外科模拟2013——实况试玩解说视频
情景模拟教学法联合Mini-CEX评价在外科住院医师规范化培训中的应用
方面%两组差异无统计学意义-!Z-3-B.%见表 7$ 表 7!临床实践效果满意度评价比较分#O$
项目
试验组-" P.,. 对照组-" P.,. % !
教学方式!!!! A3A7 O-3;- 73/B O-3;? .3A7 E-3-B
提高理论知识水平 A3AD O-3;- A3.A O-3;. ,3.; Z-3-B
提高技能操作水平 A3B. O-3;- A3-B O-3B/ .3B/ E-3-B
提升临床思维能力 A37D O-3B- 73/B O-3B/ .3BB E-3-B
提高医患沟通能力 A3?; O-3AA 7377 O-3?7 ?3?- E-3-,
激发学习兴趣!! A3;? O-3AD 73;. O-3D- B3,. E-3-,
-3?; Z-3-B
沟通技巧 73,A O-3?/ 73./ O-3DB >-3B? Z-3-B
组织效能 73B. O,3-D 73,- O-3?-
,3B7 Z-3-B
整体能力 73D, O,3-7 73;? O-3;;
-3BA Z-3-B
表 .!两组医师培训后 _%*%ad"f评价比较分#O$
中国高等医学教育!.-.7 年!第 ,. 期
+,7/+
"教学方法
情景模拟教学法联合 C.*.G3?U评价在 外科住院医师规范化培训中的应用
周!元李!进沈徐宁朱!奕窦广健孙新华! 嘉兴学院附属医院嘉兴市第一医院浙江 嘉兴 7,A---
摘要!目的探讨情景模拟教学法联合 _%*%ad"f评价在外科住院医师规范化培训中的应用效果 方法
项目 试验组-" P.,. 对照组-" P.,. %
Travelport.Smartpoint.UserGuide
1.2
Draft Changes Final
June 2012
Sandra Brinkley Sandra Brinkley
1.3
July 2012
Inclusion of v2.2 updates Travelport Smartpoint app
June 2012
Version 1.3
பைடு நூலகம்
Page 2
Travelport Smartpoint App™
Global Product User Guide v2.2
June 2012
Version 1.3
Page 1
Revision History Version 1.0 1.1 Status Draft Final Date 21Sep11 10Nov 11 Update Summary Initial version Inclusion of TRAM and SW plus Updates By Julie Dennis Julie Dennis
Table of Contents
Overview ....................................................................................................................................... 7 Product Information ...................................................................................................................... 7 Product Instal
TruckSim 案例教程
HUAT TruckSim
TruckSim 案例演示
TruckSim 介绍与基本操作 .................................................................................... 2 转向盘角阶跃输入............................................................................................. 11 稳态回转试验操作步骤 ...................................................................................... 22 Trucksim 蛇形试验 ............................................................................................ 32 TruckSim/Simulink 联合仿真 ............................................................................... 39 八字环绕试验 Trucksim 实现............................................................................... 42
实况足球2013过人技巧
《实况足球2013》攻略大全之16种过人技巧教程发布时间:2012-12-14 00:47 文章来源:游侠论坛本文标签:PES2013游戏攻略操作技巧浏览次数:17010 评分:52首先键盘设置参考:第一种:变线过人过人要点:需要按住RT。
过人距离:最好控制在0.5米,如上图所示。
过人时机:变线过人运用于附近没有其他防守球员,需要注意与防守球员的距离以及操作方向,一定要向防守球员的反方向运动,切记!第二种:急停过人过人要点:要把防守球员速度带起来,过掉后看情况选择是否加速。
过人距离:最好控制在1米,如上图所示。
过人时机:急停过人运用于附近没有其他补防球员,需要注意与防守球员的距离以及操作方向,等防守球员跑起来了就可以用。
第三种:反向急停过人过人要点:要把防守球员向你准备过人的反方向带过去,然后变线过人距离:最好控制在2.5米,如上图所示。
过人时机:反向急停过人运用于过人方向附近没有其他防守球员,需要注意与防守球员的距离以及操作方向,等防守球员被引过来而且在跑动中时使用。
第四种:假射过人过人要点:按射门键再按短传键并选择方向,速度要快。
过人距离:最好控制在1.5米,如上图所示。
过人时机:假射过人运用于过人方向附近没有其他防守球员,需要注意与防守球员的距离以及操作方向,最好是在防守球员跑动时使用。
第五种:假挑射正面过人过人要点:按Q(LB)键和射门键再按短传键并选择方向,速度要快,因为假挑射硬直时间比假射要短。
过人距离:最好控制在1.5米,如上图所示。
过人时机:假挑射过人运用于过人方向附近没有其他防守球员,需要注意与防守球员的距离以及操作方向,最好是在防守球员跑动时使用。
第六种:假挑射反向过人过人要点:按Q(LB)键和射门键再按短传键并选择方向,速度要快,因为假挑射硬直时间比假射要短。
过人距离:最好控制在1米,如上图所示。
过人时机:假挑射反向过人运用于过人方向附近没有其他防守球员,需要注意与防守球员的距离以及操作方向,需要把防守球员引向准备过人的反方向。
BKL操作指南
!"#$%&
tÉÉâ=mKc
=`rooB
!"#$ !B
!"# !"
!"#
qbjm =
!
!
!"#c
pbq=`lp
`பைடு நூலகம்p
! `lp
! `lp
= ===
=mc = =
!"#$%&'()*+ `
!" jlab
!"#$%&' iNJiO iOJiP iPJiN
!"#$%
!"#
!"# T
!"#!$%
!"#$%&
_hiUJ_hiNO
!
J J JNGP JNGQ JR J J J J J == J
!"#$%& '(#
!"# P
!"#$
! iba
! iba
!"
! NopOPO NopQUR
!"#$%&
!"#$
!"#$%&'()* kq`
!"
L
!" #
!
!"# $%&'
PN ccq
!"#$
!" L
!"#$%&'()*+,
!"
mKMSibaO
!"
!"#$%#&'()*%"#+,-&
mKMSiba…
!"#
mKMSiba…
Rate Based Model of the CO2 Capture Process by MEA using Aspen Plus[1]
Aspen PlusRate-Based Model of the CO2 Capture Process by MEA using Aspen PlusCopyright (c) 2008 by Aspen Technology, Inc. All rights reserved.Aspen Plus, the aspen leaf logo and Plantelligence and Enterprise Optimization are trademarks or registered trademarks of Aspen Technology, Inc., Cambridge, MA.All other brand and product names are trademarks or registered trademarks of their respective companies.This document is intended as a guide to using AspenTech's software. This documentation contains AspenTech proprietary and confidential information and may not be disclosed, used, or copied without the prior consent of AspenTech or as set forth in the applicable license agreement. Users are solely responsible for the proper use of the software and the application of the results obtained.Although AspenTech has tested the software and reviewed the documentation, the sole warranty for the software may be found in the applicable license agreement between AspenTech and the user. ASPENTECH MAKES NO WARRANTY OR REPRESENTATION, EITHER EXPRESSED OR IMPLIED, WITH RESPECT TO THIS DOCUMENTATION, ITS QUALITY, PERFORMANCE, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.Aspen Technology, Inc.200 Wheeler RoadBurlington, MA 01803-5501USAPhone: (1) (781) 221-4300Toll Free: (1) (888) 996-7100URL: Version Descriptionversion2006.5 FirstV7.0 The parameters in the Clarke liquid volume model have been changed due to a fix in the model implementation in V7.0.Heat losses of the absorber and the stripper have been removed.Flow model of the absorber has been changed to Countercurrent.Reaction condition factor has been changed to 0.9 for both theabsorber and the stripper.Film discretization ratio has been changed to 5 for both the absorberand the stripper.Interfacial area factor has been changed from 1.5 to 1.2 forabsorber.Distillation rate has been changed from 100kg/hr to 96kg/hr for thestripper.Interfacial area and mass transfer coefficient correlations have beenchanged from Bravo et al.(1992) to Bravo et al.(1985) for the stripper.Interfacial area factor has been changed from 2 to 0.4 due to thechange of interfacial area correlation, to match data from U.T. Austin.Introduction (3)1 Components (4)2 Process Description (5)3 Physical Properties (7)4 Reactions (12)5 Simulation Approaches (15)6 Simulation Results (19)7 Conclusions (21)References (22)This file describes an Aspen Plus rate-based model of the CO2 capture processby aqueous MEA from a gas mixture of N2, O2, CO2 and H2O. The model consists of an absorber and a stripper. The operation data from a pilot plantat the University of Texas at Austin(2006)[1] were used to specify feed conditions and unit operation block specifications in the model. Thermophysical property models and reaction kinetic models are based on the recent works of U.T. Austin[2] and Hikita[3]. Transport property models and model parameters have been validated against experimental data from open literature[8-13].Although the pilot plant cases of U.T. Austin do not contain H2S, H2S and its related reactions and physical property model parameters are still included in this model, considering potential demand of model users. However, validation of transport property models for H2S related systems is not done due to absence of necessary experimental data.The model includes the following key features:•True species including ions•Electrolyte NRTL method for liquid and RK equation of state for vapor •Concentration-based reaction kinetics•Electrolyte transport property models•Rate-based models for absorber and stripper with packingThe following components represent the chemical species present in theprocess:Table 1. Components Used in the ModelID Type Name FormulaH2O ConventionalWATER H2OCO2CARBON-DIOXIDECO2 ConventionalMONOETHANOLAMINEC2H7NO MEA ConventionalNITROGEN N2N2 ConventionalOXYGEN O2O2 ConventionalMEA+ C2H8NO+ MEAH+ ConventionalMEACOO- C3H6NO3- MEACOO- ConventionalHCO3- HCO3- HCO3- ConventionalCO3-- CO3-2 CO3-2 ConventionalH3O+ H3O+H3O+ ConventionalOH- OH- OH- ConventionalH2SHYDROGEN-SULFIDEH2S ConventionalHS- HS-HS- ConventionalS-- S-2S-2 ConventionalFigure 1 is a flowsheet diagram representing the pilot plant at the University of Texas at Austin for CO2 capture by MEA and the unit operations are described in Table 2:Figure 1. Simple Schematic of the CO2 Capture Pilot Plant in University of Texas, Austin (reproduced with permission from the University of Texas at Austin)Table 2. General Unit Operations Used in the CO2 Capture Process by MEAUnit PurposeGas Mixer Mix CO2 from the Gas Accumulator with pure gas containingN2, O2 and H2O to make up feed rich flue gas for the absorber Liquid Storage Tank Large storage of MEA solvent to buffer any unsteady statedisturbances in the systemAbsorber MEA solvent contacts with flue gas in the absorber andcaptures CO2 from the gas.Heater Heat the bottom flow from the absorber before it goes into thestripperCO2 from MEA solvent. It includes a partial condenser at Stripper Stripthe top and a reboiler at the bottom.Cooler Cool the bottom flow from the stripper before it goes into theliquid storage tankGas Accumulator Large storage for CO2 from the top of the stripper to buffer anyunsteady state disturbances in the systemThe electrolyte NRTL method is used for liquid and RK equation of state for vapor in this Rate-based MEA model. The phase euqlibrium model parameters were taken from the work of Austgen et al. (1988)[2] and Jou etal.