2018-2019人教版初三九年级上册数学期中检测卷附答案解析[最新]

合集下载

20182019新人教版九年级数学上册期中测试题含解析

20182019新人教版九年级数学上册期中测试题含解析

・・
p
1
X
o
II
CXI
§
CXI
r\
■5
II
e
+
II
<
c\r~
r\
(N
(N
II
E
t、
M
A
(N
(N

XX
B
• r\
CXI O
CM
+
+
T—
co
II
r\
r\
J

CXI
CXI co
CXI
<
CO CXI <
\—
X
E
+

II
(N
u

r\
A
CXI

ni

■a
<
ii
E
CXI
cxi
o
CXI
co
<
u o
A
A
II
CXI
E

)




x



x2

(2m
+
1)x
+
m(r
+
1)
0.(
1)


:













7
(2
)









x1
x2

x21

人教版2018-2019学年九年级数学第一学期期中检测卷及答案

人教版2018-2019学年九年级数学第一学期期中检测卷及答案

2018-2019学年九年级数学第一学期期中检测卷(120分钟150分)题号一二三四五六七八总分得分一、选择题(本大题共10小题,每小题4分,满分40分)题号12345678910答案1.下列标志中,是中心对称图形的是2.把方程x2-12x+33=0化成(x+m)2=n的形式,则m,n的值是A.6,3B.-6,-3C.-6,3D.6,-33.已知点A(x-2,3)与点B(x+4,y-5)关于原点对称,则y x的值是A.2B.C.4D.84.已知关于x的一元二次方程(m+3)x2+5x+m2-9=0有一个解是0,则m的值为A.-3B.3C.±3D.不确定5.一个三角形的两边长为3和8,第三边的长是方程x(x-9)-13(x-9)=0的根,则这个三角形的周长是A.20B.20或24C.9和13D.246.二次函数y=ax2+bc+c的图象如图所示,则下列判断中错误的是A.图象的对称轴是直线x=-1B.当x>-1时,y随x的增大而减小C.当-3<x<1时,y<0D.一元二次方程ax2+bx+c=0的两个根是-3,17.如图,正方形OABC绕着点O逆时针旋转40°得到正方形ODEF,连接AF,则∠OFA的度数是A.15°B.20°C.30°D.25°8.黄山市某塑料玩具生产公司,为了减少空气污染,国家要求限制塑料玩具生产,这样有时企业会被迫停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n-24,则企业停产的月份为A.2月和12月B.2月至12月C.1月D.1月、2月和12月9.已知关于x的方程kx2+(1-k)x-1=0,下列说法正确的是A.当k≠0时,方程总有两个不相等的实数解B.当k=0时,方程无解C.当k=-1时,方程有两个相等的实数解D.当k=1时,方程有一个实数解10.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是A.①②④B.①②⑤C.②③④D.③④⑤二、填空题(本大题共4小题,每小题5分,满分20分)11.如果关于x的一元二次方程2x(kx-4)-x2+6=0没有实数根,那么k的最小整数值是.。

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)

