哈工大电力电子课程设计报告--可逆直流PWM驱动电源
哈工大电力电子课程设计报告--可逆直流PWM驱动电源.
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:电力电子技术设计题目:可逆直流PWM驱动电源的设计院系:班级:设计者: A学号:指导教师:国海峰设计时间:哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书H型双极性同频可逆直流PWM驱动电源的设计技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。
驱动系统的调速范围:大于1:100。
驱动系统应具有软启动功能,软启动时间约为2s。
详细设计要求见附录2.1.整体方案设计本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H型双极性同频可逆PWM控制电路,IPM接口电路及稳压电源。
同时具有软启动功能,软启动时间为2s左右。
控制原理如图1所示:图1 直流PWM驱动电源的控制原理框图脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。
经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。
稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。
表1 控制板器件清单2. 主电路设计2.1 主电路设计要求直流PWM 驱动电源的主电路图如图2所示。
此部分电路的设计包括整流电路和H 桥可逆斩波电路。
二极管整流桥把输入的交流电变为直流电。
四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。
主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。
2)斩波部分H 桥不采用分立元件,而是选用IPM (智能功率模块)PS21564来实现。
该模块的主电路为三相逆变桥,在本设计中只采用其中U 、V 两相即可。
图2 主电路图 3)在主电路设计中,应根据负载的要求,计算出整流部分的交流侧输入电压和电流,作为设计整流变压器、选择整流桥和滤波电容的依据。
直流PWM驱动电源设计(DOC)
南京工程学院课程设计说明书成绩题目直流电动机脉宽调速系统设计课程名称电力电子技术院(系、部、中心)电力工程学院专业建筑电气与智能化班级建筑电气091学生姓名陈曦学号206091034设计时间2011.12.12~12.24设计地点电力工程实践中心8-319 指导教师陈刚廖德利2011 年12 月南京1.课程设计应达到的目的电源和驱)驱动电源及控制用小功率开关电源。
其目的是通过对实际电力电子装置的设计、制作和调试,深化和拓展课程所学知识,提高工程实践能力。
动是电力电子技术的两大主要应用领域。
课程设计的主要任务是设训一和实现一个直流电动机的脉宽调速(直流PWM)2.课程设计题目及要求设计题目:直流PWM驱动电源的设计设计要求:课程设计的主要任务是设计一个直流电动机的脉宽调速(直流PWM)驱动电源。
DC-DC变换器采用H桥形式,控制方式为单极性。
被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。
驱动系统的调速范围:大于1:100,电机能够可逆运行。
驱动系统应具有软启动功能,软启动时间约为2s。
主要设计要求如下:1.阅读相关资料,设计主电路和控制电路,用PROTEL绘制的主电路和控制电路的原理图。
2.采购器件,装焊控制电路板。
3.在实验室进行装置调试。
4.设计成果验收。
5.整理设计文件,撰写设计说明书。
6.设计的成果应包括:用PROTEL绘制的主电路和控制电路的原理图,电路设计过程的详细说明书及焊装和调试完毕的控制电路板。
3.课程设计任务及工作量的要求〔包括课程设计计算说明书、图纸、实物样品等要求〕课程设计任务1)主电路的设计,器件的选型。
包括含整流变压器在内的整流电路设计和H桥可逆斩波电路的设计(要求采用IPM作为DC/DC变换的主电路,型号为PS21564)。
2)PWM控制电路的设计(指以SG3525为核心的脉宽调制电路和用门电路实现的脉冲分配电路)。
3)IPM接口电路设计(包括上下桥臂元件的开通延迟,及上桥臂驱动电源的自举电路)。
电力电子技术课程设计直流双极式可逆PWM调速系统
目录1 任务分析 (1)1.1概述 (1)1.2双闭环调速系统的结构图 (2)1.3桥式可逆PWM变换器的工作原理 (2)1.4PWM调速系统的静特性 (4)2 电路设计 (5)2.1给定及偏移电源 (5)2.2双环调节器电路 (6)2.2.1 电流调节器 (6)2.2.2 转速调节器 (6)2.3信号产生电路 (7)2.4驱动电路 (9)2.5转速及电流检测电路 (10)3 调节器的参数整定 (11)3.1电流调节器参数的计算 (11)3.2转速调节器参数的计算 (12)3.3参数的校验 (13)3.3.1 电流参数的校验 (13)3.3.2 转速参数的校验 (14)3.3.3 校验退饱和转速超调量 (15)4 心得体会 (16)参考文献 (17)附录 (18)直流双极式可逆PWM调速系统设计1 任务分析1.1 概述采用脉冲宽度调制的高频开关控制方式,形成脉宽调制变换器—直流电动机调速系统,简称直流脉宽调速系统或直流PWM调速系统。
脉宽调制变换器是把脉冲宽度进行调制的一种直流斩波器,脉宽调制,是利用电力电子开关器件的导通与关断,将直流电压变成连续的直流脉冲序列,并通过控制脉冲的宽度或周期达到变压的目的。
与V-M系统相比,PWM系统在很多方面有较大的优越性:1)主电路线路简单,需用的功率器件少。
2)开关频率高,电流容易连续,谐波少,电机损耗及发热都较小。
3)低速性能好,稳态精度高,调速范围宽,可达1:10000左右。
4)若是与快速响应的电机配合,则系统频带宽,动态响应快,动态抗干扰能力强。
5)功率开关器件工作在开关状态,道通损耗小,当开关频率适中时,开关损耗也不大,因而装置效率高。
6)直流电流采用不控整流时,电网功率因素比相控整流器高。
由于有以上优点直流PWM系统应用日益广泛,特别是在中、小容量的高动态性能中,已完全取代了V-M系统。
为达到更好的机械特性要求,一般直流电动机都是在闭环控制下运行。
