生活中的流体力学

合集下载

流体力学在生活中的应用和原理

流体力学在生活中的应用和原理

流体力学在生活中的应用和原理1. 简介流体力学是研究流体运动的力学学科,它涉及了各个方面的科学与工程领域,从大自然的河流和海洋到我们生活中的水龙头和空气流动等等都与流体力学相关。

本文将重点介绍流体力学在生活中的应用和原理。

2. 流体力学的基本原理流体力学主要研究流体的运动和受力情况,其基本原理包括以下几个方面:(1) 亨利定律亨利定律是流体力学的基本定律之一,它描述了埋在液体中的物体所受的浮力等于它排开的液体的重力。

这个原理可以解释我们在水中浮起来的原因。

(2) 科氏定律科氏定律是描述在液体中流动的物体所受到的科氏力的定律。

科氏力与流体的速度和密度相关,它可以帮助我们理解物体在水中运动时所受的阻力和压力。

(3) 费曼定律费曼定律是描述在液体流动中的能量守恒定律,它指出在流体中的任何一点,流体的总能量保持恒定。

这个原理可以帮助我们解释流体在管道中的压力变化和能量转换。

3. 流体力学在生活中的应用流体力学在我们日常生活中有很多实际应用,以下是一些典型的例子:(1) 水力学水力学是研究液体在静止和流动状态下的运动规律的学科。

它在水力工程中有广泛的应用,例如水坝的设计、水流的控制和下水道的建设等。

水力学还被应用于生活中的给水系统、下水道和排水系统的设计与管理,确保城市的供水和排水系统正常运行。

(2) 空气动力学空气动力学是研究空气运动规律的学科,它在航空工程和汽车设计等领域有重要应用。

通过空气动力学的研究,可以改善飞机和汽车的气动性能,减小飞机和汽车的阻力,提高其运行效率。

(3) 管道流动在石油工业和化工工程中,流体力学被广泛应用于管道流动问题的研究和设计。

通过流体力学的分析,可以确定管道的直径和长度,优化管道网络的结构,提高物质输送的效率和安全性。

(4) 气象学气象学是研究大气中各种现象和气候系统的科学,流体力学是研究大气流动的重要基础。

通过流体力学的原理,可以解释大气中的气旋、风向和气压等现象,为气象预报和气候变化研究提供了基础。

生活中的流体力学

生活中的流体力学

三、层流与湍流我们平常生活中经常遇到那些黏糊糊的液体,大家都知道那是因为该流体黏性大。

在流体力学的范畴里,即便是水这种清爽的流体,其实也是有黏性的。

黏性具有阻碍流动的特性,所以黏性高的东西给人黏黏糊糊的感觉,黏性低的东西给人清清爽爽的感觉。

通俗点来说,黏性强的东西不容易搅和在一起。

有黏性的流体会产生粘性力,比如将黏性较大的,也是大家平常喜欢的奶昔和水分别滴在由木板构成的斜坡上,水会很顺畅的流下去,而奶昔会很快停止运动。

再举个例子,想象一下体育课长跑训练的情景。

快跑组和慢跑组正在并排进行跑步训练。

这是慢跑组的A同学混进了快跑组里,这种情况下,快跑组不得不减速,因为不减速有些同学就会撞到跑得慢的A同学。

那假如快跑组的B同学混到了慢跑组呢。

那慢跑组也需要提速,不然也会撞到B同学。

从动量的角度来说,慢跑组从快跑的B同学那里得到了更大的动能,看起来就像是被添加了外力一样。

我们平常开车,如果道路上的一条车道上一辆车开的很慢,那在他后面所有的车都要减速;如果有一辆车跑的很快,那么所有车都要加速。

实际上,这个使其加速或者减速的力正是黏性力。

黏性力是因为流体粒子而产生的力,时发生在流体内部的力。

那我们在流体力学里面经常看到“理想流体”和“黏性流体”的概念。

实际上生活中的流体都是黏性流体,都具有黏性。

与管道壁相互接触发生摩擦的部分流速最慢,像被壁拉着一样,这其实适合河流的流动情况一样,河流的中间流速最快,两岸流速比较慢。

之前讲过的伯努利定理和动量守恒定律其实都是针对理想流体而言的。

理想流体没有黏性,即使施加外力也不会被压缩。

很多人会说,这种理想流体在现实中又不存在,研究的意义在何处呢?在理解流体运动的特性以及进行模拟计算的时候,理想流体是非常有必要的。

首先需要借助理想流体来理解流动,然后再综合考虑黏性等因素。

通过学习黏性,可以对加深对身边实际流体的理解。

流动中产生的涡旋也是黏性流体的特征。

涡旋的产生也是黏性影响的结果。

伯努利原理在生活中的应用

伯努利原理在生活中的应用

伯努利原理在生活中的应用伯努利原理,亦称为贝努利定理,是描述流体运动的重要原理之一。

它揭示了当流体在速度增加的同时,其压力会减小的规律。

伯努利原理在飞行、水利、气象等领域得到广泛的应用。

本文将从多个角度介绍伯努利原理在生活中的应用。

1. 飞行领域1.1 飞机升力在飞机起飞和飞行的过程中,翼型产生了不同的上、下表面压强差异。

上表面速度较快,压强较小,而下表面速度较慢,压强较大。

根据伯努利原理,上表面压强较小会产生一个向上的升力,而下表面压强较大则产生一个向下的压力。