[4,5,6].CO2, H2S, N2 and O2 are selected as Henry-components to which Henry’s law is applied and the Henry’s constants are retrieved from Aspen Plus databanks for these components with water. In the reactions calculations, the activity coefficient basis for the Henry’s components is chosen to be Aqueous. Therefore, in calculating the unsymmetric activity coefficients (GAMUS) of the solutes, the infinite dilution activity coefficients will be calculated based on infinite-dilution condition in pure water, instead of in mixed solvents.The liquid molar volume model and transport property models have been validated and model parameters regressed from literature experimental data. Specifications of the transport property models include:•For liquid molar volume, the Clarke model, called VAQCLK in Aspen Plus, is used with option code 1 to use the quadratic mixing rule for solvents.The interaction parameter VLQKIJ for the quadratic mixing rule between MEA and H2O is regressed against experimental MEA-H2O density datafrom Kapadi et al. (2002) [8]. The Clarke model parameter VLCLK/1 is also), (MEAH+, MEACOO−) regressed for main electrolytes (MEAH+, HCO−3and (MEAH+, CO−2) against experimental MEA-H2O-CO2 density data from3Weiland(1996)[9].•For liquid viscosity, the Jones-Dole electrolyte correction model, called MUL2JONS in Aspen Plus, is used with the mass fraction based ASPENliquid mixture viscosity model for the solvent. There are three models for electrolyte correction and the MEA model always uses the Jones-Dolecorrection model. The three option codes for MUL2JONS are set to 1(mixture viscosity weighted by mass fraction), 1 (always use Jones and Dole equation when the parameters are available), and 2 (ASPEN liquid mixture viscosity model), respectively. The interaction parametersbetween MEA and H2O in the ASPEN liquid mixture viscosity model, MUKIJ and MULIJ, are regressed against experimental MEA-H2O viscosity data from Kapadi et al.(2002) and Wadi et al (1995) [10]. The Jones-Dole model parameters, IONMUB, for MEAH+, and MEACOO- are regressed againstMEA-H2O-CO2 viscosity data from Weiland(1996)[9]; that of HCO3- isregressed against KHCO3-H2O viscosity data from Palaty(1992)[11] andthat of CO32- is regressed against K2CO3-H2O viscosity data from Pac et al.(1984)[12].•For liquid surface tension, the Onsager-Samaras model, called SIG2ONSG in Aspen Plus, is used with its option codes being -9 (exponent in mixing rule) and 1 (electrolyte system), respectively. Predictions can be in range of the experimental data from Weiland(1996)[9], which themselves have questionable qualities due to MEA degradation during experiments.•For thermal conductivity, the Riedel electrolyte correction model, called KL2RDL in Aspen Plus, is used.•For binary diffusivity, the Nernst-Hartley model, called DL0NST in Aspen Plus, is used with option code of 1 (mixture viscosity weighted by mass fraction).In addition to the updates with the above transport properties, the aqueous phase heat of formation at infinite dilution and 25°C (DHAQFM) and heat capacity at infinite dilution (CPAQ0) for MEAH+ and MEACOO- are adjusted to fit to the literature heat of solution data from Carson,J.K. et al(2000) [13]and heat capacity data from Weiland(1996)[9].The estimation results of various transport and thermal properties are summarized in Figures 2-8:Figure 2. Liquid Density of MEA-CO2-H2O at 298.15K, experimental data from Weiland (1996)[9]Figure 3. Liquid Viscosity of MEA-CO2-H2O at 298.15K, experimental data from Weiland (1996)[9]Figure 4. Surface tension of MEA-CO2-H2O at 298.15K, experimental data from Weiland (1996)[9]Figure 5. Liquid Thermal Conductivity of MEA-CO2-H2O at 298.15KFigure 6. Liquid Heat Capacity of MEA-CO2-H2O at 298.15K, experimental data from Weiland (1996)[9]Figure 7. Heat of Solution of CO2 in MEA-H2O at 298.15K, experimental data[13]from Carson (2000)Figure 8. CO2 Partial Pressure of MEA-CO2-H2O (MEA mass fraction = 0.153), experimental data from Maddox (1987)[14]MEA is a primary ethanolamine, as shown in Figure 9. It can associate with H 3O + to form an ion MEAH +, and can also react with CO 2 to form a carbamate ion MEACOO -.Figure 9. MEA Molecular StructureThe electrolyte solution chemistry has been modeled with a CHEMISTRY model and the CHEMISTRY ID is MEA, which is used as a global electrolyte calculation option in the simulation by specifying it on the Global sheet of the Properties | Specifications form. Chemical equilibrium is assumed with all the ionic reactions in the CHEMISTRY MEA. In addition, a kinetic REACTION model named MEA-REA has been created, which is used in calculations of the absorber and stripper by specifying it in the Reaction part of the absorber and stripper specifications. In MEA-REA, all reactions are assumed to be in chemical equilibrium except those of CO 2 with OH - and CO 2 with MEA.A. Chemistry ID: MEA1 Equilibrium −++↔OH O H O 2H 322 Equilibrium −++↔+3322HCO O H O 2H CO 3 Equilibrium −+−+↔+23323CO O H O H HCO 4 Equilibrium +++↔+O H MEA O H MEAH 325 Equilibrium −−+↔+32HCO MEA O H MEACOO6 Equilibrium +−+↔+O H HS S H O H 3227 Equilibrium+−−+↔+O H S HS O H 322B. Reaction ID: MEA-REA1 Equilibrium +++↔+O H MEA MEAH O H 32 2 Equilibrium −++↔OH O H O 2H 323 Equilibrium +−−+↔+O H CO O H HCO 323234 Kinetic −−→+32HCO OH CO5 Kinetic −−+→OH CO HCO 236 Kinetic ++→++O H MEACOO O H CO MEA 3-227 Kinetic 223-CO O H MEA O H MEACOO ++→++8 Equilibrium +−+↔+O H HS S H O H 3229 Equilibrium+−−+↔+O H S HS O H 322The equilibrium expressions for the reactions are taken from the work ofAustgen et al.[2] and Jou et al.[4,5,6]. In addition, the power law expressions (T 0 not specified) are used for the rate-controlled reactions (reactions 4-7 in MEA-REA):∏=−=N i a i niC )RT E (kT r 1exp (1)Where:r = Rate of reaction; k = Pre-exponential factor; T = Absolute temperature; n = Temperature exponent; E = Activation energy; R = Gas low constant;N = Number of components in the reaction; C i = Concentration of component i ;a i = The stoichiometric number of component i in the reaction equation. In equation (1), the concentration basis is Molarity, the factor n is zero, k and E are given in Table 3. The kinetic parameters for reactions 6-7 in Table 3 are derived from the work of Hikita [3]. The kinetic parameters for reaction 4 are taken from the work of Pinsent et al.[7] , and the kinetic parameters for reaction 5 are calculated by using the kinetic parameters of reaction 4 and the equilibrium constants of the reversible reactions 4 and 5.Table 3. Parameters k and E in Equation (1)Reaction No. k E, cal/mol13249 4 4.32e+13294515 2.38e+176 9.77e+109855.814138.4 7 2.18e+18Case 47 of the U.T. Austin pilot plant[1] is used in this file.Simulation Flowsheet – The U.T. Austin pilot plant shown in Figure 1 has been modeled with the following simulation flowsheet in Aspen Plus, shown in Figure 10.HE ATERFigure 10. Rate-Based MEA Simulation Flowsheet in Aspen PlusUnit Operations - Major unit operations in this model have been representedby Aspen Plus Blocks as outlined in Table 4.Table 4. Aspen Plus Unit Operation Blocks Used in theRate-Based MEA ModelUnit Operation Aspen Plus Block Comments / SpecificationsAbsorber RadFrac 1. Calculation type: Rate-Based2. 