电子电力课程设计--DCDC PWM控制电路的设计
电力电子技术课程设计专业班级:09级应用电子技术一班电力电子课程设计一、设计课题:DC/DC PWM控制电路的设计二、设计要求:1、设计基于PWM芯片的控制电路,包括外围电路。
按照单路输出方案进行设计,开关频率设计为10KHZ;具有软启动功能、保护封锁脉冲功能,以及限流控制功能。
电路设计设计方案应尽可能简单、可靠。
2、实验室提供面包板和器件,在面包板或通用板上搭建设计的控制电路。
3、设计并搭建能验证你的设计的外围实验电路,并通过调试验证设计的正确性。
4、扩展性设计:增加驱动电路部分的设计内容。
5、Buck电路图如下图:Buck电路图三、设计方案本次课程设计基于PWM芯片TL494进行设计,通过查阅该芯片的相关资料,了解其各引脚功能,结合设计要求进行电路设计。
首先建立最基本的电路,然后在其上面进行改进,得到进一步满足条件与实际应用的电路,根据原理图在实验板上搭建电路进行试验,得出结果进行分析验证,最后得出DC/DC PWM控制电路。
四、设计原理图如图所示为设计原理图,通过调节电位器Rp进行控制输出,从Vo端得到输出驱动电压的波形。
设计原理图五、TL494各引脚功能TL494的个引脚功能图如下表TL494引脚功能表引脚号功能引脚号功能1 误差放大器1的同相输入端9 末极输出三极管发射极端2 误差放大器1的反相输入端10 末极输出三极管发射极端3 输出波形控制端11 末极输出三极管集电极端4 死区控制信号输入端12 电源供电端5 振荡器外接震荡电容连接端13 输出控制端6 振荡器外接震荡电阻连接端14 基准电压输出端7 接地端15 误差放大器2的反相输入端8 末极输出三极管集电极端16 误差放大器2的同相输入端六、各部分功能及工作原理首先设计其振荡电路,根据振荡公式f=1.1/(R3XC2)=10Khz,取R3=1KΩ,则电容C2=0.1uF;然后,将同样大小的电容电阻串联并加以电压接地后,在电容电阻中间引出一根信号线作为第四脚的输入端,作为死区控制信号的输入。
可逆PWM调速驱动控制电路设计报告
目录1. 题目 (2)2. 题目分析及设计思路介绍 (2)(1)分析 (2)(2)可取的方案 (3)3. 方案设计说明 (4)4. 单元电路设计说明 (5)(1)、单片机最小系统 (5)(2)、输入输出设备 (6)(3)、H桥驱动 (7)(4)、片上PWM (7)5. 完整电路原理分析 (8)附录1. 单片机程序流程图 (10)附录2. 单片机程序流程图 (11)1. 题目设直流电机的额定工作电压为6V,功率为3W,试设计一个可逆PWM调速驱动控制电路,能在0V、5V的方向控制电压和0——5V 的转速控制电压的作用下,使电机正转、反转、加速、减速。
电路形式不限,作业具体要求如下:1. 画出电路的系统框图,说明电路方案设计的思路、理由或依据;2. 分单元画出各单元具体的电路图,阐述电路的工作原理,介绍电路中主要元器件的作用及其参数的确定原则或依据;3. 画出完整的电气原理图,介绍整体电路的工作原理;4. 如果采用了单片机,给出单片机程序的流程图和清单,说明程序的工作原理。
注:本题难度系数为1.52. 题目分析及设计思路介绍(1)分析电动机实现正反转,可以调换电源正负极和励磁电源正负极,对于永磁直流电动机,只能调换电源正负极,常见的玩具赛车中的就是这种。
单片机能给某个IO高电平或低电平,但驱动电机,没有足够的驱动能力(驱动电流小,带负载能力弱),利用三极管组成H桥式电路可以解决驱动及换向的问题。
直流电机调速一般采用调电压的方式,常用的方法是PWM调速,PWM名为秒冲宽度调制,可想而知就是调节占空比,STC12C5A60S2片上集成了两个PWM模块,可以实现PWM,另外,用NE555也可以实现PWM。
(2)可取的方案H桥式电路方案有集成的和元器件组装的。
常用的H桥IC有:L298(双H桥)、L9110H(单H桥)。
PWM的方案有:STC12C5A60S2片上集成了PWM模块和NE555占空比可调电路。
哈工大电力电子课程设计报告-小功率开关电源
1 R1 的功率 PR1 C1Vs 2 f 0.225 W 2
式中: 最小关断时间 toff (1 Dmax ) 缓冲电容 C1 = 0.01 μF 二极管型号:HER107
1 10 μs f
3
哈尔滨工业大学课程设计说明书(论文)
图 1 反激式变换器原理图
1.2
变压器参数计算
(1) . 计算原边绕组流过的峰值电流
I P 2 P0 /(Vs (min) Dmax ) 2 4.8 /(20 0.5) 0.98 A
式中 Po U o I o 16 (0.15 0.05 0.05 0.05) 4.8 W,为总输出功率
1.72 知,取 CT 102 ,则 RT 约为 35K,调节电位器 R7 使 RT CT
得输出 PWM 的频率约为 50K ,同时要注意输出 PWM 的幅值不能太高, 若太高则可能在接入开关管整机调试时烧毁开关管,取为 15V 即可。然后 调节电位器 R6 使得 R 6 4K ,使得在接入开关管后,辅助供电绕组的输出 电压约为 15V。
表 1 输出电压与负载电流关系
负载电流(mA)
20
40 16.1
60 16
80 15.9
100 15.8
输出电压(V) 16.2
为了调整负载调整率使得电源的带载能力更优,可以考虑更换变压器, 将绕组绕得更紧一些,同时可以加大输出虑波电容的容值,适当调整变压 器原边的缓冲电路参数及补偿回路参数。
7
哈尔滨工业大学课程设计说明书(论文)
S1 (d / 2) 2 0.075mm 2
原边绕组的截流面积 S w I P / J 0.96 / 4 0.24mm 2 则原边所需导线股数 nw (5) . 计算气隙长度
电力电子课设-DCDC--PWM控制电路的设计
学院电力电子课程设计题目: DC/DC PWM控制电路的设计小组成员:学号:学部(系):机械与电气工程学部专业年级:电气133指导教师:2 年 12 月 16 日目录一、总体设计方案....................... 错误!未定义书签。
二、设计原理及各部分功能............... 错误!未定义书签。
三、实验所得的各个波形................. 错误!未定义书签。
四、TL494及相关器件说明................ 错误!未定义书签。
