陕西人教版2020届九年级上册数学期末考试试卷H卷

合集下载

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含4套

人教版2020---2021学年度上学期九年级数学期末考试卷及答案含4套

密学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题共10小题,每小题4分,满分40分) 1.在﹣2,0,2,﹣3这四个数中,最小的数是( ) A .2 B .0 C .﹣2 D .﹣32.如果我们都能改掉餐桌上的陋习,珍惜每一粒粮食,合肥市每年就能避免浪费30.1亿元,将30.1亿用科学记数法表示为( )A .30.1×108B .3.01×108C .3.01×109D .0.301×10103.一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是( ) A .x ﹣6=﹣4 B .x ﹣6=4 C .x+6=4 D .x+6=﹣44.设a=2﹣1,a 在两个相邻整数之间,则这两个整数是( ) A .1和2 B .2和3 C .3和4 D .4和55.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个( )A .2个B .3个C .4个D .6个6.某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( )A .99.60,99.70B .99.60,99.60C .99.60,98.80D .99.70,99.607.如图为抛物线y=ax 2+bx+c 的图象,A 、B 、C 为抛物线与坐标轴的交点,且OA=OC=1,则下列关系中正确的是( )A .ac <0B .a ﹣b=1C .a+b=﹣1D .b >2a8.如图,过▱ABCD 的对角线BD 上一点M 分别作平行四边形两边的平行线EF 与GH ,那么图中的▱AEMG 的面积S 1与▱HCFM 的面积S 2的大小关系是( )A .S 1>S 2B .S 1<S 2C .S 1=S 2D .2S 1=S 2密封线内9.如果三角形的两条边分别为4和6,那么连结该三角形三边中点所得的周长可能是下列数据中的()A.6 B.8 C.10 D.1210.附加题:如图,在矩形ABCD中,AB=3,BC=4,点P在BC边上运动,连接DP,过点A作AE⊥DP,垂足为E,设DP=x,AE=y,则能反映y与x之间函数关系的大致图象是()A. B. C.D.二、填空题(本大题共4小题,每小题5分,满分20分.11.的平方根是.12.因式分解:a2b+2ab+b= .13.如图,在直角三角形ABC中,∠ACB=90°,AC=1,BC=2,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为.14.如图,等腰直角△ABC腰长为a,现分别按图1,图2在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC意截取一个正方形的面积为S3,则S3≤S1是.三、(本大题共2小题,每小题8分,满分16分)15为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣然后请你自选一个合理的数代入求值.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分) 17.2014年3月8日凌晨,马来西亚航空公司一架航班号为MH370的波音777客机于凌晨零点左右从吉隆坡飞往北京,计划6:30抵达北京首都国际机场,却在凌晨1:30分失去联系.已知该飞机起飞时油箱内存有15000升油,起飞后一直保持速度为400km/h 匀速直线运动,且每千米的耗油量为5升,请用不等式的知识求出该飞机在失去联系后能最多航行多少千米?18.如图,矩形ABCD 中,AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,第n 次平移将矩形A n ﹣1B n ﹣1C n ﹣1D n ﹣1沿A n ﹣1B n ﹣1的方向平移5个单位,得到矩形A n B n C n D n (n >2).(1)求AB 1和AB 2的长.(2)若AB n 的长为56,求n .五、(本大题共2小题,每小题10分,满分20分) 19.一透明的敞口正方体容器ABCD ﹣A ′B ′C ′D ′装有一些液体,棱AB 始终在水平桌面上,容器底部的倾斜角为α (∠CBE=α,如图所示).探究 如图1,液面刚好过棱CD ,并与棱BB ′交于点Q ,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:(1)CQ 与BE 的位置关系是 ,BQ 的长是 dm ;(2)求液体的体积;(参考算法:直棱柱体积V 液=底面积S △BCQ ×高AB );(3)求液面到桌面的高度和倾斜角α的度数.(注:sin37°=,tan37°=).20.面对即将到来的五一小长假,胡老师一家计划用两天时间参观岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区中的两个;第一天从4个景区中随机选择一个,第二天从余下3个景区中再随机选择一个,如果每个景区被选中的机会均等.(1)请画树状图或表格的方法表示出所有可能出现的结果; (2)求滨湖湿地公园被选中的概率.六、(本题满分12分)21.已知:如图,在△ABC 中,AB=AC ,AE 是角平分线,BM 平分∠ABC 交AE 于点M ,经过B ,M 两点的⊙O 交BC 于点G ,交AB 于点F ,FB 恰为⊙O 的直径.(1)求证:AE 与⊙O 相切;(2)当BC=4,cosC=时,求⊙O 的半径.七、(本题满分12分)22.自2010年6月1消费者在购买政策限定的新家电时,部分由政府提供,其中三种家电的补贴方式如下表: 补贴额度新家电销售价格的10%说明:电视补贴的金额最多不超过400元/台; 洗衣机补贴的金额最多不超过250元/台; 冰箱补贴的金额最多不超过300元/台.为此,某商场家电部准备购进电视、洗衣机、冰箱共100这批家电的进价和售价如下表: 家电名进价(元/台) 售价(元/台)密学校 班级 姓名 学号密 封 线 内 不 得 答 题称电视39004300 洗衣机 1500 1800 冰箱20002400设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价﹣进价)(1)请分别求出y 与x 和w 与x 的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?八、(本题满分14分)23.如图1,在正方形ABCD 中,点M 、N 分别在AD 、CD 上. (1)若∠MBN=45°且∠ABM=∠CBN ,则易证 .(选择正确答案填空)①AM+CN >MN ;②(AM+CN )=MN ;③MN=AM+CN .(2)若∠MBN=∠ABC ,在(1)中线段MN 、AM 、CN 之间的数量关系是否仍然成立?若成立给予证明,若不成立探究出它们之间关系.【拓展】如图2,在四边形ABCD 中,AB=BC ,∠ABC 与∠ADC互补.点M 、N 分别在DA 、CD 的延长线上,若∠MBN=∠ABC ,试探究线段MN 、AM 、CN 又有怎样的数量关系?请写出猜想并证明.参考答案一、选择题(本大题共10小题,每小题4分,满分40分) 1.D . 2. C .3.D .4.B .5.B .6. B .7.D .8.C . 9.B .10.C . 二、填空题(本大题共4小题,每小题5分,满分20分. 11.的平方根是 ± .12.因式分解:a 2b+2ab+b= b (a+1)2.13.如图,在直角三角形ABC 中,∠ACB=90°,AC=1,BC=2,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 .线内不得答题14.如图,等腰直角△ABC腰长为a,现分别按图1,图2方式在△ABC内内接一个正方形ADFE和正方形PMNQ.设△ABC的面积为S,正方形ADFE的面积为S1,正方形PMNQ的面积为S2.①AD:AB=1:2;②AP:AB=1:3;③S1+S2>S;④设在△ABC内任意截取一个正方形的面积为S3,则S3≤S1.上述结论中正确的是①②④.三、(本大题共2小题,每小题8分,满分16分)15.请从下列三个代数式中任选两个(一个作为分子,一个作为分母)构造一个分式,并化简该分式.a2﹣1,a2﹣1,a2﹣2a+1,然后请你自选一个合理的数代入求值.解: ==,当a=2时,原式==3.或=,当a=2时,原式==.16.如图,在平面直角坐标系中,△ABC上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于x轴对称的△A1B1C1,并写出点A1(2)画出△A1B1C1绕原点O旋转180°后得到的△A2B2C2出点A2的坐标.解:(1)如图所示:点A1的坐标(2,﹣4);(2)如图所示,点A2的坐标(﹣2,4).密线学校 班级 姓名 学号密 封 线 内 不 得 答 题四、(本大题共2小题,每小题8分,满分16分)17. 解:设该飞机在失去联系后能航行x 千米, 1:30﹣0:00=1.5(小时), 由题意得:1.5×400×5+5x ≤15000 解得:x ≤2400.答:该飞机在失去联系后最多能航行2400千米.18.解:(1)∵AB=6,第1次平移将矩形ABCD 沿AB 的方向向右平移5个单位,得到矩形A 1B 1C 1D 1,第2次平移将矩形A 1B 1C 1D 1沿A 1B 1的方向向右平移5个单位,得到矩形A 2B 2C 2D 2…,∴AA 1=5,A 1A 2=5,A 2B 1=A 1B 1﹣A 1A 2=6﹣5=1, ∴AB 1=AA 1+A 1A 2+A 2B 1=5+5+1=11, ∴AB 2的长为:5+5+6=16;(2)∵AB 1=2×5+1=11,AB 2=3×5+1=16, ∴AB n =(n+1)×5+1=56, 解得:n=10.五、(本大题共2小题,每小题10分,满分20分)19.(1)解:(1)CQ ∥BE ,BQ==3dm ;故答案为:平行,3;(2)V 液=×3×4×4=24(dm 3); (3)过点B 作BF ⊥CQ ,垂足为F , ∵×3×4=×5×BF , ∴BF=,∴液面到桌面的高度; ∵在Rt △BCQ 中,tan ∠BCQ=, ∴α=∠BCQ=37°.内不得题20.解:(1)用A、B、C、D分别表示岱山湖、紫蓬山森林公园、滨湖湿地公园、三国遗址公园四个景区,画树状图为:共有12种等可能的结果数;(2)滨湖湿地公园被选中的结果数为6,所以滨湖湿地公园被选中的概率==.六、(本题满分12分)21.解(1)证明:连接OM,则OM=OB∴∠1=∠2∵BM平分∠ABC∴∠1=∠3∴∠2=∠3∴OM∥BC∴∠AMO=∠AEB在△ABC中,AB=AC,AE是角平分线∴AE⊥BC∴∠AEB=90°∴∠AMO=90°∴OM⊥AE∵点M在圆O上,∴AE与⊙O相切;(2)解:在△ABC中,AB=AC,AE是角平分线∴BE=BC,∠ABC=∠C∵BC=4,cosC=∴BE=2,cos∠ABC=在△ABE中,∠AEB=90°∴AB==6设⊙O的半径为r,则AO=6﹣r∵OM∥BC∴△AOM∽△ABE∴∴解得密线学校 班级 姓名 学号密 封 线 内 不 得 答 题∴⊙O 的半径为.七、(本题满分12分)22.解:(1)y=400x+1800×10%x+2400×10%(100﹣2x )=100x+24000商场所获利润:W=400x+300x+400(100﹣2x ) =﹣100x+40000. (2)根据题意得,解得30≤x ≤35,因为x 为整数,所以x=30,31,32,33,34,35,因此共有6种进货方案.对于W=﹣100x+40000, ∵k=﹣100<0,30≤x ≤35, ∴当x=30时,W 有最大值,所以当购进30台电视,30台洗衣机,40台电冰箱时商场将获得最大的利润.因此政府的补贴为y=100×30+24000=27000元. 八、(本题满分14分)23.解:(1)解:设BD 于MN 交于点H ,如图1(1), ∵BD 为正方形ABCD 的正方形, ∴∠ABH=∠CBH=45°,BA=BC , ∵∠MBN=45°,∠ABM=∠CBN , ∴∠ABM=∠HBM=∠HBN=∠CBN ,在△ABM 和△CBN 中,∴△ABM ≌△CBN , ∴BM=BN ,AM=CN , 而∠HBM=∠HBN , ∴BH ⊥MN , ∴MA=MH ,NH=NC , ∴AM=MH=HN=NC , ∴MN=AM+CN ; 故答案为③;封线 内题(2)解:在(1)中线段MN 、AM 、CN 之间的数量关系仍然成立.理由如下:把△BAM 绕点B 顺时针旋转90°得到△BCP ,如图1(2), ∴BM=BP ,AM=CP ,∠MBP=90°,∠BCP=∠A=90°, ∵∠BCP+∠BCN=180°, ∴点P 在DC 的延长线上, ∴NC+CP=NP ,∵∠MBN=∠ABC=45°, ∴∠NBP=45°, 在△BNM 和△BNP 中,∴△BNM ≌△BNP , ∴MN=NP ,∴MN=CP+CN=AM+CN ;【拓展】解:如图2,∵∠ABC+∠ADC=180°, ∴∠BAD+∠BCD=180°, 而∠BAD+∠BAM=180°, ∴∠BAM=∠BCD , ∵AB=BC ,∴把△BAM 绕点B 顺时针旋转90°得到△BCQ ,∴∠BAM=∠BCQ ,BM=BQ ,∠MBQ=∠ABC , ∴∠BCQ=∠BCD , ∴点Q 在CN 上, ∴CN=CQ+MQ=AM+NQ , ∵∠MBN=∠ABC , ∴∠MBN=MBQ ,∴∠MBN=∠QBN , 在△BMN 和△BQN 中,∴△BMN ≌△BQN , ∴MN=QN , ∴CN=AM+MN , 即MN=CN ﹣AM .密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( ) A.523a a a =⋅ B.abb a 532=+ C.326a a a =÷ D.523a a a =+5. 下列各图中,是中心对称图形的是( )6. 方程042=-x的根是( )A. 2,221-==x xB. 4=xC. 2=xD.2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( )题号 一 二 三 总分 得分ABC DA .1.65,1.70B .1.70,1.65C .1.70,1.70D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每公顷产量的两组数据,其方差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (aA BC图3E DA B CO E1D图1A密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题图1020.(满分8分)某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,根据下图提供的信息,求一盒“福娃”玩具和一枚徽章的价格各是多少元?21.(8分) 某中学学生会为考察该校学生参加课外体育活动的情况,采取抽样调查的方法从篮球、排球、乒乓球、足球及其他等五个方面调查了若干名学生的兴趣爱好(每人只能选其中一项),并将调查结果绘制成如下两幅不完整的统计图,请根据图中提供的信息解答下列问题: (1)在这次考察中一共调查了多少名学生?(2)在扇形统计图中,“乒乓球”部分所对应的圆心角是多少度?(3)补全条形统计图;(4)若全校有1800名学生,试估计该校喜欢篮球的学生约有多少人?22.(本题满分8分)如图的方格纸中,ABC∆ 的顶点坐标分别为()5,2-A 、()1,4-B 和()3,1-C (1)作出ABC ∆关于x 轴对称的111C B A ∆,并写出点A 、B 、C 的对称点1A 、1B 、1C 的坐标;(2)作出ABC ∆关于原点O 对称的222C B A ∆,并写出点A 、B 、C 的对称点2A 、2B 、2C 的坐标;(3)试判断:111C B A ∆与222C B A ∆是否关于y 轴对称 (只需写出判断结果).23.(本大题满分11分)如图,四边形ABCD 是正方形,G 是yAOxBC共计145元 共计280元第21题图BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG 于E ,CF ∥AE 交DG 于F.(1)在图中找出一对全等三角形,并加以证明; (2)求证:AE=FC+EF.24.(13分)如图,已知二次函数图象的顶点坐标为C(1,0),直线m x y +=与该二次函数的图象交于A 、B 两点,其中A 点的坐标为(3,4),B 点在轴y 上. (1)求m 的值及这个二次函数的关系式;(2)P 为线段AB 上的一个动点(点P 与A 、B 不重合),过P 作x 轴的垂线与这个二次函数的图象交于点E 点,设线段PE 的长为h ,点P 的横坐标为x①求h 与x 之间的函数关系式,并写出自变量x 的取值范围;②线段PE 的长h 最大值及此时的xABCDEFG密 线学校 班级 姓名 学号密 封 线 内 不 得 答 题参考答案一、选择题(本大题每小题3分,满分42分)二、填空题(本大题满分12分,每小题3分)15.25 16. 8 17. 6 18. 60°或120 ° 三、解答题(本大题满分56分) 19.(本题满分8分,每小题4分)(1)原式=3 - 2 +(-8) (2)原式=a 2-1-a 2+a= -7 =a -120.(满分8分)解:设一盒“福娃”玩具和一枚徽章的价格分别为x 元和y 元.依题意,得 ⎩⎨⎧=+=+280321452y x y x 解这个方程组,得 ⎩⎨⎧==10125y x 答:一盒“福娃”玩具和一枚徽章的价格分别为125元和10元.21、(本题满分8分)解:(1)∵,∴这次考察中一共调查了60名学生.(2)∵∴在扇形统计图中,“乒乓球”部分所对应的圆心角为90°(3),∴补全统计图如下图(4)∵∴可以估计该校学生喜欢篮球活动的约有450人22.