20 Stages3. Top Pressure: 1atm4. Reaction condition factor: 0.95. Film discretization ratio: 56. Heater Cooler: Heat loss is ignored for the absorber7. Reaction: Reaction ID is MEA-REA for all stages; whencalculation type is equilibrium stages, Holdup is 0.002 m3 forall stages, which is close to the value calculated by Holdupcorrelation in rate-based run mode8. Packing Type: IMTP, 1.5-IN, METAL, by NORTON9. Packing height: 6.1m and Section diameter: 0.427m10. Mass transfer coefficient method: Onda et al (1968)11. Interfacial area method: Onda et al (1968)12. Interfacial area factor: the value is set to 1.2 to matchthe experimental value of interfacial area from U.T. Austin[1]13. Heat transfer coefficient method: Chilton and Colburn14. Holdup correlation: Stichlmair et al. (1989)15. Film resistance: Discrxn for liquid film; Film for vaporfilm16. Additional discretization points for liquid film: 517. Flow model: Countercurrent18. Estimates: provide temperature estimates for all stages.These estimates are intended to aid convergenceUnit Operation Aspen Plus Block Comments / SpecificationsStripper RadFrac 1. Calculation type: Rate-Based2. 20 Stages3. Partial vapor condenser4. Kettle reboiler5. Distillate rates: 96 kg/hr6. Mass reflux ratio: initialized at 1 with the final value of1.74214313 obtained by Design-Spec 17. Top Pressure: 10 psi and column pressure drop is 1.66 in-water.8. Reaction condition factor: 0.99. Film discretization ratio: 510. Design Specs: the temperature of stage 1 is set to 297 K11. Vary: reflux ratio is set to adjusted variable12. Heater Cooler: Heat loss is ignored for the stripper.13. Reaction: Reaction ID is MEA-REA for stage 2 to 20;when calculation type is equilibrium, Holdup is 0.003 m3 forstage 2 to 19, which is close to the value calculated by theholdup correlation in rate-based run mode14. Packing Type: FLEXIPAC 1Y, METAL, by KOCH15. Packing height: 6.1m16. Section Diameter: 0.427m17. Mass transfer coefficient method: Bravo et al (1985)18. Interfacial area method: Bravo et al (1985)19. Interfacial area factor: the value is set to 0.4 to matchthe experimental value of interfacial area from U.T. Austin[1]20. Heat transfer coefficient method: Chilton and Colburn21. Holdup correlation: Bravo et al. (1992)22. Film resistance: Discrxn for liquid film; Film for vaporfilm23. Additional discretization points for liquid film: 524. Flow model: Mixed25. Estimates: provide temperature estimates for stages,these estimates are intended to aid convergencePump PUMP Increase pressure of the stream RICHOUT from the bottomof the absorber by 20 psiaHeater HEATER Heat stream RICHOUT from the bottom of the absorber to178.13ºFStreams - Feeds to the absorber are FLUEGAS containing N2, O2, CO2 and H2O and LEANIN containing aqueous MEA solution. Feed conditions are summarized in Table 5.Table 5. Feed specificationsStream ID FLUEGAS LEANINSubstream: MIXEDTemperature: F 138.61 104.31Pressure: psig 0.29 10kg/hr Total flow 290.38 ft3/min 2311.3Mole-FracH2O 0.016 7.042CO2 0.1841 0.2810 1MEAN2 0.7528 0O2 0.0471 0Prop-Sets - A Prop-Set, XAPP, has been created to report apparent mole fraction of CO2 and MEA in liquid streams to facilitate calculations of CO2 loadings of the streams.The simulation was performed using Aspen Plus V7.0. Key simulation results are presented in Table 6. The measured versus calculated absorber and stripper liquid temperature profiles are presented in Figures 11 and 12, respectively.Table 6. Key Simulation ResultsVariable MeasurementRate-Based MEAModel CO 2 loading of LEANIN, MolCO 2/MolMEA 0.281 0.281 CO 2 loading of RICHIN, MolCO 2/MolMEA 0.539 0.467 CO 2 loading of LEANOUT, MolCO 2/MolMEA 0.286 0.282 CO 2 removal level, % 69 63.2 CO 2 Stripping, kg/hr92 94.2 Stripper reboiler heat duty, MJ/hr738710Figure 11. The Absorber Liquid Temperature Profile (Countercurrent flow model)Figure 12. The Stripper Liquid Temperature Profile(Mixed flow model)Note that the Countercurrent flow model is used for the absorber (Figure 11) as it gives more accurate results for packing than the Mixed model. However, for the stripper, the Mixed model is chosen (Figure 12) because the temperature profile oscillates when the Countercurrent model is applied(Figure 13).Figure 13. The Stripper Liquid Temperature Profile(Countercurrent flow model)The Rate-Based MEA model provides a rate-based rigorous simulation of theprocess. Key features of this rigorous simulation include electrolyte thermodynamics and solution chemistry, reaction kinetics for the liquid phasereactions, rigorous transport property modeling, rate-based multi-stage simulation with Aspen Rate-Based Distillation which incorporates heat and mass transfer correlations accounting for columns specifics and hydraulics. The model is meant to be used as a guide for modeling the CO2 capture process with MEA. Users may use it as a starting point for more sophisticated models for process development, debottlenecking, plant and equipment design, among others.[1] Dugas, R.E. Pilot Plant Study of Carbon Dioxide Capture by Aqueous Monoethanolamine. Master thesis, Chemical Engineering, University of Texas at Austin, 2006[2] D.M. Austgen, G.T. Rochelle, X. Peng, and C.C. Chen, "A Model of Vapor-Liquid Equilibria in the Aqueous Acid Gas-Alkanolamine System Using the Electrolyte-NRTL Equation," Paper presented at the New Orleans AIChE Meeting, March 1988[3] Hikita, H., Asai, H. Ishikawa, M. Honda, “The Kinetics of Reactions of Carbon Dioxide with Monoethanolamine, Diethanolamine, and Triethanolamine by a Rapid Mixing Method”, Chem. Eng. J., Vol. 13, 7(1977).[4] Jou F. Y., Mather A. E., Otto F. D., “Solubility of Hydrogen Sulfide and Carbon Dioxide in Aqueous Methyldiethanolamine Solutions”, Ind. Eng. Chem. Proc. Des. Dev., Vol. 21, 539(1982)[5] Jou F. Y., Carroll J. J., Mather A. E., Otto F. D., “Solubility of Mixtures of Hydrogen Sulfide And Carbon Dioxide in Aqueous N-Methyldiethanolamine Solutions”, J. Chem. Eng. Data, Vol. 38, 75(1993)[6] Jou F. Y., Carroll J. J., Mather A. E., Otto F. D., “The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35 wt% Aqueous Solution of Methyldiethanolamine”, Can. J. Chem. Eng., Vol. 71, 264(1993)[7] Pinsent B. R., Pearson L., Roughton F. J. W., “The Kinetics of Combination of Carbon Dioxide with Hydroxide Ions”, Trans. Faraday Soc., Vol. 52,1512(1956)[8] U.R. Kapadi, D.G. Hundiwale, N.B. Patil, M.K. Lande, Fluid Phase Equilibria, Vol. 201, 335(2002)[9] Weiland, R.H. “Physical Properties of MEA, DEA, MDEA and MDEA-Based Blends Loaded with CO2”, GPA Research Report No. 152, August 1996[10] Wadi, R.K., Saxena, P., Indian J. Chem. Sect. A, Vol. 34, Issue. 4,273(1995)[11] Palaty, Z., “Viscosity of diluted aqueous K2CO3/KHCO3 solutions”, Collect. Czech. Chem. Commun., Vol. 57, Issue. 9, 1879(1992)[12] Pac, J. S., Maksimova, I. N., Glushenko, L. V., ”Viscosity of Alkali Salt Solutions and Comparative Calculation Method”, J. Appl. Chem. USSR, Vol. 57, 846 (1984)[13] Carson,J.K.; Marsh,K.N.; Mather,A.E. J. Chem. Thermodyn. Vol. 32,Issue. 9, 1285(2000)[14] R. N. Maddox, A. H. Bhairi, James R. Diers, P. A. Thomas, “EquilibriumSolubility of Carbon Dioxide or Hydrogen Sulfide in Aqueous Solutions of Monoethanolamine, Diglycolamine, Diethanolamine andMethyldiethanolamine”, GPA Research Report No.104, 1987。
球囊胃管引导3D腹腔镜楔形切除术治疗邻近贲门部胃间质瘤