五、总结及心得体会................................. - 8 -一、总体设计方案题目DC/DC PWM控制电路的设计●题目介绍电力电子电路控制中广泛应用着脉冲宽度调制技术(Pulse Width Modulation, 简称PWM),将宽度变化而频率不变的脉冲作为电力电子变换电路中功率开关管的驱动信号,控制开关管的通断,从而控制电力电子电路的输出电压以满足对电能变换的需要。
由于开关频率不变,输出电压中的谐波频率固定,滤波器设计比较容易。
本课程设计主要采用比较常用的PWM集成芯片TL494(也可用其它芯片)完成设计,让同学们初步掌握PWM控制电路的设计方法。
●课设要求1. 设计基于PWM芯片的控制电路,包括外围电路。
按照单路输出方案进行设计,开关频率设计为10KHz;具有软起动功能、保护封锁脉冲功能,以及限流控制功能。
电路设计方案应尽可能简单、可靠。
2. 实验室提供面包板和器件,在面包板或通用板上搭建设计的控制电路。
3. 设计并搭建能验证你的设计的外围实验电路,并通过调试验证设计的正确性。
4. 扩展性设计:增加驱动电路部分的设计内容。
二、设计原理本次实验所用芯片为TL494芯片,TL494是美国德州仪器公司生产的一种电压驱动型脉宽调制控制集成电路,主要应用在各种开关电源中。
TL494的内部电路由基准电压产生电路、振荡电路、间歇期调整电路、两个误差放大器、脉宽调制比较器以及输出电路等组成。
哈工大电路实验报告
哈工大电路实验报告哈工大电路实验报告引言电路实验是电子工程专业学生必修的一门实践课程,通过实际操作和测量,加深对电路原理的理解和应用能力的培养。
本篇报告将详细介绍哈工大电路实验的内容和实验结果。
实验一:直流电路的基本特性直流电路是电子工程中最基础的电路之一,通过该实验,我们可以了解电流、电压和电阻之间的关系。
首先,我们使用万用表测量了不同电阻下的电流和电压,并绘制了电流-电压曲线。
实验结果显示,电流和电压成正比,符合欧姆定律。
此外,我们还观察到不同电阻值对电路的影响,当电阻值增大时,电流减小,电压上升。
实验二:交流电路的特性交流电路是电子工程中另一个重要的电路类型,通过该实验,我们可以了解交流电路中的电压、电流和频率之间的关系。
我们使用示波器测量了不同频率下的电压和相位差,并绘制了频率-电压曲线。
实验结果显示,电压和频率成正比,而相位差则随频率的变化而变化。
此外,我们还观察到了交流电路中的谐振现象,当频率等于谐振频率时,电压达到最大值。
实验三:二极管的特性二极管是一种常见的电子元件,通过该实验,我们可以了解二极管的整流特性和稳压特性。
我们使用示波器测量了不同电压下的二极管电流,并绘制了电流-电压曲线。
实验结果显示,当电压小于二极管的正向压降时,电流非常小,呈现断开状态;当电压大于正向压降时,电流迅速上升,呈现导通状态。
此外,我们还观察到了二极管的稳压特性,即当电压超过一定值时,电流基本保持不变。
实验四:放大电路的特性放大电路是电子工程中常用的电路类型,通过该实验,我们可以了解放大电路的放大倍数和频率响应。
我们使用示波器测量了不同频率下的输入电压和输出电压,并绘制了频率-电压曲线。
实验结果显示,放大电路在特定频率范围内具有较高的放大倍数,而在超过该范围后,放大倍数会迅速下降。
此外,我们还观察到了放大电路的失真现象,即输入信号的形状在放大后发生畸变。
实验五:滤波电路的特性滤波电路是电子工程中常用的电路类型,通过该实验,我们可以了解滤波电路对不同频率信号的处理能力。
PWM可逆直流调速系统设计
PWM可逆直流调速系统设计1. 引言PWM(脉冲宽度调制)可逆直流调速系统是一种常用的电机调速系统,广泛应用于工业生产和家电领域。
本文将介绍PWM可逆直流调速系统的设计原理、主要组成部分以及工作原理。
2. 设计原理PWM可逆直流调速系统的设计原理基于脉冲宽度调制技术和电机控制原理。
通过调整PWM信号的脉冲宽度,可以控制电机的转速和运行方向。
主要原理包括: - 电源供应:系统通过电源为电机提供电能。
- PWM信号生成:通过数字控制器或单片机产生PWM 信号。
- H桥驱动电路:将PWM信号转换为适合电机的驱动信号。
- 电机控制:根据PWM信号调整电机的转速和运行方向。
3. 主要组成部分PWM可逆直流调速系统主要由以下几个组成部分构成:3.1 电源供应电源供应是系统的功率来源,可以选择直流电源或交流电源。
直流电源常用的电压范围为12V或24V,交流电源则需要将交流电转换为直流电。
3.2 PWM信号生成PWM信号生成是通过数字控制器或单片机来产生PWM信号的过程。
通过控制PWM信号的占空比,可以改变电机的转速。
3.3 H桥驱动电路H桥驱动电路是将PWM信号转换为适用于电机驱动的信号的关键部分。
H桥由4个开关管组成,根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
3.4 电机控制电机控制是根据PWM信号调整电机的转速和运行方向的过程。
通过增大或减小PWM信号的占空比,可以控制电机的速度;通过改变PWM信号的极性,可以改变电机的运行方向。
4. 工作原理PWM可逆直流调速系统的工作原理如下:1.首先,电源供应向系统提供电能,为后续的电机驱动做准备。
2.数字控制器或单片机根据预设的参数生成PWM信号,并将其输入到H桥驱动电路。
3.H桥驱动电路根据PWM信号的输入情况控制开关管的导通与关闭,从而改变电机的转速和运行方向。
4.电机控制模块根据PWM信号的占空比调整电机的转速,根据PWM信号的极性改变电机的运行方向。
电力电子技术课程设计–—可调直流稳压电源的设计
电力电子技术课程设计–—可调直流稳压电源的设计电力电子技术课程设计–—可调直流稳压电源的设计目录第一章绪论 01.1 设计目的 01.2 设计任务要求 01.3原理框图 0第二章电路器件及原理分析 (1)2.1、电源变压器 (1)2.2 整流电路 (2)2.3 滤波电路 (3)2.4 稳压电路 (3)2.5 元件的选择 (5)第三章可调直流稳压电源工作原理及原理图 (6)3.1 可调直流稳压电源工作原理 (6)3.2原理图 (6)第四章总结 (8)参考文献 (9)第一章绪论1.1 设计目的通过可调直流稳压电源的设计、安装和调试,要求学会:(1)选择变压器、整流二极管、滤波电容及集成稳压器来设计直流稳压源;(2)掌握直流稳压电路的调试及主要技术指标的测试方法。
1.2 设计任务要求1、主要技术指标(1)输出电压在1.26V-15V范围内连续可调,输出电流最大可达1A;(2)输出纹波电压小于5mV,稳压系数小于3%,输出电阻小于0.1Ω。
