出发,则P 到达O 点需要:52 2.5÷=秒则此时Q 点的位置为2.568.5+=设t 秒后停止运动,则28.5t t =+解得8.5t =此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON =M 表示的有理数为5t -+,N 表示的有理数为62t -5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图,则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=-若此时点M 未经过点O ,则5t < 则2165t t -=-+ 解得11t =,则此种情况不存在 则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+= 解得7t = ④当,M N 在O 点右侧重合时,如图, ·线○封○密·○外则2165t t -=-+解得11t =此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键.4、(1)①t =3;②见解析;(2)β=α+60°;(3)t =15或t =24或t =54【分析】(1)①求出∠BOC ,利用角平分线的定义求出∠BOM ,进而求出∠AON ,然后列方程求解; ②求出∠CON =15°即可求解;(2)用含t 的代数式表示出α和β,消去t 即可得出结论;(3)分三种情况列方程求解即可.【详解】解:(1)①∵∠AOC =30°,∴∠COM =60°,∠BOC =150°,∵OM 恰好平分∠BOC ,∴∠BOM =12∠BOC =75°,∴∠AON =180°-90°-75°=15°,∴5t =15,∴t =3;②∵∠AOC =30°,∠AON =15°,∴∠CON =15°,∴此时ON 平分∠AOC ;(2)由旋转的性质得,∠AON =α=5t ①,∠COM =β=60°+5t ②, 把①代入②,得 β=α+60°; (3)当ON 与OC 重合时,60÷5=12秒, 当OC 与OA 重合时,(360-60)÷20+12=27秒, 当OC 平分∠MON ,且OC 未与OA 重合时,则∠CON =45°, 由题意得,60+20(t -12)-5t =45,解得t =15; 当OM 平分∠CON ,且OC 未转到OA 时,则∠CON =180°,·线○封○密○外由题意得,60+20(t -12)-5t =180,解得t =24;当OM 平分∠CON ,且OC 转到OA 时,则∠AOM =90°,由题意得,∴360-90=5t ,∴t =54,综上可知,当t =15或t =24或t =54时, ON ,OM 两条边所在的射线及射线OC ,三条射线中的某一条射线是另两条射线的角平分线.【点睛】本题考查了角的和差,角平分线的定义,以及一元一次方程的定义,正确识图是解答本题的关键. 5、(1)(1-0)(2)21x -≤≤-(3)32m -≤≤-(4)-3.5或-5或0或83-. 【分析】(1)求出抛物线解析式和点A 、B 的坐标,确定图象G 的范围,求出与x 轴交点坐标即可;(2)1x m =+和3x =-代入222y x mx m =-+,根据纵坐标相等求出m 的值,再根据二次函数的性质写出取值范围即可; (3)分别求出抛物线顶点坐标和点A 、B 的坐标,根据图象G 的最高点与最低点纵坐标的差等于1,列出方程和不等式,求解即可; (4)求出A 、B 两点坐标,再求出直线AM 、BM 的解析式,根据将矩形AEBF 的面积分为1:2两部分,列出方程求解即可. (1) 解:当1m =-时,抛物线解析式为222y x x =+-,直线1x m =+为直线0x =,即y 轴;此时点A 的坐标为(0,-2);当3x =-时,2(3)2(3)21y =-+⨯--=, 点B 的坐标为(-3,1); 当y =0时,2022x x =+-,解得,11=-x21=-x∵10->,∴11=-x图象G 与x轴交点坐标为(1-0) (2) 解:当AB ∥轴时,把1x m =+和3x =-代入222y x mx m =-+得, 2962(1)2(1)2m m m m m m ++=+-++, 解得14m =-,22m =-, 当14m =-时,点A 、B 重合,舍去; ·线○封○密○外当22m =-时,抛物线解析式为244y x x =+-,对称轴为直线4222b x a =-=-=-,点A 的坐标为(-1,-7),点B 的坐标为(-3,-7);因为10a =>, 所以,图象G 对应的函数值y 随x 的增大而增大时x 的取值范围为:21x -≤≤-;(3)解:抛物线222y x mx m =-+化成顶点式为22()2y x m m m =--+,顶点坐标为: 22)(m m m -+,, 当1x m =+时,22(1)2(1)221y m m m m m m =+-++=-++,点A 的坐标为221)(1m m m +-++,,当3x =-时,96298y m m m =++=+,点B 的坐标为98)(3m +-,, 点A 关于对称轴x m =的对称点的坐标为221)(1m m m --++,,当13m -≥-时,29821m m m +≥-++,此时图象G 的最低点为顶点,则298(2)1m m m +--+=,解得,14m =-(舍去),22m =-, 当13m -<-,3m ≥-时,29821m m m +≤-++,此时图象G 的最低点为顶点,则2221(2)1m m m m -++--+=,等式恒成立,则32m -≤<-,当3m <-时,此时图象G 的最低点为B ,图象G 的最高点为A ,则221(98)1m m m -++-+=,解得,3m =-(舍去), 综上,m 的取值范围为32m -≤≤-.(4)解:由前问可知,点A 的坐标为221)(1m m m +-++,,点B 的坐标为98)(3m +-,,点M 的坐标为22)(m m m -+,,设直线AM 、BM 的解析式分别为y kx b =+,y cx n =+,把点的坐标代入得,2221(1)2m m m k bm m mk b ⎧-++=++⎨-+=+⎩,29832m c n m m mc n +=-+⎧⎨-+=+⎩, 解得,21k b m m =⎧⎨=-+⎩,(3)5c m n m =-+⎧⎨=⎩,所以,直线AM 、BM 的解析式分别为2y x m m =-+,(3)5y m x m =-++, 如图所示,BM 交AE 于C ,把221y m m =-++代入(3)5y m x m =-++得, 2321()5m x m m m =-+++-+,解得,2313m m x m +-=+, 223168333E m C m m m m m +-+=++=++,134EA m m +=+=+, 因为,点M 与图象G 的最高点所连线段将矩形AEBF 的面积分为1:2两部分, 所以,2682(4)33m m m m ++=++, 解得,10m =,24m =-(此时,A 、B 两点重合,舍去);如图所示,BM 交AF 于L ,同理可求L 点纵坐标为:(3)(1)5m m m -+++, 398()(1)5m F m L m m ++=-++,29821F m A m m ++=--, ·线○封○密○外可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,35m =-,44m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交BF 于P ,同理可求P 点横坐标为:279m m ++, 268PF m m =---,4FB m =+, 可列方程为22(4)368m m m =-+--, 解得,583m =-,64m =-(此时,A 、B 两点重合,舍去);如图所示,AM 交EB 于S ,同理可求S 点纵坐标为:23m m --+, 22213ES m m m m =-++++-,22198m m m EB ++--=-, 可列方程为2)92(3)(1)5(982138m m m m m m m +++-=+--++, 解得,7 3.5m =-,44m =-(此时,A 、B 两点重合,舍去);综上,m 值为-3.5或-5或0或83 . 【点睛】 本题考查了二次函数的综合,解题关键是熟练运用二次函数知识,树立数形结合思想和分类讨论思想,通过点的坐标,建立方程求解 ·线·○封○密○外。
2018年河北省中考数学试卷及答案
河北省2018年中考数学试卷及答案卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500用科学记数法表示为108.155510 ,则原数中“0”的个数为( )A .4B .6C .7D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.8.已知:如图4,点P在线段AB外,且PA PB在证明该结论时,需添加辅助线,则作法不.正确的是( )A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.= .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-)和不完整的扇形图(图112-),其中条形图被墨迹掩盖了一部分.(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线与AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x=≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;v=.用表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范(2)设5y=时运动员与正下方滑道的竖直距离;围),及13米/秒.当甲距x轴1.8米,(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙且乙位于甲右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
中考数学模拟卷(含答案)
中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。
2018年河北省中考数学试卷(含答案)