球囊胃管引导3D腹腔镜楔形切除术治疗邻近贲门部胃间质瘤王琦;孙华文;王秋爽;杨厚涞;沈世强【摘要】目的探讨应用球囊胃管引导3D腹腔镜楔形切除术治疗邻近贲门部胃间质瘤的安全性和可行性.方法 2014年1月至2015年12月间,对武汉大学人民医院就诊的20例邻近贲门部(距离≤5 cm)胃间质瘤病人,在球囊胃管引导下行3D腹腔镜楔形切除术.回顾性分析该组病人的围手术期指标,术后病理结果及复发转移情况.结果所有病人均在球囊胃管引导下完成3D腹腔镜楔形切除术,未发生术中肿瘤破裂、中转开腹以及术后病理切缘阳性.平均手术时间(79.2±23.4)min,术中平均出血量(35.1±17.1)ml.除1例术后腹腔出血病人经保守治疗痊愈外,无其他术后并发症发生.术后3个月胃镜或上消化道钡餐检查未发现贲门狭窄.随访12~38个月(中位随访时间为22.5个月)未见肿瘤复发和转移.结论对于邻近贲门的胃间质瘤,应用球囊胃管引导行3D腹腔镜楔形切除术安全可行,符合手术原则,并可预防术后贲门狭窄.%Objective To evaluate the safety and feasibility of 3D laparoscopic wedge resection (LWR) guided by calibrating bougie for gastric gastrointestinal stromal tumors (GIST) adjacent to the cardia.Methods From January 2014 to December 2015,we performed 3D LWR guided by calibr ating bougie on 20 cases of gastric GIST near to (≤5 cm) the cardia.Perioperative records,histopathology results and long-term outcomes of these patients were retrospectively analyzed.Results In all patients given 3D LWR guided by calibrating bougie,there was no tumor rupture,conversion to open access or residual neoplasms of resection margin.The mean procedure duration was 79.2 ± 23.4 min and the mean blood loss was 35.1 ± 17.1 mL.No more complications occurred except 1case of postoperative abdominal bleeding cured by conservative therapy.No cardia stenosis was seen under the gastroscopy and angiography of the upper gastrointestinal tract 3 months after the operation.All 20 cases were followed up for 12 to 38 months (mean:22.5 months),and none of them had tumor recurrence ormetastasis.Conclusions 3D LWR guided by calibrating bougie is safe and feasible for gastric GIST adjacent to the cardia.This procedure fits to the therapeutic criteria of GIST and effectively prevents the cardia stenosis.【期刊名称】《腹部外科》【年(卷),期】2018(031)002【总页数】4页(P112-115)【关键词】胃肠道间质瘤;贲门;球囊胃管;腹腔镜;三维视觉【作者】王琦;孙华文;王秋爽;杨厚涞;沈世强【作者单位】430060 武汉,武汉大学人民医院胃肠外一科;430060 武汉,武汉大学人民医院胃肠外一科;430060 武汉,武汉大学人民医院胃肠外一科;430060 武汉,武汉大学人民医院胃肠外一科;430060 武汉,武汉大学人民医院普通外科【正文语种】中文【中图分类】R735.2胃间质瘤约占胃肠间质瘤(gastrointestinal stromal tumor, GIST)的50%~60%,其中又以胃中上部最为多见[1]。
Unique PMO Plus Mixproof Sanitary Valve 零件清单说明书
TD 449-360 Reg.: 2009-01Intro.: 2009-012900-547PMO 2”PMO 2½”PMO 3”PMO 4”Pos.Qty.Denomination Seat ø81.3Seat ø115.3Seat ø143.9381O-ring, EPDM....................................................................................9611-99-35559611-99-35729611-99-3572 471O-ring, NBR (Standard).....................................................................9611-99-36379611-99-36419611-99-3645 1O-ring, EPDM....................................................................................9611-99-36369611-99-36409611-99-3644 1O-ring, HNBR....................................................................................9611-99-36399611-99-36439611-99-3647 1O-ring, FPM......................................................................................9611-99-36389611-99-36429611-99-3646 491Lip seal, NBR (Standard)....................................................................9613-0085-469613-0085-479613-0085-37 1Lip seal, EPDM.................................................................................9613-0085-269613-0085-319613-0085-36 1Lip seal, HNBR.................................................................................9613-0085-299613-0085-349613-0085-39 1Lip seal, FPM....................................................................................9613-0085-289613-0085-339613-0085-38 561Seal ring, NBR (Standard)..................................................................9613-0951-159613-0951-169613-0951-24 1Seal ring, EPDM................................................................................9613-0953-099613-0953-129613-0953-19 1Seal ring, HNBR................................................................................9613-0953-089613-0953-119613-0953-18 1Seal ring, FPM...................................................................................9613-0951-089613-0951-119613-0951-22 571Lip seal, NBR (Standard)...................................................................9613-0087-189613-0087-189613-0087-18 1Lip seal, EPDM.................................................................................9613-0087-119613-0087-119613-0087-11 1Lip seal, HNBR.................................................................................9613-0087-149613-0087-149613-0087-14 1Lip seal, FPM....................................................................................9613-0087-139613-0087-139613-0087-13 741Seal ring, NBR (Standard)..................................................................9613-0952-159613-0952-169613-0952-24 1Seal ring, EPDM................................................................................9613-0089-099613-0089-129613-0089-18 1Seal ring, HNBR................................................................................9613-0089-089613-0089-119613-0089-17 1Seal ring, FPM...................................................................................9613-0952-089613-0952-119613-0952-22 761O-ring, NBR (Standard)......................................................................9611-99-36379611-99-36419611-99-3645 1O-ring, EPDM....................................................................................9611-99-36369611-99-36409611-99-3644 1O-ring, HNBR....................................................................................9611-99-36399611-99-36439611-99-3647 1O-ring, FPM......................................................................................9611-99-36389611-99-36429611-99-3646 771Lip seal, NBR (Standard)...................................................................9613-0085-469613-0085-479613-0085-37 1Lip seal, EPDM.................................................................................9613-0085-269613-0085-319613-0085-36 1Lip seal, HNBR.................................................................................9613-0085-299613-0085-349613-0085-39 1Lip seal, FPM....................................................................................9613-0085-289613-0085-339613-0085-38Wear Parts3PartsReg.: 2009-01Intro.: 2009-014900-547PMO 2”PMO 2½”PMO 3”PMO 4”Pos.Qty.Denomination Seat ø81.3Seat ø115.3Seat ø115.3Seat ø143.9 1Complete actuator...............................................9613-0554-689613-0995-099613-0995-099613-0837-69 11Upper stem.........................................................9613-0101-029613-0074-019613-0074-019613-0074-02 24Screw..................................................................9611-99-33429611-99-33429611-99-3342 31Air fitting yellow....................................................9611-99-41719611-99-41719611-99-41719611-99-4171 1Air fitting blue......................................................9611-99-37809611-99-37809611-99-37809611-99-3780 1Air fitting red........................................................9611-99-41729611-99-41729611-99-41729611-99-4172 41Stop for upper piston..........................................9613-0053-019613-0053-019613-0053-02 51O-ring, NBR........................................................9611-99-34999611-99-34999611-99-34999611-99-3499 61Guide ring, Turcite...............................................9613-0084-089613-0084-089613-0084-089613-0084-08 71O-ring, NBR........................................................9611-99-35149611-99-35149611-99-3514 81Upper piston.......................................................9613-0056-019613-0056-019613-0056-02 91O-ring, NBR........................................................9611-99-35129611-99-35129611-99-3513 101Spring assembly..................................................9613-0125-019613-0075-019613-0075-019613-0256-03 111Distance spacer..................................................9613-0102-02121Pin......................................................................9611-99-41979611-99-41989611-99-41989611-99-4199 131Washer................................................................9611-99-35949611-99-35959611-99-35959611-99-3596 141Spring assembly..................................................9613-0131-029613-0095-029613-0095-029613-0095-02 151Plug....................................................................9613-4141-019613-4141-019613-4141-019613-4141-01 161Cylinder (3A marking)..........................................9613-0126-069613-0051-069613-0051-069613-0150-11 171Main piston.........................................................9613-0132-019613-0057-019613-0057-019613-0159-01 181Guide ring, Turcite...............................................9613-0084-099613-0084-109613-0084-109613-0084-11 