2、设计要求(1)合理选择变压器、集成稳压器、整流桥及二极管型号;(2)完成电路理论设计、绘制电路图及电路图典型波形、自制印刷板并进行安装调试;1.3原理框图系统原理图如1.1所示图1.1 系统原理图第二章 电路器件及原理分析2.1、电源变压器城市电网提供的一般为220V (或380V )/50HZ 的正弦交流电,电源变压器的作用是将电网交流电压变换成整流滤波电路所需要的交流电压。
然后再将其次级输出电压去整流、滤波和稳压,最后得到所需要的直流电压幅值。
(1) 电源电压变压器参数介绍a )电压比初、次级电压和线圈圈数具有以下关系,即:(2-1)b )效率在额定功率时,变压器的输出功率和输入功率的比值称为变压器的效率,即:(2-2)变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗就越小,效率也就越高;反之,功率越小,效率也就越低。
c )额定电压指在变压器的初级线圈上所允许施加的电压,正常工作时,变压器初级绕组上施加的电压不得大于规定值。
电力电子pwm课程设计
电力电子pwm课程设计一、课程目标知识目标:1. 学生能理解电力电子PWM(脉宽调制)技术的基本原理,掌握PWM技术的分类及其在电力电子装置中的应用。
2. 学生能掌握PWM波的生成方法和控制策略,了解不同调制策略对电力电子器件工作状态的影响。
3. 学生能了解PWM技术在电力系统中的节能效果和优化作用。
技能目标:1. 学生具备运用PWM技术进行电力电子装置设计和调试的能力,能独立完成简单的PWM控制器搭建。
2. 学生能运用所学知识分析和解决实际电力电子工程中与PWM相关的问题,提高实践操作能力。
情感态度价值观目标:1. 学生通过学习PWM技术,培养对电力电子工程的兴趣和热情,增强对新能源技术发展的关注。
2. 学生在学习过程中,养成合作、探究、创新的精神,提高自主学习能力和解决问题的能力。
3. 学生了解PWM技术在节能减排和环境保护方面的重要性,培养环保意识和责任感。
课程性质:本课程为电力电子技术领域的一门专业课程,具有理论性与实践性相结合的特点。
学生特点:学生为高年级本科生,具备一定的电力电子基础知识和实验技能。
教学要求:注重理论与实践相结合,强调学生在学习过程中发挥主动性和创造性,培养实际操作能力。
通过课程学习,使学生能够将所学知识应用于实际电力电子工程中,为我国新能源和电力电子技术的发展贡献力量。
二、教学内容本课程教学内容主要包括以下几部分:1. 电力电子PWM技术基本原理:介绍PWM技术的基本概念、分类及其在电力电子装置中的应用。
- 教材章节:第3章“电力电子PWM技术”2. PWM波的生成与控制策略:讲解PWM波的生成方法、控制策略及其对电力电子器件工作状态的影响。
- 教材章节:第4章“PWM波的生成与控制策略”3. PWM技术在电力系统中的应用:分析PWM技术在电力系统中的节能效果、优化作用及其在新能源领域的应用。
- 教材章节:第5章“PWM技术在电力系统中的应用”4. PWM控制器设计与调试:教授PWM控制器的设计方法、调试技巧,使学生具备实际操作能力。
基于电力电子pwm的课程设计
基于电力电子pwm的课程设计一、教学目标本课程的学习目标包括知识目标、技能目标和情感态度价值观目标。
知识目标要求学生掌握电力电子PWM的基本原理、应用领域和关键技术。
技能目标要求学生能够运用PWM技术进行简单的电路设计和调试。
情感态度价值观目标要求学生培养对电力电子技术的兴趣和热情,提高他们的问题解决能力和创新意识。
通过本课程的学习,学生将能够了解电力电子PWM的基本概念和原理,掌握PWM技术的应用和关键技术,培养对电力电子技术的兴趣和热情,提高他们的问题解决能力和创新意识。
二、教学内容本课程的教学内容主要包括电力电子PWM的基本原理、应用领域和关键技术。
首先,将介绍PWM技术的基本概念和原理,包括PWM信号的产生和控制方法。
然后,将介绍PWM技术在电力电子领域的应用,包括开关电源、电机控制和太阳能发电等。
最后,将讲解PWM技术的关键技术,包括PWM控制电路的设计和调试方法。
教学大纲将根据课程目标进行详细的教学内容安排和进度规划。
具体的教学内容安排将根据教材的章节进行,并结合实际情况进行适当的调整。
三、教学方法为了激发学生的学习兴趣和主动性,将采用多样化的教学方法。
首先,将采用讲授法,通过教师的讲解和示范,向学生传授PWM技术的基本原理和应用。
同时,将采用讨论法,引导学生进行思考和讨论,培养他们的问题解决能力。
此外,还将采用案例分析法,通过分析实际案例,使学生更好地理解和应用PWM技术。
最后,将采用实验法,让学生亲自动手进行实验操作,提高他们的实践能力。
四、教学资源为了支持教学内容和教学方法的实施,将选择和准备适当的教学资源。
教材将是主要的教学资源,将选用权威、实用的教材,确保学生能够获取准确、全面的知识。
参考书将提供更多的学习资料,帮助学生深入理解PWM技术。
多媒体资料将用于辅助教学,通过图像、动画和视频等形式,使学生更加直观地理解PWM技术的工作原理和应用。
实验设备将是重要的教学资源,将提供必要的实验设备,让学生能够进行实际的操作和调试。
电子技术pwm课程设计
电子技术pwm课程设计一、课程目标知识目标:1. 让学生理解PWM(脉宽调制)的基本概念、工作原理及应用场景;2. 掌握PWM波的生成方法,了解不同调制方式的优缺点;3. 学会使用电子元件和集成电路设计简单的PWM电路。
技能目标:1. 培养学生动手搭建和调试PWM电路的能力;2. 提高学生运用PWM技术进行电路设计和控制的能力;3. 培养学生分析和解决实际电子技术问题的能力。
情感态度价值观目标:1. 培养学生对电子技术学习的兴趣,激发学生的创新意识;2. 培养学生严谨的科学态度,注重实践操作与理论知识的结合;3. 增强学生的团队合作意识,培养学生在团队中分工协作的能力。
课程性质:本课程为电子技术课程的一部分,以实践操作为主,理论讲解为辅。
学生特点:学生具备一定的电子技术基础知识,对实际操作有较高的兴趣。
教学要求:注重理论与实践相结合,引导学生主动参与,培养实际操作能力。
将课程目标分解为具体的学习成果,以便后续教学设计和评估。
二、教学内容1. 理论知识:- PWM基本概念:介绍PWM的定义、特点及作用;- PWM工作原理:讲解PWM调制原理、调制方式及参数调整;- PWM应用场景:分析PWM在电子技术领域的应用实例。