2018年河北省中考数学试卷一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:﹣(﹣1)=()A.±1 B.﹣2 C.﹣1 D.12.计算正确的是()A.(﹣5)0=0 B.x2+x3=x5C.(ab2)3=a2b5 D.2a2•a﹣1=2a3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算结果为x﹣1的是()A.1﹣B.•C.÷D.5.若k≠0,b<0,则y=kx+b的图象可能是()A.B.C.D.6.关于▱ABCD的叙述,正确的是()A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点8.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图为4×4的网格图,A,B,C,D,O均在格点上,点O是()A.△ACD的外心B.△ABC的外心C.△ACD的内心D.△ABC的内心10.如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以C为圆心,CA为半径画弧①;步骤2:以B为圆心,BA为半径画弧②,交弧①于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()A.BH垂直平分线段AD B.AC平分∠BADC.S△ABC=BC•AH D.AB=AD11.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙 B.丙丁 C.甲丙 D.乙丁12.在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+513.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°14.a,b,c为常数,且(a﹣c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.无实数根 D.有一根为015.如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A.B. C.D.16.如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上二、填空题(本大题有3小题,共10分.17-18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.8的立方根是______.18.若mn=m+3,则2mn+3m﹣5mn+10=______.19.如图,已知∠AOB=7°,一条光线从点A出发后射向OB边.若光线与OB边垂直,则光线沿原路返回到点A,此时∠A=90°﹣7°=83°.当∠A<83°时,光线射到OB边上的点A1后,经OB反射到线段AO上的点A2,易知∠1=∠2.若A1A2⊥AO,光线又会沿A2→A1→A原路返回到点A,此时∠A=______°.…若光线从A点出发后,经若干次反射能沿原路返回到点A,则锐角∠A的最小值=______°.三、解答题(本大题有7个小题,共68分.解答应写出必要的文字说明、证明过程或演算步骤)20.请你参考黑板中老师的讲解,用运算律简便计算:(1)999×(﹣15)(2)999×118+999×(﹣)﹣999×18.21.如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.22.已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.23.如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D 开始顺时针连续跳2个边长,落到圈B;…设游戏者从圈A起跳.(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?24.某商店通过调低价格的方式促销n个不同的玩具,调整后的单价y(元)与调整前的单价x(元)满足一次函数关系,如表:第1个第2个第3个第4个…第n个调整前的单价x(元)x1x2=6 x3=72 x4…x n调整后的单价y(元)y1y2=4 y3=59 y4…y n已知这个n玩具调整后的单价都大于2元.(1)求y与x的函数关系式,并确定x的取值范围;(2)某个玩具调整前单价是108元,顾客购买这个玩具省了多少钱?(3)这n个玩具调整前、后的平均单价分别为,,猜想与的关系式,并写出推导过程.25.如图,半圆O的直径AB=4,以长为2的弦PQ为直径,向点O方向作半圆M,其中P点在上且不与A点重合,但Q点可与B点重合.发现:的长与的长之和为定值l,求l:思考:点M与AB的最大距离为______,此时点P,A间的距离为______;点M与AB的最小距离为______,此时半圆M的弧与AB所围成的封闭图形面积为______;探究:当半圆M与AB相切时,求的长.(注:结果保留π,cos35°=,cos55°=)26.如图,抛物线L:y=﹣(x﹣t)(x﹣t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=(k>0,x>0)于点P,且OA•MP=12,(1)求k值;(2)当t=1时,求AB的长,并求直线MP与L对称轴之间的距离;(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标;(4)设L与双曲线有个交点的横坐标为x0,且满足4≤x0≤6,通过L位置随t变化的过程,直接写出t的取值范围.2018年河北省中考数学试卷参考答案与试题解析一、(本大题共16小题,共42分,1-10小题各3分,11-16小题各2分。
2018年河北省中考数学试卷(含答案与解析)
数学试卷 第1页(共28页)数学试卷 第2页(共28页)绝密★启用前河北省2018年初中毕业升学文化课考试数 学(考试时间120分钟,满分120分)第Ⅰ卷(选择题 共42分)一、选择题(本大题共16小题,共42分.1~10小题每小题3分,11~16小题每小题2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A B C D 2.一个整数815550…0用科学记数法表示为108.155510⨯,则原数中“0”的个数为( ) A .4B .6C .7D .103.如图是由“○”和“□”组成的轴对称图形,该图形的对称轴是直线 ( )A .1lB .2lC .3lD .4l(第3题)4.将29.5变形正确的是 ( ) A .2229.590.5=+B .2(100.5)(109..505)=+-C .2229.5102100.50.5=-⨯⨯+D .2229.5990.50.5=+⨯+ 5.如图所示的三视图对应的几何体是( )ABCD(第5题)6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 如图是按上述要求,但排乱顺序的尺规作图:(第6题)则正确的配对是( )A .①—Ⅳ,②—Ⅱ,③—Ⅰ,④—Ⅲ B.①—Ⅳ,②—Ⅲ,③—Ⅱ,④—Ⅰ C.①—Ⅱ,②—Ⅳ,③—Ⅲ,④—Ⅰ D.①—Ⅳ,②—Ⅰ,③—Ⅱ,④—Ⅲ 7.有三种不同质量的物体,“”“”“”,其中,同一种物体的质量都相等.现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是 ( )ABCD8.已知,如图,点P 在线段AB 外,且PA PB =.求证:点P 在线段AB 的垂直平分线上.在证明该结论时,需添加辅助线,则作法不正确的是( )A .作APB ∠的平分线PC 交AB 于点CB .过点P 作PC AB ⊥于点C ,且AC BC = C .取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为点C(第8题)9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高的平均数(单位:cm)与方差分别为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,226.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共28页)数学试卷 第4页(共28页)10.如图所示的手机截屏内容是某同学完成的作业,他做对的题的个数是 ( )A .2B .3C .4D .5(第10题)(第11题)11.如图,快艇从P 处向正北航行到A 处时,向左转50︒航行到B 处,再向右转80︒继续航行,此时的航行方向为( )A .北偏东30B .北偏东80C .北偏西30D .北偏西5012.用一根长为cm a 的铁丝,首尾相接围成一个正方形.要将它按图所示的方式向外等距扩1cm ,得到新的正方形,则这根铁丝需增加( )A .4cmB .8cmC .(4)cm a +D .(8)cm a + (第12题) 13.若22222n n n n +++=,则n =( )A .1-B .2-C .0D .1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:(第14题)接力中,自己负责的一步出现错误的是 ( )A .只有乙B .甲和丁C .乙和丙D .乙和丁15.如图,点I 为ABC △的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I重合,则图中阴影部分的周长为 ( )A .4.5B .4C .3D .2(第15题)16.对于题目:“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( )A .甲的结果正确B .乙的结果正确C .甲、乙的结果合在一起才正确D .甲、乙的结果合在一起也不正确第Ⅱ卷(非选择题 共78分)二、填空题(本大题共3小题,共12分.17~18小题每小题3分;19小题有2个空,每空3分)17.计算:123-=- . 18.若a ,b 互为相反数,则22a b -= .19.如图1,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.(第19题)例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=,而90452=是360(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .数学试卷 第5页(共28页)数学试卷 第6页(共28页)三、解答题(本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(本小题满分8分)嘉淇准备完成题目:“化简:(2268)(652)x x x x ++-++.”发现系数“”印刷不清楚. (1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几.21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(如图1)和不完整的扇形图(如图2),其中条形图被墨迹掩盖了一部分.(第21题)(1)求条形图中被掩盖的数,并写出册数的中位数.(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率. (3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着5-,2-,1,9,且任意相邻4个台阶上数的和都相等. 尝试 (1)求前4个台阶上数的和.(2)求第5个台阶上的数x .应用 求从下到上前31个台阶上数的和.发现 试用含k (k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图,50A B ∠=∠=,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=. (1)求证:APM BPN △△≌. (2)当2MN BN =时,求α的度数.