191O-ring, NBR........................................................9611-99-35059611-99-35079611-99-35079611-99-3509 201O-ring, NBR........................................................9611-99-35039611-99-36079611-99-36079611-99-3607 211Bottom...............................................................9613-0140-019613-0054-019613-0054-019613-0168-01 221Guide ring, Turcite...............................................9613-0084-039613-0084-049613-0084-049613-0084-04 231O-ring, NBR........................................................9611-99-22289611-99-14899611-99-148922340675241Retaining ring......................................................9613-0248-029613-0248-039613-0248-039613-0248-04 251Cover disk...........................................................9613-0058-029613-0058-039613-0058-039613-0058-04 261O-ring, NBR........................................................9611-99-35289611-99-34959611-99-34959611-99-3530 271Inner stem...........................................................9613-0106-039613-0073-039613-0073-039613-0073-02 281O-ring.................................................................9611-99-34959611-99-00309611-99-00309611-99-0030 291Piston rod...........................................................9613-0134-029613-0060-029613-0060-029613-0060-02 301Lower piston.......................................................9613-0138-019613-0055-019613-0055-019613-0166-01 311O-ring, NBR.. (42153421534215342153)321Guide ring, Turcite................................................9613-0084-059613-0084-069613-0084-069613-0084-07 331O-ring, NBR........................................................223412759611-99-35089611-99-35089611-99-3510 343Bolt.....................................................................9611-99-36189611-99-36189611-99-36189611-99-3618 353Washer................................................................9611-99-35949611-99-35949611-99-35949611-99-3594 363Nut......................................................................9611-99-03609611-99-03609611-99-03609611-99-0360 421Spindle liner.........................................................9613-0335-019613-0090-019613-0090-019613-0090-01 432Clamp.................................................................9613-0336-019613-0092-019613-0092-019613-0092-01 441Lock....................................................................9613-0091-029613-0091-019613-0091-019613-0091-01 451Guide ring, PTFE.................................................9613-0084-149613-0084-159613-0084-159613-0084-21 481Upper sealing element.........................................9613-0064-049613-0188-049613-0188-049613-0713-01 541Guide ring, PTFE.................................................9613-0084-029613-0084-029613-0084-029613-0084-02 551Upper plug..........................................................9613-4586-019613-4587-019613-4587-039613-4588-01 612Wingnut...............................................................9612-5580-019612-5580-019612-5580-019612-5580-01 642Clamp without nut...............................................9613-0216-019613-0217-019613-0217-019613-0218-01 751Lower plug..........................................................9613-0705-019613-0706-019613-0707-019613-0708-01 791Lower sealing element.........................................9613-0241-049613-0243-049613-0243-049613-0715-01 801Guide ring, PTFE.................................................9613-0084-149613-0084-159613-0084-159613-0084-21 811Cover...................................................................9613-0490-069613-0490-079613-0490-079613-0490-16 821Bolt for indication.................................................9613-0926-029613-0926-019613-0926-019613-0926-01 831Sensor for indication............................................9611-99-45419611-99-45419611-99-45419611-99-4541 841Plate for sensor for indication...............................9613-0957-019613-0957-019613-0957-019613-0957-01Parts5Unique PMO Plus® Sanitary Mixproof ValveParts List/DrawingPartsPMO 2”PMO 2½”PMO 3”PMO 4”Pos.Qty.Denomination Seat ø81.3Seat ø115.3Seat ø115.3Seat ø143.9 371Intermediate piece......................................................9613-0191-219613-0192-159613-0192-139613-0193-17 501Valve body 11-00........................................................9613-0709-019613-0710-019613-0711-019613-0712-01 1Valve body 12-00........................................................9613-0709-059613-0710-059613-0711-059613-0712-05 1Valve body 21-00........................................................9613-0709-079613-0710-079613-0711-079613-0712-07 1Valve body 22-00........................................................9613-0709-099613-0710-099613-0711-099613-0712-09 1Valve body 11-90........................................................9613-0709-029613-0710-029613-0711-029613-0712-02 1Valve body 12-90........................................................9613-0709-069613-0710-069613-0711-069613-0712-06 1Valve body 21-90.......................................................9613-0709-089613-0710-089613-0711-089613-0712-08 1Valve body 22-90.......................................................9613-0709-109613-0710-109613-0711-109613-0712-10 1Valve body 11-180.....................................................9613-0709-039613-0710-039613-0711-039613-0712-03 1Valve body 11-270.....................................................9613-0709-049613-0710-049613-0711-049613-0712-04 900-547Intro.: 2009-0167Parts List/DrawingUnique PMO Plus ® Sanitary Mixproof ValveDenomination PMO 2”Service kit, NBR........................................................9611-92-6016Service kit, EPDM.....................................................9611-92-6013Service kit, HNBR.....................................................9611-92-6022Service kit, FPM........................................................9611-92-6019PMO 2.5”+3”Service kit, NBR........................................................9611-92-6017Service kit, EPDM.....................................................9611-92-6014Service kit, HNBR.....................................................9611-92-6023Service kit, FPM........................................................9611-92-6020PMO 4”Service kit, NBR........................................................9611-92-6018Service kit, EPDM.....................................................9611-92-6015Service kit, HNBR.....................................................9611-92-6024Service kit, FPM........................................................9611-92-6021(Plug set-up 12)TD 449-13955487579Service kits for Product Wetted Parts900-547Rebuilding Set PMO Plus® to PMO Plus® CPTD 449-362Reg.: 2009-01Intro.: 2009-0189PMO 2”PMO 2½”PMO 3”PMO 4”Seat ø81.3Seat ø115.3Seat ø115.3Seat ø143.9Lower plug, cpl., NBR..........................................................9613-4662-179613-4662-189613-4662-199613-4662-20Lower plug, cpl., EPDM.......................................................9613-4662-219613-4662-229613-4662-239613-4662-24Lower plug, cpl., HNBR.......................................................9613-4662-259613-4662-269613-4662-279613-4662-28Lower plug, cpl., FPM..........................................................9613-4662-299613-4662-309613-4662-319613-4662-32Rebuilding Set PMO Plus ® to PMO Plus ® CPPos.Qty.Denomination 381O-ring 741Seal ring 751Lower plug 761O-ring 951Special lip seal961Lower sealing element, upper part 971Lower sealing element, lower part 981Guide ringAxial Installation ToolReg.: 2008-01Intro.: 2008-011011Seat ø81.3Seat ø115.3Seat ø143.9Pos.Qty.Denomination 9613-0505-029613-0505-039613-0505-0711Lower part.........................................................21Piston................................................................31Upper part.........................................................41O-ring, NBR.......................................................9611-99-37039611-99-33499611-99-411351Clamp................................................................61Wingnut..............................................................71Air fitting.............................................................TD900198Axial Installation ToolRadial Installation ToolReg.: 2008-01Intro.: 2008-011213Seat ø81.3Seat ø115.3Seat ø143.9Pos.Qty.Denomination 9613-4260-029613-4260-049613-4260-0911Piston..........................................................21Lower part...................................................31Upper part...................................................41Bushing.......................................................51Guide..........................................................62Guide ring....................................................9613-0084-229613-0084-229613-0084-2371O-ring, NBR.................................................9611-99-33499611-99-33499611-99-411381O-ring, NBR.................................................9611-99-37059611-99-37059611-99-370591Clamp.........................................................101Wingnut.......................................................111Air fitting.......................................................TD900507Radial Installation Tool。