满分(8分)解:(1)111C B A ∆如图,)5,2(1--A 、)1,4(1--B 、)3,1(1--C (2)222C B A ∆如图,)5,2(2-A 、)1,4(2-B 、)3,1(2-C(3)111C B A ∆与222C B A ∆关于y 轴对称60%106=%25%20%20%10%251=----︒=⨯︒90%2536012%2060=⨯450%251800=⨯题号1 2 3 4 5 6 7 选择项 D D C A B A D 题号 8 9 10 11 12 13 14 选择项ACDAACAB 2yCAB C 1B 1A 1C 2A 2Ox第21题答案图23. (满分11分) (1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º.又∵ AE ⊥DG ,CF ∥AE , ∴ ∠AED=∠DFC=90º,… ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC.∴ ΔAED ≌ΔDFC (AAS ). (2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. … ∵ DF=DE+EF , ∴ AE=FC+EF. )24. (1) ∵ 点A(3,4)在直线y=x+m 上,∴ 4=3+m. ∴ m=1.设所求二次函数的关系式为y=a(x-1)2. ∵ 点A(3,4)在二次函数y=a(x-1)2的图象上, ∴ 4=a(3-1)2, ∴ a=1.∴ 所求二次函数的关系式为y=(x-1)2. 即y=x 2-2x+1.(2) 设P 、E 两点的纵坐标分别为y P 和y E .∴ PE=h=y P -y E=(x+1)-(x 2-2x+1) =-x 2+3x.… 即h=-x 2+3x (0<x <3). (3)略ABCDE F图6G图7密学校 班级姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(共8小题,每小题3分,满分24分) 1.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( )A .1B .﹣1C .D .﹣2.数据1,2,3,3,5,5,5的中位数和众数分别是( ) A .5,4 B .3,5 C .5,5 D .5,33.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( )A .甲B .乙C .丙D .丁4.如图,在⊙O 中,∠ABC=50°,则∠AOC 等于( )A .50°B .80°C .90°D .100°5.用一个圆心角为120°,半径为2的扇形作一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A . B . C . D .6.二次函数y=ax 2+bx+c 图象上部分点的坐标满足表格:x … ﹣3 ﹣2 ﹣1 0 1 …y … ﹣3 ﹣2 ﹣3 ﹣6 ﹣11 … 则该函数图象的原点坐标为( )A .(﹣3,﹣3)B .(﹣2,﹣2)C .(﹣1,﹣3)D .(0,﹣6) 7.如果将抛物线y=x 2+2向下平移1个单位,那么所得新抛物线的表达式是( )A .y=(x ﹣1)2+2B .y=(x+1)2+2C .y=x 2+1D .y=x 2+3 8.如图,函数y=﹣x 与函数的图象相交于A ,B 两点,过A ,B 两点分别作y 轴的垂线,垂足分别为点C ,D .则四边形ACBD 的面积为( )A .2B .4C .6D .8线内不得答二、填空题(共6小题,每小题3分,满分18分)9.已知一元二次方程x2+mx﹣2=0的两个实数根分别为x1,x2,则x1•x2=______.10.如图,网格图中每个小正方形的边长为1,则弧AB的弧长l=______.11.二次函数y=﹣2(x﹣5)2+3的顶点坐标是______.12.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=60°,BC=4,则图中阴影部分的面积为______.(结果保留π)13.如图,点A、B、C在一次函数y=﹣2x+m的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积的和是______.14.如图,在平面直角坐标系中,抛物线y=a(x﹣1)2+k(k为常数)与x轴交于点A、B,与y轴交于点C,CD∥x与抛物线交于点D.若点A的坐标为(﹣1,0),则线段OB线段CD的长度和为______.三、解答题(共10小题,满分78分)15.解方程:x2+4x﹣7=0.16.在一个不透明的箱子中装有3个小球,分别标有A,B,C3密线学校 班级 姓名 学号密 封 线 内 不 得 答 题17.为了了解我校开展的“养成好习惯,幸福一辈子”的活动情况,对部分学生进行了调查,其中一个问题是:“对于这个活动你的态度是什么?”共有4个选项: A .非常支持 B .支持 C .无所谓 D .反感根据调查结果绘制了两幅不完整的统计图.请你根据以上信息解答下列问题:(1)计算本次调查的学生人数和图(2)选项C 的圆心角度数; (2)请根据(1)中选项B 的部分补充完整;(3)若我校有5000名学生,你估计我校可能有多少名学生持反感态度.18.为落实国务院房地产调控政策,使“居者有其屋”,长春市加快了廉租房的建设力度,2013年市政府共投资2亿元人民币建设路廉租房8万平方米,预计到2015年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同,试求出市政府投资的增长率.19.如图,已知AB 是⊙O 的直径,P 为⊙O 外一点,且OP ∥BC ,∠P=∠BAC .(1)求证:PA 为⊙O 的切线; (2)若OB=5,OP=,求AC 的长.20.如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A 、C 分别在坐标轴上,点B 的坐标为(4,2),直线y=﹣x+3交AB ,BC 分别于点M ,N ,反比例函数y=的图象经过点M ,N .(1)求反比例函数的解析式;(2)若点P 在y 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.密21.甲、乙两工程队维修同一段路面,甲队先清理路面,乙队在甲队清理后铺设路面.乙队在中途停工了一段时间,然后按停工前的工作效率继续工作.在整个工作过程中,甲队清理完的路面长y(米)与时间x(时)的函数图象为线段OA,乙队铺设完的路面长y(米)与时间x(时)的函数图象为折线BC﹣CD﹣DE,如图所示,从甲队开始工作时计时.(1)分别求线段BC、DE所在直线对应的函数关系式.(2)当甲队清理完路面时,求乙队铺设完的路面长.22.如图,已知抛物线y=ax2+bx(a≠0)经过A(﹣2,0),B(﹣3,3),顶点为C.(1)求抛物线的解析式;(2)求点C的坐标;(3)若点D在抛物线上,点E在抛物线的对称轴上,且以O、D、E为顶点的四边形是平行四边形,直接写出点D23.已知某种水果的批发单价与批发量的函数关系如图(1所示.(1)请说明图(1)中①、②两段函数图象的实际意义.(2)写出批发该种水果的资金金额w(元)与批发量m(之间的函数关系式;在图(2)指出金额在什么范围内,该种水果.(3)经调查,某经销商销售该种水果的日最高销量y(kg零售价x所示,该经销商拟每日售出不低于64kg得日获得的利润z(元)最大.第5页,共82页 第6页,共82页密线学校 班级 姓名 学号密 封 线 内 不 得 答 题24.如图,在菱形ABCD 中,AB=6,∠ABC=60°,动点E 、F 同时从顶点B 出发,其中点E 从点B 向点A 以每秒1个单位的速度运动,点F 从点B 出发沿B ﹣C ﹣A 的路线向终点A 以每秒2个单位的速度运动,以EF 为边向上(或向右)作等边三角形EFG ,AH 是△ABC 中BC 边上的高,两点运动时间为t 秒,△EFG 和△AHC 的重合部分面积为S .(1)用含t 的代数式表示线段CF 的长; (2)求点G 落在AC 上时t 的值; (3)求S 关于t 的函数关系式;(4)动点P 在点E 、F 出发的同时从点A 出发沿A ﹣H ﹣A 以每秒2单位的速度作循环往复运动,当点E 、F 到达终点时,点P 随之运动,直接写出点P 在△EFG 内部时t 的取值范围.参考答案一、选择题(共8小题,每小题3分,满分24分) 1. B .2.B .3.D . 4.D . 5.D .6.B .7C .8.D . 二、填空题(共6小题,每小题3分,满分18分) 9.已知一元二次方程x 2+mx ﹣2=0的两个实数根分别为x 1,x 2,则x 1•x 2= ﹣2 .第23页,共82页 第24页,共82页得 答 题10.如图,网格图中每个小正方形的边长为1,则弧AB 的弧长l=.11.二次函数y=﹣2(x ﹣5)2+3的顶点坐标是 (5,3) . 12.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A=60°,BC=4,则图中阴影部分的面积为 π .(结果保留π)13.如图,点A 、B 、C 在一次函数y=﹣2x+m 的图象上,它们的横坐标依次为﹣1、1、2,分别过这些点作x 轴与y 轴的垂线,则图中阴影部分的面积的和是 3 .14.如图,在平面直角坐标系中,抛物线y=a (x ﹣1)2+k (a 、k 为常数)与x 轴交于点A 、B ,与y 轴交于点C ,CD ∥x 轴,与抛物线交于点D .若点A 的坐标为(﹣1,0),则线段OB 与线段CD 的长度和为 5 . 三、解答题(共10小题,满分78分) 15.解方程:x 2+4x ﹣7=0. 解:x 2+4x ﹣7=0, 移项得,x 2+4x=7, 配方得,x 2+4x+4=7+4, (x+2)2=11, 解得x+2=±,即x 1=﹣2+,x 2=﹣2﹣16.解:如图所示:P (两次摸出的小球所标字母不同)==.17.解:(1)根据题意得:60÷30%=200(名),30÷200×=54°,则本次调查的学生人数为200名,图(2)选项C 数为54°;(2)选项B 的人数为200﹣(60+30+10)=100(名)形统计图,如图(1)所示,(3)根据题意得:5000×5%=250(名), 则估计我校可能有250名学生持反感态度.第5页,共82页 第6页,共82页密学校 班级 姓名 学号密 封 线 内 不 得 答 题18.解:设每年市政府投资的增长率为x ,根据题意,得:2+2(1+x )+2(1+x )2=9.5, 整理,得:x 2+3x ﹣1.75=0, 解得:x 1=0.5,x 2=﹣3.5(舍去).答:每年市政府投资的增长率为50%. 19.(1)证明:∵AB 是⊙O 的直径,∴∠ACB=90°, ∴∠BAC+∠B=90°. 又∵OP ∥BC , ∴∠AOP=∠B , ∴∠BAC+∠AOP=90°. ∵∠P=∠BAC . ∴∠P+∠AOP=90°,∴由三角形内角和定理知∠PAO=90°,即OA ⊥AP . 又∵OA 是的⊙O 的半径, ∴PA 为⊙O 的切线;(2)解:由(1)知,∠PAO=90°.∵OB=5, ∴OA=OB=5. 又∵OP=,∴在直角△APO 中,根据勾股定理知PA==,由(1)知,∠ACB=∠PAO=90°. ∵∠BAC=∠P , ∴△ABC ∽△POA , ∴=. ∴=,解得AC=8.即AC 的长度为8.20.解:(1)∵B (4,2),四边形OABC 是矩形, ∴OA=BC=2,将y=2代入y=﹣x+3得:x=2, ∴M (2,2),把M 的坐标代入y=得:k=4, ∴反比例函数的解析式是y=;(2)把x=4代入y=得:y=1, 即CN=1,第23页,共82页 第24页,共82页不 得 答∵S 四边形BMON =S 矩形OABC ﹣S △AOM ﹣S △CON =4×2﹣×2×2﹣×4×1=4, 由题意得: OP ×AM=4, ∵AM=2, ∴OP=4,∴点P 的坐标是(0,4)或(0,﹣4).21.解:(1)设线段BC 所在直线对应的函数关系式为y=k 1x+b 1. ∵图象经过(3,0)、(5,50), ∴∴线段BC 所在直线对应的函数关系式为y=25x ﹣75. 设线段DE 所在直线对应的函数关系式为y=k 2x+b 2. ∵乙队按停工前的工作效率为:50÷(5﹣3)=25, ∴乙队剩下的需要的时间为:÷25=,∴E (,160),∴, 解得:∴线段DE 所在直线对应的函数关系式为y=25x ﹣112.5.(2)由题意,得甲队每小时清理路面的长为 100÷5=20,甲队清理完路面的时间,x=160÷20=8.把x=8代入y=25x ﹣112.5,得y=25×8﹣112.5=87.5. 答:当甲队清理完路面时,乙队铺设完的路面长为87.522.解:(1)根据题意得:,解得:,则抛物线的解析式是y=x 2+2x ; (2)y=x 2+2x=(x+1)2﹣1, 则C 的坐标是(﹣1,﹣1); (3)抛物线的对称轴是x=﹣1,当OA 是平行四边形的一边时,D 和E 一定在x 轴的上方.OA=2,第5页,共82页 第6页,共82页密学校 班级 姓名 学号密 封 线 内 不 得 答 题则设E 的坐标是(﹣1,a ),则D 的坐标是(﹣3,a )或(1,a ).把(﹣3,a )代入y=x 2+2x 得a=9﹣6=3,则D 的坐标是(﹣3,3)或(1,3),E 的坐标是(﹣1,3);当OA 是平行四边形的对角线时,D 一定是顶点,坐标是(﹣1,﹣1),则E 的坐标是D 的对称点(﹣1,1).23.解:(1)当批发量在20kg 到60kg 时,单价为5元/kg 当批发量大于60kg 时,单价为4元/kg …(2)当20≤m ≤60时,w=5m 当m >60时,w=4m ……当240<w ≤300时,同样的资金可以批发到更多的水果.…(3)设反比例函数为则,k=480,即反比列函数为∵y ≥64, ∴x ≤7.5, ∴z=(x ﹣4)=480﹣∴当x=7.5时,利润z 最大为224元.24.解:(1)根据题意得:BF=2t , ∵四边形ABCD 是菱形, ∴BC=AB=6,∴CF=BC ﹣BF=6﹣2t ;(2)点G 落在线段AC 上时,如图1所示:∵四边形ABCD 是菱形, ∴AB=BC , ∵∠ABC=60°, ∴△ABC 是等边三角形,∴∠ACB=60°, ∵△EFG 是等边三角形,∴∠GFE=60°,GE=EF=BF •sin60°=t ,密封线内不得答∵EF⊥AB,∴∠BFE=90°﹣60°=30°,∴∠GFB=90°,∴∠GFC=90°,∴CF==t,∵BF+CF=BC,∴2t+t=6,解得:t=2;(3)分三种情况:①当0<t≤时,S=0;②当<t≤2时,如图2所示,S=S△EFG﹣S△MEN=×(t)2﹣××(﹣+2)2=t2+t﹣3,即S=t2+t﹣3;③当2<t≤3时,如图3所示:S=t2+t﹣3﹣(3t﹣6)2,即S=﹣t2+t﹣;(4)∵AH=AB•sin60°=6×=3,∴3÷2=,∴3÷2=,∴t=时,点P与H重合,E与H重合,∴点P在△EFG内部时,﹣<(t﹣)×2<t﹣(2t﹣3)+(2t﹣3),解得:<t<;即:点P在△EFG内部时t的取值范围为:<t<.第23页,共82页第24页,共82页第5页,共82页 第6页,共82页密 封 线学校 班级 姓名 学号密 封 线 内 不 得 答 题人教版2020---2021学年度上学期九年级数学期末考试卷及答案(满分:120分 时间:120分钟)一、选择题(本大题每小题3分,满分42分) 1.2-的相反数是( )A.21 B.21- C.2- D.22.在实数2、0、1-、2-中,最小的实数是( ) A .2 B .0 C .1- D .2- 3.海南的富铁矿是国内少有的富铁矿之一,储量居全国第六位,其储量约为237 000 000吨,用科学记数法表示应为( )A. 237×106吨 B. 2.37×107吨 C. 2.37×108吨 D. 0.237×109吨 4.下列运算,正确的是( )A.523a a a =⋅B.ab b a 532=+C.326a a a =÷D.523a a a =+ 5. 下列各图中,是中心对称图形的是( )6. 方程042=-x 的根是( )A. 2,221-==x xB. 4=xC. 2=xD. 2-=x7. 不等式组⎩⎨⎧-><-12x x 的解集是( ) A. 1->x B. 2-<x C. 2<x D. 21<<-x 8.函数1-=x y 中,自变量x 的取值范围是( )A. 1≥xB. 1->xC. 0>xD. 1≠x 9.下列各点中,在函数xy 2=图象上的点是( )A .(2,4)B .(-1,2)C .(-2,-1)D .(21-,1-)10.一次函数2+=x y 的图象不经过...( ) A.第一象限 B. 第二象限 C. 第三象限 D. 第四象限11. 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表: 跳高成绩(m) 1.501.551.601.651.70 1.75跳高人数1 323 5 1这些运动员跳高成绩的中位数和众数分别是( ) A .1.65,1.70 B .1.70,1.65 C .1.70,1.70 D .3,5 12.某农科院对甲、乙两种甜玉米各用10块相同条件的试验题号 一 二 三 总分 得分ABCD第23页,共82页 第24页,共82页田进行试验,得到两个品种每公顷产量的两组数据,其方 差分别为s 甲2=0.002、s 乙2=0.03,则( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定 C .甲、乙的产量一样稳定D .无法确定哪一品种的产 量更稳定13. 如图1,AB 、CD 相交于点O ,∠1=80°,如果DE ∥AB ,那么∠D 的度数为( )A. 80°B. 90°C. 100°D. 110°14. 如图2,正方形ABCD 的边长为2cm ,以B 点为圆心、AB长为半径作⋂AC ,则图中阴影部分的面积为( ) A.2)4(cm π- B. 2)8(cm π- C. 2)42(cm -π D. 2)2(cm -π二、填空题(本大题满分12分,每小题3分) 15. 计算:=-283.16.在一个不透明的布袋中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是54,则n = .17.如图3,在等腰梯形ABCD 中,AD ∥BC ,AE ∥DC ,AB =6则AE = cm .18. 如图4,∠ABC=90°,O 为射线BC 上一点,以点O 21BO长为半径作⊙O ,当射线BA 绕点B 度时与⊙0相切.三、解答题(本大题满分56分) 19.计算(满分8分,每小题4分)(12314(2)2-⨯+-(2)化简:(a +1)(a -1)-a (a20.(满分8分)某商场正在热销2008年北京奥运会吉祥物A BC图3E DA B CO E1D图1A。