2. 实践操作:- PWM电路设计:学习设计简单的PWM电路,包括元件选型、电路连接等;- PWM波生成方法:学习使用集成电路和微控制器生成PWM波;- PWM电路调试:教授学生调试PWM电路的方法,确保电路正常工作。
3. 教学大纲:- 第一周:PWM基本概念、工作原理及调制方式;- 第二周:PWM应用场景、电路设计原理;- 第三周:实践操作,搭建和调试简单的PWM电路;- 第四周:总结与展示,分析优缺点,提出改进措施。
4. 教材章节:- 第六章:脉宽调制技术;- 第七章:集成电路与PWM波生成;- 第八章:电子电路设计与调试。
教学内容确保科学性和系统性,注重理论与实践相结合,以培养学生的实际操作能力为目标。
电力电子课程设计--直流电机的脉宽调速驱动电源的设计
自动化学院电力电子技术课程设计报告题目:直流电机的脉宽调速驱动电源的设计专业:自动化(自动化)___________目录直流电机的脉宽调速驱动电源的设计 (3)一、引言 (3)1.1、课题研究现状 (3)1.2、课题背景及研究意义 (3)二、设计任务 (4)三、设计方案选择及论证 (5)3.1、控制电路的方案选择 (5)3.2、辅助电源的方案选择 (5)3.3、过电流检测电路的方案选择 (5)3.4、主电路的方案选择 (6)3.5、驱动电路的方案选择 (6)四、总体电路设计 (7)五、功能电路设计 (8)5.1、辅助电源的设计 (8)5.2、驱动电路的设计 (8)5.3、控制电路的设计 (9)5.4、检测电路的设计 (11)5.5、主电路的设计 (12)六、电路制作与焊接 (14)七、调试与总结 (15)7.1、实际调试 (15)7.1.1、调试过程 (15)7.1.2、输出波形及说明 (16)7.1.3、实物图 (18)7.2 、总结与收获 (18)八、参考文献 (20)九、附录 (21)9.1总体电路原理图 (21)9.2、BOM表 (21)直流电机的脉宽调速驱动电源的设计一、引言1.1、课题研究现状直流电动机是最早出现的电动机,也是最早能实现调速的电动机。
长期以来,直流电动机一直占据着调速控制的统治地位。
由于它具有良好的线性调速特性,简单的控制性能,高的效率,优异的动态特性;尽管近年来不断受到其他电动机(交流变频电机、步进电机等)的挑战,但到目前为止,它仍然是大多数调速控制电动机的优先选择。
近年来,直流电动机的结构和控制方式都发生了很大变化。
随着计算机进入控制领域以及新型的电力电子功率元件的不断出现,使采用全控型的开关功率元件进行脉宽调制(PulseWidthModulation,简称PWM)控制方式已成为绝对主流。
这种控制方式很容易在单片机控制中实现,从而为直流电动机控制数字化提供了契机。
直流电机PWM调速课程设计报告
摘要在社会生活和生产中,常常需要改变电机的转速和转向。
通过改变电机回路中的电阻来改变电机转速;通过改变电机接到电源的正负极来改变电机的转向不失为一种简单易行、成本低廉的方法。
但是这种方法效率低、机械特性软、不能得到较宽和平滑的调速性能。
本文利用555芯片以及少量外部元件组成的占空比可调的多谐振荡器,输出PWM信号,接到L298电机驱动芯片,来驱动直流电机。
通过控制输出信号的占空比来控制电机的转速,而电机的转向可以通过双刀双掷开关控制L298芯片5和7引脚的高低电平输入来控制。
实验表明,占空比的调节范围为0%~95%,电机转速可以从零开始逐渐调快,转向可通过单刀双掷开关随意控制,达到了预期的目标。
本设计为直流电机的调速提供了一种简易的方法,同时获得了较宽和平滑的调速性能。
关键词:PWM;占空比;调速;多谐振荡器目录摘要 (I)目录 (II)第1章绪论 (1)1.1 直流电机调速起源 (1)1.2直流电机调速发展概况 (1)1.3 研究方案 (1)第2章预备知识 (2)2.1 555定时器 (2)2.2 L298驱动芯片 (4)2.3理论分析 (6)第3章系统组成及工作原理 (7)3.1系统组成 (7)3.2工作原理 (7)第4章电路设计方案 (11)第5章调试结果与分析 (13)结论 (15)参考文献 (16)附录 (17)第1章绪论1.1 直流电机调速起源自从电动机发明那天起,电动机的调速问题就成为人们思考的问题。
电动机被发明之后,被迅速用于人们的衣行住行当中,生产生活都离不开它。
电动车是生活最常见的运用电动机的例子,在电动车行驶过程中,由于路况的不断变化,经常需要调节电动机的速度来调节电动车的速度。
除此之外,医学领域、农业领域、工业领域,甚至是高新科技领域都离不开电动机,而且需要极其平滑细腻的调速性能,可见电动机调速是非常重要的。
随着科技的发展,人们掌握了越来越多的调速方法,方法也不断升级优化。
双极模式直流PWM电动机驱动电源的设计
双极模式直流PWM电动机驱动电源的设计天津理工大学自动化学院课程设计报告题目:双极模式直流PWM电动机驱动电源的设计学生姓名许彪学号 20210775 年级 2021 班级电气2班指导教师陈鹏专业电气工程及其自动化1说明1. 课程设计文本材料包括设计报告、任务书、指导书三部分,其中任务书、指导书由教师完成。
按设计报告、任务书、指导书顺序装订成册。
2. 学生根据指导教师下达的任务书、指导书完成课程设计工作。
3. 设计报告内容建议主要包括:设计概述、设计原理、设计方案分析、软硬件具体设计、调试分析、总结以及参考资料等内容。
4. 设计报告字数应在3000-4000字,图纸设计应采用电子绘图。
文字规范,正文采用宋体、小四号,1.25倍行距。
5.课程设计成绩由平时表现(30%)、设计报告(40%)和答辩成绩(30%)组成。
课程设计评语及成绩汇总表成绩总评成绩平时成绩报告成绩答辩成绩课程设计评语 2设计概述1 主电路设计说明1.0 主电路设计说明二极管整流桥把输入的交流电变为直流电。
四只功率器件构成H桥,根据脉冲占空比的不同,在直流电机上可得到正或负的直流电压。
主电路作为电能变换的功率平台已事先已经由学校做好做好,因此主电路部分只需要进行理论设计,而不用实际制作。
主电路设计原理图如图1所示。
该电路由两部分构成:单相不控桥式整流电路和全桥全控可逆斩波电路。
交流市电220V经变压器降压后通过四只二极管构成的整流桥整流为直流电,经电容滤波后可作为直流电压源,作为主电路的工作电源及控制电路的稳压电源输入电压。
闭合开关S1、S2,四只功率器件(如IGBT)构成的H桥斩波电路在PWM脉冲驱动信号控制下,根据占空比的不同,在电机两端产生或正或负、电压值不等的驱动电压,从而控制电机的正反转及调速。