2018-2019学年度(上)九年级数学期中测试卷(含答案)2018-2019学年度(上)九年级数学期中测试卷(含答案)⼀、选择题(每⼩题3分,共30分)1.下列标志中,是中⼼对称图形的是A2.⼆次函数y=x2-2x+2的图象的顶点坐标是( A )A.(1,1) B.(2,2) C.(1,2) D.(1,3)3.正⽅形ABCD在直⾓坐标系中的位置如图所⽰,将正⽅形ABCD绕点A按顺时针⽅向旋转180°后,C点的坐标是( B )A.(2,0) B.(3,0) C.(2,-1) D.(2,1)第3题图4.已知关于x的⼀元⼆次⽅程(m+3)x2+5x+m2-9=0有⼀个解是0,则m的值为BA.-3B.3C.±3D.不确定5.(3分)如图,在⊙O中,相等的弦AB、AC互相垂直,OE⊥AC于E,OD⊥AB 于D,则四边形OEAD为( A )A.正⽅形B.菱形C.矩形D.平⾏四边形6.⼆次函数y=ax2+bc+c的图象如图所⽰,则下列判断中错误的是BA.图象的对称轴是直线x=-1B.当x>-1时,y随x的增⼤⽽减⼩D.⼀元⼆次⽅程ax2+bx+c=0的两个根是-3,17.若⼀次函数y=ax+b(a≠0)的图象与x轴的交点坐标为(-2,0),则抛物线y=ax2+bx的对称轴为( C )A.直线x=1 B.直线x=-2C.直线x=-1 D.直线x=-48.黄⽯市某塑料玩具⽣产公司,为了减少空⽓污染,国家要求限制塑料玩具⽣产,这样有时企业会被迫停产,经过调研预测,它⼀年中每⽉获得的利润y(万元)和⽉份n之间满⾜函数关系式y=-n2+14n-24,则企业停产的⽉份为DA.2⽉和12⽉B.2⽉⾄12⽉C.1⽉D.1⽉、2⽉和12⽉9.关于x的⼀元⼆次⽅程(m-2)x2+(2m+1)x+m-2=0有两个不相等的正实数根,则m的取值范围是( D )A.m>34B.m>34且m≠2C.-12<m<2 D.34<m<210.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点⼀定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增⼤⽽增⼤;③AB的长度可以等于5;④△OAB有可能成为等边三⾓形;⑤当-3C.②③④D.③④⑤⼀、填空题(共 6⼩题,每⼩题 3 分,共 18 分)11.有⼀个⾯积为的长⽅形,将它的⼀边剪短,另⼀边剪短,得到⼀个正⽅形.若设这个正⽅形的边长为,则根据题意可得⽅程__;(或)______.12.(3分)⼀元⼆次⽅程x2+3x=0的解是0 -3 .13.如图,⼀个拱形桥架可以近似看作是由等腰梯形ABD8D1和其上⽅的抛物线8组成.若建⽴如图所⽰的直⾓坐标系,跨度AB=44⽶,∠A=45°,AC1=4⽶,点D2的坐标为(-13,-1.69),则桥架的拱⾼OH= 7.24⽶.14.14.设m,n是⼀元⼆次⽅程x2+2x-7=0的两个根,则m2+3m+n=__5_____.[来源:Z+xx15.如图,是的直径,点在上,,若,则的长为____2____.16.在如图所⽰的平⾯直⾓坐标系中,△OA1B1是边长为2的等边三⾓形,作△B2A2B1与△OA1B1关于点B1成中⼼对称,再作△B2A3B3与△B2A2B1关于点B2成中⼼对称,如此作下去,则△B2n A2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,).三、解答题(共8⼩题,满分72分)17.按要求解⽅程.(8分)(1)x2+3x+1=0(公式法);解:x1=-,x2=--.(2)(x-3)2+4x(x-3)=0(因式分解法).