130805胆小勿看!麻醉没发明前,医师都这样做乳癌切除手术...
膽小勿看!麻醉沒發明前,醫師都這樣做乳癌切除手術...photos放大顯示Official U.S. Navy Imagery@flickr, CC BY 2.0解剖學是醫學的基礎,搞懂解剖就好像擁有了「人體地圖」,不過要闖入人體進行侵入性治療之前還有個重大的關卡,「疼痛」。
一直到19世紀,醫學上仍沒有常規且有效的麻醉方式,因為無法解決手術疼痛的問題,外科其實是相當受限。
過去,為了減輕疼痛,在手術開始前,病人會先吸鴉片或喝酒灌醉自己,喝到快昏死過去時,醫師便請出幾個彪形大漢壓住病人,接著用血淋淋的閃電刀法盡快迅速結束手術。
在沒有麻醉的情況下開刀,等於是活體解剖,醫師根本不可能在病人的嚎叫、掙扎下進行精細和長時間的外科手術。
外科醫師被迫又快又很地廝殺,而周遭民眾評斷外科醫師的好壞,常常也是由「開刀速度的快慢」來判定。
曾有一位著名的外科醫師李斯頓截肢手術做得超快,從下刀到縫完傷口可能只要驚人的兩分半鐘!但是,這種認為「速度才是王道」的做法,曾讓李斯頓醫師在截肢手術中把助手的手指頭一併切落,該位病患和助手後來均因為感染引發敗血症而過世。
另外,由於手術畫面太過血腥震懾,甚至導致一位看台上觀眾昏厥死亡。
這場「一人手術、三人死亡」的手術,死亡率高達到300%,在歷史上可說是絕無僅有。
這種「生人活宰」的手術是19世紀前所有病患的惡夢。
首宗成功的全身麻醉手術疼痛是與生俱來的知覺,人類為了對抗疼痛所做的努力可是歷史悠久。
人類最早使用的藥物之一就是止痛距今5,000多年的美索布達米亞文明遺跡中,考古學家就曾找到使用「罌粟」止痛的楔形文字記載。
之後罌粟的使用方法繼續傳到巴比倫、埃及、波斯等地,是照顧傷者的選項之一。
目前可靠的歷史紀錄裡,第一位成功使用全身麻醉方法進行手術的,是一位日本醫師華岡青洲。
華岡青洲深受漢醫影響,一心想要調製出傳說中的華陀麻沸散。
他從1785年開始嘗試調製麻醉藥,在動物實驗成功之後,便以自己的母親及妻子作人體試驗,最後終於做出用六種藥草組成的「通以散」口服麻醉劑。
场景式CBL 教学法在普通外科临床教学中的运用初探
S 0NG We n . J i e 。 G UO He n g , L I Xi a o . e t a l
( 1 . D e p a r t m e n t o fH e p a t o — B i l i a r y a n d P a n c r e a t o — S p l e n i c S u r g e r y , X i j i n g H o s p i t a l , T h e F o r t h Mi l i t a r y Me d i c a l U n i v e r s i t y ,
时为 5 6学时 , 占总学时 5 0 %。
1 . 3 效 果 评 价
生从事 相关临床工作做好 准备 , 是一个 重要的教学研究课题 。 基 于病例 的教学法 ( c a s e b a s e d l e a r n i n g , C B L ) 又称 “ 苏格
拉底式教 学法” , 起源于 2 0世纪 初美 国哈佛 大学 医学 院和法
实施 。
关键词 : 普通外科学 ; 临床教学 ; C B L教学法 ; 场景式教学法
Ap p l i c a t i o n o f s c e n e CBL t e a c h i n g me t h o d i n g e n e r a l s u r g e r y t e a c h i n g
实况足球2013——妖人刷高分心得分享
实况⾜球2013——妖⼈刷⾼分⼼得分享 《实况⾜球2013》刷各位置⾼评分的妖⼈是最让⼈⼼烦苦恼的,以下⼀球成名模式下的开存档⼼得与刷⾼分妖⼈攻略。
⼀球成名模式的: ⼀:开存档⼼得 1:全能型的 中锋;主要任务:射门 次要任务:盘带 可以刷70左右评分的出来。
本⼈最⾼刷到71 影锋:主要任务:射门 次要任务:盘带 可以刷70左右评分的出来,本⼈最⾼刷到70 前腰:主要任务:传球 次要任务:盘带 可以刷75左右评分的出来,本⼈最⾼刷到74 中前:主要任务:传球 次要任务:盘带 可以刷75左右评分的出来,本⼈最⾼刷到76 边锋:主要任务:传球 次要任务:盘带 可以刷70左右评分的出来,本⼈最⾼刷到72 边前:主要任务:传球 次要任务:盘带 可以刷75左右评分的出来,本⼈最⾼刷到75 后腰:主要任务:防守 次要任务:⾝体对抗 可以刷80左右评分的出来,本⼈最⾼刷到78 边卫:主要任务:传球 次要任务:速度 可以刷75左右评分的出来,本⼈最⾼刷到76 2:重型坦克型 中卫:主要任务:防守 次要任务:⼒量、耐⼒ 可以刷80左右评分的出来,本⼈最⾼刷到79 清道夫:主要任务:防守 次要任务:⼒量、耐⼒ 可以刷75左右评分的出来,本⼈最⾼刷到73 ⼆:征战五⼤联赛旅途 1:创建⼈物的要点; (1)除了中后卫跟清道夫和中锋之外,别的位置⾝⾼没那么多限制的,中后卫跟清道夫是要门前头球解围,⾝⾼就好点,中锋是要卡位抢点头球破门,所以才有⾝⾼要求。
中锋:176以上就可以了;中后卫跟清道夫180左右。
(2)体重问题,如果不是技术特别好就别要那么重了,不然你会跑不动的,给个⽐例吧:165-175⾝⾼的建议:50-65k g,175-185⾝⾼的建议:60-70k g,180以上的只建议打中后卫或清道夫,体重建议:80k g (3)体型不是全部+7就好的,有要诀的 颈部越长越粗的,头球成长率就⽐较好 肩膀越宽越厚的,卡位意识成率就⽐较好(只限于头球抢点卡位) 胸肌越强壮的,⾝体对抗成长率就⽐较好 ⼿臂越粗的,盘带过⼈甩开成长率就⽐较好 ⼤腿越粗的,体能成长率就⽐较好 ⼩腿越粗的,爆发⼒成长率就⽐较好 腿越长的,弹跳成长率就⽐较好 腿越短的,脚下护球成长率就⽐较好 2:开始职业⽣涯 (1)开档的时候出了看评分之外还需要看⼀个数据,那就是⾝体对抗了(也就是⾝体平衡)如果低于60的,建议重新刷,只要评分⾼于65(包括65)⾝体对抗在60就可以了。
3Dbody解剖软件在神经外科教学中的应用
3Dbody解剖软件在神经外科教学中的应用作者:秦向英刘洋王军伊超于海明刘洋来源:《中国卫生产业》2019年第28期[摘要] 目的观察3Dbody解剖软件在神经外科教学中的应用效果。
方法选择齐齐哈尔医学院2015级临床医学专业教改班学生为研究对象,分成两组(对照组和实验组),在神经外科课间见习中对照组采用传统教学模式,实验组在采用传统教学模式的基础上应用3Dbody解剖软件。
于两组学生完成神经外科课间见习后,设计考试试卷,分别对各项考试成绩进行统计。
同时,以两组学生为调查对象,分别对教学方法灵活性、教学内容丰富性和学习效率的满意度进行调查。
结果在平均考试成绩总分上,对照组、实验组依次为(70.24±7.45)分、(90.34±6.71)分,实验组高于对照组(P[关键词] 神经外科;教学;3Dbody解剖软件[中图分类号] R7 [文献标识码] A [文章编号] 1672-5654(2019)10(a)-0150-023Dbody运动功能解剖软件是一款由肌肉分析、骨骼关节、基础动作解析构成的三维交互式人体解剖学软件,提供了人体全三维的数字模型,2 000多个人体结构,涵盖了人体所有解剖系统,不仅为神经外科解剖教学提供了拟真平台,同时也极大丰富了教学资源。
该校于神经外科教学中应用3Dbody解剖软件取得了显著的成效,现报道如下。
1 ;对象与方法1.1 ;研究对象选择齐齐哈尔医学院2015级临床医学专业教改班学生为研究对象,分成两组(对照组和实验组),各组研究学生各49人。
对照组:男22名,女27名;年龄17~20岁,平均(18.21±4.06)岁。
实验组:男23名,女26名;年龄17~20岁,平均(18.38±4.11)岁。
两组学生在一般资料包括性别、年龄等比较上,差异无统计学意义(P>0.05),具有可比性。
1.2 ;方法由同一授课教师分别开展对照组和实验组神经外科课间见习教学,教材采用《外科学》第九版(陈孝平主编)、《系统解剖学》第九版(柏树令主编)。
FMVSS123摩托车控制与显示中文版
照明- 2 栏
操作- 3 栏
有
车头灯工作时该仪表点亮
绿色指示灯 选挡器位于‘空’时,该仪表点亮
表 3 摩托车操纵件和仪表标识要求
1栏
2栏
3栏
4栏
序号
设备
操纵件和仪表 操纵件和仪 标识字 表标识符号
操纵件和仪合适位置的表标
1
点火器
点火器
—
关
2
辅助引擎刹车器 (关,运行)
引擎制动器
关,运行
3
手动阻风门或混合 气加浓
表 1 摩托车操纵件位置与操作要求
设备操纵件- 1 栏
位置-2 栏
操作-3 栏
1 手动离合器或者离合 左把手
握紧打开离合器
换档器结合体
2 脚换档器
左脚控制件 操作员脚尖向上动作传递动力到低数字档位
(通称高档),向下动作到高数字档位(通称抵
挡)。如果有 3 个或更多档位,应当不能直接从
最高挡换到最低挡,反之亦然。
3 车头灯上下光束控制 左把手
向上控制高位光束,向下控制低位光束。如果
器
该设备与车头灯开关接合,应当采取措施防止
无意中开动‘关’功能。
4 喇叭
有
按压起动
5 转向信号灯
把手
6 点火
关' --从其它位置逆时针旋转
7 手动油门关闭控制器
旋转操作。‘开’‘关’由 90 度旋转分开;‘关’
‘倒车’由 90 度旋转分开。顺序是开-关-倒。
571.123 第 123 条标准 摩托车操纵件和仪表 S1 范围 本标准详述了摩托车操纵件和仪表的位置、操作、标识和照明的要求, 以及车架和脚踏板的要求。 S2 目的 本标准目的是通过把特定的摩托车操纵件和仪表标准化,将由交通环境 下误操作而引起的事故减到最少。 S3 适用 本标准适用于装备有把手的摩托车,但是单独为执法部门设计并销售的 车辆除外 S4 定义 顺时针和逆时针指的是围绕下列可适用的轴而旋转的相反方向: (a) 从点火锁孔前方看,点火控制件的操纵轴 (b) 旋转油门所在右把手轴,从该把手末端看 (c) 从操作员正常眼睛位置看,垂直于车速表中心的轴 S5 要求 S5.1 所有摩托车都应当配备有辅助引擎制动操纵件,其位置和操作如图表 1 所 示 S5.2 本标准适用范围内的摩托车都应当满足下列要求: S5.2.1 操控件位置与操作 如果有表 1 第 1 栏所列的设备,其操纵件应当位于第 2 栏所列的位置并按照第 3 栏规定操作。任何位于右把手上的操纵件,操作员只用右手不离开油门就可以进 行全部范围内的操作;任何位于左把手上的操纵件,操作员只用左手不离开把手 就可以进行全部范围内的操作。带自动离合器的摩托车如果装有辅助后刹车控制 件,该操纵件应当位于左把手。 如果摩托车装有使用一个控制器控制前后刹车器的自动配比或防锁制动设备,其 控制器的位置与操作应当与后刹车控制器相同。 S5.2.2 仪表照明和操作 如果装有表 2 第 2 栏中的设备,该设备仪表应当在白天日光状态下对操作员可见, 并如第 2 栏规定照亮且按照第 3 栏规定操作。 S5.2.3 操纵件和仪表标识 如摩托车装备有表 3 第 1 栏所列之设备,本设备及其操作功能应当如下标示: (a) 用第 3 栏的符号,或 (b) 第 2 和第 4 栏所示的文字,或 (c) 第 3 栏符号与第 2 和第 4 栏的文字接合 (d) 第 2 和第 4 栏中出现的缩写如‘mph’‘km/h’‘r/min’‘Hi’‘Lo’‘L’ ‘R’‘Res’等可以用全拼。 可以提供第 2 和第 4 栏中没有列出的设备符号与文字说明 所以提供的标识都应当位于或靠近操纵件或者仪表位置,并正直冲向操作员。 S5.2.4 支架 摩托车前进时,如支架接触到地面,则应当向后向上折起。 S5.2.5 脚登 每个设计的座位都应当提供脚登。除驾驶员脚登外,所有脚登不用 时都应当向上向后折起。
卫生应急演练技术指南2013版
Guidelines of Health Emergency Exercise
(2013版)
前言
近年来,党中央、国务院不断加强政府的应急管理工作,提高防范与应对突发公共事件 能力。作为应急管理的重要内容,卫生部门的卫生应急工作不断加强,在减少突发事件人员 伤亡和健康危害,保障人民群众身体健康和生命安全,维护社会稳定等方面,发挥着越来越 重要的作用。但是,不断增多的各类突发事件,特别是 2008年以来,我国连续经历汶川大地 震、青海玉树地震、舟曲特大山洪泥石流、南方地区洪涝灾害、冰冻雨雪灾害和西南地区旱 灾等重大自然灾害,以及人感染猪链球菌病疫情、甲型(H1N1)流感大流行、人感染高致病 性禽流感、部分地区肺鼠疫疫情、全国手足口病疫情、部分地区无形体病疫情、新型布尼亚 病毒、广东地区登革热及基孔肯雅、人感染H7N9禽流感等重大传染病疫情。这些重大突发事 件不仅对人民群众身体健康和生命安全造成了严重危害,也对如何进一步快速、有序、科学 和有效开展应对工作提出了更高要求。而应急演练作为加强我国卫生应急体系建设发展,提 高应急实战能力的重要手段,必然会发挥越来越重要的作用。近年来,各地各级卫生部门不 断开展各种演练工作,进行了大量演练实践。为进一步规范和指导卫生应急演练工作,在国 务院应急管理办公室制定的《突发事件应急演练指南》的框架下,中国疾病预防控制中心卫 生应急中心组织编写了《卫生应急演练技术指南(2013版)》(以下简称指南),结合卫生 应急工作和演练的特点,提出操作层面和技术层面的指导意见。 本指南主要借鉴的技术文件为世界卫生组织西太区办公室 (WHO/WPRO) 的 《Emergency Exercise Development (2009)》,结合国内近年来开展的各类卫生应急演练活动的特点,从演 练的目的、内容、基本类型、各自特征和用途、演练程序、演练准备、演练设计、演练实施、 增强演练逼真性及演练评估等方面,对组织开展卫生应急演练进行了详细阐述。同时,指南 还提供了在开展演练的各个阶段需要使用的一些具体工具。本指南旨在阐明卫生应急演练的 基本概念,并为医疗卫生机构卫生应急管理人员、卫生应急准备人员以及卫生应急相关专业 技术人员提供一套方便实用的卫生应急演练参考工具,指导进行科学、规范的演练设计、实 施和评估,从而推动全国各级各类医疗卫生机构不断提高演练水平,全面提升我国的卫生应 急能力。 本指南在编写过程中,得到了安徽省、浙江省、重庆市、河北省、广东省和河南省等部 分演练实践经验较为丰富地区疾控机构专家的大力支持,在此一并表示感谢。
萝卜圈三维机器人教程
迷宫灭火 2.1
.........................................................................................................................19
迷宫灭火回家 2.2
..................................................................................................................23
基本训练任务 1.2
....................................................................................................................6
体验跑道竞速 1.3
..................................................................................................................16
1.1 让我们飞
很多同学都有自己的飞行梦,现实我们很难自由的构建自己的飞行器,现在我们通过 萝卜圈的仿真系统来构建属于自己的飞行器吧!
通过本节课的学习,你将能够: 初步掌握机器人构建的基本技巧。 初步掌握编程的基本方法以及通过任务场景欣赏自己的作品。
一、机器人构建
构建好之后,保存退出。文件名:飞。 思考:1、为什么风扇叶左右不会碰撞的话,前后一定也不会碰撞? 2、飞行器的构建首先要注意什么问题? 3、为什么要反转电机?