(3)若BPN △的外心在该三角形的内部,直接写出α的取值范围.(第23题)-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共28页) 数学试卷 第8页(共28页)24.(本小题满分10分)如图,在直角坐标系xOy 中,一次函数152y x =-+的图象1l 分别与x 轴、y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C (,4)m . (1)求m 的值及2l 的解析式.(2)求AOC BOC S S -△△的值.(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.(第24题)25.(本小题满分12分)如图,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB ,使点B 在点O 右下方,且4tan 3AOB ∠=.在优弧AB 上任取一点P ,且能过P 作直线l OB ∥交数轴于点Q ,设点Q 在数轴上对应的数为x ,连接OP . (1)若优弧AB 上一段AP 的长为13π,求AOP ∠的度数及x 的值. (2)求x 的最小值,并指出此时直线l 与优弧AB 所在圆的位置关系. (3)若线段PQ 的长为12.5,直接写出这时x 的值.(第25题)26.(本小题满分11分)如图是轮滑场地的截面示意图,平台AB 距x 轴(水平)18m ,与y 轴交于点B ,与滑道(1)ky x x =≥交于点A ,且1m AB =.运动员(看成点)在BA 方向获得速度m/s v 后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:点M ,A 的竖直距离(m)h 与飞出时间(s)t 的平方成正比,且1t =时,5h =;点M ,A 的水平距离是m vt . (1)求k ,并用t 表示h .(2)设5m/s v =.用t 表示点M 的横坐标x 和纵坐标y ,并求y 与x 之间的关系式(不写x 的取值范围),及13y =时,运动员与正下方滑道的竖直距离.(3)若运动员甲、乙同时从A 处飞出,速度分别是5m/s 、m/s v 乙,当甲距x 轴1.8m ,且乙位于甲右侧超过4.5m 的位置时,直接写出t 的值及v 乙的范围.(第26题)5/14河北省2018年初中毕业文化课考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】A 项是三角形,具有稳定性,故A 项正确.B 项是四边形,C 项有四边形D 项是六边形,均不具有稳定性.【考点】三角形具有稳定性,四边形和其他多边形不具有稳定性. 2.【答案】B【解析】∵108.155510⨯表示的原数为81555000000,∴原数中“0”的个数为6, 故选:B .【考点】科学记数法. 3.【答案】C【解析】该图形的对称轴是直线3l , 故选:C .【考点】轴对称图形的概念和性质. 4.【答案】C【解析】22229.5(100.5)102100.50.5=-=⨯⨯+-, 故选:C .【考点】完全平方公式和平方差公式的运用. 5.【答案】C【解析】A 项,俯视图不符合题意.B 项,主视图和左视图均不符合题意.C 项,正确.D 项,俯视图不符合题意.【考点】立体图形与三视图的关系. 6.【答案】D【解析】Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线. 如图是按上述要求排乱顺序的尺规作图:6则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ. 故选:D .【考点】基本的尺规作图. 7.【答案】A 【解析】设的质量为x ,的质量为y ,的质量为a ,假设A 正确,则 1.5x y =,此时B ,C ,D 选项中都是2x y =,故A 选项错误,符合题意. 故选:A .【考点】等式的性质. 8.【答案】B【解析】A 、利用SAS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;C 、利用SSS 判断出PCA PCB △≌△,∴CA CB =,90PCA PCB ∠=∠=,∴点P 在线段AB 的垂直平分线上,符合题意;D 、利用HL 判断出PCA PCB △≌△,∴CA CB =,∴点P 在线段AB 的垂直平分线上,符合题意,B 、过线段外一点作已知线段的垂线,不能保证也平分此条线段,不符合题意;故选:B . 【考点】等腰三角形的三线合一. 9.【答案】D【解析】∵1513>,∴乙和丁的麦苗较高.∵3.6 6.3<,∴甲和丁的麦苗较整齐.∴麦苗又高又整齐的是丁. 【考点】平均数和方差的概念及应用. 10.【答案】B【解析】①1-的倒数是1-,原题错误,该同学判断正确;②|33|-=,原题计算正确,该同学判断错误; ③1、2、3、3的众数为3,原题错误,该同学判断错误;④021=,原题正确,该同学判断正确;⑤22()2m m m ÷-=-,原题正确,该同学判断正确;故选:B .【考点】倒数、绝对值和众数的概念及整式运算. 11.【答案】A7/14【解析】如图,AP BC ∥,∴2150∠=∠=.342805030∠=∠-∠=-=,此时的航行方向为北偏东30, 故选:A .【考点】平行线的性质和方位角. 12.【答案】B【解析】∵原正方形的周长为cm a ,∴原正方形的边长为 cm 4a ,∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(2)cm 4a +,则新正方形的周长为4(2)(a 8)cm 4a +=+, 因此需要增加的长度为88cm a a +-=. 故选:B .【考点】正方形的周长和整式的加减运算. 13.【答案】A【解析】∵22222n n n n +++=,∴422n =,∴221n =,∴121n +=,∴10n +=,∴1n =-. 故选:A .【考点】整式的加减及乘方运算. 14.【答案】D【解析】甲负责的一步正确.乙负责的一步错误,错在将第二个分式的分子1x -直接变为1x -,与原式相差一个负号.丙负责的一步正确.丁负责的一步错误,错在第一个分式的分子x 与第二个分式的分母2x 约分后分母应为x ,不是2. 【考点】分式的乘除法. 15.【答案】B【解析】连接AI 、BI ,8∵点I 为ABC △的内心, ∴AI 平分CAB ∠, ∴CAI BAI ∠=∠, 由平移得:AC DI ∥, ∴CAI AID ∠=∠, ∴BAI AID ∠=∠, ∴AD DI =, 同理可得:BE EI =,∴DIE △的周长4DE DI EI DE AD BE AB =++=++==, 即图中阴影部分的周长为4, 故选:B .【考点】三角形的内心及平行线的性质. 16.【答案】D【解析】∵抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点, ∴①如图1,抛物线与直线相切,联立解析式(3)2y x x cy x =--+⎧⎨=+⎩得2220x x c -+-=2(2)4(2)0c ∆=---=解得1c =②如图2,抛物线与直线不相切,但在03x ≤≤上只有一个交点,此时两个临界值分别为(0,2)和(3,5)在抛物线上,∴min 2c =,但取不到,max 5c =,能取到 ∴25c <≤ 又∵c 为整数 ∴3,4,5c = 综上,1,3,4,5c =9/14故选:D .【考点】二次函数和一次函数的图象及性质.第Ⅱ卷二、填空题 17.【答案】22,故答案为:2. 【考点】二次根式的化简. 18.【答案】0【解析】∵a ,b 互为相反数, ∴0a b +=,∴22()()0a b a b a b -=+-=. 故答案为:0. 【考点】因式分解. 19.【答案】14 21【解析】题中图2图案的外轮廓周长为(82)2214-⨯+=.当60BPC ∠=时,中间为等比三角形,而60302=是360的112,这样就恰好可以作出两个边长均为1的正十二边形,填充花纹后得到一个符合要求的图案,此时的图案外轮廓周长最大,周长为(122)2121-⨯+=. 【考点】正多边形的外角和等于360,每个外角等于360n. 三、解答题20.【答案】(1)原式22236865226x x x x x =++---=-+. (2)设方框内的数字为a ,则原式22268652(5)6ax x x x a x =++---=-+.10∵结果为常数,∴50a -=,解得5a =. 【解析】(1)原式去括号、合并同类项即可得; (2)设“”是a ,将a 看做常数,去括号、合并同类项后根据结果为常数知二次项系数为0,据此得出a 的值.【考点】整式的加减.21.【答案】解:(1)625%24÷=(人),245649---=(人), 则条形图中被遮盖的数为9.将读书册数按从小到大的顺序排列后,位于中间的两个数据均为5册,故册数的中位数为5册. (2)由题意,得总人数为24人,超过5册的学生人数为6410+=(人), 故642412P +5==. (3)3【解析】(1)用读书为6册的人数除以它所占的百分比得到调查的总人数,再用总人数分别减去读书为4册、6册和7册的人数得到读书5册的人数,然后根据中位数的定义求册数的中位数; (2)用读书为6册和7册的人数和除以总人数得到选中读书超过5册的学生的概率; (3)根据中位数的定义可判断总人数不能超过27,从而得到最多补查的人数. 【考点】扇形统计图,条形统计图,中位数,概率公式. 22.【答案】解:尝试 (1)5(2)193-+-++=. (2)由题意,得(2)193x -+++=,解得5x =-. 应用 ∵31473÷=⋅⋅⋅⋅⋅⋅, ∴37(5)(2)115⨯+-+-+=.发现 找规律发现,数“1”所在的台阶数为3,7,11,15,…,∴数“1”所在的台阶数为41k -(k 为正整数).【考点】图形的变化规律.23.【答案】(1)证明:∴P 为AB 的中点, ∴AP BP =.在APM △和BPN △中,∴,,,A B AP BP APM BPN ∠=∠⎧⎪=⎨⎪∠=∠⎩∴APM BPN △≌△.11/14(2)解:由(1)知,APM BPN △≌△,∴PM PN =,∴2MN PN =.∴2MN BN =,∴BN PN =,∴50BPN B α=∠=∠=.(3)解:4090α<<【解析】(1)根据AAS 证明:APM BPN △≌△;(2)由(1)中的全等得:2MN PN =,所以PN BN =,由等边对等角可得结论;(3)三角形的外心是外接圆的圆心,三边垂直平分线的交点,直角三角形的外心在直角顶点上,钝角三角形的外心在三角形的外部,只有锐角三角形的外心在三角形的内部,所以根据题中的要求可知:BPN △是锐角三角形,由三角形的内角和可得结论.【考点】三角形和圆的综合题.24.【答案】解:(1)∴点(,4)C m 在1l 上, ∴1542m -+=,∴2m =.∴(2,4)C .设2l 的解析式为(0)y kx k =≠,∴点(2,4)C 在2l 上,24k =,∴2k =∴2l 的解析式为2y x =.(2)由题意可知,A ,B 两点分别是11:542l y m =-+=与x 轴、y 轴的交点,∴(10,0),(0,5)A B ,即10,5OA OB ==. ∵111042022AOC c S OA y ==⨯⨯=△, 1152522BOC c S OB x ==⨯⨯=△, ∴15AOC BOC S S -=△△.