这种升力的产生使得飞机能够克服重力,实现飞行。

1.2 乘客氧气面罩在飞机高空巡航时,由于外部气压下降,乘客面临缺氧的风险。

此时,乘客氧气面罩会从机舱顶部弹射出来,并通过橡胶管输送氧气。

面罩内部加压,以确保乘客能够获得足够的氧气。

这一设计基于伯努利原理,通过增加面罩内部速度,降低了内部压强,从而推动了氧气的输送。

2. 水利领域2.1 水龙头喷射当我们打开水龙头时,水从龙头中流出,并通过一个小孔喷射出来。

水在流动过程中受到小孔的约束,速度增加,压强降低。

根据伯努利原理,这会导致水流周围的大气压力大于水流内部的压力,从而形成一个向外的压力,使得水流能够远离水龙头。

2.2 喷泉原理喷泉是一种通过水流喷射形成的装饰艺术。

当水从喷泉底部喷射出来时,其速度增加,压强降低。

根据伯努利原理,周围的大气压力大于水流内部压力,从而产生向上的浮力。

这种浮力使得喷泉水柱能够维持垂直向上的喷射状态。

3. 汽车运动在汽车运动中,空气动力学是一个重要的考虑因素。

伯努利原理揭示了当汽车高速行驶时,对车身前进方向的阻力会减小。

这是因为空气在汽车前部流动时,速度增加,压强减小。

根据伯努利原理,压强较大的空气会推动车身前进,减少了阻力。

4. 可乐喷泉在一个打开的可乐瓶子上方,我们往往可以观察到一股气体从瓶口喷射出来,形成一个小喷泉。

这是因为可乐中溶解了大量的二氧化碳气体,当我们打开瓶盖时,减小了瓶内气压。

流体力学在生活中的应用

流体力学在生活中的应用

流体力学在生活中的应用
流体力学在生活中起着至关重要的作用,为我们的生活提供了便利。

1、风机:风机可利用流体力学原理,使用动力带动叶轮旋转,从而把外界的大气中的热能转换成机械能,从而实现各种功能,如:阻塞空气的大功率风扇,冷却器,风力发电机等。

2、涡轮机:涡轮机也是利用流体力学原理,使气体或蒸汽通过涡轮到叶轮中,由于旋转叶轮和气体或蒸汽的阻力,叶轮转动时会带动涡轮机的轴转动,从而实现机械能的转换。

3、船体:船体在水中的行驶感受到的抗力,都是流体力学的结果。

一般情况下,船体一侧与水面表面的摩擦力和船体所受水流的阻力是二者中最主要的抗力,可以通过流体力学来研究。

4、水利工程:水利工程中涉及到非常多的流体力学,比如:水泵利用流体力学原理,把低能状态的水转换成它所需要的能量;水桨也利用流体力学原理,把水流中的能量转换成船体所需要的能源,来推进船体的行驶。

伯努利原理在生活中的应用

伯努利原理在生活中的应用

伯努利原理在生活中的应用伯努利原理是描述了液体或气体在速度增加时压力下降的物理定律。

伯努利原理在流体力学中有广泛的应用,不仅在科学研究中发挥着重要的作用,同时也在我们日常生活中产生了一系列的实际应用。

本文将探讨伯努利原理在生活中的应用,并为你提供一些有趣的实例。

一、喷气式发动机喷气式发动机是伯努利原理应用的典型例子之一。

在飞机喷气式发动机中,引擎将空气吸入后通过压缩产生高速气流,然后将燃料喷入气流中引发燃烧,产生高压、高速的燃气流,从喷嘴喷出。

根据伯努利原理,当气流速度增加时,气流周围的压力会降低。

喷气式发动机的喷气口处速度非常高,使得周围空气的压力降低,从而产生了推力,推动飞机向前飞行。

二、飞机起飞和降落伯努利原理也解释了为什么飞机可以实现起飞和降落。

当飞机在跑道上起飞时,由于飞机的机翼上安装有形状特殊的翼型,通过增加机翼的上弯曲程度,使得上表面的风速比下表面风速更快,根据伯努利原理,上表面压力较小,而下表面压力较大,从而飞机得到了向上的升力,实现了起飞。

同样地,当飞机降落时,机翼的形状和调整使得下表面的风速加快,因此下表面的压力下降,上表面的压力上升,形成了向上的升力,从而使得飞机保持悬浮的状态。

三、吸管原理在日常生活中,我们常常会使用吸管。

吸管呈长方形截面的管道,当我们用嘴吸取吸管上端的液体时,我们可以观察到吸管内的液体向上移动。

这是因为在吸管中形成了负压,根据伯努利原理,液体在负压下会向压力较低的地方移动。

由于吸管内空气被吸取而形成的负压,使得液体被吸入吸管内,并通过吸管到达我们口中。

四、喷气式洗手器喷气式洗手器是现代公共卫生间中常见的设备之一。

喷气式洗手器采用高速的气流将水分隔开并通过喷嘴喷出,确保用户在用洗手器时能够避免接触到他人的污染。

这种设计依赖于伯努利原理,高速的气流在喷孔周围形成了低压区域,将水分隔开并将其喷出。

这种设计不仅更加卫生,同时还节省了用水量。

五、飞机上的通风系统在飞机上,通风系统的设计也利用了伯努利原理。

流体力学在生活中的原理

流体力学在生活中的原理

流体力学在生活中的原理
流体力学研究流体运动规律,它的基本原理在许多日常生活场景中都有体现:
1.空气动力学
空气是一种流体,飞机机翼产生升力与下压力,雨伞产生上升气流,都是空气动力学原理的应用。