图1 直流PWM驱动电源的主电路设计原理图双极式H型可逆PWM变换器的电路原理图中四个功率场效应管的基极驱动电压分为两组。
VT1和VT4同时导通和关断,其驱动电压Ub1=Ub4;VT2和VT3同时动作,其驱动电压Ub2=Ub3= -Ub1。
电力电子课设交-直-交PWM变频电源.doc
目录一、课程设计任务 (2)1.1设计目的 (2)1.2设计要求 (3)1.3设计内容 (3)二、方案论证 (3)2.1整流电路方案 (3)2.2中间滤波电路方案 (4)2.3逆变电路方案 (5)三、主回路系统组成 (5)四、元件参数计算及选择 (6)五、单元电路设计 (6)5.1驱动电路设计 (6)5.2保护电路设计 (6)5.3缓冲电路设计 (6)5.4输出滤波设计 (6)5.5逆变变压器选择 (6)六、PWM控制策略 (7)七、总结 (7)八、参考文献 (7)附录 (7)附录一元件清单 (7)附录二原理图 (7)一、课程设计任务1.1设计目的电力电子技术课程设计是电气自动化工程专业学生在整个学习过程中一项综合性实践环节,复习和巩固本课程及其他课程的有关内容,对学生的实践能力的培养和实践技能分训练具有相当重要的意义。
通过设计使得获得电力电子技术必要的基本理论、基本分析方法以及基本技能的培养和训练,为学习后续课程以及从事与电气工程及其自动化专业有关的技术工作和科学研究打下一定的基础,也便于学生加深理解和灵活运用所学的理论,提高学生独立分析问题、解决问题的能力,为毕业后的工程实践打下良好的基础。
1.2设计要求要求交流输出额定相电压220V,额定相电流为240A,频率变化范围2~50Hz,其交流输入相电压为380V,电压波动频率为为±10%。
1.3设计内容(1)变频电源方案论证及设计(2)主回路元件选择(3)驱动电路设计(4)保护电路设计(5)缓冲电路设计(6)PWM控制策略(7)滤波电路设计(8)逆变变压器设计二、方案论证2.1整流电路方案整流电路是将交流电变为直流电,实现AC/DC的转换。
在实际应用中,一般使用桥式整流电路。
常用的桥式整流电路可以分为:不可控整流、全控整流、半控整流。
所以有以下两种种方案:方案一:不可控整流。
三相桥式不可控整流电路中整流器件是普通的二极管,是不可控器件,当它承受正向电压时会立即自然导通,承受反向电压时会立即阻断电路。
电力电子技术课程设计交直交pwm变频电源的设计
前言《电力电子技术》是普通高等工科学校电气自动化专业和电气技术专业的主要课程,而本次电力电子技术课程设计是在学习完《电力电子技术》这门课程后一个重要性的实践性教学环节,通过把理论知识运用于实践,加深对这门课程的理解和掌握其精髓,通过实践巩固理论知识,实现理论与实践的完美结合,为此后解决实际问题打下坚实的基础。
同时也增强实践意识,培育迅速把理论知识运用于实践的能力。
在《电力电子技术》理论课程中,咱们学习了电力电子器件,整流电路,直流斩波电路,交流电力控制电路,交交变频电路,逆变电路,PWM控制技术,软开关技术,组合变流电路等方面的知识。
通过该课程设计能够进一步对所学知识的掌握,了解各类变流电路的大体原理和设计方式,培育独立分析问题和解决问题的能力。
并对电力电子的相关常识取得了解,同时对电力电子技术的各类器件具进行深层次的掌握,训练作为一名电气工程师在方方面面的综合能力,为此后在工作职位上奠定扎实的基础。
本次课程设计是交-直-交PWM变频电源的设计,按照设计要求,并适当考虑到理论与实际情形的误差,依照安全靠得住、技术先进、经济合理的要求,肯定变频电源方案论证及设计,选择主回路元件,肯定驱动电路,保护电路,缓冲电路的设计,采取PWM控制策略,肯定逆变变压器的设计等。
在本次课程设计中,前后取得了老师的大力帮忙,并与本课题同窗多次进行商讨,在此表示真挚的谢意!本次课程设计涉及面超级广,查阅了大量资料,由于很多方面的知识都是临时去学习,对所查阅的资料的正确性也没有一一考证,另外,这是本人第一次系统性进行电力电子方面课题的设计,限于在此方面知识的欠缺,设计当中不免存在并非最优方案和不完善的地方,因此,错误与疏漏的地方再所不免,望老师批评指正。
目录第一章概论 ......................................................................................................................................... - 4 -设计要求 . (4)设计内容 (4)第二章变频电源方案论证及设计 ................................................................................................... - 5 -交流-直流部份设计方案.. (5)直流-交流部份设计方案 (6)第三章主回路元件选择..................................................................................................................... - 7 -电容滤波的三相不可控整流电路 (8)双极性调制控制方式的三相桥式PWM电压型逆变电路 (10)第四章驱动电路设计.................................................................................................................... - 11 -驱动电路概述 (11)驱动电路选取 (11)第五章保护电路设计................................................................................................................... - 12 -短路保护 (12)过电压保护 (13)第六章缓冲电路设计................................................................................................................... - 13 -缓冲电路的作用 (13)缓冲电路具体设计 (14)第七章 