(3)12k =-或2k =或32k =. 【解析】(1)先求得点C 的坐标,再运用待定系数法即可得到2l 的解析式;(2)过C 作CD AO ⊥于D ,CE BO ⊥于E ,则4CD =,2CE =,再根据(10,0),(0,5)A B ,可得10,5OA OB ==,进而得出AOC BOC S S -△△的值;(3)分三种情况:当3l 经过点(2,4)C 时,32k =;当2l ,3l 平行时,2k =;当1l ,3l 平行时,12k =-;故k 的值为32或2或12-. 【考点】两条直线相交或平行问题.25.【答案】解:(1)如图1,以OA 为半径的圆的周长为2π2652π⨯=, ∴13π3609052πAOP ∠=⨯=. ∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即2643OP OQ x ==,∴19.5x =. 故x 的值为19.5.(2)如图2,当直线l 与优弧AB 所在圆相切于数轴下方时,x 的值最小,此时OP PQ ⊥.∵PQ OB ∥,∴PQO AOB ∠=∠,∴4tan tan 3PQO AOB ∠=∠=, 即43OP PQ =. 设4,3OP a PQ a ==,在Rt OPQ △中,5OQ a =.13/14∴5544OQ a OP a ==. ∵26OP =, ∴532.54OQ OP ==.故x 的值为32.5-.(3)x 的值为31.5或16.5-或31.5-.【解析】(1)利用弧长公式求出圆心角即可解决问题;(2)如图当直线PQ 与O 相切时时,x 的值最小.(3)由于P 是优弧AB 上的任意一点,所以P 点的位置分三种情形,分别求解即可解决问题.【考点】圆综合题,平行线的性质,弧长公式,解直角三角形.26.【答案】解:(1)根据题意,得点A 的坐标为(1,18),将其代入k y x =,得18k =. 设2h mt =,当1t =时,5h =,∴5m =.∴25h t =.(2)根据题意,得1x vt =+,当5v =时,51x t =+①.根据题意,得18y h =-.∵25h t =,∴2185y t =-②. 由①,得15x t -=③. 将③代入②,得21185()5x y -=-. 化简,得21(1)185y x =--+. 当13y =时,即21(1)18135x --+=,解得126,4x x ==-(舍去).将6x =代入18y x=,得3y =. ∴13310(m)-=.∴13y =时,运动员与正下方滑道的竖直距离为10m .(3) 1.8s,7.5m /s t v =乙>.【解析】(1)用待定系数法解题即可;(2)根据题意,分别用t 表示x 、y ,再用代入消元法得出y 与x 之间的关系式;(3)求出甲距x 轴1.8米时的横坐标,根据题意求出乙位于甲右侧超过4.5米的v 乙.【考点】二次函数和反比例函数的待定系数法,函数图象上的临界点问题.。
2018年河北省中考数学试卷(含答案解析)-全新整理
河北省2018年中考数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形具有稳定性的是( )A .B .C .D .2.一个整数8155500L 用科学记数法表示为108.155510 ,则原数中“0”的个数为( ) A .4 B .6 C .7 D .103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A .1lB .2lC .3lD .4l 答案:C4.将29.5变形正确的是( ) A .2229.590.5=+B .29.5(100.5)(100.5)=+-C.2229.5102100.50.5=-⨯⨯+ D .2229.5990.50.5=+⨯+5.图2中三视图对应的几何体是( )A .B .C. D .6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线. 图3是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-Ⅲ B.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC. ①-Ⅱ,②-Ⅳ,③-Ⅲ,④-Ⅰ D.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体,“”“”“”其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不.相等,则该组是()A. B.C. D..求证:点P在线段AB的垂直平分线上.在证明该结论8.已知:如图4,点P在线段AB外,且PA PB时,需添加辅助线,则作法不.正确的是()A .作APB ∠的平分线PC 交AB 于点C B .过点P 作PC AB ⊥于点C 且AC BC = C.取AB 中点C ,连接PCD .过点P 作PC AB ⊥,垂足为C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:13x x ==甲丙,15x x ==乙丁;22 3.6s s ==甲丁,22 6.3s s ==乙丙.则麦苗又高又整齐的是( )A .甲B .乙 C.丙 D .丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个 B.3个 C. 4个 D.5个11.如图6,快艇从P处向正北航行到A处时,向左转50︒航行到B处,再向右转80︒继续航行,此时的航行方向为()A.北偏东30︒ B.北偏东80︒C.北偏西30︒ D.北偏西50︒12.用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形.要将它按图7的方式向外等距扩1(单位:cm ), 得到新的正方形,则这根铁丝需增加( )A .4cmB .8cm C.(4)a cm + D .(8)a cm +13.若22222nnnn+++=,则n =( ) A.-1B.-2C.0D.1414.老师设计了接力游戏,用合作的方式完成分式化简.规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图8所示: 接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I 为ABC V 的内心,4AB =,3AC =,2BC =,将ACB ∠平移使其顶点与I 重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线:(3)(03)L y x x c x =--+≤≤与直线:2l y x =+有唯一公共点.若c 为整数,确定所有c 的值.”甲的结果是1c =,乙的结果是3c =或4,则( ) A.甲的结果正确 B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分.17~18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.123-=- .18.若a ,b 互为相反数,则22a b -= .19.如图101-,作BPC ∠平分线的反向延长线PA ,现要分别以APB ∠,APC ∠,BPC ∠为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以BPC ∠为内角,可作出一个边长为1的正方形,此时90BPC ∠=︒,而90452︒=︒是360︒(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图102-所示.图102-中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是 .三、解答题 (本大题共7小题,共66分.解答应写出文字说明、证明过程或演算步骤.)20. 嘉淇准备完成题目:化简: 2268)(652)x x x x ++-++发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:22(368)(652)x x x x ++-++;(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?-)和不完整的扇形图(图21. 老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图111-),其中条形图被墨迹掩盖了一部分.112(1)求条形图中被掩盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22. 如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试(1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x 是多少?应用 求从下到上前31个台阶上数的和.发现 试用k (k 为正整数)的式子表示出数“1”所在的台阶数.23. 如图13,50A B ∠=∠=︒,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设BPN α∠=.(1)求证:APM BPN △△≌;(2)当2MN BN =时,求α的度数;(3)若BPN △的外心在该三角形的内部,直.接.写出α的取值范围.24. 如图14,直角坐标系xOy 中,一次函数152y x =-+的图像1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图像2l 与1l 交于点C (,4)m .(1)求m 的值及2l 的解析式;(2)求AOC BOC S S -△△的值;(3)一次函数1y kx =+的图像为3l ,且1l ,2l ,3l 不能..围成三角形,直接..写出k 的值.25. 如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧»AB ,使点B 在O 右下方,且4tan 3AOB ∠=.在优弧»AB 上任取一点P ,且能过P 作直线//l OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧»AB 上一段»AP 的长为13π,求AOP ∠的度数及x 的值;(2)求x 的最小值,并指出此时直线与»AB 所在圆的位置关系;(3)若线段PQ 的长为12.5,直接..写出这时x 的值.26.图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道(1)k y x x =≥交于点A ,且1AB =米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置.忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间(秒)的平方成正比,且1t =时5h =;M ,A 的水平距离是vt 米.(1)求k ,并用表示h ;(2)设5v =.用表示点M 的横坐标x 和纵坐标y ,并求y 与x 的关系式(不写x 的取值范围),及13y =时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v米/秒.当甲距x轴1.8米,且乙位于甲乙右侧超过4.5米的位置时,直接..写出的值及v乙的范围.。