解:x1=3,x2=.18.(9分)如图,为的直径,为弦,,,.求四边形;过点作,交于点,求∠的值.解:作于,连结,如图,∵,∴,∵直径,∴,在中,,;∴四边形∵,∴,∵,,∴四边形是等腰梯形.作于,则,,在中,由勾股定理得,,∴.∵,,∴四边形是平⾏四边形,∴,,∴.∵∠,∴∠,∴∠.19.(7分)已知关于x的⽅程x2﹣2(m+1)x+m2+2=0.(1)若⽅程总有两个实数根,求m的取值范围;(2)若两实数根x1、x2满⾜(x1+1)(x2+1)=8,求m的值.解:(1)∵关于x的⽅程x2﹣2(m+1)x+m2+2=0总有两个实数根,∴△=[﹣2(m+1)]2﹣4(m2+2)=8m﹣4≥0,解得:m≥.(2)∵x1、x2为⽅程x2﹣2(m+1)x+m2+2=0的两个根,[来∴x1+x2=2(m+1),x1x2=m2+2.∵(x1+1)(x2+1)=8,∴x1x2+(x1+x2)+1=8,∴m2+2+2(m+1)+1=8,整理,得:m2+2m﹣3=0,即(m+3)(m﹣1)=0,解得:m1=﹣3(不合题意,舍去),m2=1,∴m的值为1.20.(10分)设a,b,c是△ABC的三条边,关于x的⽅程x2+x+c-a=0有两个相等的实数根,⽅程3cx+2b=2a的根为x=0.(1)试判断△ABC的形状;(2)若a,b为⽅程x2+mx-3m=0的两个根,求m的值.解:(1)∵x2+x+c-a=0有两个相等的实数根,∴Δ=()2-4×-=0,整理得a+b-2c=0①,⼜∵3cx+2b=2a的根为x=0,∴a=b②,把②代⼊①得a=c,∴a=b=c,∴△ABC为等边三⾓形;(2)a,b是⽅程x2+mx-3m=0的两个根,∴⽅程x2+mx-3m=0有两个相等的实数根∴Δ=m2-4×(-3m)=0,即m2+12m=0,∴m1=0,m2=-12.当m=0时,原⽅程的解为x=0(不符合题意,舍去),∴m=-12.21.(8分)已知抛物线y=ax2-2ax+c与x轴交于A,B两点,与y轴正半轴交于点C,且A(-1,0).(1)⼀元⼆次⽅程ax2-2ax+c=0的解是-1,3;(2)⼀元⼆次不等式ax2-2ax+c>0的解集是-1<x<3;(3)若抛物线的顶点在直线y=2x上,求此抛物线的解析式..解:(1)-1,3(2分)(2)-1<x <3(4分)(3)∵抛物线经过点A (-1,0),∴a +2a +c =0,即c =-3a .∵-b 2a =--2a 2a =1,4ac -b 24a =c -a =-3a -a =-4a ,∴抛物线的顶点坐标是(1,-4a ).(6分)⼜∵顶点在直线y =2x 上,∴-4a =2×1=2,解得a =-12,∴c =-3a=-3×? ????-12=32,∴⼆次函数的解析式为y =-12x 2+x +32.(8分)22.(8分)某⽹店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该⽹店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最⼤,最⼤利润多少元?(3)若该⽹店每星期想要获得不低于6480元的利润,每星期⾄少要销售该款童装多少件?解:(1)y=300+30(60﹣x )=﹣30x+2100.(2)设每星期利润为W 元,W=(x ﹣40)(﹣30x+2100)=﹣30(x ﹣55)2+6750.∴x=55时,W 最⼤值=6750.∴每件售价定为55元时,每星期的销售利润最⼤,最⼤利润6750元.(3)由题意(x ﹣40)(﹣30x+2100)≥6480,解得52≤x ≤58,当x=52时,销售300+30×8=540,。