2020人教版九年级(上)期末数学试卷 含解析答案(五套)

2020人教版九年级(上)期末数学试卷 含解析答案(五套)

人教版九年级(上)期末数学试卷(一)一.选择题(共10小题)1.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0 B.m•n=0 C.m2=m D.n2=n2.在平面直角坐标系中,抛物线y=x(x+2)经过平移变换后得到抛物线y=(x﹣1)2,其变换是()A.右移2个单位,下移1个单位B.右移2个单位,上移1个单位C.左移2个单位,上移1个单位D.左移2个单位,下移1个单位3.在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)4.如图,AB是⊙O的弦,AC是⊙O的直径,将沿着AB弦翻折,恰好经过圆心O.若⊙O 的半径为6,则图中阴影部分的面积等于()A.6πB.9C.9πD.65.已知事件:①掷一次骰子,向上一面的点数是偶数;②在13位同学中至少有2人生肖相同;③若彩票中奖率10%,那么买10张彩票一定中奖;④任意画一个三角形,其内角和为360°,其中随机事件是()A.①②B.①③C.②④D.③④6.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A.B.C.D.7.已知A(0,﹣1),B(1,﹣3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为()A.(3,9)B.(6,3)C.(6,9)D.(9,3)8.如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+b B.x2=a•b C.x(a+b)=a•b D.2x2=a2+b29.直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A.2 B.﹣2 C.﹣1 D.±210.如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD=y,y关于x 的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A.10 B.15 C.20 D.25二.填空题(共5小题)11.配方4a(ax2+bx+c)=(2ax+b)2+m,则m=.12.已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=.13.直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),若>ax,则x的取值范围是.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE 关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为.三.解答题(共8小题)16.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.17.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=元时,日销售利润w最大,最大值是元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?18.在甲、乙两个不透明的盒子中,分别装有除颜色外其它完全相同的小球,其中,甲盒子装有2个白球,1个红球;乙盒子装有2个红球,1个白球.(1)将甲盒子摇匀后,随机取出一个小球,求小球是白色的概率;(2)小华和同桌商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则同桌获胜,请用列表法或画出树状图的方法说明谁赢的可能性大.19.如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h上,索塔h 垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:≈2.24,≈1.41)20.如图,直线y=x+b与y轴交于点A(0,4),与函数y=(k>0,x<0)的图象交于点C,以AC为对角线作矩形ABCD,使顶点B,D落在x轴上(点D在点B的右边),BD 与AC交于点E.(1)求b和k的值;(2)求顶点B,D的坐标.21.如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM 上点B右侧的一个定点.(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.22.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M 是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.23.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC 于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.参考答案与试题解析一.选择题(共10小题)1.已知m,n是一元二次方程x2=x的两个实数根,则下列结论错误的是()A.m+n=0 B.m•n=0 C.m2=m D.n2=n【分析】可以根据根与系数的关系判断选项A、B;求出方程的解,即可判断选项C、D.【解答】解:x2=x,x2﹣x=0,由根与系数的关系得:m+n=1,m•n=0,解方程x2﹣x=0得:x=0或1,∵m,n是一元二次方程x2=x的两个实数根,∴设m=0,n=1,∴m2=m,n2=n,即只有选项A符合题意,选项B、C、D都不符合题意;故选:A.2.在平面直角坐标系中,抛物线y=x(x+2)经过平移变换后得到抛物线y=(x﹣1)2,其变换是()A.右移2个单位,下移1个单位B.右移2个单位,上移1个单位C.左移2个单位,上移1个单位D.左移2个单位,下移1个单位【分析】根据变换前后的两抛物线的顶点坐标找变换规律.【解答】解:y=x(x+2)=(x+1)2﹣1,顶点坐标是(﹣1,﹣1).y=(x﹣1)2,顶点坐标是(1,0).所以将抛物线y=x(x+2)右移2个单位,上移1个单位得到抛物线y=(x﹣1)2,故选:B.3.在平面直角坐标系中,等腰直角三角形的两个锐角顶点坐标为(2,3),(0,﹣1),则它的直角顶点坐标为()A.(3,0)B.(﹣1,2)C.(1,1)D.(3,0),(﹣1,2)【分析】画出相应的图形,借助网格作出AB的中垂线,直角顶点一定在AB的中垂线上,借助可求出四边形ACBD的边长,进而得出ACBD是正方形,得到点C、D符合题意.【解答】解:将A(2,3),B(0,﹣1)描述在坐标系中,如图所示:借助网格,可以作出AB的中垂线CD,此时由勾股定理可求出:AD=BD=BC=AC==,可得ACBD是正方形,从而△ACB,△DAB是等腰直角三角形,∴C(﹣1,2),D(3,0)符合题意,故选:D.4.如图,AB是⊙O的弦,AC是⊙O的直径,将沿着AB弦翻折,恰好经过圆心O.若⊙O 的半径为6,则图中阴影部分的面积等于()A.6πB.9C.9πD.6【分析】由题意△OBC是等边三角形,弓形OnB的面积=弓形BmC的面积,根据S阴=S计算即可.△OBC【解答】解:如图,连接OB,BC.由题意△OBC是等边三角形,弓形OnB的面积=弓形BmC的面积,∴S阴=S△OBC=×62=9,故选:B.5.已知事件:①掷一次骰子,向上一面的点数是偶数;②在13位同学中至少有2人生肖相同;③若彩票中奖率10%,那么买10张彩票一定中奖;④任意画一个三角形,其内角和为360°,其中随机事件是()A.①②B.①③C.②④D.③④【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:随机事件:①③;必然事件:②;不可能事件:④.故选:B.6.如图,点P在函数y=(x>0)的图象上,过点P分别作x轴,y轴的平行线,交函数y=﹣的图象于点A,B,则△PAB的面积等于()A.B.C.D.【分析】根据题意设P点坐标为P(x,),再利用反比例函数解析式y=﹣分别表示点A、点B的坐标,然后根据三角形面积公式计算.【解答】解:∵点P在函数y=(x>0)的图象上,PA∥x轴,PB∥y轴,∴设P(x,),∴点B的坐标为(x,﹣),A点坐标为(﹣x,),∴△PAB的面积=(x+)(+)=.故选:D.7.已知A(0,﹣1),B(1,﹣3),先将线段AB向左平移3个单位,再以原点O为位似中心,在第一象限内,将其扩大为原来3倍,则点A的对应点坐标为()A.(3,9)B.(6,3)C.(6,9)D.(9,3)【分析】先利用点平移的坐标特征写出平移后A点的对应点的坐标,然后把平移后的点的横纵坐标都乘以﹣3得到位似后点A的对应点坐标.【解答】解:线段AB向左平移3个单位得到A点的对应点的坐标为(﹣3,﹣1),以原点O为位似中心,在第一象限内,将其扩大为原来3倍,所以点A的对应点坐标为(9,3).故选:D.8.如图,过菱形ABCD的顶点C的直线与AB的延长线交于点E,与AD的延长线交于点F,若菱形的边长为x,BE=a,DF=b,则a,b,x满足的关系是()A.2x=a+b B.x2=a•b C.x(a+b)=a•b D.2x2=a2+b2【分析】利用相似三角形的性质构建关系式即可解决问题.【解答】解:∵四边形ABCD是菱形,∴CD∥AE,∴△FDC∽△FAE,∴=,∴=,整理得:x2=ab,故选:B.9.直线y=kx+4与函数y=的图象有且只有一个公共点,则k的值为()A.2 B.﹣2 C.﹣1 D.±2【分析】解方程组得到kx2+4x﹣2=0,由反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,得到△=16+8k=0,求得k=﹣2.【解答】解:解得kx2+4x﹣2=0,∵线y=kx+4与函数y=的图象有且只有一个公共点,∴△=16+8k=0,∴k=﹣2,故选:B.10.如图,在△ABC中,∠ACB=90°,点D是AB边上的动点,设AD=x,CD=y,y关于x 的函数关系图象如图所示,其中M为曲线部分的最低点,则BC的长为()A.10 B.15 C.20 D.25【分析】由图象可得当CD⊥AB时,CD的长最小,可得此时AD=9,CD=12,由勾股定理可求AC,由锐角三角函数可求BC的长.【解答】解:由题意可得当CD⊥AB时,CD的长最小,∴此时AD=9,CD=12,∴AC===15,∵tan∠A=,∴∴BC=20,故选:C.二.填空题(共5小题)11.配方4a(ax2+bx+c)=(2ax+b)2+m,则m=4ac﹣b2.【分析】根据完全平方公式配方,即可得m.【解答】解:4a(ax2+bx+c)=4a2x2+4abx+b2﹣b2+4ac=(2ax+b)2+﹣b2+4ac=(2ax+b)2+m,则m=4ac﹣b2.故答案是:4ac﹣b2.12.已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,则a﹣c=﹣3 .【分析】根据已知抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点求出抛物线的对称轴,求出b的值,再把点(﹣1,a)代入,即可求出答案.【解答】解:∵抛物线y=﹣x2+bx+c经过(﹣1,a)和(3,a)两点,∴抛物线的对称轴是直线x==1,即﹣=1,解得:b=2,即y=﹣x2+bx+c=﹣x2+2x+c,把(﹣1,a)代入得:a=﹣1﹣2+c,即a﹣c=﹣3,故答案为:﹣3.13.直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),若>ax,则x的取值范围是0<x<1或x<﹣1 .【分析】根据对称性即可得到点B的坐标,然后根据A、B点的坐标即可求得x的取值范围.【解答】解:∵直线y=ax(a≠0)与函数y=(k≠0)的图象交于点A(1,2),∴直线y=ax(a≠0)与函数y=(k≠0)的图象交于另一个点B的坐标是(﹣1,﹣2),如图,若>ax,则x的取值范围是0<x<1或x<﹣1,故答案为0<x<1或x<﹣1.14.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的概率为.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用绿灯亮的时间除以三种灯亮的总时间,求出抬头看信号灯时,是绿灯的概率为多少即可.【解答】解:抬头看信号灯时,是绿灯的概率为.故答案为:.15.如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E和△ABE 关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为4或2.【分析】连接BB′,根据直角三角形的判定定理得到∠BB′C=90°,求得∠B′CD<90°,(1)如图1,∠B′DC=90°,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,根据相似三角形的性质即可得到结论.【解答】解:连接BB′,∵BE=B′E=EC,∴∠BB′C=90°,∴∠B′CD<90°,(1)如图1,∠B′DC=90°,则四边形ABEB′和ECDB′是正方形,∴BC=2AB=4,(2)如图2,∠CB′D=90°,则B,B′D三点共线,设AE,BB′交于F,则F,B′是对角线BD的三等分点,∵△BCB′∽△CDB′,∴==,∴=,∴BC=CD=2,故答案为:4或2.三.解答题(共8小题)16.关于x的方程(m+2)x2﹣4x+1=0有两个不相等实数根.(1)求m的取值范围;(2)当m为正整数时,求方程的根.【分析】(1)根据当△>0时,方程有两个不相等的两个实数根、一元二次方程的定义列式计算即可;(2)根据题意求出m,利用因式分解法解出方程.【解答】解:(1)由题意得,m+2≠0,(﹣4)2﹣4×(m+2)>0,解得,m<2且m≠﹣2;(2)∵m<2,m为正整数,∴m=1,则原方程可化为3x2﹣4x+1=0,(3x﹣1)(x﹣1)=0,解得,x1=,x2=1.17.某公司推出一款新产品,该产品的成本单价是80元,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系y=﹣5x+600.(注:日销售利润=日销售量×(销售单价﹣成本单价))(1)销售单价x=100 元时,日销售利润w最大,最大值是2000 元;(2)要实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成本单价应不超过多少元?【分析】(1)根据题意列出有关利润w与销售单价x之间的二次函数,配方后即可确定最值;(2)根据销售利润不低于3750元列出不等式即可确定正确的答案.【解答】解:(1)w=(﹣5x+600)(x﹣80)=﹣5x2+1000x﹣48000=﹣5(x﹣100)2+2000,∵﹣5<0,∴当x=100时,w取得最大值,最大值是2000;故答案为:100,2000;(2)设成本单价为a圆,当x=100时,w=(﹣5×90+600)(90﹣a)≥3750,解得,a≤65,答:该产品的成本单价应不超过65元.18.在甲、乙两个不透明的盒子中,分别装有除颜色外其它完全相同的小球,其中,甲盒子装有2个白球,1个红球;乙盒子装有2个红球,1个白球.(1)将甲盒子摇匀后,随机取出一个小球,求小球是白色的概率;(2)小华和同桌商定:将两个盒子摇匀后,各随机摸出一个小球.若颜色相同,则小华获胜;若颜色不同,则同桌获胜,请用列表法或画出树状图的方法说明谁赢的可能性大.【分析】(1)由概率公式即可得出答案;(2)由列表可知,共有9种等可能结果,其中颜色不相同的结果有4种,颜色相同的结果有5种,P(颜色不相同)=,P(颜色相同)=,即可得出答案.【解答】解:(1)共有3种等可能结果,而摸出白球的结果有2种∴P(摸出白球)=;(2)根据题意,列表如下:由上表可知,共有9种等可能结果,其中颜色不相同的结果有5种,颜色相同的结果有4种,∴P(颜色不相同)=,P(颜色相同)=,∵<,∴同桌获胜获胜的可能性大.19.