2018年河北中考数学模拟试卷
2018年河北中考模拟数学 试 卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效.一、选择题(本大题共16个小题,1~10小题,每小题3分;11~16小题,每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.在3,-1,0,-2这四个数中,最大的数是( ) A .0 B .-1C .-2D .32.如图1所示的几何体的俯视图是( )A .B .C .D . 3.一元一次不等式x +1<2的解集在数轴上表示为( )A .B .C .D .A CDB图24.如图2,AB ∥CD ,AD 平分∠BAC ,若∠BAD =70°, 那么∠ACD 的度数为( ) A .40°B .35°C .50°D .45°5.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为( ) A .31B .21 C .32D .61 6.下列计算正确的是( ) A .|-a |=a B .a 2·a 3=a 6 C .()2121-=--D .(3)0=07.如图3,小聪在作线段AB 的垂直平分线时,他是这样操作的: 分别以A 和B 为圆心,大于AB 21的长为半径画弧,两弧相交 于C 、D 两点,直线CD 即为所求.根据他的作图方法可知四边 形ADBC 一定是( ) A .矩形 B .菱形C .正方形D .无法确定8.已知n 20是整数,则满足条件的最小正整数n 为( ) A .2 B .3 C .4D .59.如图4,四边形ABCD 是⊙O 的内接四边形,若∠BOD =88°, 则∠BCD 的度数是( ) A .88° B .92° C .106°D .136°10.下列因式分解正确的是( )图3CBAD 图4A .m 2+n 2=(m +n )(m -n )B .x 2+2x -1=(x -1)2C .a 2-a =a (a -1)D .a 2+2a +1=a (a +2)+111.下列命题中逆命题是真命题的是( )A .对顶角相等B .若两个角都是45°,那么这两个角相等C .全等三角形的对应角相等D .两直线平行,同位角相等12.若关于x 的方程x 2﹣4x +m =0没有实数根,则实数m 的取值范围是( )A .m <﹣4B .m >﹣4C .m <4D .m >413.如图5所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,点P 是对角线AC 上一点, 若PD +PE 的和最小,则这个最小值为( ) A .32 B .62C .3D .614.如图6,在平面直角坐标系中,过点A 与x 轴平行的直线交抛物线2)1(31+=x y 于点B 、C ,线段BC 的长度为6,抛物线 b x y +-=22与y 轴交于点A ,则b =( ).A .1B .4.5C .3D .615.已知△ABC 在正方形网格中的位置如图7所示,点A 、B 、C 、P均在格点上,则点P 叫做△ABC 的( ) A .外心 B .内心 C .重心D .无法确定图7AB图16.如图8是小李销售某种食品的总利润y元与销售量x千克的函数图象(总利润=总销售额-总成本).由于目前销售不佳,小李想了两个解决方案:方案(1)是不改变食品售价,减少总成本;方案(2)是不改变总成本,提高食品售价.下面给出的四个图象中虚线表示新的销售方式中总利润与销售量的函数图像,则分别反映了方案(1)(2)的图象是()A.②,③B.①,③C.①,④D.④,②图8①②④③2017年河北中考模拟数 学 试 卷卷Ⅱ(非选择题,共78分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.太阳的半径约为696 000千米,用科学记数法表示数696 000为 . 1819.如图9所示,正五边形ABCDE 的边长为1,⊙B 过五边形的顶点A 、C ,则劣弧AC 的长为 .20.如图10,在第1个△A 1BC 中,∠B =20°,A 1B =CB ;在边A 1B 上任取一点D ,延长CA 1到A 2,使A 1A 2=A 1D ,得到第2个△A 1A 2D ;在边A 2D 上任取一点E ,延长A 1A 2到A 3,使A 2A 3=A2E,得到第3个△A 2A 3E ,…按此做法继续下去,则第5个三角形中以A5为顶点的内角度数是 °.图912 34 图10三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分10分)定义新运算:对于任意实数a ,b (其中a ≠0),都有aba ab a --=⊗1,等式右边是通常的加法、减法及除法运算,比如:02122112=--=⊗ (1) 求45⊗的值;(2) 若12=⊗x (其中x ≠0),求x 的值是多少?图11分22.(本小题满分10分)为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下:(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50﹪。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2018年河北中考数学模拟试题WORD版及答案
2018年河北省初中毕业升学文化课考试数学试卷一、选择题(本大题有16个小题,共42分.1—10小题各3分;11—16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.下列图形具有稳定性的是( )A. B. C. D.2.一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( ) A.4 B.6 C.7 D.103.图1中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( ) A.l 1 B.l 2 C.l 3 D.l 44.将9.52变形正确的是( )A.2220.599.5+=B.)5.010)(5.010(9.52-+=C.2220.50.5102019.5+⨯⨯-=D.2220.50.5999.5+⨯+=5.图2中三视图对应的几何体( )A主视B图1l 4l 3l 2l 1图2俯视图主视图左视图6.尺规作图要求:Ⅰ.过直线外一点作这条直线的垂线;Ⅱ.作线段的垂直平分线;Ⅲ.过直线上一点作这条直线的垂线;Ⅳ.作角的平分线.图3是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①-Ⅳ,②-Ⅱ,③-Ⅰ,④-ⅢB.①-Ⅳ,②-Ⅲ,③-Ⅱ,④-ⅠC.①-Ⅱ,②-Ⅳ,③-Ⅲ,④-ⅠD.①-Ⅳ,②-Ⅰ,③-Ⅱ,④-Ⅲ7.有三种不同质量的物体“””,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )8.已知:如图4,点P在线段AB外,且PA=PB.求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CC主视左视俯视D主视左视俯视OBA①lP②BA③lP④A BC D图3PCBAB.过点P 作PC ⊥AB 于点C 且AC=BCC.取AB 中点C ,连接PCD.过点P 作PC ⊥AB ,垂足为 C9.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:13==丙甲x x,15==丁乙x x ;3.622==丁甲S S ,3.622==丙乙S S .则麦苗又高整齐的是( )A. 甲B. 乙C. 丙D. 丁10.图5中的手机截屏内容是某同学完成的作业,他做对的题 数是( ) A. 2个 B. 3个 C. 4个 D. 5个11.如图6,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( ) A.北偏东30° B.北偏东80° C.北偏西30° D.北偏西50°12.用一根长为a (单位:cm)的铁丝,首尾相接围成一个正方形,要将它按图7的方式向外等距扩1(单位:cm),得到新的正方形,则这根铁丝需增加( ) A.4cm B.8cmC.(a +4)cmD.(a +8)cm判断(正确打√,错误打×): ①-1的倒数是1. (×)②.(×) ④.(√)③1,2,3,3的众数是.(√)⑤.(√) 图5图6北东80°50°PB11113.若22222=+++nnnn,则=n( )A.-1B.-2C.0D.4114.老师设计了接力游戏,用合作的方式完成分式分简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简,过程如图8所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.如图9,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.对于题目“一段抛物线L:)30()3(≤≤+--=xcxxy与直线l:2+=xy有唯一公共点,若c 为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确二、填空题(本大题有3个小题,共12分,17-18小题各3分;19小题有2个空,每空3分.把答案写在题中横线上)17.计算:312--= .18.若a,b互为相反数,则=-22ba .19.如图10-1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,老师甲乙丁ICBA图9PCB∠BPC 为内角作正多边形,且边长均为1,将作出的三个正多边形填充 不同花纹后成为一个图案.例如,若以∠BPC 为内角,可作出一个边长为1的正方形,此时∠BPC=90°, 而︒=︒45290是360°(多边形外角和)的81,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图10-2所示.图10-2中的图案外轮廓周长是 ;在所有符合要求的图案中选一个外轮廓周长最大的定为会标, 则会标的外轮廓周长是 .三、解答题(本大题有7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)20.(本小题满分8分)21.(本小题满分9分)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图11-1)和不完整的扇形图(图11-2),其中条形图被墨迹遮盖了一部分. (1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;嘉淇准备完成题目: 发现系数“ ”印刷不清楚.(1)他把“ ”猜成3,请你化简:化简:.