新课标人教版2018-2019学年九年级(上)期中学业监测数学模拟试卷附答案

新课标人教版2018-2019学年九年级(上)期中学业监测数学模拟试卷附答案

2018-2019学年九年级(上)期中学业监测数学模拟试卷一.选择题(共6小题,满分18分,每小题3分)1.(3分)点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=()A.﹣1 B.4 C.﹣4 D.12.(3分)下列交通标志图案中,是中心对称图形的是()A.B.C.D.3.(3分)下列方程中是一元二次方程的是()A.xy+2=1 B.C.x2=0 D.ax2+bx+c=0 4.(3分)关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1 B.﹣1 C.1或﹣1 D.5.(3分)已知二次函数y=x2﹣5x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为()A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)6.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)二.填空题(共8小题,满分24分,每小题3分)7.(3分)已知m是方程x2﹣x﹣2=0的一个根,则3m2﹣3m﹣3的值为.8.(3分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.9.(3分)若关于x的一元二次方程x2﹣2mx﹣4m+1=0有两个相等的实数根,则(m﹣2)2﹣2m(m﹣1)的值为.10.(3分)二次函数y=mx2﹣2x+1,当x时,y的值随x值的增大而减小,则m的取值范围是.11.(3分)已知抛物线y=ax2+x+c与x轴交点的横坐标为﹣1,则a+c=.12.(3分)在平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点逆时针方向旋转90°得OB,则点B的坐标为.13.(3分)图中,甲图怎样变成乙图:.14.(3分)若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.三.解答题(共3小题,满分18分,每小题6分)15.(6分)用配方法解方程:x2﹣7x+5=0.16.(6分)用公式法解下列方程:(1)2x2﹣3x﹣5=0(2)y2﹣3y+1=0.17.(6分)关于x的一元二次方程x2﹣(2m﹣3)x+m2+1=0.(1)若m是方程的一个实数根,求m的值;(2)若m为负数,判断方程根的情况.四.解答题(共2小题,满分16分,每小题8分)18.(8分)将抛物线y=﹣x2﹣2x﹣3向右平移三个单位,再绕原点O 旋转180°,求所得抛物线的解析式?19.(8分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?五.解答题(共2小题,满分20分,每小题10分)20.(10分)如图,已知四边形ABCD为正方形,点E是边AD上任意一点,△ABE接逆时针方向旋转一定角度后得到△ADF,延长BE交DF于点G,且AF=4,AB=7.(1)请指出旋转中心和旋转角度;(2)求BE的长;(3)试猜测BG与DF的位置关系,并说明理由.21.(10分)如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=6CM.点P,Q同时由B,A两点出发,分别沿射线BC,AC方向以1cm/s 的速度匀速运动.(1)几秒后△PCQ的面积是△ABC面积的一半?(2)连结BQ,几秒后△BPQ是等腰三角形?六.解答题(共2小题,满分24分,每小题12分)22.(12分)为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?23.(12分)如图,抛物线y=﹣x2+bx+c与x轴分别交于点A、B,与y轴交于点C,且OA=1,OB=3,顶点为D,对称轴交x轴于点Q.(1)求抛物线对应的二次函数的表达式;(2)点P是抛物线的对称轴上一点,以点P为圆心的圆经过A、B 两点,且与直线CD相切,求点P的坐标;(3)在抛物线的对称轴上是否存在一点M,使得△DCM∽△BQC?如果存在,求出点M的坐标;如果不存在,请说明理由.参考答案1.D.2.C.3.C.4.B.5.B.6.A.7.3.8.k<1.9.10.0<m≤3.11.1.12.(﹣1,).13.绕点A顺时针旋转.14.