PWM控制策略.................................................................................................................... - 15 -PWM控制技术简介 (15)PWM控制策略 (16)第八章滤波电路设计................................................................................................................... - 18 -第九章逆变电压器设计............................................................................................................... - 18 -总结................................................................................................................................................... - 19 -参考文献........................................................................................................................................... - 20 -[1]电力电子技术(第四版).王兆安,黄俊.机械工业出版社.2000 ......................................... - 20 -[2]电力电子器件及其应用.李旭葆,赵永健.机械工业出版社.1996 ......................................... - 20 -附录一元件清单............................................................................................................................. - 21 -附录二电路图................................................................................................................................. - 22 -第一章概论PWM控制技术在逆变电路中的应用最为普遍,对逆变的影响也最为深刻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:电力电子技术设计题目:可逆直流PWM驱动电源的设计院系:班级:设计者: A学号:指导教师:国海峰设计时间:哈尔滨工业大学教务处哈尔滨工业大学课程设计任务书H型双极性同频可逆直流PWM驱动电源的设计技术指标:被控直流永磁电动机参数:额定电压20V,额定电流1A,额定转速2000rpm。
驱动系统的调速范围:大于1:100。
驱动系统应具有软启动功能,软启动时间约为2s。
详细设计要求见附录2.1.整体方案设计本文设计的H型单极性同频可逆直流PWM驱动电源由四部分组成:主电路,H型双极性同频可逆PWM控制电路,IPM接口电路及稳压电源。
同时具有软启动功能,软启动时间为2s左右。
控制原理如图1所示:图1 直流PWM驱动电源的控制原理框图脉宽调制电路以SG3525为核心,产生频率为5KHz的方波控制信号,占空比可调。
经用门电路实现的脉冲分配电路,转换成两列对称互补的驱动信号,同时具有5us的死区时间,该信号驱动H型功率转换电路中的开关器件,控制直流永磁电动机。
稳压电源采用LM2575-ADJ系列开关稳压集成电路,通过调整电位器,使其稳定输出15V直流电源。
表1 控制板器件清单2. 主电路设计2.1 主电路设计要求直流PWM 驱动电源的主电路图如图2所示。
此部分电路的设计包括整流电路和H 桥可逆斩波电路。
二极管整流桥把输入的交流电变为直流电。
四只功率器件构成H 桥,根据脉冲占空比的不同,在直流电机上可得到不同的直流电压。
主电路部分的设计要求如下: 1)整流部分采用4 个二极管集成在一起的整流桥模块。
2)斩波部分H 桥不采用分立元件,而是选用IPM (智能功率模块)PS21564来实现。
该模块的主电路为三相逆变桥,在本设计中只采用其中U 、V 两相即可。
图2 主电路图 3)在主电路设计中,应根据负载的要求,计算出整流部分的交流侧输入电压和电流,作为设计整流变压器、选择整流桥和滤波电容的依据。
该电路的整流输出电压较低,所以在计算变压器副边电压时应考虑在电流到达负载之前,整流桥和逆变桥中功率器件的通态压降。
2.2 整流电路设计整流部分采用4个二极管集成在一起的整流桥模块。
电动机的额定电压为20V ,通过查阅该型号IPM 的数据手册可知开关器件的通态导通压降为2V 左右,故可知dc V 电压为24V ,由全桥整流电路可知:20.9dc V V考虑整流桥中二极管压降为1V ,故可知变压器副边电压,从而可知变压器的变比。
滤波电容选择耐压40V 左右,容值为450uF 左右即可。
2.3 H 型逆变桥设计IPM 内部集成该部分电路,参数可参考手册。
该模块为三相逆变桥,只使用其中的U 、V 两相即可。
3. 控制电路设计本设计利用SG3525的13脚输出占空比可调,占空比调节范围不小于0.1~0.9的脉冲信号,经过移相后,输出两组互为倒相,死区时间为5μS 左右的脉冲,分别驱动V1,V4和V2,V3的开通和关断。
3.1脉冲产生电路的设计设计中使用SG3525产生需要的脉冲信号。
5脚接一个0.02uf 的电容,6脚接滑动变阻器,两者组成RC振荡电路,可以通过调节滑动变阻器的阻值使脉冲的频率为设计要求的5kHz。
根据芯片手册公式计算可得当R=15K、C=0.02uF时,输出频率为5kHz,为使调节方便选用阻值为20K的滑动变阻器。
通过改变2脚输入电压的大小调节输出脉冲的占空比。
为使电机具有软启动功能,在8脚需要接电容。
根据芯片手册软启动时间和电容大小的关系:60ms/uF。
要使电机软启动为2s,则所选的电容为33uf。
在输出端,13需要上拉电阻与5V参考电平相连。