(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“ ”是几?图10-2(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了 人.22.(本小题满分9分)如图12,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着-5,-2,1,9,且任意相邻四个台阶上数的和都相等.尝试:(1)求前4个台阶上数的和是多少? (2)求第5个台阶上的数x 是多少? 应用:求从下到上前31个台阶上数的和.发现:试用含k(k 为正整数)的式子表示出数“1”所在的台阶数.23.(本小题满分9分)如图13,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=.图111人数/人读书情况图11225%7册6册5册4册图12(1)求证:△APM ≌△BPN ; (2)当MN=2BN 时,求α的度数;(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围.24.(本小题满分10分)如图14,直角坐标系xOy 中,一次函数521+-=x y 的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点C(m ,4).(1)求m 的值及2l 的解析式; (2)求BOC AOC S S ∆∆-的值;(3)一次函数1+=kx y 的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.αN MPDCBA图1325.(本小题满分10分)如图15,点A 在数轴上对应的数为26,以原点O 为圆心,OA 为半径作优弧AB⌒ ,使点B 在O 右下方,且34tan =∠AOB ,在优弧AB⌒ 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连接OP .(1)若优弧AB⌒ 上一段AP ⌒ 的长为π13,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB ⌒ 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.l 1:l 2yx11O CBA图1426.(本小题满分11分)图16是轮滑场地的截面示意图,平台AB 距x 轴(水平)18米,与y 轴交于点B ,与滑道()1 ≥=x xk y 交于点A ,且AB=1米.运动员(看成点)在BA 方向获得速度v 米/秒后,从A 处向右下飞向滑道,点M 是下落路线的某位置,忽略空气阻力,实验表明:M ,A 的竖直距离h (米)与飞出时间t (秒)的平方成正比,且t =1时h =5;M ,A 的水平距离是vt 米.(1)求k ,并用t 表示h ;(2)设5=v ,用t 表示点M 的横坐标x 和y 的关系式(不写x 的取值范围),及13=y 时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A 处飞出,速度分别是5米/秒、乙v 米/秒,当甲距x 轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t 的值及乙v 的范围.图15备用图图16参考答案1-10、ABCCC DABDA 11-16、ABADB D 17、2 18、0 19、14 21 20、21、22、23、24、25、26、。
【最新】河北省衡水市中考数学模拟检测试卷(含答案解析)
河北省衡水市中考数学模拟试卷(含答案)(时间120分钟满分:120分)一、选择题(本大愿共16个小题,1~10小题,每小题3分:11~16小题,每小题3分,共42分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)在“有理数的加法与减法运算”的学习过程中,我们做过如下数学实验.“把笔尖放在数轴的原点处,先向左移动3个单位长度,再向右移动1个单位长度,这时笔尖的位置表示什么数?”用算式表示以上过程和结果的是()A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+42.(3分)如图所示,用量角器度量∠AOB,可以读出∠AOB的度数为()A.45°B.55°C.135° D.145°3.(3分)PM2.5是指大气中直径小于或等于0.00000025m的颗粒物,将0.00000025用科学记数法表示为()A.2.5×10﹣7 B.2.5×10﹣8 C.25×10﹣6 D.0.25×10﹣74.(3分)如图所示是4×5的方格纸,请在其中选取一个白色的方格并涂黑,使图中阴影部分是一个轴对称图形,这样的涂法有()A.4种B.3种C.2种D.1种5.(3分)下列运算正确的是()A.a2+a3=2a5B.(﹣a3)2=a9C.(﹣x)2﹣x2=0 D.(﹣bc)4÷(﹣bc)2=﹣b2c26.(3分)如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A. B.C. D.7.(3分)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151° C.116° D.97°8.(3分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.(3分)某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75 B.众数是4,平均数是3.75 C.中位数是4,平均数是3.8 D.众数是2,平均数是3.810.(3分)如图,在矩形中截取两个相同的正方形作为立方体的上下底面,剩余的矩形作为立方体的侧面,刚好能组成立方体.设矩形的长和宽分别为y和x,则y与x的函数图象大致是()A. B. C.D.11.(2分)由4个相同的小立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.12.(2分)关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠013.(2分)如图,在△ABC与△ADE中,∠BAC=∠D,要使△ABC与△ADE相似,还需满足下列条件中的()A. = B. = C. = D. =14.(2分)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0),下列结论:①ab<0,②b2>4,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0.其中正确结论的个数是()A.2个 B.3个 C.4个D.5个15.(2分)如图,正三角形ABC(图1)和正五边形DEFGH(图2)的边长相同.点O为△ABC的中心,用5个相同的△BOC拼入正五边形DEFGH中,得到图3,则图3中的五角星的五个锐角均为()A.36° B.42°C.45° D.48°16.(2分)将一个无盖正方体纸盒展开(如图1),沿虚线剪开,用得到的5张纸片(其中4张是全等的直角三角形纸片)拼成一个正方形(如图2),则所剪得的直角三角形较短的与较长的直角边的比是()A. B. C. D.二、填空题(17、18题每題3分,19题每空2分,共10分.把答案写在题中横线上)17.(3分)计算: = .18.(3分)阅读下面材料:如图,AB是半圆的直径,点D、E在半圆上,且D为弧BE的中点,连接AE、BD并延长,交圆外一点C,按以下步骤作图:①以点C为圆心,小于BC长为半径画弧,分别交AC、BC于点G、H;②分别以点G、H为圆心,大于GH的长为半径画弧,两弧相交于点M;③作射线CM,交连接A、D两点的线段于点I.则点I到△ABC各边的距离.(填“相等”或“不等”)19.(4分)将一列有理数﹣1,2,﹣3,4,﹣5,6,……,按如图所示有序排列.如图所示有序排列.如:“峰1”中峰顶C的位置是有理数4,那么,(1)“峰6”中峰顶C的位置是有理数;(2)2008应排在A、B、C、D、E中的位置.三解答题(共68分)20.(本小题满分8分)(1)a克糖水中有b克糖(a>b>0),则糖的质量与糖水的质量比为;若再添加c克糖,并全部溶解(c>0),则糖的质量与糖水的质量比为;生活常识告诉我们,添加的糖完全溶解后,频数 1 2 3 4 5 6 天图9糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是 ;.(2)我们的猜想正确吗?请你证明这个猜想。
【全国省级联考】河北省2018届九年级中考模拟试卷(b卷)数学试题(解析版)
2018年河北省中考数学模拟试卷一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 下列四个运算中,结果最小的是()A. ﹣1+(﹣2)B. 1﹣(﹣2)C. 1×(﹣2)D. 1÷(﹣2)【答案】A【解析】分析:本题是对有理数的大小比较和混合运算的法则的综合考查,减去一个数等于加上这个数的相反数.除以一个数等于乘以这个数的倒数.详解:A. 原式=−1−2=−3;B. 原式=1+2=3;C. 原式=−2;D. 原式∵∴在上面四个数中,最小的数是−3;故选A.点睛:考查有理数大小比较,有理数的混合运算,掌握运算法则是解题的关键.2. 地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】分析:绝对值大于10时科学记数法的表示形式为的形式,其中为整数.本题中150000000有9位整数,详解:根据题意:150000000米=.故选C.点睛:题目考查科学记数法,根据科学记数法的表示方法进行表示即可.3. 下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A. B. C. D.【答案】B【解析】A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选B.4. 下列运算正确的是()A. (x5)2=x7B. x3+x4=x7C. (x+2)2=x2+4D. x8÷x2=x6【答案】D【解析】分析:A、根据幂的乘方法则进行计算;B、不是同类项,不能合并.根据同底数幂的乘法法则计算;C、根据完全平方公式进行计算;D、根据同底数幂的除法法则计算.详解:A、此选项错误;B、不是同类项,不能合并. 此选项错误.C、此选项错误;D、此选项正确.故选D.点睛:考查同底数幂的除法,合并同类项,幂的乘法,完全平方公式,熟记它们的运算法则是解题的关键.5. 下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】分析:根据必然事件的定义对①进行判断;根据样本的定义对②进行判断;根据平方的意义对③进行判断;根据三角形的内角和对④进行判断.详解:①13个人中至少有2人的生日是同一个月是必然事件;正确.②一名篮球运动员投篮命中概率为0.7,他投篮10次,不一定会命中7次;故错误.③因为任何数的平方都是正数,所以任何数的平方根都是正数;例如:0.故错误,④在平面上任意画一个三角形,其内角和一定是180°,正确.正确的有2个.故选B.