(4,33).15.解:x2﹣7x+5=0,x2﹣7x=﹣5,x2﹣7x+()2=﹣5+()2,(x﹣)2=,x﹣=±,x•=,x2=.16.解:(1)由题意可知:a=2,b=﹣3,c=﹣5,∴△=9﹣4×2×(﹣5)=49∴x=∴x=或x=﹣1(2)由题意可知:a=1,b=﹣3,c=1,∴△=9﹣4×1×(﹣1)=13∴y=17.解:(1)∵m是方程的一个实数根,∴m2﹣(2m﹣3)m+m2+1=0,∴;(2)△=b2﹣4ac=﹣12m+5,∵m<0,∴﹣12m>0.∴△=﹣12m+5>0.∴此方程有两个不相等的实数根.18.解:y=﹣x2﹣2x﹣3,=﹣(x2+2x+1)+1﹣3,=﹣(x+1)2﹣2,所以,抛物线的顶点坐标为(﹣1,﹣2),∵向右平移三个单位,∴平移后的抛物线的顶点坐标为(2,﹣2),∵再绕原点O旋转180°,∴旋转后的抛物线的顶点坐标为(﹣2,2),∴所得抛物线解析式为y=(x+2)2+2.19.解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500,∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x=70,x2=90.1∴当70≤x≤90时,每天的销售利润不低于4000元.20.解:(1)旋转中心A点,旋转角度是90°.(2)∵△ABE接逆时针方向旋转一定角度后得到△ADF,∴△ABE≌△ADF,∴AF=AE=4,∵四边形ABCD为正方形,∴∠BAE=90°,由勾股定理得:BE===,答:BE的长是.(3)BG与DF的位置关系是垂直,理由是:∵△ABE≌△ADF,∴∠EBA=∠ADF,∵∠EBA+∠AEB=180°﹣90°=90°,∵∠AEB=∠DEG,∴∠DEG+∠ADF=90°,∴∠DGE=180°﹣(∠DEG+∠ADF)=90°,∴BG⊥DF.21.解:(1)设运动x秒后,△PCQ的面积是△ABC面积的一半,当0<x<6时,S△ABC=×AC•BC=×6×8=24,即:×(8﹣x)×(6﹣x)=×24,x2﹣14x+24=0,(x﹣2)(x﹣12)=0,x1=12(舍去),x2=2;当6<x<8时,×(8﹣x)×(x﹣6)=×24,x2﹣14x+72=0,b2﹣4ac=196﹣288=﹣92<0,∴此方程无实数根,当x>8时,S△ABC=×AC•BC=×6×8=24,即:×(x﹣8)×(x﹣6)=×24,x2﹣14x+24=0,(x﹣2)(x﹣12)=0,x1=12,x2=2(舍去),所以,当2秒或12秒时使得△PCQ的面积等于△ABC的面积的一半.(2)设t秒后△BPQ是等腰三角形,①当BP=BQ时,t2=62+(8﹣t)2,解得:t=;②当PQ=BQ时,(6﹣t)2+(8﹣t)2=62+(8﹣t)2,解得:t=12;③当BP=PQ时,t2=(6﹣t)2+(8﹣t)2,解得:t=14±4.22.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x=50,x2=80.1∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.23.解:(1)∵OA=1,OB=3,∴A(﹣1,0),B(3,0).代入y=﹣x2+bx+c,得解得b=2,c=3.∴抛物线对应二次函数的表达式为:y=﹣x2+2x+3;(2)如图,设直线CD切⊙P于点E.连结PE、PA,作CF⊥DQ于点F.∴PE⊥CD,PE=PA.由y=﹣x2+2x+3,得对称轴为直线x=1,C(0,3)、D(1,4).∴DF=4﹣3=1,CF=1,∴DF=CF,∴△DCF为等腰直角三角形.∴∠CDF=45°,∴∠EDP=∠EPD=45°,∴DE=EP,∴△DEP为等腰三角形.设P(1,m),∴EP2=(4﹣m)2.在△APQ中,∠PQA=90°,∴AP2=AQ2+PQ2=[1﹣(﹣1)]2+m2∴(4﹣m)2=[1﹣(﹣1)]2+m2.整理,得m2+8m﹣8=0解得,m=﹣4±2.∴点P的坐标为(1,﹣4+2)或(1,﹣4﹣2).(3)存在点M,使得△DCM∽△BQC.如图,连结CQ、CB、CM,∵C(0,3),OB=3,∠COB=90°,∴△COB为等腰直角三角形,∴∠CBQ=45°,BC=3.由(2)可知,∠CDM=45°,CD=,∴∠CBQ=∠CDM.∴△DCM∽△BQC分两种情况.当=时,∴=,解得DM=.∴QM=DQ﹣DM=4﹣=.∴M1(1,).当时,∴=,解得DM=3.∴QM=DQ﹣DM=4﹣3=1.∴M2(1,1).综上,点M的坐标为(1,)或(1,1).。