如图,是一座横跨沙颖河的斜拉桥,拉索两端分别固定在主梁l和索塔h上,索塔h 垂直于主梁l,垂足为D.拉索AE,BF,CG的仰角分别是α,45°,β,且α+β=90°(α<β),AB=15m,BC=5m,CD=4m,EF=3FG,求拉索AE的长.(精确到1m,参考数据:≈2.24,≈1.41)【分析】证出△BDF是等腰直角三角形,得出FD=BD=BC+CD=9m,证明△ADE∽△GDC,得出=,则AD•CD=GD•ED,设EF=3FG=3x,则24×4=(9﹣x)(9+3x),解得EF=3,得出DE=EF+FD=12m,由勾股定理求出AE即可.【解答】解:在Rt△BDF中,∵∠DBF=45°,∠BDF=90°,∴△BDF是等腰直角三角形,∴FD=BD=BC+CD=9m,∵α+β=90°,∠ADE=∠GDC=90°,∴△ADE∽△GDC,∴=,∴AD•CD=GD•ED,设EF=3FG=3x,则24×4=(9﹣x)(9+3x),解得:x=1,或x=5(舍去),∴EF=3,∴DE=EF+FD=12m,∵AD=AB+BD=24m,∴AE===12≈27(m),答:拉索AE的长约为27m.20.如图,直线y=x+b与y轴交于点A(0,4),与函数y=(k>0,x<0)的图象交于点C,以AC为对角线作矩形ABCD,使顶点B,D落在x轴上(点D在点B的右边),BD 与AC交于点E.(1)求b和k的值;(2)求顶点B,D的坐标.【分析】(1)根据点A坐标可以确定b的值,得出直线的解析式,令y=0,求得E的坐标,由E(﹣3,0)是AC的中点,推出点C(﹣6,﹣4),然后根据待定系数法即可求得k;(2)根据勾股定理求得AE,利用矩形的性质EA=EB=ED,即可解决问题;【解答】解:(1)∵直线y=x+b与y轴交于点A(0,4),∴b=4,∴直线为y=x+4,令y=0,解得x=﹣3,∴E(﹣3,0),∵四边形ABCD是矩形,∴E(﹣3,0)是AC的中点,∴C(﹣6,﹣4),∵点C在函数y=的图象上,∴k=﹣6×(﹣4)=24;(2)∵AE2=AO2+EO2,∴AE==5,∵四边形ABCD是矩形,∴ED=EB=EA=5,∴B(﹣8,0),D(2,0).21.如图,点P在∠MAN内,PA平分∠MAN,PB⊥AM于点B,PC⊥AN于点C,点D是射线AM 上点B右侧的一个定点.(1)作经过A,P,D三点的圆;(保留作图痕进,不写作法)(2)设圆与AN交于点E,∠MAN=60°,PA=4,求AE+AD的值.【分析】(1)作AP和AD的垂直平分线,两条直线的交点即为过A、P、D三点的圆心;(2)连接PE、PD证明△PCE与△PBD全等即可求解.【解答】解:(1)如图所示:作AP和AD的垂直平分线,两条线相交于点O,以点为圆心,OA为半径的圆即为所求作的图形;(2)连接PE、PD,∵PA平分∠MAN,PB⊥AD于点B,PC⊥AN于点C,∴PB=PC,在圆中,∵∠EAP=∠DAP,∴PE=PD,在△PCE和△PBD中,∵∠PCE=∠PBD=90°,PB=PC,PE=PD.∴Rt△PCE≌Rt△PBD(HL).∴CE=BD.∵∠MAN=60°,PA平分∠MAN,∴∠PAB=30°,PA=4,∴AB=2,∴AE+AD=2AB=4.22.在△ABC中,CA=CB,∠ACB=α(0°<α<180°).点P是平面内不与A,C重合的任意一点,连接AP,将线段AP绕点P逆时针旋转α得到线段DP,连接AD,CP.点M 是AB的中点,点N是AD的中点.(1)问题发现如图1,当α=60°时,的值是,直线MN与直线PC相交所成的较小角的度数是60°.(2)类比探究如图2,当α=120°时,请写出的值及直线MN与直线PC相交所成的较小角的度数,并就图2的情形说明理由.(3)解决问题如图3,当α=90°时,若点E是CB的中点,点P在直线ME上,请直接写出点B,P,D在同一条直线上时的值.【分析】(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.证明△PAC≌△DAB(SAS),利用全等三角形的性质以及三角形的中位线定理即可解决问题.(2)如图设MN交AC于F,延长MN交PC于E.证明△ACP∽△AMN,推出∠ACP=∠AMN,==可得结论.(3)分两种情形分别画出图形,利用三角形中位线定理即可解决问题.【解答】解:(1)如图1中,连接PC,BD,延长BD交PC于K,交AC于G.∵CA=CB,∠ACB=60°,∴△ABC是等边三角形,∴∠CAB=∠PAD=60°,AC=AB,∴∠PAC=∠DAB,∵AP=AD,∴△PAC≌△DAB(SAS),∴PC=BD,∠ACP=∠ABD,∵AN=ND,AM=BM,∴BD=2MN,∴=.∵∠CGK=∠BGA,∠GCK=∠GBA,∴∠CKG=∠BAG=60°,∴BK与PC的较小的夹角为60°,∵MN∥BK,∴MN与PC较小的夹角为60°.故答案为,60°.(2)如图设MN交AC于F,延长MN交PC于E.∵CA=CB,PA=PD,∠APD=∠ACB=120°,∴△PAD∽△CAB,∴=,∵AM=MB,AN=ND,∴=,∴△ACP∽△AMN,∴∠ACP=∠AMN,==,∵∠CFE=∠AFM,∴∠FEC=∠FAM=30°.(3)设MN=a,∵==,∴PC=a,∵ME是△ABC的中位线,∠ACB=90°,∴ME是线段BC的中垂线,∴PB=PC=a,∵MN是△ADB的中位线,∴DB=2MN=2a,如图3﹣1中,当点P在线段BD上时,PD=DB﹣PB=(2﹣)a,∴=2﹣.如图3﹣2中,PD=DB+PB=(2+)a,∴=2+.23.如图,抛物线y=ax2+x+c交x轴于A,B两点,交y轴于点C.直线y=﹣+2经过点A,C.(1)求抛物线的解析式;(2)点P在抛物线在第一象限内的图象上,过点P作x轴的垂线,垂足为D,交直线AC 于点E,连接PC,设点P的横坐标为m.①当△PCE是等腰三角形时,求m的值;②过点C作直线PD的垂线,垂足为F.点F关于直线PC的对称点为F′,当点F′落在坐标轴上时,请直接写出点P的坐标.【分析】(1)先由直线y=﹣x+2求出A,C的坐标,再将其代入抛物线y=ax2+x+c 中,即可求出抛物线解析式;(2)①用含m的代数表示出P,E的坐标,再求出含m的代数式的PE的长度,将等腰三角形分三种情况进行讨论,即可分别求出m的值;②当点F'落在坐标轴上时,存在两种情形,一种是点F'落在y轴上,一种是点F′落在x轴上,分情况即可求出点P的坐标.【解答】解:(1)∵直线y=﹣x+2经过A,C,∴A(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点B,交y轴于点C,∴,∴a=﹣,c=2,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PD⊥x轴,交直线y=﹣x+2于点E,∴E(m,﹣m+2),∴PE=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴=,∴CE==m,当PE=CE时,﹣m2+2m=m,解得,m1=4﹣,m2=0(舍去);当PC=CE时,PD+ED=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得,m1=2,m2=0(舍去);当PC=PE时,取CE中点G,则G(m,﹣m+2),PG⊥AC,∴∠GEP=∠OCA,∴Rt△PGE∽Rt△AOC,∴==2,∴(﹣m2+m+2)﹣(﹣m+2)=2(m﹣m),﹣m2+m=0,解得,m1=,m2=0(舍去),综上,当△PCE是等腰三角形时,m的值为m=4﹣,2,;②P(1,3),P(,),理由如下,当点F'落在坐标轴上时,存在两种情形:如图2﹣1,当点F'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x +2上,∴﹣m2+m+2=m+2,解得,m1=1,m2=0(舍去),∴P(1,3);如图2﹣2,当点F'落在x轴上时,△COF'∽△F'DP,∴==,∴=,∵PF=2﹣(﹣m2+m+2)=m(m﹣3),∴F'D==m﹣3,∴OF'=OD﹣FD=m﹣(m﹣3)=3,在△CBF'中,CF'==,∴m=,P(,),综上所述,当点F′落在坐标轴上时,点P的坐标为(1,3)或(,).人教版九年级(上)期末数学试卷(二)一.选择题(共10小题)1.若一元二次方程x2+2x+a=0有一根为1,则a的值为()A.1 B.﹣1 C.3 D.﹣32.下列语句描述的事件中,是随机事件的为()A.心想事成B.只手遮天C.瓜熟蒂落D.水能载舟亦能覆舟3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°4.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.5.某农产品市场经销一种销售成本为40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500千克:销售单价每涨1元,月销售量就减少10千克,设销售单价为每干克x元,月销售利润可以表示为()A.(x﹣40)[500﹣10(x﹣50)]元B.(x﹣40)(10x﹣500)元C.(x﹣40)(500﹣10x)元D.(x﹣40)[500﹣10(50﹣x)]元6.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,8.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:x/分… 2.66 3.23 3.46 …y/米…69.16 69.62 68.46 …下列选项中,最接近摩天轮转一圈的时间的是()A.7分B.6.5分C.6分D.5.5分9.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是()A.①B.②C.①②D.①③10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为直线x=﹣1,与x轴的交点为(x1,0)、(x2,0),其中0<x1<1,有下列结论:①c>0;②﹣3<x2<﹣2;③a+b+c <0;④b2﹣4ac>0;⑤已知图象上点A(4,y1),B(1,y2),则y1>y2.其中,正确结论的个数有()A.5 B.4 C.3 D.2二.填空题(共8小题)11.已知二次函数y=ax2的图象开口向上,则a.12.如果关于x的一元二次方程ax2+x+1=0没有实数根,则a的取值范围是.13.如图,小艾同学坐在秋千上,秋千旋转了80°,小艾同学的位置也从A点运动到了A'点,则∠OAA'的度数为.14.将抛物线y=3x2先向左平移一个单位,再向上平移两个单位,两次平移后得到的抛物线解析式为.15.如图,在⊙O中,所对的圆周角∠ACB=50°,若P为上一点,∠AOP=55°,则∠POB的度数为.16.电影《中国机长》首映当日票房已经达到1.92亿元,2天后当日票房达到2.61亿元,设平均每天票房的增长率为x,则可列方程为.17.欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其扣,徐以杓酌油沥之,自钱孔入,而钱不湿,因曰:我亦无他,唯手熟尔.”可见技能通过反复苦练而达到熟能生巧.若铜钱是直径为4cm的圆,中间有边长为1cm的正方形孔,你随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为.(结果保留π)18.如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为120°圆弧多次复制并首尾连接而成,现有一点P从A(A为坐标原点),以每秒米的速度沿曲线向右运动,则在第2020秒时点P的纵坐标为.三.解答题(共8小题)19.先化简,再求值:(﹣)÷,其中a是一元二次方程对a2+3a﹣2=0的根.20.对垃圾进行分类投放,能提高垃圾处理和再利用的效率,减少污染,保护环境.为了检查垃圾分类的落实情况,某居委会成立了甲、乙两个检查组,采取随机抽查的方式分别对辖区内的A,B,C,D四个小区进行检查,并且每个小区不重复检查.(1)甲组抽到A小区的概率是;(2)请用列表或画树状图的方法求甲组抽到A小区,同时乙组抽到C小区的概率.21.在如图所示8×7的正方形网格中,A(2,0),B(3,2),C(4,2),请按要求解答下列问题:(1)将△ABO向右平移4个单位长度得到△A1B1O1,请画出△A1B1O1并写出点A1的坐标;(2)将△ABO绕点C(4,2)顺时针旋转90°得到△A2B2O2,请画出△A2B2O2并写出点A2的坐标;(3)将△A1B1O1绕点Q旋转90°可以和△A2B2O2完全重合,请直接写出点Q的坐标.22.(北师大版)连接着汉口集家咀的江汉三桥(晴川桥),是一座下承式钢管混凝土系杆拱桥.它犹如一道美丽的彩虹跨越汉江,是江城武汉的一道靓丽景观.桥的拱肋ACB视为抛物线的一部分,桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,相邻系杆之间的间距均为5米(不考虑系杆的粗细),拱肋的跨度AB为280米,距离拱肋的右端70米处的系杆EF的长度为42米.以AB所在直线为x轴,抛物线的对称轴为y轴建立如图②所示的平面直角坐标系.(1)求抛物线的解析式;(2)正中间系杆OC的长度是多少米?是否存在一根系杆的长度恰好是OC长度的一半?请说明理由.23.如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.(1)试判断直线DE与⊙O的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=6,求图中阴影部分的面积.24.每年5月的第二个星期日即为母亲节,“父母恩深重,恩怜无歇时”,许多市民喜欢在母亲节为母亲送花,感恩母亲,祝福母亲.今年节日前夕,某花店采购了一批康乃馨,经分析上一年的销售情况,发现这种康乃馨每天的销售量y(支)是销售单价x(元)的一次函数,已知销售单价为7元/支时,销售量为16支;销售单价为8元/支时,销售量为14支.(1)求这种康乃馨每天的销售量y(支)关于销售单价x(元/支)的一次函数解析式;(2)若按去年方式销售,已知今年这种康乃馨的进价是每支5元,商家若想每天获得42元的利润,销售单价要定为多少元?(3)在(2)的条件下,当销售单价x为何值时,花店销售这种康乃馨每天获得的利润最大?并求出获得的最大利润.25.如图,△ABC是等边三角形,D是BC边的中点,以D为顶点作一个120°的角,角的两边分别交直线AB、直线AC于M、N两点.以点D为中心旋转∠MDN(∠MDN的度数不变),当DM与AB垂直时(如图①所示),易证BM+CN=BD.(1)如图②,当DM与AB不垂直,点M在边AB上,点N在边AC上时,BM+CN=BD是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(2)如图③,当DM与AB不垂直,点M在边AB上,点N在边AC的延长线上时,BM+CN =BD是否仍然成立?若不成立,请写出BM,CN,BD之间的数量关系,不用证明.26.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK ⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.参考答案与试题解析一.选择题(共10小题)1.若一元二次方程x2+2x+a=0有一根为1,则a的值为()A.1 B.﹣1 C.3 D.﹣3【分析】将x=1代入方程即可求出a的值.【解答】解:将x=1代入方程可得:1+2+a=0,∴a=﹣3,故选:D.2.下列语句描述的事件中,是随机事件的为()A.心想事成B.只手遮天C.瓜熟蒂落D.水能载舟亦能覆舟【分析】直接利用随机事件以及必然事件、不可能事件的定义分别分析得出答案.【解答】解:A、心想事成是随机事件,故此选项正确.B、只手遮天是不可能事件,故此选项错误;C、瓜熟蒂落是必然事件,故此选项错误;D、水能载舟,亦能覆舟是必然事件,故此选项错误;故选:A.3.把图中的交通标志图案绕着它的中心旋转一定角度后与自身重合,则这个旋转角度至少为()A.30°B.90°C.120°D.180°【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故选:C.。