点睛:考查命题与定理,能够判断真假的陈述句,叫做命题.6. 如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于()A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】B【解析】分析:计算出的长度,进行估算即可.详解:即故选B.点睛:考查了无理数的估算以及数轴上的点和实数之间的对应关系,夹逼法是估算的一般方法,也是常见的方法.7. 如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A. 主视图改变,俯视图改变B. 左视图改变,俯视图改变C. 俯视图不变,左视图改变D. 主视图不变,左视图不变【答案】D【解析】分析:分别得到将正方体①移走前后的三视图,依此即可作出判断.将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河北省中考数学模拟试卷(b卷)一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列四个运算中,结果最小的是()A.﹣1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)2.(3分)地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.93.(3分)下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列运算正确的是()A.(x5)2=x7B.x3+x4=x7C.(x+2)2=x2+4 D.x8÷x2=x65.(3分)下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确的个数是()A.1 B.2 C.3 D.46.(3分)如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB 垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于()A.3和4之间B.4和5之间C.5和6之间D.6和7之间7.(3分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变8.(3分)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是109.(3分)如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA 的延长线交于点E,如果,那么的值是()A.B.C.D.10.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°11.(2分)如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里12.(2分)若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.013.(2分)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定14.(2分)直线y=﹣x﹣1与反比例函数(x<0)的图象交于点A,与x 轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A.﹣2 B.﹣4 C.﹣6 D.﹣815.(2分)将Rt△AOB 如图放置在直角坐标系中,并绕O点顺时针旋转90°至△COD的位置,已知A(﹣2,0),∠ABO=30°.则△AOB旋转过程中所扫过的图形的面积为()A.B.C. D.16.(2分)如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2018秒时,点P的坐标是()A.(2017,0)B.(2017,)C.(2018,0)D.(2019,﹣)二、填空题(本大题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.(3分)在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F 在边BC上,AF与DE相交于点G,如果∠AFB=110°,那么∠CGF的度数是.18.(3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为.19.(4分)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第2次将点A1向右平移6个单位长度到达点A2,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是;按照这种规律移动下去,至少移动次后该点到原点的距离不小于41.三、解答题(本大题共7小题,共计68分。
解答应写出文字说明、证明过程或演算步骤)20.(8分)利用平方差公式可以进行简便计算:例1:99×101=(100﹣1)(100+1)=1002﹣12=10000﹣1=9999;例2:39×410=39×41×10=(40﹣1)(40+1)×10=(402﹣12)×10=(1600﹣1)×10=1599×10=15990.请你参考黑板中老师的讲解,运用平方差公式简便计算:(1)×;(2)(2018+2018)(﹣).21.(9分)将九年级部分男生掷实心球的成绩进行整理,分成5个小组(x表示成绩,单位:米).A组:5.25≤x<6.25;B组:6.25≤x<7.25;C组:7.25≤x <8.25;D组:8.25≤x<9.25;E组:9.25≤x<10.25,并绘制出扇形统计图和频数分布直方图(不完整).规定x≥6.25为合格,x≥9.25为优秀.(1)这部分男生有多少人?其中成绩合格的有多少人?(2)这部分男生成绩的中位数落在哪一组?扇形统计图中D组对应的圆心角是多少度?(3)要从成绩优秀的学生中,随机选出2人介绍经验,已知甲、乙两位同学的成绩均为优秀,求他俩至少有1人被选中的概率.22.(9分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F 点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.23.(9分)如图,已知平行四边形OABC的三个顶点A、B、C在以O为圆心的半圆上,过点C作CD⊥AB,分别交AB、AO的延长线于点D、E,AE交半圆O 于点F,连接CF.(1)判断直线DE与半圆O的位置关系,并说明理由;(2)①求证:CF=OC;②若半圆O的半径为12,求阴影部分的周长.24.(10分)暑假到了,即将迎来手机市场的销售旺季.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:该商场计划投入15.5万元资金,全部用于购进两种手机若干部,期望全部销售后可获毛利润不低于2万元.(毛利润=(售价﹣进价)×销售量)(1)若商场要想尽可能多的购进甲种手机,应该安排怎样的进货方案购进甲乙两种手机?(2)通过市场调研,该商场决定在甲种手机购进最多的方案上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润.25.(11分)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A (0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q 为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.26.(12分)如图,在△ABC中,tan∠ABC=,∠ACB=45°,AD=8,AD是边BC 上的高,垂足为D,BE=4,点M从点B出发沿BC方向以每秒3个单位的速度运动,点N从点E出发,与点M同时同方向以每秒1个单位的速度运动.以MN 为边在BC的上方作正方形MNGH.点M到达点C时停止运动,点N也随之停止运动.设运动时间为t(秒)(t>0).(1)当t为多少秒时,点H刚好落在线段AB上?(2)当t为多少秒时,点H刚好落在线段AC上?(3)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,求出S关于t的函数关系式并写出自变量t的取值范围.2018年河北省中考数学模拟试卷(b卷)参考答案与试题解析一、选择题(本大题共16小题,1-10小题,每小题3分,11-16小题每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列四个运算中,结果最小的是()A.﹣1+(﹣2)B.1﹣(﹣2)C.1×(﹣2)D.1÷(﹣2)【分析】本题是对有理数的大小比较和混合运算的法则的综合考查,减去一个数等于加上这个数的相反数.除以一个数等于乘以一个数的倒数.【解答】解:A、原式=﹣1﹣2=﹣3;B、原式=1+2=3;C、原式=﹣2;D、原式=1×(﹣)=﹣;∵﹣3<﹣2<﹣<3,∴在上面四个数中,最小的数是﹣3;故选:A.2.(3分)地球距太阳的距离是150000000km,用科学记数法表示为1.5×10n km,则n的值为()A.6 B.7 C.8 D.9【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于150000000有9位,所以可以确定n=9﹣1=8.【解答】解:150 000 000=1.5×108.故选:C.3.(3分)下列各图是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项正确;C、不是轴对称图形,也不是中心对称图形,故本选项错误;D、是中心对称图形,是轴对称图形,故本选项错误.故选:B.4.(3分)下列运算正确的是()A.(x5)2=x7B.x3+x4=x7C.(x+2)2=x2+4 D.x8÷x2=x6【分析】根究幂的乘方、合并同类项法则、完全平方公式和同底数幂的除法逐一计算可得.【解答】解:A、(x5)2=x10,此选项错误;B、x3与x4不能合并,此选项错误;C、(x+2)2=x2+4x+4,此选项错误;D、x8÷x2=x6,此选项正确;故选:D.5.(3分)下列命题中,①13个人中至少有2人的生日是同一个月是必然事件;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次;③因为任何数的平方都是正数,所以任何数的平方根都是正数;④在平面上任意画一个三角形,其内角和一定是180°,正确的个数是()A.1 B.2 C.3 D.4【分析】根据必然事件的定义、概率、平方根和三角形判断即可.【解答】解:①13个人中至少有2人的生日是同一个月是必然事件,正确;②一名篮球运动员投篮命中概率为0.7,他投篮10次,一定会命中7次,错误;③因为任何数的平方都是正数,所以任何数的平方根都是正数,错误;④在平面上任意画一个三角形,其内角和一定是180°,正确;故选:B.6.