2018-2019学年人教版初三数学上期中测试(有答案)

2018-2019学年人教版初三数学上期中测试(有答案)

期中测试(满分:120分考试时间:120分钟)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B) A.y=(x+2)2+1 B.y=(x-2)2+1C.y=(x+2)2-1 D.y=(x-2)2-14.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19,∴x-2=±19,∴x1=2+19,x2=2-19.这种解方程的方法称为(B) A.待定系数法 B.配方法 C.公式法D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C) A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D) A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,在△ABC中,∠C=90°,∠BAC=70°,将△ABC绕点A顺时针旋转70°,B,C旋转后的对应点分别是B′和C′,连接BB′,则∠BB′C′的度数是(A)A.35° B.40° C.45° D.50°9.已知二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是(D)A.a>b>c B.c>a>b C.c>b>a D.b>a>c10.如图,将△ABC绕着点B顺时针旋转60°得到△DBE,点C的对应点E恰好落在AB的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ ,若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2020学年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a≠0)中的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置,若点G 恰好在抛物线y =x 2(x >0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分) (1)解方程:x(x +5)=5x +25;解:x(x +5)=5(x +5),x(x +5)-5(x +5)=0, ∴(x-5)(x +5)=0,∴x-5=0或x +5=0, ∴x 1=5,x 2=-5.(2)已知点(5,0)在抛物线y =-x 2+(k +1)x -k 上,求出抛物线的对称轴.解:将点(5,0)代入y =-x 2+(k +1)x -k ,得0=-52+5×(k+1)-k ,-25+5k +5-k =0. ∴4k=20,∴k=5.∴y =-x 2+6x -5,∴该抛物线的对称轴为直线x =-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离正常水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y =ax 2.由图象可知,点B(10,-4)在函数图象上,代入y =ax 2得100a =-1, 解得a =-125,∴该抛物线的解析式为y =-125x 2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A 1AC 1是由△ABC 绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A 1AC 1顺时针旋转90°,180°后的三角形.解:如图,△A 1B 1C 2,△B 1BC 3即为所求作图形.19.(本题7分)已知一元二次方程x 2+x -2=0有两个不相等的实数根,即x 1=1,x 2=-2. (1)求二次函数y =x 2+x -2与x 轴的交点坐标;(2)若二次函数y =-x 2+x +a 与x 轴有一个交点,求a 的值. 解:(1)令y =0,则有x 2-x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt△ABC 中,∠ABC=90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG,DE 、FG 相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连接CG,求证:四边形CBEG是正方形.解:(1)FG⊥DE,理由如下:∵△ABC绕点B顺时针旋转90°至△DBE,∴∠DEB=∠ACB.∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A.∵∠ABC=90°,∴∠A+∠ACB=90°.∴∠DEB+∠GFE=90°.∴∠FHE=90°.∴FG⊥DE.(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°.∴四边形CBEG是矩形.∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y =600时,600=-2x 2+20x +400,整理得x 2-10x +100=0, ∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根,即该专卖店平均每天盈利不可能为600元.22.(本题12分)综合与实践: 问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB=∠DCE=90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH⊥FG; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A 、C 、E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(1)FH =FG ,FH⊥FG.提示:∵CE=CD ,AC =BC ,A ,C ,D 和B ,C ,E 分别共线,∠ECD=∠ACB=90°, ∴AD⊥BE,BE =AD.∵F,H ,G 分别是DE ,AE ,BD 的中点, ∴FH=12AD ,FH∥AD,FG =12BE ,FG∥BE.∴FH=FG ,∵AD⊥BE,∴FH⊥FG. (2)(1)中的结论还成立.证明:∵CE=CD ,AC =BC ,∠ECD=∠ACD=90°,∴△ACD≌△BCE(SAS),∴AD=BE ,∠CAD=∠CBE.∵∠CBE+∠CEB=90°, ∴∠CAD+∠CEB=90°,即AD⊥BE. ∵F,H ,G 分别是DE ,AE ,BD 的中点,∴FH=12AD ,FH∥AD,FG =12BE ,FG∥BE,∴EH=FG.∵AD⊥BE,∴FH⊥FG,∴(1)中结论还成立.(3)(1)中的结论仍成立,理由:如图,连接AD 、BE ,两线交于点Z ,AD 交BC 于点X. 同(1)可得FH =12AD ,FH∥AD,FG =12BE ,FG∥BE.∵△ECD,△ACB 都是等腰直角三角形,∴CE=CD ,AC =BC ,∠ECD=∠ACB=90°. ∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS).∴AD =BE ,∠EBC=∠DAC,∴FH=FG. ∵∠DAC+∠CXA=90°,∠CXA=∠DXB,∴∠DXB+∠EBC=90°,∴∠EZA=180°-90°=90°,∴AD⊥BE. ∵FH∥AD,FG∥BE,∴FH⊥FG,∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B ,点C(点B 在点C 的左边),与y 轴交于点A ,连接AC 、AB.(1)求证:AO 2=BO·CO;(2)若点N 在线段BC 上运动(不与点B ,C 重合),过点N 作MN∥AC,交AB 于点M ,当△AMN 的面积取得最大值时,求直线AN 的解析式;(3)连接OM ,在(2)的结论下,试判断OM 与AN 的数量关系,并证明你的结论.解:(1)证明:当y =0时,-14x 2+32x +4=0,整理,得x 2-6x -16=0,解得x 1=-2,x 2=8,∴B(-2,0),C(8,0). 令x =0得y =4,∴A(0,4),∴AO=4,BO =2,CO =8,∴AO 2=BO·CO. (2)设点N(n ,0)(-2<n <8),则BN =n +2,CN =8-n ,BC =10. ∵MN∥AC,∴AM AB =CN BC =8-n 10,S △ABN =12×(n+2)×4=2n +4.S △AMN S △ABN =AM AB =CN CB =8-n10, ∴S △AMN =8-n 10S △ABN =8-n 10×(2n+4)=15(8-n)(n +2),即S △AM N =-15(n -3)2+5.∵-15<0,∴当n =3时,即N(3,0),△AMN 的面积最大.设直线AN 的解析式为y =kx +b.将A(0,4),N(3,0)代入,得⎩⎪⎨⎪⎧4=b ,0=3k +b.解得⎩⎪⎨⎪⎧k =-43,b =4,∴此时直线AN 的解析式为y =-43x +4.(3)OM 2=AN.证明:∵N(3,0),∴ON=3,∴CN=8-3=5. ∵BC=10,∴N 为线段BC 的中点,∵MN∥AC,∴M 为AB 的中点,∴AB=42+22=20=2 5. ∵∠AOB=90°,∴OM=12AB =5,∵AN=OA 2+ON 2=42+32=5,∴OM 2=AN ,即OM 与AN 的数量关系是OM 2=AN.。