2.水流运动
排水管道的设计考虑流体黏滞性;水库大坝的设计针对水流冲击压力与涡流。

这些都运用了流体静力学。

3.空调与风扇
空调、电扇通过叶片旋转产生气流circulate,这是利用了流体运动原理。

调节出风口形状也会影响空气流动模式。

4.水龙头流量
水龙头的流量取决于水压与开口大小。

我们通过拧松或拧紧水龙头可以控制流出的水流量。

这demonstration 了连续流体流动规律。

5.运动速度
运动员游泳时手掌的形状、抬举时机都根据水的流体特性设计,以获得更强推力。

6.鱼雷设计
鱼雷的流线型头部设计是应用流体动力学原理,减少水流阻力、增强速度。

7.油漆喷涂
调整喷涂的气压和角度可以控制油漆颗粒在空气中运动的状态,实现精细均匀的喷涂效果。

我们生活中的许多简单现象,都与流体运动规律密切相关,流体力学为人类生活带来许多便利。

生活中的流体力学

生活中的流体力学

弧旋球
足球在没有旋转下 水平运动的情形, 当足球向前运动, 空气就相对于足球 向后运动
足球只有旋转而没 有水平运动的情形, 当足球转动时,四 周的空气会被足球 带动,形成旋风式 的流动
水平运动和旋转 两种运动同时存 在
弧旋球
这时候,足球左面空气流动的速 度较左面大。根据流体力学的伯 努利方程 (ρgh+(1/2)*ρv^2p=c),流体速度较大的地方气压 会较低,因此足球左面的气压较 右面低,产生了一个向左的力。 结果足球一面向前走,一面承受 一个把它推向左的力,造成了弯 曲球。原来我们在日常生活中也 经常应用这个原理使物体在流体 中的运动方向改变,例如飞机和 帆船的运作都是基于这个原理。
卡门涡街频率
卡门涡街起因流体流经阻流体时,流体从阻流体两侧剥离,形成交替的涡流。这种 交替的涡流,使阻流体两侧流体的瞬间速度不同。流体速度不同,阻流体两侧受到 的瞬间压力也不同,因此使阻流体发生振动。振动频率与流体速度成正比,与阻流 体的正面宽度成反比
f=SrV/d
f=卡门涡街频率 Sr=斯特劳哈尔数 V=流体速度 d=阻流体迎面宽度
卡门涡街
在流体中安置阻流体,在特定条件下会出现不 稳定的边界层分离,阻流体下游的两侧,会产 生两道非对称地排列的旋涡,其中一侧的旋涡 循时针方向转动,另一旋涡则反方向旋转,这 两排旋涡相互交错排列,各个旋涡和对面两个 旋涡的中间点对齐
圣克里斯多福背负耶稣化身的儿童
卡门涡街
2007年美国“陆地卫星7”,拍摄的阿 留申群岛后的卡门涡街
放视频啦!!!
课件 制作
学的奠基人之一,是我国著名科学家钱学森、钱伟长、郭永怀,以及关藉华人科 学家林家翘在关国加州理工学院学习时的导师。
在一定条件下的定常来流绕过某些物体时,物体 两侧会周期性地脱落出旋转方向相反、排列规则 的双列线涡,经过非线性作用后,形成卡门涡街

生活中的流体力学

生活中的流体力学

生活中的流体力学
流体力学在工业、农业、交通运输、天文学、地学、生物学、医学等方面得到广泛应用。

通过湍流的理论和实验研究,了解其结构并建立计算模式;多相流动;流体和结构物的相互作用;边界层流动和分离;生物地学和环境流体流动等问题;有关各种实验设备和仪器等。

具体运用事例如下:
1、在供热通风和燃气工程中:热的供应,空气的调节,燃气的输配,排毒排湿,除尘降温等等,都是以流体作为介质,通过流体的各种物理作用,对流体的流动有效的加以组织实现的。

2、在建筑工程和土建工程中:如基坑排水、路基排水、地下水渗透、地基坑渗稳定处理、围堰修建、海洋平台在水中的浮性和抵抗外界扰动的稳定性等。

3、在市政工程中:如桥涵孔径设计、给水排水、管网计算、泵站和水塔的设计、隧洞通风等,特别是给水排水工程中,无论取水、水处理、输配水都是在水流动过程中实现的。

生活中的流体力学

生活中的流体力学

流体力学在生活中的应用流体力学是力学一个独立的分支,是一门研究流体(液体和气体)的平衡和力学运动规律及其应用的科学。

它所研究的基本规律包括两大部分:一是流体平衡的规律,即流体静力学;二是流体运动的规律,即流体动力学。

流体力学的这些特点使它与实际应用产生了很大的关联,因此具有极大的研究价值。

一、流体的主要物理性质流体的主要物理性质:1、流体:只能承受压力,一般不能承受拉力与抵抗拉伸变形。

液体有一定的体积,存在一个自由液面;气体能充满任意形状的容器,无一定的体积,不存在自由液面。

2、流体的连续介质模型微观:连续介质模型(continuum continuous medium model):把流体视为没有间隙地充满它所占据的整个空间的一种连续介质,且其所有的物理量都是空间坐标和时间的连续函数的一种假设模型:u =u(t,x,y,z)。

3、惯性一切物质都具有质量,流体也部例外。

质量是物质的基本属性之一,是物体惯性大小的量度,质量越大,惯性也越大。

4、压缩性流体的可压缩性(compressibility):作用在流体上的压力变化可引起流体的体积变化或密度变化,这一现象称为流体的可压缩性。

压缩性可用体积压缩率来量度。

5、粘度粘性粘性:即在运动的状态下,流体所产生的抵抗剪切变形的性质;粘度:粘性大小由粘度来量度。

流体的粘度是由流动流体的内聚力和分子的动量交换所引起的。

二、生活中的流体力学生活中有关流体力学方面有趣的事情,还是比较多的。

1、足球比赛中,经常看到足球在空中划出漂亮的弧线,这为足球运动增添了很多的魅力。

弧线出现的背后,是流体力学在发挥着相应的作用。

除了弧线以外,很多进攻方式都与流体力学有着千丝万缕的联系。

通过探究不难看出,足球运动中的多个方面都应用到了流体力学,通过分析这些典型的例子,可以对足球运动中的力学知识有一个整体上的认识,这对于运动员技术水平的提高大有裨益。

2、如果留心的话,我们会经常发现:在宿舍阳台处的门外有风的前提下,宿舍里的门(在不锁的前提下)会随着阳台处的门的打开,而自动打开。

生活中的流体力学原理及应用

生活中的流体力学原理及应用

生活中的流体力学原理及应用引言流体力学是研究流体力学性质、流动行为和力学应用的学科。

在日常生活中,我们经常会遇到许多与流体力学有关的现象和应用。

本文将介绍一些生活中常见的流体力学原理以及其应用。

流体力学原理在生活中,我们常常遇到的一些流体力学原理包括:1.压力传递原理根据帕斯卡定律,液体或气体在静止或稳定状态下,如果在某点施加压力,则这个压力将在整个液体或气体内均匀传递。