将11、14脚短接,脉冲由13脚引出。
电路图设计如图3所示:图3 脉冲产生电路图3.2脉冲分配电路的设计本设计采用的是双极性PWM驱动。
由SG3525产生的脉冲经过一个非门变成0V、5V信号,当信号为高电平时对电容充电,只有当电容电压达到非门的开启电压2V 时,输出才变为高电平,由此达到了延时的目的。
所需延迟时间为5us,有三要素公式计算得,当选定电容为0.01uf时电阻为978.8ohm。
为了调节方便选择5K的滑动变阻器。
经过此电路即可产生死区时间为5us的双极性PWM调制信号。
脉冲分配电路如图4所示:图4 脉冲分配电路3.3自举电路设计为了简化设计,上桥臂两个器件,即V1 和V3 的驱动电源采用单电源的自举式供电,详细设计可参考IPM 的设计手册。
这样整个模块的控制部分只采用1 个15V 电源供电即可,而不必采用3 路独立的电源,简化了设计。
本设计中,自举电路中的二极管建议选用IN5819,电容值为10uF ,电阻值为5欧左右。
电路图如图5所示。
图5 自举电路3.4稳压电源设计设计一个DC 15V 的控制电源,为SG3525及IPM 模块的驱动电路供电。
为了减小损耗,采用LM2575T -ADJ 系列开关稳压集成电路,将主电路的直流母线电压33V 作为输入,通过电位器的调节,经稳压后获得15V 的直流电源。
LM2575T 的封装形式为5脚TO-220形式。
另外TTL 电路的5V 工作电源可直接取自SG3525的内部参考电源管脚。
滤波电路中的二极管建议选用IN5819。
电路图如图6所示。
图6 15V 稳压电源电路通过查阅芯片手册知:2R 1(1)o EF R V V R =+本设计中,15out V V =, 1.23REF V V =,11R K =,得:21(1)11.3K o REFVR R V =-=为方便实际电路的调试, 1R 使用定值电阻,2R 采用电位器。
4.调试过程及结果分析4.1调制过程:1.调试控制板上的15V稳压电源电路:只将控制板的J3接口与主电路板相连,J6和J7均不连接。
再将LM2575T插在电路板的对应插座上。
在模拟盒上断开S2开关,闭合S1开关,调节稳压电路中的电位器,使稳压电路的输出为所需15V直流电压。
2.调试脉宽调制信号发生电路:将SG3525插在电路板的对应插座上。
在模拟盒上断开S2开关,闭合S1开关,给控制板上电。
然后调节相应电位器,获得频率为5KHz,占空比可在0~1之间调节的脉宽调制信号。
3.调试两路驱动信号的开通延时电路:给控制板上电。
然后调节相应电位器,观察两路驱动信号,可见驱动信号为:图7两路驱动信号波形可见两路驱动信号之间有5us的开通延时,即死区时间为5us。
4.测试IPM中上桥臂驱动电源的自举电路将控制板的J6和J7接口与主电路板相连。
在模拟盒上断开S2开关,闭合S1开关,给控制板上电。
5.测试电机启动状态在模拟盒上断开S2开关,闭合S1开关,给控制板上电。
将驱动信号的占空比调整到50%附近。
闭合S2开关,接通H桥的直流电源,调节占空比使电机启动起来并随占空比的调节能够正转和反转,同时电机控制系统具有软启动功能。
4.2结果分析4.2.1电机负载1. 占空比的有效调节范围调节驱动信号的占空比使之达到最大值和最小值,最大占空比约为0.9如图:图8 驱动信号最大占空比最小占空比约为0.1如图:图9 驱动信号最小占空比其中最大占空比对应的输出电压平均值约为22.9V,最小占空比对应的输出电压平均值约为-23.0V。
2. 负载电压和电流的波形电机负载的电压和电流波形如图,可以看出当电机两端电压为正时,流过电枢的电流上升,电感储能。
当电机两端电压为负时,流过电枢的电流下降,电感能量释放。
图10 电机负载的电压和电流的波形3. 直流母线上电压和电流的波形:其电压波形如图所示:图11电机负载直流母线上电压波形4.H桥中各个IGBT驱动控制信号的波形:其波形如图所示,其中V1,V4为一组V2,V3为一组。
两组驱动信号之间留有5us的死区时间。
图12电机负载H桥驱动控制信号波形4.2.2 电阻性负载1. 占空比的有效调节范围:其占空比的有效调节范围与输出电压平均值与电机负载情况时基本相同。
2. 负载电压和电流的波形:电阻性负载的电压和电流波形如图,可见电阻性负载的电压与电流波形基本同相。
随开关器件的开通和关断其电压电流值在正负之间交替。
3. 直流母线上电压和电流的波形:电阻性负载直流母线电压为:图14电阻性负载直流母线电压4. H桥中各个IGBT驱动控制信号的波形:其驱动信号波形同电机负载驱动信号波形。
V1,V4为一组V2,V3为一组,且两组之间留有5us的死区时间,如图:5.收获和体会本次电力电子课程设计让我从实践上巩固了本学期所学的电力电子知识,在准备过程和设计电路的过程中我对PWM单极性和双极性控制有了更深的学习和理解。
同时我也还有很多书本之外的收获,自举电路的设计是我第一次接触,之前的课程的学习中时我就对桥臂的上半部分器件的驱动有过疑惑,但是也没有仔细的琢磨下去,通过自举电路的学习,我对开关器件的驱动及供电有了更好的理解。
在课程设计中,我学习了一些所需的芯片,例如SG3525、LM2575等,对这些芯片的学习提高了我对英文参考资料的阅读学习能力,了解各管脚的功能,对芯片使用时的一些保护方法有了基本的掌握,例如我在稳压电源设计中使用SG2575时,我一号管脚的输入处串联了一个电阻,防止焊接不当时造成通路烧毁芯片,在我调试正常后,我将该串联电阻短路掉,使电路正常工作且减少了损坏的可能。
通过这次课程设计我对电路的调试有了一些初步的了解,通过老师所给的调试步骤,我逐渐明白了电路的调试要从最基础做起,比如这次实验,一定要先看一下稳压电路的输出是否为15V,如果最开始的这部分供电电路有问题,那电路肯定不能正常工作。
接下调试SG3525部分,首先我先检查了一下16号管脚是否输出了一个5V电压,如果没有5V电压,那么我也可以确定SG3525部分出现了错误,一切正常,在查看一下13号管脚的输出是否为频率和占空比可调的方波。
之后再测量一下延时和反向电路是否为互补且有死区时间的两组方波。
自举电路正常后,便可通电调试电机的正反转了。
我也深刻的感受到了一个正确的调试方法在实验过程中所起的重要作用。
在实验中非常感谢助教对我们的帮助,无论我们是缺少器件还是调试中出现问题,助教总是耐心细致的帮我们解决问题,真的非常感谢他们给我的帮助。
附录主电路图和控制电路原理图主电路控制电路15V稳压电源自举电路接口电路。