陕西人教版2020届九年级上册数学期末考试试卷(II )卷

陕西人教版2020届九年级上册数学期末考试试卷(II )卷

陕西人教版2020届九年级上册数学期末考试试卷(II )卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)已知圆O的直径是方程x2﹣5x﹣24=0的根,且点A到圆心O的距离为6,则点A在()A . 圆O上B . 圆O内C . 圆O外D . 无法确定2. (2分)如图,点C是线段AB的黄金分割点(AC>BC),下列结论错误的是()A .B . BC2=AB•BCC . =D . ≈0.6183. (2分)如图,DE∥BC,则下列不成立的是()A . =B . =C . =D . =4. (2分)关于的函数和在同一坐标系中的图像大致是()A .B .C .D .5. (2分)在△ABC中,,,那么△ABC是()A . 钝角三角形;B . 直角三角形;C . 锐角三角形;D . 等腰三角形6. (2分)如图,AB是⊙O的直径,点C在⊙O上,若∠B=50°,则∠A的度数为()A . 80°B . 60°C . 40°D . 50°7. (2分)关于二次函数,下列说法正确的是()A . 当x=2时,有最大值-3;B . 当x=-2时,有最大值-3;C . 当x=2时,有最小值-3;D . 当x=-2时,有最小值-3;8. (2分)用配方法将y=x2﹣6x+11化成y=a(x﹣h)2+k的形式为()A . y=(x+3)2+2B . y=(x﹣3)2﹣2C . y=(x﹣6)2﹣2D . y=(x﹣3)2+29. (2分)如图,△ABC内接于⊙O,AD⊥BC于点D,AD=2cm,AB=4cm,AC=3cm,则⊙O 的直径是()A . 2cmB . 4cmC . 6cmD . 8cm10. (2分)如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连接CE交AD于点F,连接BD交CE于点G,连接BE;下列结论中:①CE=BD;②∠ADB=∠AEB;③△ADC是等腰直角三角形;④CD•AE=EF•CG;一定正确的结论有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共6题;共6分)11. (1分)已知x:y=3:4,那么 =________.12. (1分)一个四边形的各边之比为1:2:3:4,和它相似的另一个四边形的最小边长为5cm,则它的最大边长为________ cm.13. (1分)如图,AB是⊙O直径,CD⊥AB,∠CDB=30°,CD=2 ,则S阴影=________.14. (1分)在Rt△ABC中,AC=3,BC=4.如果以点C为圆心,r为半径的圆与斜边AB 只有一个公共点,那么半径r的取值范围是________.15. (1分)点A(-3,y1),B(2,y2)在抛物线y=x2-x上,则y1________y2.(填“>”,“<”或“=”之一)16. (1分)已知,矩形的两条对角线的夹角为60°,对角线长为15,则矩形的较短边长为________.三、解答题 (共13题;共87分)17. (5分)计算:(tan60°)﹣1× ﹣|﹣|+23×0.125.18. (5分)如图,已知在△ABC中,AB=AC=2,sin∠B=, D为边BC的中点,E为边BC的延长线上一点,且CE=BC.联结AE,F为线段AE的中点.求:线段DE的长;19. (10分)如图,已知等边△ABO在平面直角坐标系中,点A(4 ,0),函数y=(x>0,k为常数)的图象经过AB的中点D,交OB于E.(1)求k的值;(2)若第一象限的双曲线y= 与△BDE没有交点,请直接写出m的取值范围.20. (5分)在Rt△ABC中,∠C=90°.(1)用尺规作图作Rt△ABC的重心P.(保留作图痕迹,不要求写作法和证明);(2)你认为只要知道Rt△ABC哪一条边的长即可求出它的重心与外心之间的距离?并请你说明理由.21. (10分)如图,已知直线y=﹣2x+12分别与y轴,x轴交于A,B两点,点M在y 轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.(1)求证:△ADM∽△AOB;(2)如果⊙M的半径为2 ,请写出点M的坐标,并写出以(﹣,)为顶点,且过点M的抛物线的解析式.22. (5分)如图所示,A、B之间是一座山,一条高速公路要通过A、B两点,在A地测得公路走向是北偏西111°32′.如果A、B两地同时开工,那么在B地按北偏东多少度施工,才能使公路在山腹中准确接通?为什么?23. (10分)在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.24. (5分)图中是抛物线形拱桥,当水面宽AB=8米时,拱顶到水面的距离CD=4米.如果水面上升1米,那么水面宽度为多少米?25. (5分)如图,以Rt△ABC的直角边AB为直径作☉O,与斜边AC交于点D,过点D作☉O的切线交BC边于点E.求证:EB=EC=ED26. (0分)(2014•南宁)在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A在点B的左侧.27. (7分)如图,在平面直角坐标系中,矩形的边在轴上,顶点在抛物线上,且抛物线交轴于另一点.(1)则 =________, =________;(2)已知为边上一个动点(不与、重合),连结交于点,过点作轴的平行线分别交抛物线、直线于、.①求线段的最大值,此时的面积为;②若以点为圆心,为半径作⊙O,试判断直线与⊙O的能否相切,若能请求出点坐标,若不能请说明理由.28. (10分)如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数y=(k≠0)的图象经过点C.(1)求反比例函数的解析式;(2)若点P是反比例函数图象上的一点,△PAD的面积恰好等于正方形ABCD的面积,求点P的坐标.29. (10分)反比例函数y= 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y= 的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y= 的图象上,求t的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共13题;共87分) 17-1、18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、24-1、25-1、26、答案:略27-1、27-2、28-1、28-2、29-1、29-2、。