这一原理也是液压系统工作的基础。

2.流体静力学原理流体静力学是研究静止流体的行为和压力分布的学科。

根据阿基米德原理,浸没在流体中的物体受到的浮力等于其排挤的流体重量。

这一原理解释了为什么船只可以浮在水面上。

3.流体动力学原理流体动力学是研究流动流体的力学行为的学科。

其中最基本的原理之一是质量守恒定律,即在封闭系统中,流体的质量不会凭空消失或增加。

这一原理在管道中的水流和空气流动等情况中发挥了重要作用。

流体力学应用流体力学原理不仅仅存在于实验室或工业领域,它们也广泛应用于我们的日常生活中。

以下是一些常见的流体力学应用。

自来水供应自来水是我们日常生活中最常接触到的流体之一。

自来水系统使用了多种流体力学原理来将水从水源运送到家庭。

其中一个重要的原理是利用水压来向上输送水。

在不需要使用任何电力的情况下,水塔和自来水管道系统利用重力和压力来为我们提供自来水。

空调和暖气系统空调和暖气系统利用了流体力学原理来控制室内空气的温度。

热空气和冷空气通过空气管道系统进行输送。

这些系统利用了流体的热传导性质和流动行为,通过循环流体来调节室内温度。

汽车引擎和润滑系统汽车引擎和润滑系统使用了多种流体力学原理。

引擎中的燃烧过程产生的气体推动活塞,驱动汽车。

润滑系统通过利用润滑油的流动性和黏度特性来减少引擎部件之间的摩擦和磨损。

管道输送在石油和天然气工业中,管道输送是一种常见的方式。

这些管道运用了流体力学原理,通过控制流体的压力和流速来实现长距离的输送。

此外,输送水和液化气体等流质也经常会使用管道来进行。

生活当中的流体力学

生活当中的流体力学

流体力学作业————生活中的流体力学成员:盛文华学号:074090324生活中的流体力学也许,到现在你都有点不会相信,其实我们生活在一个流体的世界里。

观察生活时我们总可以发现。

生活离不开流体,尤其是在社会高速发展的今天。

鹰击长空,鱼翔浅底;汽车飞奔,乒乓极旋,许许多多的现象都与流体力学有关。

生活中的很多事物都在经意或不经意中巧妙地掌握和运用了流体力学的原理,让其行动变得更灵活快捷。

不知道大家有没有发现,高尔夫球的表面做成有凹点的粗糙表面,而不是平滑光趟的表面,就是利用粗糙度使层流转变为紊流的临界雷诺数减小,使流动变为紊流,以减小阻力的实际应用例子。

最初,高尔夫球表面是做成光滑的,如图1—1,后来发现表面破损的旧球图1-1光滑面图1-2粗糙面反而打的更远。

原来是临界Re数不同的结果。

高尔夫球的直径为41.1毫米,光滑球的临界RE数为3.85×E5,相当的自由来流空气的临界速度为135米/秒,实际上由于制造得不可能十分完善,速度要稍微低一些。

一般高尔夫球的速度达不到这么大,因此,空气绕流球的情况属于小于临界Re数的情况,阻力系数Cd 较大。

将球的表面做成粗糙面,促使流动提早转变为紊流,临界RE数降低到E5, 相当的临界速度为35米/秒,一般高尔夫球的速度要大于这个速度。

因此,流动属于大于临界Re数的情况,阻力系数Cd较小,球打得更远。

同样在游泳的时候,也受到流体的作用。

游泳是在水中进行的周期性运动。

人在水中的漂浮能力与身体所持姿势直接相关。

身体保持流线型(吸足气),使重心与水的浮心接近一条直线,就能漂浮较长时间;如果先吸足气,双臂却紧贴体侧,胸腔虽充足气,但下肢相对上身比重较大,下肢很快就会下沉。

因此,游泳不但要充分利用水的浮力,如图2-1所示。

而且要尽量减少失去浮力的时间,如头不要抬得太高,身体不能起伏转动太大,空中移臂时间宜短等。

游泳者游进时受到相反方向的阻力作用。

游泳得阻力包括水的摩擦阻力、波浪阻力和物体得形状阻力。

生活中的流体力学

生活中的流体力学

生活中的流体力学流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态以及流体和固体界壁间有相对运动时的相互作用和流动规律。