汽车悬.......................................................................31
PBL教学法在《外科学》场景教学中的应用
the
problems.This
article
summarize the teaching
practice. teaching;Surgery;Problem—based
【Key words】Scene
learning;Standardized patients
如何在《外科学》的教学中激发学生学习的积 极性和主动性,培养其临床思维能力和实践能力, 南方医科大学第二临床医学院在《外科学》的教学 实践中部分实施了临床场景教学,并将PBL教学法 引入其中。 1对象和方法 1.1对象 南方医科大学2004年级医学本科专业二教班 中的58名学生。 1.2方法 在大课的课堂上由SP和教师共同构建模拟I临
and practice
clinical practice,the second clinical
sceue
learning(PBL)in surgery teaching,creating the
and drawing
out
with
the
patients
teachers
the
content
from
参考文献
【l】王大文,戚昕,衣桂花.PBL教学法在医学心理学教学中的应用 【JJ.青岛大学跃学院学报,2003。39(4):379—380. 【2】2
PBL教学法听课效果学生评分——一
2.2教师评价
授课教师和听课教师都一致认为,PBL教学法
与临床场景教学相结合使以前的灌注式教学向启 发式教学方向转变,将单一的教师授课转变为学生 主动参加到学习中来,培养了学生分析问题和解决 问题的能力,为培养实用型人才奠定了基础。
is
to
【Abstract】
VW80102_200906_en
Electrical Controls (Switches, Tip Switches)General RequirementsPrevious issuesVW 80102: 1990-10, 1992-09, 1995-05ChangesThe following changes have been made as compared to VW 80102: 1995-05:–Standard completely revised ContentsPageScope .............................................................................................................................2Requirements .................................................................................................................2General requirements ....................................................................................................2Haptic characteristics, appearance, and styling (symbol and illumination) ....................2Haptic appearance and switching noise ........................................................................2Acoustics ........................................................................................................................2Appearance ....................................................................................................................3Symbols .........................................................................................................................3Styling ............................................................................................................................3Illumination .....................................................................................................................4Applicable laws and regulations .....................................................................................4Documentation ...............................................................................................................4Greasing ........................................................................................................................5Definitions ......................................................................................................................5Tip switches ...................................................................................................................5Switches .........................................................................................................................5Actuations ......................................................................................................................5Actuation forces, actuation torques, switching paths, and actuation angles (5)122.12.22.2.12.2.22.2.32.2.42.2.52.2.62.32.42.52.62.6.12.6.22.6.32.7Group StandardVW 80102Issue 2009-06Class. No.:8MC10DDescriptors:switch, tip switch, controlsCheck standard for current issue prior to usage.This electronically generated standard is authentic and valid without signature.The English translation is believed to be accurate. In case of discrepancies the German version shall govern.Numerical notation acc. to ISO practice.Page 1 of 11Technical responsibility Standards Department EEFH Manfred Hintz Tel.: +49-5361-9-31274I/EE-61Uwe GirgsdiesTel.: +49-841-89-90836EKTC/4 Dirk Beinker EKTCTel.: +49-5361-9-32438Manfred TerlindenConfidential. All rights reserved. No part of this document may be transmitted or reproduced without prior permission of a Standards Department of the Volkswagen Group.Parties to a contract can only obtain this standard via the B2B supplier platform .© Volkswagen AktiengesellschaftVWNORM-2008-12hPoint of force application ................................................................................................5Switching safety .............................................................................................................6Materials ........................................................................................................................6Robust design requirements ..........................................................................................6Burning behavior ............................................................................................................7Plug-in connections ........................................................................................................7Self-heating ....................................................................................................................7Switching currents ..........................................................................................................7Voltage drop at the switching contact ............................................................................7Overcurrent strength ......................................................................................................8Switching point ...............................................................................................................8Removal force ................................................................................................................8Contact mats ..................................................................................................................8Electrical signal transmission .........................................................................................8Electrical controls ...........................................................................................................8Emergency light switch ................................................................................................10Test requirements ........................................................................................................10Misuse requirement for tip switches .............................................................................10Continuous current requirement for load isolators .......................................................10Continuous current requirement for fan switches ........................................................10Referenced documents ................................................................................................102.82.92.102.10.12.10.22.112.122.132.142.152.162.172.182.192.19.12.19.22.202.20.12.20.22.20.33ScopeThis standard defines the general requirements for switches and tip switches with a maximum oper‐ating voltage of 30 V and a maximum current of 30 A.Requirements General requirementsApproval of first supply and changes according to Volkswagen standard VW 01155.Switch styling and geometric requirements as well as the tolerances are to be taken from the drawing.The requirements specified in VW 80101 apply.Haptic characteristics, appearance, and styling (symbol and illumination)Haptic appearance and switching noiseHaptics is defined as the active sensing of e.g. size, contour, surface texture, weight, etc. of an object.The sound emission and the actuation sensing must be agreed upon with the responsible design engineer and the responsible engineering departments and must be documented by means of ref‐erence samples.AcousticsThe noise resulting from the actuation of switch elements is to have the same sound as the adjacent switching elements. The acoustics must be agreed upon with the engineering departments.12 2.12.2 2.2.12.2.2Page 2VW 80102: 2009-06DAppearanceThe appearance of vehicle control elements is influenced by material, form, tilt, color, surface, sym‐bols, and illumination. Illumination is not part of this document and is dealt with separately.SymbolsAcc. to VW 80660 and specifications in the drawing.Utilization resistance acc. to Technical Supply SpecificationTL 226.Test of resistance to creams and lotions acc. to PV 3964.StylingThe class-A surfacing is a graphical representation, based on the representative geometry. The class-A surfacing is a form-defining process from the styling point of view, if only some volume-defining plane, vertical, or parallel cross-sections are given.Compliance with the class-A surfacing data defined by the purchaser is mandatory for all surfaces visible in the passenger compartment.Modifications to class-A surfaces are permissible only if they are approved in the class-A surfacing process in consultation with the Styling Department.The trim styling will be defined by the purchaser in the framework of a partial data control model (DKM), in cooperation with Styling.This styling process must be accompanied by the contractor by means of continuous checks whether this is technically realizable.The contractor must be present in respective agreement meetings. Furthermore, the contractor must conduct tests regarding the fulfillment of the legal regulations concerning curvature radii or button heights (ECE-R 21 and 74/6/EWG head impact) accompanying the styling process.Prior to submission of the quotation, the supplier must request the current styling status from the engineering department.Components with external visual function elements must be designed so that operation, even under extreme conditions (e.g. soiling), does not result in functional impairment.The gap contour must comply with the class-A surface specifications and be consistent all around.The different gaps within a device must be harmonious.The following specifications (see Figure 1) are binding during the design of the tool separation and the draft angles for tip switch caps and trims.2.2.32.2.42.2.5Page 3VW 80102: 2009-06DFigure 1Legend 1Tip switch cap2Gap acc. to class-A surfacing specifications3Tool separation of the switch cap on the radius runout 4Trim5Tool separation of the trim on the radius runout 6Draft anglesThe tools are initially designed to the upper tolerance limit of the gap size, afterwards the tools are matched by means of the interior master jig on off-standard production tool parts of the trim.During tip switch actuation, the effective gap is increased. This prevents jamming of the tip switch.IlluminationThe illumination must be agreed upon with the responsible design engineer and the responsible engineering departments and must be documented by means of reference samples. All controls in the vehicle together must form a harmonious illumination.Acc. to specifications by the purchaser, laser technology must be used for illumination of the tip switch lettering and symbols.Applicable laws and regulationsThe respective country-specific laws and regulations must be adhered to.DocumentationSections marked with a documentation bar are subject to mandatory documentation.The documents must be archived for a duration of 15 years.2.2.62.32.4Page 4VW 80102: 2009-06DGreasingElectrical switches must not be greased.If this regulation is derived from, the grease to be used, the application type, and the amount of grease must be agreed upon with the responsible engineering department and the Central Laboratory and must be implemented in a process-reliable manner.DefinitionsThe following applies to tip switches as well as to switches: Changing the physical input variable results in a change of the digital output signal (step function).Representation of electrical switch contacts (switches and tip switches):The switch contact symbol (closing or opening) is represented in unactuated state. The designation of the represented switch contact refers to the function to be triggered.Tip switchesA tip switch is defined as an electrical switching element (closer or opener) which performs an elec‐trical switching operation when an actuation force is applied to the actuation switch, and which returns to its normal position when released (mechanically and