2020年九年级数学上册期末考试卷附答案人教版【精编】

2020年九年级数学上册期末考试卷附答案人教版【精编】

九年级(上)期末数学试卷一、单项选择题(共13小题,每小題4分,满分52分)1.点A(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,﹣3)2.下列方程是一元二次方程的是()A.x﹣1=0 B.2x2﹣y﹣3=0 C.x﹣y+2=0 D.3x2﹣2x﹣1=03.关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是()A.B.C.D.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.5.某县2013年对教育的投入为2500万元,2015年对教育的投入为3500万元,求该县2013﹣2015年对教育投入的年平均增长率,假设该县投入教育经费的年平均增长率为x,则依题意所列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=35006.如图,已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长度为()A.4cm B.3cm C.2cm D.cm7.如图,扇形AOB的半径为1,∠AOB=90°,连接AB,则图中阴影部分的面积为()A.B.C.D.8.如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠ABC的大小是()A.30°B.45°C.60°D.70°9.已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的是()A.a>0,b<0,c>0 B.a<0,b<0,c>0 C.a<0,b>0,c<0 D.a<0,b>0,c>0 10.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<时,y随x的增大而减小D.当﹣1<x<3时,y>011.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.12.如图,是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A.B.C.D.13.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是()A.8 B.10 C.15 D.20二、填空题14.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=______.15.边长为3的正六边形的面积为______.16.把x2﹣3x+4配成(x+h)2+k的形式,则x2﹣3x+4=______.17.如图,AB为⊙O的直径,∠CDB=30°,则∠CBA=______.18.甲、乙两人分别到A、B、C三个餐厅的其中一个用餐,那么甲乙在同一餐厅用餐的概率是______.19.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是______.三、解答题(共7小题,共74分)20.解方程:(1)x2+2x﹣3=0(2)x2﹣2x=2x+1.21.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.22.在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.①试作出△ABC以A为旋转中心沿顺时针方向旋转90°后的图形△AB1C1;②若点C的坐标为(﹣4,﹣1),试建立合适的直角坐标系,并写出A,B两点的坐标;③在所建的直角坐标系中,作出与△ABC关于原点对称的图形△A2B2C2.23.我市某服装厂主要做外贸服装,由于技术改良,2011年全年每月的产量y(单位:万件)与月份x之间可以用一次函数y=x+10表示,但由于“欧债危机”的影响,销售受困,为了不使货积压,老板只能是降低利润销售,原来每件可赚10元,从1月开始每月每件降低0.5元.试求:(1)几月份的单月利润是108万元?(2)单月最大利润是多少?是哪个月份?24.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.25.如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.(I)求证:DE为⊙O的切线;(II)若⊙O的半径为5,∠BAC=60°,求DE的长.26.如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.九年级(上)期末数学试卷参考答案与试题解析一、单项选择题(共13小题,每小題4分,满分52分)1.点A(2,﹣3)关于原点对称的点的坐标是()A.(﹣2,3)B.(﹣3,2)C.(3,﹣2)D.(﹣2,﹣3)【考点】关于原点对称的点的坐标.【分析】根据关于原点对称点的坐标特点:两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:点A(2,﹣3)关于原点对称的点的坐标是(﹣2,3),故选:A.【点评】此题主要考查了关于原点对称点的坐标,关键是掌握点的坐标的变化规律.2.下列方程是一元二次方程的是()A.x﹣1=0 B.2x2﹣y﹣3=0 C.x﹣y+2=0 D.3x2﹣2x﹣1=0【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、x﹣1=0是一元一次方程,故A错误;B、2x2﹣y﹣3=0是二元二次方程,故B错误;C、x﹣y+2=0是二元一次方程,故C错误;D、3x2﹣2x﹣1=0是一元二次方程,故D正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.3.关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,则实数k的取值范围是()A.B.C.D.【考点】根的判别式.【分析】关于x的一元二次方程x2﹣6x+2k=0有两个不相等的实数根,即判别式△=b2﹣4ac>0,即可确定k的取值范围.【解答】解:∵一元二次方程有两个不相等的实数根,∴△=b2﹣4ac>0,即(﹣6)2﹣4×2k>0,解得k<,故选B.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、既是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.某县2013年对教育的投入为2500万元,2015年对教育的投入为3500万元,求该县2013﹣2015年对教育投入的年平均增长率,假设该县投入教育经费的年平均增长率为x,则依题意所列方程正确的是()A.2500x2=3500 B.2500(1+x)2=3500C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500【考点】由实际问题抽象出一元二次方程.【分析】根据2013年教育经费额×(1+平均年增长率)2=2015年教育经费支出额,列出方程即可.【解答】解:设增长率为x,根据题意得2500×(1+x)2=3500.故选B.【点评】本题考查一元二次方程的应用﹣﹣求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.(当增长时中间的“±”号选“+”,当下降时中间的“±”号选“﹣”).6.如图,已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC 的长度为()A.4cm B.3cm C.2cm D.cm【考点】垂径定理;勾股定理.【分析】连接OA ,先根据垂径定理求出AM 的长,再由勾股定理求出OM 的长,进而可得出CM 的长,根据勾股定理即可得出AC 的长. 【解答】解:连接OA ,∵⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,∴OD=OC=OA=5cm ,AM=AB=4cm ,∴OM===3cm ,∴MC=OA ﹣OM=5﹣3=2cm ,∴AC===2cm . 故选C .【点评】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.如图,扇形AOB 的半径为1,∠AOB=90°,连接AB ,则图中阴影部分的面积为( ) A .B .C .D . 【考点】扇形面积的计算.【分析】根据S 阴影=S 扇形OAB ﹣S △AOB 进行计算即可. 【解答】解:S 阴影=S 扇形AOB ﹣S △AOB =﹣=π﹣.故选A .【点评】本题考查的是扇形面积的计算及三角形的面积,根据题意得出S 阴影=S 扇形OAB ﹣S △AOB 是解答此题的关键.8.如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC +∠AOC=90°,则∠ABC 的大小是( ) A .30°B .45°C .60°D .70° 【考点】圆周角定理.【分析】先根据圆周角定理得到∠ABC=∠AOC ,由于∠ABC +∠AOC=90°,所以∠AOC +∠AOC=90°,然后解方程即可. 【解答】解:∵∠ABC=∠AOC , 而∠ABC +∠AOC=90°, ∴∠AOC +∠AOC=90°,∴∠AOC=60°.∴∠ABC=30°,故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.已知二次函数y=ax2+bx+c的图象如图所示,下列结论中,正确的是()A.a>0,b<0,c>0 B.a<0,b<0,c>0 C.a<0,b>0,c<0 D.a<0,b>0,c>0【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:由抛物线的开口向下知a<0,与y轴的交点为在y轴的正半轴上,∴c>0,对称轴为x=>0,∴a、b异号,即b>0.故选D.【点评】考查二次函数y=ax2+bx+c系数符号的确定.10.二次函数y=ax2+bx+c(a≠0)的大致图象如图,关于该二次函数,下列说法错误的是()A.函数有最小值B.对称轴是直线x=C.当x<时,y随x的增大而减小D.当﹣1<x<3时,y>0【考点】二次函数的性质.【分析】根据抛物线的开口方向,利用二次函数的性质判断A;根据图形直接判断B;根据对称轴结合开口方向得出函数的增减性,从而判断C;根据图象,当x<﹣1或x>2时,抛物线落在x轴的上方,则y>0,进而判断D.【解答】解:A、由抛物线的开口向上,可知a>0,函数有最小值,正确,故A选项不符合题意;B、∵抛物线与x轴的交点坐标为(﹣1,0)、(2,0),∴抛物线的对称轴为直线x=,正确,故B选项不符合题意;C、因为a>0,所以,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大,正确,故C选项符合题意;D、由图象可知,当x<﹣1或x>2时,y<0,错误,故D选项符合题意;故选:D.【点评】本题考查了二次函数的图象:y=ax2+bx+c的图象为抛物线,可利用列表、描点、连线画出二次函数的图象.也考查了二次函数的性质.11.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为()A.B.C.D.【考点】概率公式.【分析】让白球的个数除以球的总数即为摸到白球的概率.【解答】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是.故选:B.【点评】本题考查了概率的基本计算,摸到白球的概率是白球数比总的球数.12.如图,是张老师出门散步时离家的距离y与时间x之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是()A.B.C.D.【考点】函数的图象.【分析】分别根据函数图象的实际意义可依次判断各个选项是否正确.【解答】解:根据函数图象可知,张老师距离家先逐渐远去,有一段时间离家距离不变说明他走的是一段弧线,之后逐渐离家越来越近直至回家,分析四个选项只有D符合题意.故选D.【点评】主要考查了函数图象的读图能力.要理解函数图象所代表的实际意义是什么才能从中获取准确的信息.13.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A出发沿圆锥的侧面爬行一周后回到点A的最短路程是()A.8 B.10 C.15 D.20【考点】圆锥的计算;平面展开-最短路径问题.【分析】易得圆锥的底面周长也就是圆锥的侧面展开图的弧长,利用弧长公式即可求得侧面展开图的圆心角,进而构造直角三角形求得相应线段即可.【解答】解:圆锥的底面周长=2π×5=10π,设侧面展开图的圆心角的度数为n.∴=10π,解得n=90,圆锥的侧面展开图,如图所示:∴最短路程为:=20,故选D.【点评】求立体图形中两点之间的最短路线长,一般应放在平面内,构造直角三角形,求两点之间的线段的长度.用到的知识点为:圆锥的弧长等于底面周长.二、填空题14.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a=1.【考点】一元二次方程的定义.【分析】根据一元二次方程的定义和一元二次方程的解的定义得到a+1≠0且a2﹣1=0,然后解不等式和方程即可得到a的值.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.【点评】本题考查了一元二次方程的定义:含一个未知数,并且未知数的最高次数为2的整式方程叫一元二次方程,其一般式为ax2+bx+c=0(a≠0).也考查了一元二次方程的解的定义.15.边长为3的正六边形的面积为.【考点】正多边形和圆.【分析】根据题意画出图形,边长为3的正六边形可以分成六个边长为3的正三角形,计算出正六边形的面积即可.【解答】解:如图,连接OD,OE,∵∠DOE=360°×=60°,又∵OD=OE,∴∠ODE=∠OED=(180°﹣60°)÷2=60°,∴三角形ODE为正三角形,∴OD=OE=DE=3,∴S△ODE=ODOEsin60°=×3×3×=.∴正六边形的面积=6×=.故答案为:.【点评】本题考查的是正多边形和圆,根据题意画出图形,构造出等边三角形是解答此题的关键.16.把x2﹣3x+4配成(x+h)2+k的形式,则x2﹣3x+4=(x﹣)2+.【考点】解一元二次方程-配方法.【分析】根据完全平方公式得出=x2﹣3x+()2﹣()2+4,即可得出答案.【解答】解:x2﹣3x+4=x2﹣3x+()2﹣()2+4=(x﹣)2+,故答案为:(x﹣)2+.【点评】本题考查了解一元二次方程的应用,能正确配方是解此题的关键.17.如图,AB为⊙O的直径,∠CDB=30°,则∠CBA=60°.【考点】圆周角定理.【分析】连接AC,根据圆周角定理求出∠A的度数,根据直径所对的圆周角是直角得到∠ACB=90°,根据三角形内角和定理计算即可.【解答】解:连接AC,由圆周角定理得,∠A=∠CDB=30°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CBA=90°﹣∠A=60°,故答案为:60°.【点评】本题考查的是圆周角定理的应用,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半、直径所对的圆周角是直角是解题的关键.18.甲、乙两人分别到A、B、C三个餐厅的其中一个用餐,那么甲乙在同一餐厅用餐的概率是.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【解答】解:画树状图得:∴甲、乙两人一共有9种用餐情况,甲乙在同一餐厅用餐的情况有3种,∴甲乙在同一餐厅用餐的概率是=.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.19.如图,直线y=x+4与x轴、y轴分别交于A、B两点,把△A0B绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).【考点】坐标与图形变化-旋转.【分析】首先根据直线AB来求出点A和点B的坐标,B′的横坐标等于OA+OB,而纵坐标等于OA,进而得出B′的坐标.【解答】解:直线y=﹣x+4与x轴,y轴分别交于A(3,0),B(0,4)两点,∵旋转前后三角形全等,∠O′AO=90°,∠B′O′A=90°∴OA=O′A,OB=O′B′,O′B′∥x轴,∴点B′的纵坐标为OA长,即为3,横坐标为OA+OB=OA+O′B′=3+4=7,故点B′的坐标是(7,3),故答案为:(7,3).【点评】本题主要考查了对于图形翻转的理解,其中要考虑到点B和点B′位置的特殊性,以及点B′的坐标与OA和OB的关系.三、解答题(共7小题,共74分)20.解方程:(1)x2+2x﹣3=0(2)x2﹣2x=2x+1.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法.【分析】(1)利用十字相乘法分解因式即可;(2)首先把方程移项变形为x2﹣4x=1的形式,然后在方程的左右两边同时加上一次项系数一半的平方,左边就是完全平方式,右边就是常数,然后利用平方根的定义即可求解.【解答】解:(1)∵x2+2x﹣3=0,∴(x+3)(x﹣1)=0,∴x+3=0或x﹣1=0,∴x1=﹣3,x2=1;(2)∵x2﹣2x=2x+1,∴x2﹣4x=1,∴x2﹣4x+4=1+4,∴(x﹣2)2=5,∴x﹣2=±,∴x1=2+,x2=2﹣.【点评】此题主要考查了一元二次方程的解法,关键是掌握降次的方法,把二次化为一次,再解一元一次方程.21.红花中学现要从甲、乙两位男生和丙、丁两位女生中,选派两位同学分别作为①号选手和②号选手代表学校参加全县汉字听写大赛.(1)请用树状图或列表法列举出各种可能选派的结果;(2)求恰好选派一男一女两位同学参赛的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得恰好选派一男一女两位同学参赛的有8种情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵恰好选派一男一女两位同学参赛的有8种情况,∴恰好选派一男一女两位同学参赛的概率为:=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.22.在下面的网格图中,每个小正方形的边长均为1个单位,在Rt△ABC中,∠C=90°,AC=3,BC=6.①试作出△ABC以A为旋转中心沿顺时针方向旋转90°后的图形△AB1C1;②若点C的坐标为(﹣4,﹣1),试建立合适的直角坐标系,并写出A,B两点的坐标;③在所建的直角坐标系中,作出与△ABC关于原点对称的图形△A2B2C2.【考点】作图-旋转变换.【分析】①利用网格特点和旋转的性质画出点B、C的对应点B1、C1即可;②建立直角坐标系,然后写出点A、B的坐标;③根据关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可.【解答】解:①如图,△AB1C1为所作;②如图,A点坐标为(﹣1,﹣1),B点的坐标位(﹣4,3);③如图,△A2B2C2为所作.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.我市某服装厂主要做外贸服装,由于技术改良,2011年全年每月的产量y(单位:万件)与月份x之间可以用一次函数y=x+10表示,但由于“欧债危机”的影响,销售受困,为了不使货积压,老板只能是降低利润销售,原来每件可赚10元,从1月开始每月每件降低0.5元.试求:(1)几月份的单月利润是108万元?(2)单月最大利润是多少?是哪个月份?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)单月利润=每月的产量×(10﹣0.5×相应的月份),把相关数值代入求解即可;(2)根据(1)得到的关系式,利用配方法可得二次函数的最值问题.【解答】解:(1)由题意得:(10﹣0.5x)(x+10)=108,﹣0.5x2+5x﹣8=0,x2﹣10x+16=0,(x﹣2)(x﹣8)=0,x1=2,x2=8.答:2月份和8月份单月利润都是108万元.(2)设利润为w,则w=(10﹣0.5x)(x+10)=﹣0.5x2+5x+100=﹣0.5(x﹣5)2+112.5,所以当x=5时,w有最大值112.5.答:5月份的单月利润最大,最大利润为112.5万元.【点评】考查二次函数的应用;得到单月利润的关系式是解决本题的关键.24.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.【考点】旋转的性质;正方形的判定;平移的性质.【分析】(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG 是正方形.【解答】(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.【点评】此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.25.如图,以等腰△ABC中的腰AB为直径作⊙O,交底边BC于点D.过点D作DE⊥AC,垂足为E.(I)求证:DE为⊙O的切线;(II)若⊙O的半径为5,∠BAC=60°,求DE的长.【考点】切线的判定;等腰三角形的性质;圆周角定理.【分析】(1)连接圆心和切点,只要证得∠ODB=90°即可.(2)应得到DE所在的三角形的一条线段的长和一个角的度数,利用三角函数求解即可.【解答】(I)证明:连接AD,连接OD;∵AB是直径,∴AD⊥BC,又∵△ABC是等腰三角形,∴D是BC的中点.∴OD∥AC,DE⊥AC.∴OD⊥DE.∴DE为⊙O的切线.(II)解:∵在等腰△ABC中,∠BAC=60°,∴△ABC是等边三角形.∵⊙O的半径为5,∴AB=BC=10,.∴.【点评】连接圆心和切点,做直径所对的圆周角是常用的辅助线方法;需注意利用直角三角形的三角函数来进行求解.26.如图,已知二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.(1)求该抛物线的解析式及对称轴;(2)当x为何值时,y>0?(3)在x轴上方作平行于x轴的直线l,与抛物线交于C,D两点(点C在对称轴的左侧),过点C,D作x轴的垂线,垂足分别为F,E.当矩形CDEF为正方形时,求C点的坐标.【考点】二次函数综合题.【分析】(1)根据待定系数法求二次函数解析式,再用配方法或公式法求出对称轴即可;(2)求出二次函数与x轴交点坐标即可,再利用函数图象得出x取值范围;(3)利用正方形的性质得出横纵坐标之间的关系即可得出答案.【解答】解:(1)∵二次函数y=﹣x2+bx+c的图象经过A(﹣2,﹣1),B(0,7)两点.∴,解得:,∴y=﹣x2+2x+7,=﹣(x2﹣2x)+7,=﹣[(x2﹣2x+1)﹣1]+7,=﹣(x﹣1)2+8,∴对称轴为:直线x=1.(2)当y=0,0=﹣(x﹣1)2+8,∴x﹣1=±2,x1=1+2,x2=1﹣2,∴抛物线与x轴交点坐标为:(1﹣2,0),(1+2,0),∴当1﹣2<x<1+2时,y>0;(3)当矩形CDEF为正方形时,假设C点坐标为(x,﹣x2+2x+7),∴D点坐标为(﹣x2+2x+7+x,﹣x2+2x+7),即:(﹣x2+3x+7,﹣x2+2x+7),∵对称轴为:直线x=1,D到对称轴距离等于C到对称轴距离相等,∴﹣x2+3x+7﹣1=﹣x+1,解得:x1=﹣1,x2=5(不合题意舍去),x=﹣1时,﹣x2+2x+7=4,∴C点坐标为:(﹣1,4).【点评】此题主要考查了待定系数法求二次函数解析式以及利用图象观察函数值和正方形性质等知识,根据题意得出C、D两点坐标之间的关系是解决问题的关键.。