我们虽然长期生活在空气和水的环境中,却对一些流体运动知识缺乏最基本的认知。

其实,我们的日常生活中有很多和流体力学相关的巧妙设计和应用,你都知道吗?1. 表面光滑与表面粗糙的小球哪个阻力大?你会说:表面越粗糙,阻力越巨大。

Sorry,你错了!这是不一定的。

高尔夫球运动起源于15世纪的苏格兰,当时人们认为表面光滑的球飞行阻力小,因此用皮革制球。

但在低速时(120英里/小时),光滑球(3.5英寸)比轻微粗糙球阻力小。

在某确定临界速度之上(125英里/小时),粗糙球的阻力突然变得小于光滑球的阻力。

而且,未必速度越大阻力越大!2. 汽车阻力来自前部还是后部?实际上,汽车的阻力来自后部形成的尾流,称为形状阻力。

3. 汽车设计上的流体力学在我们身边来来往往飞驰的汽车,更是与流体力学的巧妙结合。

影响和提升汽车的动力特性的装置主要的是它的导流罩。

研究表明,在厢式货车上安装导流罩,可以大幅度的降低气动阻力、节省燃料消耗。

安装导流罩使得气动阻力系数曲线上的临界雷诺数增大:设置薄壁式的导流罩底边和驾驶室顶面之间的间隙,可以增强导流罩的减阻效果。

在厢式货车尾部安装涡流稳定器,可以降低尾涡区内气流能量的消耗,使静压回升,压差阻力减小。

鱼型楔型前上部导流罩装在驾驶室顶上,能将迎面气流导向车顶和侧围,消除或向高出驾驶室顶部以及驾驶室与货箱之间空间的影响。

它有三种形式:板罩式、立体式和涡流凹板式,三种形式分别可使气动阻力降低20%~30%,25%~35%,15%~20%。

第一种已被大量采用,第二种用得比较广,第三种使用的有限。

前下部导流罩和前侧阻翼板,俩者均装在保险杠上,下部导流罩使进入车下的导流不与车下部分突出的构建相互作用,从而可使汽车的气动阻力降低10%~15%。

车身前侧导流罩和前侧翼板,这俩种装置都在车身前部分的流线形,可以改善车身部分的流线形,使汽车的气动阻力分别降低10%~15%和5%~10%。

生活中的流体力学

生活中的流体力学

生活中的流体力学
生活中处处都充满了流体力学的影响,从我们每天使用的水龙头到汽车的行驶,都离不开流体力学的原理。

流体力学是研究流体在运动和静止状态下的力学性质和规律的学科,它的应用范围非常广泛,不仅在工程领域有着重要的应用,也贯穿于我们日常生活的方方面面。

首先,我们可以从日常生活中的水流动来看流体力学的应用。

当我们打开水龙头,水就会从高处流向低处,这就是由于重力作用下的水流动。

此外,我们还可以通过改变水龙头的开合程度来控制水流的大小和速度,这就涉及到了流体的流速和流量的概念。

流体力学的原理也应用在了水泵的设计和水管的布局中,以确保水能够顺利地流动到我们所需要的地方。

其次,汽车的行驶也离不开流体力学的影响。

汽车在行驶过程中,空气对车辆
的阻力会影响车辆的速度和燃油消耗。

因此,设计者需要考虑车辆的外形和空气动力学原理,以减小空气的阻力,提高汽车的燃油效率。

此外,汽车的润滑油和冷却液的流动也需要流体力学的原理来进行设计和优化,以确保发动机的正常运转和散热效果。

最后,生活中的风扇和空调也是流体力学的应用。

风扇通过扇叶的旋转产生气流,将空气从高压区域送往低压区域,使人们感到凉爽。

而空调则通过循环流动的制冷剂来调节室内的温度,使人们在炎热的夏天也能感到清凉舒适。

总之,流体力学贯穿于我们生活的方方面面,无处不在。

它的原理和应用不仅
让我们的生活更加便利和舒适,也为工程技术的发展提供了重要的理论基础。

我们应该更加关注流体力学的相关知识,以更好地理解和应用它在日常生活中的重要作用。

生活中的流体力学现象解析与实践

生活中的流体力学现象解析与实践

生活中的流体力学现象解析与实践引言流体力学是研究流体运动及其相互作用的一门学科,广泛应用于工程、物理、化学等领域。

在我们的日常生活中,涉及到了许多与流体力学相关的现象和实践。

本文将通过对这些现象的解析,探讨流体力学在生活中的应用。

水龙头的喷射现象水龙头是我们日常生活中常见的用水设施,它的喷射现象涉及到了流体力学的许多理论。

当我们打开水龙头,水从喷头中喷出,形成一个水柱。

那么,水柱的高度和弯曲程度是如何被控制的呢?首先,我们要了解水柱的喷射原理。

水从龙头中喷出时,其实是受到了一定的压力作用。

根据流体力学的公式,我们知道,流体的压力和流速有关。

水柱的高度取决于水的出口速度,流速越大,水柱就越高。

而水柱的弯曲程度则受到了重力的影响,重力使得水柱向下弯曲,形成弧线。

在实践中,我们可以通过调节水龙头的开关来控制水流的强弱,从而控制水柱的高度。

另外,我们还可以通过改变水龙头的出口形状来改变水柱的弯曲程度。

例如,如果出口是一个细长的喷嘴,水柱会相对直立;如果出口是一个扇形的喷嘴,水柱则会弯曲得更明显。

水中的漩涡现象当我们在水池中放一块物体,例如小纸片,观察它在水中的运动,我们会发现,物体周围会形成一个旋涡。

这就是水中的漩涡现象,也是流体力学的研究对象之一。

漩涡是由水流的旋转而形成的,它的产生涉及到流体力学中的一些基本原理。

首先,物体进入水中会改变水流的速度和方向,这会导致水流受到扰动。

随着扰动的传播,原本平稳的水流会形成旋转。

另外,漩涡的大小和形状也与水的粘性有关,粘性越大,漩涡形成的速度越快。

在实践中,我们可以通过观察水中的漩涡现象来研究水流的性质。

例如,我们可以放置不同形状的物体在水中,观察漩涡的大小和形状变化,从而了解物体对水流的影响。

水中的波浪现象水中的波浪现象也是流体力学的研究领域之一。

当我们在水中扔一颗石子,水面上会产生波纹,这就是波浪现象。

波浪的形成需要满足一定的条件,包括水的密度、表面张力等。

流体压强与流速的关系在生活中的应用

流体压强与流速的关系在生活中的应用

流体压强与流速的关系在生活中的应用以流体压强与流速的关系在生活中的应用为题,我们可以从多个角度来探讨这个话题。

流体压强与流速的关系是流体力学中的一个重要概念,它在生活中有着广泛的应用。

我们可以从水龙头的水压来讨论流体压强与流速的关系。

当我们打开水龙头,水从水龙头中流出,流体便具有了一定的流速。