electrically).SwitchesA switch is defined as an electrical switching element (closer or opener) that can assume different switch positions.ActuationsTip switches and switches can be actuated directly by the operator or indirectly by physical control variables.Actuation forces, actuation torques, switching paths, and actuation anglesThe main variables acting for switching elements are actuation force and actuation path. These vari‐ables form the load-displacement curve. The load-displacement curve is part of the drawing.All switching points (actuation paths and actuation angles as well as actuation forces and actuation torques) must be indicated in the drawing, including tolerances.Latch switches may latch only in the respective positions. Intermediate positions between the latching positions are not permissible. When switched, no latches may be skipped.Misuse forces must be agreed upon with the responsible engineering department and stipulated in the drawing.The actuation forces are measured in as-received condition as well as after the tests and may not exceed the tolerance limits after the endurance test.Point of force applicationThe point of force application and the actuation direction are defined in the drawing or the Perfor‐mance Specifications. For toggle and rocker switches, the force is applied perpendicular to the ac‐tuation surface. In order to ensure perpendicular force application, an adapter or a test prod must be used for force application in the case of a tilted or uneven actuation surface.2.52.62.6.12.6.22.6.32.72.8Page 5VW 80102: 2009-06DSwitching safetyWhen actuating latch switches, the defined positions must be assumed automatically after overcom‐ing the action point.Intermediate positions are not permissible.If the switch is actuated by an angle or path and if it does not reach the switching point defined in the drawing, it must automatically return to the original latching position.Micro switches or their housings must not be used as a stop of the actuation movement or be damaged when the actuation is finished.During actuation, the switching point must be traveled with sufficient follow-on.It must be ensured that the switch is not used as a limit stop. Lever or spring systems must be used,if necessary.When actuation cams are used, switching safety must be agreed upon with the responsible engi‐neering department.The distance to the switching point must be selected in each switching position such that vibrations or relative movements of the switch do not result in unintended switching.Manufacturing and movement tolerances of the parts must be sufficiently considered in the actuation chain.MaterialsOdors or other evaporations according to VW 50179 und VW 50180.Suitable material combinations with respect to friction behavior, joint strength (two components) and their compatibility must be considered. This also applies to materials that form the installation envi‐ronment of the part.All surfaces visible in their installed condition must be free of sinkmarks, faults, dust inclusions, dirt,scratches, etc. Sink marks, e.g. behind reinforcement ribs or their intersections are only permissible if the part's appropriate functionality and the external appearance are not affected.Voids are not permissible.The materials sliding against each other during actuation must be mirror polished and free of paint in the tool.Tool separations are not permissible, neither in the visible area nor in the functional area.Housing and retainer must not have any sharp edges (risk of injury, shearing or damage to lines during installation and operation). ECE-R-21 must be complied with for edge and radii design.All materials used must be ozone-resistant.Robust design requirementsForeseeable misuse must not result in damage of the part, its material, or the part environment.The minimum misuse force/misuse torque requirements are 250 N and 2 Nm.Specific requirements resulting from the packaging space must be considered.Functional components (tip switch guides, wall thicknesses, etc) must be designed such that - in installed condition (with pre-tension by means of catch springs) over the entire temperature range and over the vehicle service life - no deformations occur that could impair the function.2.92.102.10.1Page 6VW 80102: 2009-06DBurning behaviorThe burning behavior must correspond to the requirements of TL 1010.Plug-in connectionsPlug-in connections on switches or their assemblies must be designed acc. to VW 80106.The plug and pull forces on the housing-mounted connector must be absorbed by the housing. Ap‐plication of force to the PCB is impermissible.Intrusion of water must be excluded. In special cases, a sealed plug connection must be used. The part must be equipped with a push-on-connection released within the Volkswagen Group.Device connector receptacles and connectors on the device must be marked in the plastic.Connector housings and contacts must form a unit in order to ensure correct positioning of the plug contact when plugging the mating connector.The contractor must ensure that the connector contacts are not deformed.When the part is carried at the line during handling, e.g. during vehicle assembly, the part and the line connection must not be damaged. The specification regarding the pull-out-strength can be taken from the drawing.Connecting plugs on PCBs must be mechanically attached.Connector pins must be manufactured acc. to the following drawings (see Table 1):Table 1Connector width (mm)Drawing no.0,63N 905 2851,5N 905 8542,8N 905 8564,8N 905 8576,3N 905 8589,5N 905 859Self-heatingIf self-heating occurs due to energy conversion in the switch unit, the maximum surface temperature to be reached must be agreed upon with the responsible engineering department and be documented.Switching currentsSwitching currents up to 60 mA are called control currents. A typical value is 20 mA, ohmic load.Switching currents (rated current) of 60 mA to 30 A are called load currents.Switching currents (rated current) ≥ 30 A must be switched by means of relays. See VW 80932.Voltage drop at the switching contactThe permissible voltage drop must not exceed 100 mV for a rated current of 10 A.2.10.22.112.122.132.14Page 7VW 80102: 2009-06DThe permissible voltage drop must not exceed 60 mV for rated currents larger than 10 A.The permissible voltage drops via the switching contact must not be exceeded over the entire service life. The voltage drop must always be measured between connector input and output. In order to determine the actual switching resistance, additional resistances must be deducted. Several contacts connected in series may cause additional voltage drops. This additionally generated heat must not result in damage of the switch unit and the increased total voltage drop must not result in damage of the overall circuit. These deviations must be agreed upon with the responsible engineering depart‐ment.For switches with cable connection, the voltage drop must be measured for the cable or be calculated on the basis of the specific resistance, the cable diameter and the cable length. The voltage drops via the connecting cable must be deducted from the measured values.For circuit breaking controls, the minimum permissible contact force must be agreed upon with the engineering department and be documented in the drawing.Overcurrent strengthFor design of controls with vehicle fuse connected on line side see VW 80101.Switching pointSwitches that rest in a defined position over a longer time period should be open in this position.The switching point must be defined and documented.The switching point must not change.Removal forceThe removal force of housing parts of control components must be larger than 250 N.Contact matsContact mats must permanently contact in a reliable way.The voltage drops must be documented over the entire endurance test.The permissible changes in haptic characteristics over the service life and when exposed to high temperatures must be agreed upon with the "Haptic Characteristics" team.No mechanical changes (damages or plastic deformation) must occur.In the case of non-vertical actuation, secure contacting must be ensured.Electrical signal transmissionAn integrated device connector or separated cables with coupling are used for electrical connection.Electrical controlsTable 2 shows the number of switching operations and load for which the function and the specified parameters must be guaranteed.There are two types of load: control current and load current. They are differentiated by means of power consuming devices connected on load side.2.152.162.172.182.192.19.1Page 8VW 80102: 2009-06DPage 9VW 80102: 2009-06D Table 2a)Controls that are not mentioned must be agreed upon with the engineering department with regard to actuation frequency and load.b)If lamp loads are used as the type of load, a cooling time of at least 10 s between the switching cycles must be complied with.Alternatively, cooled lamps must be used. Vehicle-specific loads (original loads) must be used.Emergency light switchTable 3 shows the number of switching operations and the load for the emergency light switch for which the function and the specified parameters must be guaranteed.Table 3SwitchesNumber of switching operations (applies to load currents andcontrol currents)Load(only for load isolators;control currents acc. to thedrawing)Emergency light switch25 0006 x 21 WContinuous current requirement for emergency light switchesEmergency light switches must withstand 1 h of permanent flashing at nominal load without functional impairment.Test requirementsMisuse requirement for tip switchesThe tip switch must be capable of resiling from the final position to the initial position without functional impairment and impairment of the specified parameters.Continuous current requirement for load isolatorsLoad isolators must withstand 8 h of continuous current at nominal load according to the drawing without functional impairment.Continuous current requirement for fan switchesFan switches must withstand 1 h of continuous current in the highest stage (load) and the highest operating temperature without functional impairment.Referenced documentsThe following documents cited in this standard are necessary for application.In this Section terminological inconsistencies may occur as the original titles are used.┌2.19.2┐ 2.19.2.1 2.20 2.20.12.20.22.20.33Page 10VW 80102: 2009-06DPage 11VW 80102: 2009-06D Standards with the titles given in German are either only available in German or may be procured in other languages from the institution issuing the standard.PV 3964Surfaces in the Passenger Compartment; Testing of Cream Resistance TL 1010Materials for Vehicle Interiors; Burning Behavior; Material Requirements TL 226Paint Coating on Materials; Used in the Vehicle Interior Trim; Require‐mentsVW 01155Vehicle Supply Parts; Approval of First Supply and ChangesVW 50179Emission Behavior of Components in the Passenger CompartmentVW 50180Components in the Passenger Compartment; Emission BehaviorVW 80101Electrical and Electronic Assemblies in Motor Vehicles; General Test Con‐ditionsVW 80106Plug Connection on and in Electrical and Electronic Components in Vehi‐cles; RequirementsVW 80660Symbols for Operating Devices, Display Units and Indicator LightsVW 80932Relays; Functional Requirements。
3D动画演示用于神经外科手术研究
3D动画演示用于神经外科手术研究通过计算机3D动画技术,将“内镜下颈椎间盘髓核摘除术”的手术过程制作成三维演示动画。
通过理想的视角再现外科手术的全过程,利用医学虚拟现实技术在术前导航,临床和医师培养等环节提供新的方法。
1研究内容和意义将外科手术的过程制作成3D动画可用于教学和公众普及的目的。
帮助浙二医院神经外科团队将“内镜下颈椎间盘髓核摘除术”手术流程制作成3D动画。
内容涉及到七节颈椎,尤其是颈椎疾病多发的C5/C6两节颈椎、颈椎间盘,包括神经等较为复杂的人体结构的3D建模。
动画包括内窥镜等专业手术器械的运用环节。
浙二医院提供的医学影像作为影片的资料。
影像资料包括X光影像,CT图像,内窥镜拍摄视频等。
通过计算机3D技术再现手术过程,呈现科技文字报告所无法表达的细节和过程。
外科团队提供的文本手术流程如下:(1)穿刺针穿刺C5/C6左侧椎板间隙;(2)拔除针芯置入导丝;(3)置入二孔扩张器套筒;(4)植入椎间盘镜于镜下操作;(5)咬钳咬开纤维环,暴露髓核组织;(6)内镜下移除突出的髓核。
医学手术过程的3D呈现属于生物美学的一个分支,生物美学在网络时代已经得到广泛的应用。
图片及视频用以表达生物科学内容、提升科研影响力形象手段。
这类美术作品在生物科技、医学研究中拥有其独特的地位。
人体的复杂性与机理的严密逻辑性用3D动画再现,可以达到教学传播的目的。
这种虚拟展示手段最大程度上保护患者隐私的前提下展示病灶详细情形。
使原本枯燥的医学理论变成有艺术魅力的影像化叙事,用以描述医学论著中文字所不能表达的信息。
外科团队为了推广微创外科的理念,参加了“2016中国(浙江)智能硬件博览会”。
影片的观众除了专业医学从业人员外还包括大众。
医学美术作品在公众健康教育中具有不可替代的作用。
具有简明易懂,生动活泼,自解释性的特点。
医学美术使枯燥、抽象、难懂的医学理论变成生动活泼有艺术魅力的形象。
为了让普通大众可以接受健康知识,图像必须有很强的示意性。