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)计算-3的结果是()A . 1B . -1C .D . -2. (2分)三角形两边的长为6和8,第三边为一元二次方程x2-16x+60=0 的一个实数根,则该三角形的面积是()A . 24B . 24或8C . 48D . 83. (2分)下列方程中,一定有实数根的是()A . x2+1=0B . (2x+1)2=0C . (2x+1)2+3=0D . (2x+1)2+4=04. (2分)(2015•梅州)下列说法正确的是()A . 掷一枚均匀的骰子,骰子停止转动后,6点朝上是必然事件B . 甲、乙两人在相同条件下各射击10次,他们的成绩平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定C . “明天降雨的概率为”,表示明天有半天都在降雨D . 了解一批电视机的使用寿命,适合用普查的方式5. (2分)如图,在正△ABC中,D,E分别在AC,AB上,且,AE=BE,则有()A . △AED∽△ABCB . △ADB∽△BEDC . △BCD∽△ABCD . △AED∽△CBD6. (2分)如图,在方格纸上建立的平面直角坐标系中,Rt△ABC绕点C按顺时针方向旋转90°,得到Rt△FEC,则点A的对应点F的坐标是()A . (-1,0)B . (-1,2)C . (1,2)7. (2分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A . asinx+bsinxB . acosx+bcosxC . asinx+bcosx.D . acosx+bsinx8. (2分)已知抛物线y=ax2+bx+c(0<2a≤b)与x轴最多有一个交点.以下四个结论:①abc>0;②该抛物线的对称轴在x=﹣1的右侧;③关于x的方程ax2+bx+c+1=0无实数根;④ ≥2.其中,符合题意结论的个数为()A . 1个B . 2个C . 3个二、填空题 (共5题;共6分)9. (2分)﹣8的立方根是________,36的平方根是________.10. (1分)(2012•内江)如图所示,A、B是边长为1的小正方形组成的网格的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是________.11. (1分)“爱心是人间真情所在”!现用“❤”定义一种运算,对任意实数m、n 和抛物线y=ax2 ,当y=ax2❤(m,n)后都可得到y=a(x﹣m)2+n.当y=x2❤(m,n)后得到了新函数的图象(如图所示),则nm=________.12. (1分)(2015•遵义)我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3 .若正方形EFGH的边长为2,则S1+S2+S3= ________.13. (1分)正方形ABCD的边长是4,点P是AD边的中点,点E是正方形边上的一点.若△PBE是等腰三角形,则腰长为________.三、解答题 (共9题;共56分)14. (5分)求下列各式中的x.①x2=25②(x﹣3)3=27.15. (5分)如图,已知AB=13,BC=14,AC=15,AD⊥BC于D,求AD长.16. (5分)如图,△ABC中,D为BC的中点。

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷

陕西人教版2019-2020学年九年级上学期数学期末考试试卷H卷一、单选题 (共10题;共20分)1. (2分)下列事件属于不确定事件的是()A . 若今天星期一,则明天是星期二B . 投掷一枚普通的正方体骰子,掷得的点数不是奇数就是偶数.C . 抛掷一枚硬币,出现正面朝上D . 每天的19:00中央电视台播放新闻联播2. (2分)如图是我国几家银行的标志,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .3. (2分)如图,在两个同心圆中,三条直径把大、小圆都分成相等的六个部分,若随意向圆中投球,球落在阴影区域的概率是()A .B .C .D .4. (2分)如图⊙O中,半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC,若AB=8,CD=2,则EC的长度为()A . 2B . 8C . 2D . 25. (2分)某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设每个月的平均增长率为x,可列方程为()A .B .C .D .6. (2分)若关于x的一元二次方程(a﹣1)x2﹣2x+2=0有实数根,则整数a的最大值为()A . 0B . 1C . 2D . 37. (2分)对于函数的图象,下列说法不正确的是()A . 开口向下B . 对称轴是C . 最大值为0D . 与轴不相交8. (2分)在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)9. (2分)如图,P为正方形ABCD内的一点,△ABP绕点B顺时针旋转得到△CBE,则△BPE是()A . 直角三角形B . 等腰直角三角形C . 等腰三角形D . 等边三角形10. (2分)已知函数y=,则使y=k成立的x值恰好有三个,则k 的值为()A . 0B . 1C . 2D . 3二、填空题 (共7题;共7分)11. (1分)分解因式109 -9 =________12. (1分)分别从数﹣5,﹣2,1,3中,任取两个不同的数,则所取两数的和为正数的概率为________.13. (1分)(2015•黔南州)如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A、B,并使AB与车轮内圆相切于点D,半径为OC⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径是________.14. (1分)如图,在扇形OAB中,∠AOB=90°,半径OA=2 ,将扇形OAB沿过点B 的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则阴影部分的面积是________.15. (1分)如图所示,1条直线将平面分成2个部分,2条直线最多可将平面分成4个部分,3条直线最多可将平面分成7个部分,4条直线最多可将平面分成11个部分.现有n条直线最多可将平面分成56个部分,则n的值为________.16. (1分)如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D ,交AB于E ,交AC于F ,点P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是________.17. (1分)如图,将一幅三角板的直角顶点重合放置,其中∠A=30°,∠CDE=45°.若三角板ACB的位置保持不动,将三角板DCE绕其直角顶点C顺时针旋转一周.若△DCE其中一边与AB平行,则∠ECB的度数为________.三、解答题 (共9题;共79分)18. (5分)如图,⊙O的直径AB垂直弦CD于点E,点F在AB的延长线上,且∠BCF =∠A.(1)求证:直线CF是⊙O的切线;(2)若⊙O的半径为5,DB=4.求sin∠D的值.19. (9分)为了解市民对全市创卫工作的满意程度,某中学数学兴趣小组在全市甲,乙两个区内进行了调查统计,将调查结果分为很满意,满意,不满意,很不满意四类,回收、整理好全部问卷后,得到下列不完整的统计图.请结合图中信息,解决下列问题:(1)参加这次调查的总人数为________人,其中调查结果为“满意”的人数是________人,调查结果为“很不满意”的人数占总人数的百分比为________,扇形图中“不满意”部分对应扇形的圆心角为________度.(2)兴趣小组准备从调查结果为“很不满意”的4位市民中随机选择2位进行回访,已知这4位市民中有2位来自甲区,另2位来自乙区,请用列表或用画树状图的方法求出选择的市民均来自甲区的概率.20. (5分)如图,在⊙O中,AD是直径,弧AB=弧AC,求证:AO平分∠BAC.21. (10分)如图,在 ABCD中,AC⊥BC ,过点D作DE∥AC交BC的延长线于点E ,连接AE交CD于点F .(1)求证:四边形ADEC是矩形;(2)在 ABCD中,取AB的中点M ,连接CM ,若CM=5,且AC=8,求四边形ADEC 的面积.22. (5分)2013年4月20日,四川省雅安市芦山县发生了7.0级地震,某校开展了“雅安,我们在一起”的赈灾捐款活动,其中九年级二班50名学生的捐款情况如下表所示:捐款金额(元) 5 10 15 20 50捐款人数(人) 7 18 10 12 3(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计该校九年级300名学生在本次活动中捐款多于15元的人数.23. (15分)综合与探究如图,已知抛物线y=ax2﹣3x+c与y轴交于点A(0,﹣4),与x轴交于点B(4,0),点P是线段AB下方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点的坐标;(2)当点P移动到抛物线的什么位置时,∠PAB=90°求出此时点P的坐标;(3)当点P从点A出发,沿线段AB下方的抛物线向终点B移动,在移动中,设点P 的横坐标为t,△PAB的面积为S,求S关于t的函数表达式,并求t为何值时S有最大值,最大值是多少?24. (15分)对于平面内的⊙C和⊙C外一点Q,给出如下定义:若过点Q的直线与⊙C 存在公共点,记为点A,B,设,则称点A(或点B)是⊙C的“K相关依附点”,特别地,当点A和点B重合时,规定AQ=BQ,(或).已知在平面直角坐标系xoy中,Q(-1,0),C(1,0),⊙C的半径为r.(1)如图1,当时,①若A1(0,1)是⊙C的“k相关依附点”,求k的值.②A2(1+ ,0)是否为⊙C的“2相关依附点”.(2)若⊙C上存在“k相关依附点”点M,①当r=1,直线QM与⊙C相切时,求k的值.②当时,求r的取值范围.(3)若存在r的值使得直线与⊙C有公共点,且公共点时⊙C的“相关依附点”,直接写出b的取值范围.25. (10分)某超市销售一种牛奶,进价为每箱24元,规定售价不低于进价.现在的售价为每箱36元,每月可销售60箱.市场调查发现:若这种牛奶的售价每降价1元,则每月的销量将增加10箱,设每箱牛奶降价x元(x为正整数),每月的销量为y箱.(1)写出y与x中间的函数关系式和自变量x的取值范围;(2)超市如何定价,才能使每月销售牛奶的利润最大?最大利润是多少元?26. (5分)如图,⊙O是以数轴原点O为圆心,半径为1的圆,∠AOB=45°,点P在数轴上运动,过点P且与OB平行的直线与⊙O有公共点,求OP的取值范围.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共79分)18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、。