而水龙头的水压则决定了水流出的速度和压强。

一般情况下,我们可以通过调节水龙头的开度来改变水的流速和压强。

当水龙头开得很大时,水的流速会很快,同时由于水流通过的截面积减小,水的压强也会增大。

相反,当水龙头开得很小时,水的流速会很慢,同时水的压强也会减小。

这就是流体压强与流速之间的关系。

在实际生活中,我们可以利用这个原理来调节水龙头的水流。

比如,在洗手时,如果我们希望水流出来的更快,可以将水龙头开大一些;如果我们希望水流出来的更柔和一些,可以将水龙头开小一些。

这样,我们就可以根据自己的需要来调节水的流速和压强,以达到更好的使用效果。

除了水龙头,流体压强与流速的关系还在其他方面有着应用。

比如,在喷雾器中,通过控制液体的压力和喷嘴的孔径,可以调节喷雾器喷出的液体的流速和压强。

这样,我们就可以根据需要来调节喷雾器的喷雾效果,使其喷出的液体更细腻或更粗糙。

流体压强与流速的关系也在气象学中有着重要的应用。

例如,在气象预报中,通过观测大气中的风速和气压,可以推算出风的流速和压强。

这样,我们就可以根据这些数据来预测天气情况,比如预测风的强度和风暴的来临。

流体压强与流速的关系还在工程领域中有着广泛的应用。

比如,在水利工程中,通过调节水闸的开启程度和流道的形状,可以控制水流的流速和压强,以实现对水资源的合理利用和调配。

在油田开采中,通过控制注水井的注水压力和注水量,可以调节油井的产出流量和压力,以提高采油效率。

总结起来,流体压强与流速的关系在生活中有着广泛的应用。

我们可以通过调节水龙头的开度来改变水的流速和压强,在喷雾器中调节喷雾效果,在气象学中预测天气情况,在工程领域中实现对水资源和油田的合理利用和调配。

伯努利原理在生活中的应用

伯努利原理在生活中的应用

伯努利原理在生活中的应用伯努利原理是流体力学中的一个基本原理,它描述了在无粘度、不可压缩条件下,流体在速度增加时压力将下降的现象。

该原理广泛应用于日常生活中的各个领域,下面将从飞行、运动、音乐和气象等方面介绍伯努利原理的应用。

1. 飞行方面伯努利原理在飞行器的设计和运行中起着至关重要的作用。

飞机的机翼采用翼型设计,上表面比下表面更为曲率,使得空气在上表面流动时速度更快,压力更低,而在下表面流动时速度较慢,压力较高。

根据伯努利原理,速度较快的空气产生低压,从而使得机翼产生上升力,帮助飞机保持在空中飞行。

2. 运动方面伯努利原理在一些运动项目中也有应用。

例如,高尔夫球运动中,球杆击打高尔夫球时,运动员通过改变球杆下压曲线,使球在击打过程中产生旋转,从而在空气中形成一个薄薄的气流层。

根据伯努利原理,这个气流层使得球上方产生低气压,球下方产生高气压,使得球的飞行更加稳定和远距离。

3. 音乐方面伯努利原理在乐器演奏中也有应用。

例如,笛子的演奏,演奏者通过吹气时的力度和气流形成,使得气流穿过笛子的吹口产生振动,从而发出音乐声音。

根据伯努利原理,气流在通过狭缝时速度增加,压力下降,形成低压区,使得空气周围的音柱震动,发出声音。

4. 气象方面伯努利原理在气象学中的应用也很重要。

例如,在龙卷风中,由于低气压带来的强大的上升气流会形成旋转的气旋,这符合伯努利原理描述的速度增加伴随着压力下降的规律。

此外,伯努利原理也可以解释为什么当气压下降时,空气流速增加,从而可能引发暴风雨等恶劣天气。

综上所述,伯努利原理在飞行、运动、音乐和气象等方面都有着广泛的应用。

了解和掌握伯努利原理的工作原理,不仅可以帮助我们更好地理解周围发生的现象,还可以促进科学技术的发展和应用,为我们的生活带来更多的便利和享受。

所以,深入学习和理解伯努利原理的应用是非常有意义的。

生活中的流体力学

生活中的流体力学

生活中的流体力学流体力学是力学的一个分支,主要研究在各种力的作用下,流体本身的静止状态和运动状态。

流体力学距离我们并不遥远,生活中很多现象可以用流体力学进行解释。

站台上的“生死线”在火车站或者地铁站的站台上有一根黄色警戒线,这根线可不是随意画的。

当列车高速通过站台时,人、空气、车体就会产生相对运动。

根据伯努利原理,流动的空气流速越高压强越小,所以越靠近车体的地方空气压强越小,高速通过的列车会把人吸过去,产生很大的危险。

黄线就是根据列车通过车站时的最大速度设置的安全距离,所以大家在等车的时候千万不要越过这条“生死线”。

防不胜防的“香蕉球”“香蕉球”又称弧线球,指足球运动员运用脚法使球在空中向前做弧线运动的踢球技术。

香蕉球常用于进攻方在对方禁区附近利用球沿弧线运行的状态,避开人墙直接射门得分。

以右脚为例,当球员用右脚内侧向球门方向“搓”球时,球会逆时针旋转,空气与球面发生摩擦,在球周围产生与球旋转方向一致的气流。

由于球左侧摩擦产生的气流的流动方向与其飞行中迎面遇到的气流方向相同,因此,球左侧的空气流动速度较快。

与此同时,球右侧的这两股气流的方向相反,气流速度较慢。

根据伯努利原理,右脚内侧“搓”起的“香蕉球”在飞行时会受到一个横向的压力差,形成横向作用力,使原本向右飞行的球受到向左的力而向左偏转。

飞机为什么能飞起来?飞机起飞时,空气与飞机产生相对运动,机翼的设计及飞行角度使其上表面的空气流动比下表面的空气流动所受的阻力小,即上表面的空气流速快,下表面的空气流速慢,从而产生向上的升力。

当飞机的速度增大到一定程度时,机翼上下表面产生的压力差与飞机自身重力相平衡,飞机就开始离开地面,随着飞机速度进一步增大,飞机受到的压力差会越来越大,向上的升力也越来越大,飞机就起飞了。

诡异的海难事件1912年秋,远洋货轮“奧林匹克”号高速行驶在太平洋上,远处有一艘排水量比它小得多的铁甲巡洋舰“哈克”号与它并列高速前行。

突然,“哈克”号像着了魔一样冲向“奧林匹克”号,无论舵手怎么调整航向,悲剧还是发生了,“奧林匹克”号的侧舷被“哈克”号撞出了一个大洞… …诡异撞船,匪夷所思,但根据伯努利原理,两船并列航行时,两船中间的水流速度要比两船外侧的水流流速快,所受压力就比两船外侧所受压力小,在水流的作用下,导致两船相撞。