(3分)如图,在数轴上,点O对应数字O,点A对应数字2,过点A作AB 垂直于数轴,且AB=4,连接OB,绕点O顺时针旋转OB,使点B落在数轴上的点C处,则点C所表示的数介于()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【分析】因为△OAB是一个直角三角形,且有OC=OB,所以可求得OB的长度即得C点所表示的数,可判断其大小.【解答】解:∵AB⊥OA∴在直角三角形OAB中有OA2+AB2=OB2∴OB==∴4<<5又∵OC=OB∴点C所表示的数介于4和5之间故选:B.7.(3分)如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A.主视图改变,俯视图改变B.左视图改变,俯视图改变C.俯视图不变,左视图改变D.主视图不变,左视图不变【分析】分别得到将正方体①移走前后的三视图,依此即可作出判断.【解答】解:将正方体①移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体①移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变.将正方体①移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体①移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变.将正方体①移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体①移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变.故选:D.8.(3分)为了解某小区家庭使用垃圾袋的情况,小亮随机调查了该小区10户家庭一周垃圾袋的使用量,结果如下:7,9,11,8,7,14,10,8,9,7(单位:个),关于这组数据下列结论正确的是()A.极差是6 B.众数是7 C.中位数是8 D.平均数是10【分析】根据极差、众数、中位数及平均数的定义,依次计算各选项即可作出判断.【解答】解:A.极差=14﹣7=7,结论错误,故A不符合题意;B.众数为7,结论正确,故B符合题意;C.中位数为8.5,结论错误,故C不符合题意;D.平均数是9,结论错误,故D不符合题意;故选:B.9.(3分)如图,在平行四边形ABCD中,F是边AD上的一点,射线CF和BA 的延长线交于点E,如果,那么的值是()A.B.C.D.【分析】根据相似三角形的性质进行解答即可.【解答】解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵,∴,∴,∵AF∥BC,∴△EAF∽△EBC,∴=,故选:D.10.(3分)如图,在△ABC中,∠C=90°,∠CAB=50°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB、AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧相交于点G;③作射线AG,交BC边于点D.则∠ADC的度数为()A.40°B.55°C.65°D.75°【分析】根据角平分线的作法可得AG是∠CAB的角平分线,然后再根据角平分线的性质可得∠CAD=∠CAB=25°,然后再根据直角三角形的性质可得∠CDA=90°﹣25°=65°.【解答】解:根据作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选:C.11.(2分)如图,某轮船在点O处测得一个小岛上的电视塔A在北偏西60°的方向,船向西航行20海里到达B处,测得电视塔A在船的西北方向,若要轮船离电视塔最近,则还需向西航行()A.海里B.海里C.海里D.海里【分析】作AC⊥OB于C点,根据题目提供的方向角,并从图中整理出直角三角形的模型,利用解直角三角形的知识求得BC的长即可.【解答】解:作AC⊥OB于C点,只要到C处,轮船离电视塔最近,求出BC长即可,由已知得:∠AOB=30°,∠ABC=45°、OB=20海里,∴BC=AC,CO=AC÷tan∠AOB=AC÷tan30°=,∵CO﹣CB=﹣AC=20,解得:AC=海里,∴BC=AC=10(+1)海里,故选:A.12.(2分)若分式的值为0,则x的值为()A.﹣1 B.1 C.±1 D.0【分析】根据分式的值为0的条件即可求出x的值.【解答】解:由题意可知:解得:x=1,故选:B.13.(2分)若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M与N的大小关系正确的为()A.M>N B.M=N C.M<N D.不确定【分析】把x0代入方程ax2+2x+c=0得ax02+2x0=﹣c,作差法比较可得.【解答】解:∵x0是方程ax2+2x+c=0(a≠0)的一个根,∴ax02+2x0+c=0,即ax02+2x0=﹣c,则N﹣M=(ax0+1)2﹣(1﹣ac)=a2x02+2ax0+1﹣1+ac=a(ax02+2x0)+ac=﹣ac+ac=0,∴M=N,故选:B.14.(2分)直线y=﹣x﹣1与反比例函数(x<0)的图象交于点A,与x 轴相交于点B,过点B作x轴垂线交双曲线于点C,若AB=AC,则k的值为()A.﹣2 B.﹣4 C.﹣6 D.﹣8【分析】过A作AD⊥BC于D,先求出直线=﹣x﹣1与x轴交点B的坐标(﹣2,0),则得到C点的横坐标为﹣2,由于C点在反比例函数y=的图象上,可表示出C点坐标为(﹣2,﹣),利用等腰三角形的性质,由AC=AB,AD⊥BC,得到DC=DB,于是D点坐标为(﹣2,﹣),则可得到A点的纵坐标为﹣,利用点A在函数y=的图象上,可表示出点A的坐标为(﹣4,﹣),然后把A(﹣4,﹣)代入y=﹣x﹣1得到关于k的方程,解方程即可求出k的值.【解答】解:过A作AD⊥BC于D,如图,对于y=﹣x﹣1,令y=0,则﹣x﹣1=0,解得x=﹣2,∴B点坐标为(﹣2,0),∵CB⊥x轴,∴C点的横坐标为﹣2,对于y=,令x=﹣2,则y=﹣,∴C点坐标为(﹣2,﹣),∵AC=AB,AD⊥BC,∴DC=DB,∴D点坐标为(﹣2,﹣),∴A点的纵坐标为﹣,而点A在函数y=的图象上,把y=﹣代入y=得x=﹣4,∴点A的坐标为(﹣4,﹣),把A(﹣4,﹣)代入y=﹣x﹣1得﹣=﹣×(﹣4)﹣1,∴k=﹣4.故选:B.15.(2分)将Rt △AOB 如图放置在直角坐标系中,并绕O 点顺时针旋转90°至△COD 的位置,已知A (﹣2,0),∠ABO=30°.则△AOB 旋转过程中所扫过的图形的面积为( )A .B .C .D .【分析】由A (﹣2,0),得到OA=2,求得OB=2,∠BAO=60°根据三角形和扇形的面积公式即可得到结论;【解答】解:∵A (﹣2,0),∴OA=2,∵∠ABO=30°,∴OB=2,∠BAO=60°,∴△AOB 旋转过程中所扫过的图形的面积=S △BC′O +S扇形AOC′+S 扇形BOD =1×2++=π+,故选:D.16.(2分)如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2018秒时,点P的坐标是()A.(2017,0)B.(2017,)C.(2018,0)D.(2019,﹣)【分析】设第n秒运动到P n(n为自然数)点,根据点P的运动规律找出部分P n点的坐标,根据坐标的变化找出变化规律“P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,﹣),P4n+4(4n+4,0)”,依此规律即可得出结论.【解答】解:设第n秒运动到P n(n为自然数)点,观察,发现规律:P1(1,),P2(2,0),P3(3,﹣),P4(4,0),P5(5,),…,∴P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,﹣),P4n+4(4n+4,0),∵2018=4×504+2,∴P2018为(2018,0),故选:C.二、填空题(本大题共3小题,共10分,17-18小题各3分,19小题有2个空,每空2分)17.(3分)在Rt△ABC中,∠C=90°,点D、E分别是边AC、AB的中点,点F 在边BC上,AF与DE相交于点G,如果∠AFB=110°,那么∠CGF的度数是40°.【分析】作出图形,根据邻补角的定义求出∠AFC,再判断出点G是AF的中点,再根据直角三角形斜边上的中线等于斜边的一半可得CG=GF,然后根据等腰三角形两底角相等列式计算即可得解.【解答】解:∵∠AFB=110°,∴∠AFC=180°﹣∠AFB=180°﹣110°=70°,∵点D、E分别是边AC、AB的中点,∴DE是△ABC的中位线,∴点G是AF的中点,∴CG=GF,∴∠CGF=180°﹣2∠AFC=180°﹣2×70°=40°.故答案为:40°.18.(3分)如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为.=S矩形ABCD,得出动点P在与AB平行且与AB的距离是2【分析】首先由S△PAB的直线l上,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.然后在直角三角形ABE中,由勾股定理求得BE的值,即PA+PB 的最小值.【解答】解:设△ABP中AB边上的高是h.=S矩形ABCD,∵S△PAB∴AB•h=AB•AD,∴h=AD=2,∴动点P在与AB平行且与AB的距离是2的直线l上,如图,作A关于直线l的对称点E,连接AE,连接BE,则BE的长就是所求的最短距离.在Rt△ABE中,∵AB=5,AE=2+2=4,∴BE===,即PA+PB的最小值为.故答案为:.19.(4分)如图,在数轴上,点A表示1,现将点A沿数轴做如下移动:第一次将点A向左移动3个单位长度到达点A1,第2次将点A1向右平移6个单位长度到达点A2,第3次将点A2向左移动9个单位长度到达点A3…则第6次移动到点A6时,点A6在数轴上对应的实数是10;按照这种规律移动下去,至少移动27次后该点到原点的距离不小于41.【分析】序号为奇数的点在点A的左边,各点所表示的数依次减少3,序号为偶数的点在点A的右侧,各点所表示的数依次增加3,即可解答.【解答】解:第一次点A向左移动3个单位长度至点A1,则A1表示的数,1﹣3=﹣2;第2次从点A1向右移动6个单位长度至点A2,则A2表示的数为﹣2+6=4;第3次从点A2向左移动9个单位长度至点A3,则A3表示的数为4﹣9=﹣5;第4次从点A3向右移动12个单位长度至点A4,则A4表示的数为﹣5+12=7;第5次从点A4向左移动15个单位长度至点A5,则A5表示的数为7﹣15=﹣8;第6次从点A5向左移动18个单位长度至点A6,则A6表示的数为﹣8+18=10;…;则A7表示的数为﹣8﹣3=﹣11,A9表示的数为﹣11﹣3=﹣14,A11表示的数为﹣14﹣3=﹣17,A13表示的数为﹣17﹣3=﹣20,A15表示的数为﹣20﹣3=﹣23,A17表示的数为﹣23﹣3=﹣264,A19表示的数为﹣26﹣3=﹣29,A21表示的数为﹣29﹣3=﹣32,A23表示的数为﹣32﹣3=﹣35,A25表示的数为﹣35﹣3=﹣38,A27表示的数为﹣38﹣3=﹣41,所以至少移动27次后该点到原点的距离不小于41.故答案为10,27.三、解答题(本大题共7小题,共计68分。