陕西人教版2019-2020学年九年级上学期数学期末考试试卷新版

陕西人教版2019-2020学年九年级上学期数学期末考试试卷新版

陕西人教版2019-2020学年九年级上学期数学期末考试试卷新版一、单选题 (共10题;共20分)1. (2分)下列说法正确的是()A . 抛一枚硬币,正面一定朝上B . 掷一颗骰子,朝上一面的点数一定不大于6C . 为了解一种灯泡的使用寿命,宜采用普查的方法D . “明天的降水概率为80%”,表示明天会有80%的地方下雨2. (2分)下列图形中,是中心对称图形,但不是轴对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)掷一枚硬币2次,正面都朝上的概率是()A .B .C .D .4. (2分)如图,△ABC是⊙O的内接三角形,若∠C=60°,则∠AOB的度数是()A . 30°B . 60°C . 90°D . 120°5. (2分)兴义市2014年财政总收入为60亿元,2016年财政总收入达80亿元,若平均每年的增长率为x,则可以列出方程为()A . 60(1+x)2=80B . (60+x%)2=80C . 60(1+x)(1+2x)2=80D . 60(1+x%)2=-806. (2分)下列一元二次方程中,有两个不相等实数根的方程是()A . x2﹣3x+1=0B . x2+1=0C . x2﹣2x+1=0D . x2+2x+3=07. (2分)对于抛物线,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(-5,3)D . 开口向上,顶点坐标(-5,3)8. (2分)如图,在平面直角坐标系中,点A的坐标为(4,0)点M的坐标为(0,4),过M点作直线MN⊥y轴,在直线MN上找一点B,使△OAB是等腰三角形,此时,点B的坐标不可能是()A . (0,4)B . (2,4)C . (4,4)D . (4,2)9. (2分)如图,Rt△ABC绕O点旋转90°得Rt△BDE,其中∠ACB=∠E= 90°,AC=3,DE=5,则OC的长为()A .B .C .D .10. (2分)已知坐标平面上有一直线L,其方程式为y+2=0,且L与二次函数y=3x2+a 的图形相交于A,B两点:与二次函数y=﹣2x2+b的图形相交于C,D两点,其中a、b为整数.若AB=2,CD=4.则a+b之值为何?()A . 1B . 9C . 16D . 24二、填空题 (共7题;共7分)11. (1分)计算: =________.12. (1分)一个布袋中装有个红球和个白球,这些球除了颜色之外其他都相同,从袋子中随机摸出球,这个球是白球的概率是________.13. (1分)如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度________.14. (1分)如图,AB是⊙O的直径,弦CD交AB于点E,且E为OB的中点,∠CDB=30°,CD=6,则阴影部分的面积为________15. (1分)用一条长40cm的绳子围成一个面积为64cm2的矩形.设矩形的一边长为xcm,则可列方程为________.16. (1分)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E,若∠COB=3∠AOB,OC=2 ,则图中阴影部分面积是________(结果保留π和根号)17. (1分)边长为2的正方形ABCD与边长为2 的正方形AEFG按图1位置放置,AD与AE在同一直线上,AB与AG在同一直线上,将正方形ABCD绕点A逆时针旋转如图(2),线段DG与线段BE相交,交点为H,则△GHE与△BHD面积之和的最大值为________.三、解答题 (共9题;共78分)18. (5分)如图,AB为⊙O的直径,CD为弦,且CD⊥AB,垂足为H.(1)若∠BAC=30°,求证:CD平分OB.(2)若点E为弧ADB的中点,连接0E,CE.求证:CE平分∠OCD.(3)若⊙O的半径为4,∠BAC=30°,则圆周上到直线AC距离为3的点有多少个?请说明理由.19. (10分)(2015•玉林)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)20. (5分)已知:如图,在⊙O中,弦AB和CD相交,连接AC、BD,且AC=BD.求证:AB=CD.21. (10分)如图,□ABCD的边AD与经过A、B、C三点的⊙O相切.(1)求证:AB=AC;(2)如图2,延长DC交⊙O于点E,连接BE,sin∠E=,⊙O半径为13,求□ABCD 的面积.22. (5分)2013年4月20日,四川省雅安市芦山县发生了7.0级地震,某校开展了“雅安,我们在一起”的赈灾捐款活动,其中九年级二班50名学生的捐款情况如下表所示:捐款金额(元) 5 10 15 20 50捐款人数(人) 7 18 10 12 3(Ⅰ)求这50个样本数据的平均数、众数和中位数;(Ⅱ)根据样本数据,估计该校九年级300名学生在本次活动中捐款多于15元的人数.23. (15分)如图,抛物线与轴交于点,与轴交于点,其顶点在直线上.(1)求的值;(2)求两点的坐标;(3)以为一组邻边作,则点关于轴的对称点是否在该抛物线上?请说明理由.24. (8分)如图,已知⊙O的半径为1,AC是⊙O的直径,过点C作⊙O的切线BC,E 是BC的中点,AB交⊙O于D点.(1)直接写出ED和EC的数量关系: ________ ;(2)DE是⊙O的切线吗?若是,给出证明;若不是,说明理由;(3)填空:当BC= ________ 时,四边形AOED是平行四边形,同时以点O、D、E、C 为顶点的四边形是 ________ .25. (15分)某市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其它费用450元.(1)求y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利润w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利润最大?最大利润是多少元?26. (5分)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共7题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共78分) 18-1、19-1、19-2、20-1、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。

2020年人教版九年级上学期数学期末考试试卷

2020年人教版九年级上学期数学期末考试试卷

cm2 .
15. 如图,在 △ ABC 中, CAB 75 . 在同一个平面内,将
B'
△ ABC 绕点 A 旋转到 △ AB' C' 的位置,使得 CC' ∥ AB , 则 C'
C
BAB' =
.
A
B
16. 同时掷两枚标有数字 1~ 6 的正方体骰子,面朝上的数字之
和为 8 的概率为 .
E
17. 如图,⊙ O 的半径 OD AB 于点 C ,连接 AO 并延长
c
2
b
.
其中正确的结论有
()
A. 1 个
B. 2

C. 3

D. 4

–1 O
x
1
二 . 填空题 ( 本大题共 6 个小题,每题 3 分,共 18 分)
13. 已知关于 x 的方程 x2 2x k 0 的一个根为 1 ,则 k =
.
14. 已知圆锥底面半径为 6cm ,高为 8cm ,则它的侧面展开图的面积为
⑴ .平移⊿ ABC ,使点 A 的对应点 A1 的坐标为 2,2 ,请画出平移后对应的⊿ A1 B1C1 的图形 . ⑵ . ⊿ A1 B1C1 关于 x 轴对称的三角形为⊿ A2 B2 C2 ,并直接写出 A2、yB2、 C2 的坐标 .
B
A
C
O
x
24. (本题满分 14 分)
体育场上,老师用绳子围成一个周长为 30m 的游戏场地,围成的场地是如图所示的矩形
C.60
°
D. 100
°
C
7. 将抛物线 y x2 平移得到抛物线 y
2
x 2 ,则这个平移过程正确的是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

陕西人教版2020届九年级上册数学期末考试试卷H卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共10题;共20分)
1. (2分)圆心在原点O,半径为5的⊙O,点P(-3,4)与⊙O的位置关系是()。

A . 在⊙O内
B . 在⊙O上
C . 在⊙O外
D . 不能确定
2. (2分)如果C是线段AB的黄金分割点C,并且AC>CB,AB=1,那么AC的长度为()
A .
B .
C .
D .
3. (2分)在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC的是()
A . =
B . =
C . =
D . =
4. (2分)正比例函数y=kx和反比例函数(k是常数且k≠0)在同一平面直角坐标系中的图象可能是
A .
B .
C .
D .
5. (2分)如图,在4×4的正方形网格中,ta nα= ()
A .
B .
C .
D .
6. (2分)如图,正△ABC内接于⊙O,P是劣弧BC上任意一点,PA与BC交于点E,有如下结论:①PA=PB+PC;② ;③PA•PE=PB•PC.其中,正确结论的个数为()
A . 3个
B . 2个
C . 1个
D . 0个
7. (2分)把二次函数y=x2-4x+3化成y=a(x-h)2+k的形式是()
A . y=(x-2)2-1
B . y=(x+2)2-1
C . y=(x-2)2+7
D . y=(x+2)2+7
8. (2分)将y=(2x﹣1)•(x+2)+1化成y=a(x+m)2+n的形式为()
A .
B .
C .
D .
9. (2分)如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,AB=10,则CD 长为()
A . 4
B . 16
C . 2
D . 4
10. (2分)如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连结AE,则△ABE的面积等于()
A . 54
B . 72
C . 75
D . 78
二、填空题 (共6题;共6分)
11. (1分)若 = ,则的值为________.
12. (1分)把一个矩形剪去一个正方形,所余的矩形与原矩形相似,那么原矩形的长与宽的比是________
13. (1分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为________.
14. (1分)已知⊙O的半径为2,直线l上有一点P满足OP=2,则直线l与⊙O的位置关系是________.
15. (1分)二次函数y=(m﹣1)x2+x+m2﹣1的图象经过原点,则m的值为________.
16. (1分)如图,矩形ABCD中,AD= ,F是DA延长线上一点,G是CF上一点,且∠ACG=∠AGC,∠GAF=∠F=20°,则AB=________.
三、解答题 (共13题;共115分)
17. (10分)
(1)计算:
(2)解方程:x2-2x-2=0.
18. (5分)如图,在Rt△ABC中,∠ABC=90°,∠C=60°,AC=10,将BC向BA方向翻折过去,使点C落在BA上的点C',折痕为BE,求EC的长度.
19. (15分)如图,已知一次函数y=﹣x+2与反比例函数y=与的图象交于A,B 两点,与x轴交于点M,且点A的横坐标是﹣2,B点的横坐标是4.
(1)求反比例函数的解析式;
(2)求△AOM的面积;
(3)根据图象直接写出反比例函数值大于一次函数值时x的取值范围.
20. (5分)如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,∠CAD=∠ABC.判断直线AD与⊙O的位置关系,并说明理由.
21. (5分)已知:如图,D是△ABC的边AB上一点,且∠B=∠ACD.求证:AC2=AD•AB.
22. (5分)某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C 在北偏西30°,又航行了半小时到D处,望见灯塔C恰在西北方向,若船速为每小时20海里.求A、D两点间的距离.(结果不取近似值)
23. (10分)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF
(1)求证:AD⊥ED;
(2)若CD=4,AF=2,求⊙O的半径.
24. (5分)如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.若水面下降了2.5m,水面的宽度增加多少?
25. (5分)如图,⊙ 是△ 的外接圆,为直径,弦,
交的延长线于点,求证:
(Ⅰ);
(Ⅱ)是⊙ 的切线.
26. (20分)如图所示,在平面直角坐标系中xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC.
(1)求A、B两点的坐标及抛物线的对称轴;
(2)求直线l的函数表达式(其中k、b用含a的式子表示);
(3)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值;
(4)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
27. (10分)如图,抛物线y= x2+ x+c与x轴的负半轴交于点A,与y轴交于点B,连结AB,点C(6,)在抛物线上,直线AC与y轴交于点D.
(1)求c的值及直线AC的函数表达式;
(2)点P在x轴正半轴上,点Q在y轴正半轴上,连结PQ与直线AC交于点M,连结MO并延长交AB于点N,若M为PQ的中点.
①求证:△APM∽△AON;
②设点M的横坐标为m,求AN的长(用含m的代数式表示).
28. (10分)如图在平面直角坐标系xOy中,函数()的图象与一次函数的图象的交点为A(m,2).
(1)求一次函数的解析式;
(2)观察图像直接写出使得的的取值范围;
29. (10分)在平面直角坐标系中,已知反比例函数y= 的图象经过点A,点O是坐标原点,OA=2且OA与x轴的夹角是60°.
(1)试确定此反比例函数的解析式;
(2)将线段OA绕O点顺时针旋转30°得到线段OB,判断点B是否在此反比例函数的图象上,并说明理由.
参考答案一、单选题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共6题;共6分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
三、解答题 (共13题;共115分) 17-1、
17-2、
18-1、
19-1、
19-2、19-3、
20-1、21-1、
22-1、23-1、
23-2、
24-1、
25-1、26-1、
26-2、
26-3、
26-4、
27-1、
27-2、
28-1、
28-2、
29-1、
29-2、。

相关文档
最新文档