生活中的流体力学

生活中的流体力学

生活中的流体力学你倒啤酒时通常做什么?为什么洗衣机总是翻口袋?为什么高尔夫球会有坑?本文将展示流体力学和流体力学的一些简单应用,如流体力学和流体力学。

剩下的不多了。

倒啤酒时,瓶子里会冒出泡沫。

啤酒倒进了玻璃杯。

辣妹举起酒瓶,把啤酒柱冲到玻璃杯底。

它总是充满了泡沫。

气泡消失后,杯子里几乎没有啤酒了。

是什么导致了这么多泡沫?洗衣机总是把口袋翻过来。

通常在洗衣机里洗衣服的人都有这种经历。

在洗衣机里洗完衣服后,他们的衣袋经常翻过来。

如果口袋里有硬币、钥匙或其他东西,也会被取出。

怎么了?为了解释这两种现象,我们必须从流体力学的基本原理,即伯努利定律入手。

其规律是:在恒定流场中,流体颗粒在流线上的速度与此时的压力呈负相关。

一般来说,速度越高,压力越低。

具体而言,沿着流线,流体颗粒的速度为V,密度为ρ,此时的压力为p。

它们之间的关系如下:1倒啤酒时起泡:啤酒水柱冲向杯底,造成水流不均。

伯努利定律知道,每个点的压力不同,较大部分的分压变小,这导致二氧化碳的溶解度降低。

换言之,如果你想让啤酒在不起泡的情况下灌满杯子,就应该在倒酒过程中尽量降低啤酒杯内液体的相对速度,使灌装过程尽可能准静态。

熟练的服务员尽可能地倾斜杯子,让啤酒沿着墙壁慢慢地流到杯底,然后慢慢地将杯子的角度调整到垂直位置,这样就可以在不产生太多啤酒的情况下灌装。

充满啤酒泡沫。

由此,降低了啤酒从一只手伸入杯口的动能,从而减少了啤酒杯的滴落。

另一方面,通过倾斜杯子,啤酒柱对杯子的正面撞击可以转化为斜碰撞,从而减少啤酒接触瞬间的动量变化。

此外,在倾翻过程中,啤酒滑到杯底的距离增加。

在这个过程中,靠近玻璃壁的粘性边界层对啤酒产生了阻力,这也降低了啤酒到达玻璃底部的速度。

因此,基本上尽可能满足准静态要求。

人们幽默地将倒啤酒的技巧归纳为三个谐音:“弯门歪(邪道)、杯壁(卑鄙)淫秽、斜(邪)归正常。

2现在,让我们看看洗完后的情况。

洗衣机旋转时,口袋附近的流体速度较高,而口袋底部的流体速度较低。

生活中的流体力学

生活中的流体力学

生活中的流体力学:—、定义自然通风是指利用建筑物内外空气的密度差引起的热压或室外大气运动引起的风压来引进室外新鲜空气达到通风换气作用的一种通风方式。

它不消耗机械动力,同时,在适宜的条件下又能获得巨大的通风换气量,是一种经济的通风方式。

自然通风在一般的居住建筑、普通办公楼、工业厂房(尤其是高温车间)中有广泛的应用,能经济有效地满足里面人员的室内空气品质要求和生产工艺的一般要求。

二、自然通风的作用原理虽然自然通风在大部分情况下是一种经济有效的通风方式,但是,它同时又是一种难以进行有效控制的通风方式。

我们只有在对自然通风作用原理了解的基础上,才能采取一定的技术措施,使自然通风基本上按预想的模式运行。

同样,在计算方面,也需要在一系列的简化条件下进行的:1 •空气在流动过程中是稳定的,即假定所有可以引起自然通风的因素不随时间变化。

2在同一水平面上各点的静压力均相等,静压沿高度方向的变化符合流体静力学的规律。

3•经开孔流入的射流,或室内热源所造成的射流,在到达排风窗孔前已经完全消散。

4.用封闭模型得出的空气动力系数适用于又能空气流动的孔口。

……如果建筑物外墙上的窗孔两侧存在压差Ap ,空气就会流过该窗孔,空气流过窗孔时的阻力就等于“。

其中:“——窗孔两侧的压力差(Pa) ; v——空气流过窗孔时的流速(m/s) ; p通过窗孔空气的密度(kg/m3 ); <——窗孔的局部阻力系数•通过窗孔的空气量按下式计算:其中: qm——通过窗孔的空气量(kg/s ) ; qv——通过窗孔的空气流量(m3/s ) ; F --- 窗孔的面积(m2 ) •从上式可以看出,如果窗口两侧的压差Ap和窗孔的面积F已知,就可以求得通过该孔的空气量qm o 要实现自然通风,窗孔两侧必须有压差Ap。

三、热压作用下的自然通风——单层建筑由流体静力学基本原理知,大气压力与距离地面的高程有关:离地面越高,压力就越小,由高程引起的上下压力差值等于:高差x空气密度x重力加速度。

浅谈生活中的流体力学

浅谈生活中的流体力学

浅谈生活中的流体力学(1)戴着眼镜,从温度较冷的室外到温暖的室内,眼镜商会蒙上白雾,是气体的液化现象。

(2)水烧开了,壶盖会被顶起来,是气体对壶盖做功。

(3)趴在快速高速行驶的车上,在拐弯的时候,可以感觉向外打翻,这就是Vergt现象。

(4)长期堆煤的墙角会发黑,这是固体分子的扩散现象。

(5)钻木可以生火,这就是作功发生改变内能。

(6)靠在暖气旁边会感到暖和,这是热传递。

(7)指甲剪、剪刀、镊子的工作原理,就是杠杆。

(8)坐海盗船,有失重现象。

(9)白炽灯永久了灯泡壁上可以存有一层黑色,就是钨丝的升华。

(10)在日常生活中,人们常常会碰到这种现象:晚上脱衣服睡觉时,黑暗中常听到噼啪的声响,而且伴有蓝光,见面握手时,手指刚一接触到对方,会突然感到指尖针刺般刺痛;早上起来梳头时,头发会经常“飘”起来,越理越乱,拉门把手、开水龙头时都会“触电”,时常发出“啪、啪”的声响,这就是发生在人体的静电。

(11)盐水在零下20-50度才可以接冰,盐越多温度越高食醋零下20度左右就结冰了(12)汤的密度必须大于水,不是油的原因,(13)水中加入少量的稀盐酸或氢氧化钠溶液,这样可以使水的导电性更好(14)少量白醋中重新加入几滴食用油,容器后静置片刻、可以发生絮状物;如果再碱液少量洗洁精,挥的话可以发生泡沫。

不挥的话,可以沉在醋面上(15)拿个玻璃瓶,玻璃瓶口上放上一元硬币,有手捂住玻璃瓶身并不断摩擦发热,你会看到硬币会跳舞的。

1、摆在壁墙上的石英钟,当电池的电能用尽而暂停站立时,其秒针往往停在在刻度盘上“9”的边线。

这就是由于秒针在“9”边线处受轻力矩的制约促进作用最小。

2、有时自来水管在邻近的水龙头放水时,偶尔发生阵阵的响声。

这是由于水从水龙头冲出时引起水管共振的缘故.3、对着电视画面偷拍,应当停用照相机闪光灯和室内照明灯,这样映出的照片画面更准确。

因为闪光灯和照明灯在电视屏上的反射光可以阻碍电视画面的反射光.4、走样的镜子,人距镜越远越走样.因为镜里的像是由镜后镀银面的反射形成的,镀银面不平或玻璃厚薄不均匀都会产生走样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学:
流体力学是在人类同自然界作斗争和在生产实践中逐步发展起
来的。

中国有大禹治水疏通江河的传说。

秦朝李冰父子(公元前3
世纪)领导劳动人民修建了都江堰,至今还在发挥作用。

大约与此同时,罗马人建成了大规模的供水管道系统。

对流体力学学科的形成作出贡献的首先是古希腊的阿基米德。

他建立了包括物体浮力定理和浮体稳定性在内的液体平衡理论,奠定了流体静力学的基础。

此后千余年间,流体力学没有重大发展。

15世纪意大利达·芬奇的著作才谈到水波、管流、水力机械、鸟的飞翔原理等问题。

17世纪,帕斯卡阐明了静止流体中压力的概念。

但流体力学尤其是流体动力学作为一门严密的科学,却是随着经典力学建立了速度、加速度,力、流场等概念,以及质量、动量、能量三个守恒定律的奠定之后才逐步形成的。

发展
17世纪力学奠基人I. 牛顿研究了在液体中运动的物体所受到的阻力,得到阻力与流体密度、物体迎流截面积以及运动速度的平方成正比的关系。

他对粘性流体运动时的内摩擦力也提出了以下假设:即两流体层间的摩阻应力同此两层的相对滑动速度成正比而与两层间
的距离成反比(即牛顿粘性定律)。

之后,法国H. 皮托发明了测量流速的皮托管;达朗贝尔对运河中船只的阻力进行了许多实验工作,证实了阻力同物体运动速度之间
的平方关系;瑞士的L. 欧拉采用了连续介质的概念,把静力学中压力的概念推广到运动流体中,建立了欧拉方程,正确地用微分方程组描述了无粘流体的运动;伯努利从经典力学的能量守恒出发,研究供水管道中水的流动,精心地安排了实验并加以分析,得到了流体定常运动下的流速、压力、管道高程之间的关系——伯努利方程。

欧拉方程和伯努利方程的建立,是流体动力学作为一个分支学科建立的标志,从此开始了用微分方程和实验测量进行流体运动定量研究的阶段。

从18世纪起,位势流理论有了很大进展,在水波、潮汐、涡旋运动、声学等方面都阐明了很多规律。

法国J.-L. 拉格朗日对于无旋运动,德国H. von 亥姆霍兹对于涡旋运动作了不少研究.上述的研究中,流体的粘性并不起重要作用,即所考虑的是无粘流体,所以这种理论阐明不了流体中粘性的效应。

理论基础
将粘性考虑在内的流体运动方程则是法国C.-L.-M.-H. 纳维于1821年和英国G. G. 斯托克斯于1845年分别建立的,后得名为纳维-斯托克斯方程,它是流体动力学的理论基础。

由于纳维-斯托克斯方程是一组非线性的偏微分方程,用分析方法来研究流体运动遇到很大困难。

为了简化方程,学者们采取了流体为不可压缩和无粘性的假设,却得到违背事实的达朗伯佯谬——物体在流体中运动时的阻力等于零。

因此,到19世纪末,虽然用分析法的流体动力学取得很大进展,但不易起到促进生产的作用。

与流体动力学平行发展的是水力学(见液体动力学)。

这是为了满足生产和工程上的需要,从大量实验中总结出一些经验公式来表达流动参量之间关系的经验科学。

使上述两种途径得到统一的是边界层理论。

它是由德国L. 普朗特在1904年创立的。

普朗特学派从1904年到1921年逐步将N-S 方程作了简化,从推理、数学论证和实验测量等各个角度,建立了边界层理论,能实际计算简单情形下,边界层内流动状态和流体同固体间的粘性力。

同时普朗克又提出了许多新概念,并广泛地应用到飞机和汽轮机的设计中去。

这一理论既明确了理想流体的适用范围,又能计算物体运动时遇到的摩擦阻力。

使上述两种情况得到了统一。

飞机和空气动力学的发展
20世纪初,飞机的出现极大地促进了空气动力学的发展。

航空事业的发展,期望能够揭示飞行器周围的压力分布、飞行器的受力状况和阻力等问题,这就促进了流体力学在实验和理论分析方面的发展。

20世纪初,以茹科夫斯基、恰普雷金、普朗特等为代表的科学家,开创了以无粘不可压缩流体位势流理论为基础的机翼理论,阐明了机翼怎样会受到举力,从而空气能把很重的飞机托上天空。

机翼理论的正确性,使人们重新认识无粘流体的理论,肯定了它指导工程设计的重大意义。

机翼理论和边界层理论的建立和发展是流体力学的一次重大进展,它使无粘流体理论同粘性流体的边界层理论很好地结合起来。

随着汽轮机的完善和飞机飞行速度提高到每秒50米以上,又迅速扩展
了从19世纪就开始的,对空气密度变化效应的实验和理论研究,为高速飞行提供了理论指导。

20世纪40年代以后,由于喷气推进和火箭技术的应用,飞行器速度超过声速,进而实现了航天飞行,使气体高速流动的研究进展迅速,形成了气体动力学、物理-化学流体动力学等分支学科。

分支和交叉学科的形成
从20世纪60年代起,流体力学开始了流体力学和其他学科的互相交叉渗透,形成新的交叉学科或边缘学科,如物理-化学流体动力学、磁流体力学等;原来基本上只是定性地描述的问题,逐步得到定量的研究,生物流变学就是一个例子。

以这些理论为基础,20世纪40年代,关于炸药或天然气等介质中发生的爆轰波又形成了新的理论,为研究原子弹、炸药等起爆后,激波在空气或水中的传播,发展了爆炸波理论。

此后,流体力学又发展了许多分支,如高超声速空气动力学、超音速空气动力学、稀薄空气动力学、电磁流体力学、计算流体力学、两相(气液或气固)流等等。

这些巨大进展是和采用各种数学分析方法和建立大型、精密的实验设备和仪器等研究手段分不开的。

从50年代起,电子计算机不断完善,使原来用分析方法难以进行研究的课题,可以用数值计算方法来进行,出现了计算流体力学这一新的分支学科。

与此同时,由于民用和军用生产的需要,液体动力学等学科也有很大进展。

20世纪60年代,根据结构力学和固体力学的需要,出现了计算弹性力学问题的有限元法。

经过十多年的发展,有限元分析这项新的
计算方法又开始在流体力学中应用,尤其是在低速流和流体边界形状甚为复杂问题中,优越性更加显著。

21世纪以来又开始了用有限元方法研究高速流的问题,也出现了有限元方法和差分方法的互相渗透和融合。

相关文档
最新文档