最新人教版2018-2019学年九年级数学上册期中考试模拟试卷及答案-精品试卷

最新人教版2018-2019学年九年级数学上册期中考试模拟试卷及答案-精品试卷

第一学期期中检测试卷九年级数学(满分:130分)一、选择题(每小题3分,共30分)1、下列四边形中,对角线一定不相等的是( )A.正方形B.矩形C.等腰梯形D.直角梯形 2、关于x 的一元二次方程012=-++a x x 的一个根是0,则a 值为 ( ) A 、1 B 、1- C 、1或1- D 、123、已知y x =23,那么下列各式不一定成立的是( )A 2x=3y B32=x y C 32yx = D 25=+y y x 4、两个边数相同的多边形相似应具备的条件是( )A. 各角对应相等B. 各边对应成比例C. 各角对应相等,各边对应相等D. 各角对应相等,各边对应成比例 5、方程4)2(2=+x 的根是( )A. 41=x ,42-=xB. 01=x ,42-=xC. 01=x ,22=xD. 01=x ,42=x6、如图,菱形ABCD 中,AB=5,∠BCD=120°,则AC 等于( ) A.20 B.15 C.10 D.57、学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为( ) A .21 B . 31 C . 41 D . 328、如果一元二次方程3x 2-2x=0的两根为x 1,x 2,则x 1·x 2的值等于( )A. 2B. 0C. 32D. 32-9、正方形具有而矩形不一定具有的性质是 ( ) A. 四个角都是直角 B. 对角线相等 C. 四条边相等 D. 对角线互相平行10.若关于x 的一元二次方程(k ﹣1)x 2+2x ﹣2=0有不相等实数根,则k 的取值范围是( ) A .k >12 B .k ≥12 C .k >12且k≠1 D .k ≥12且k≠1 二、填空题(每小题3分,共30分)11、方程0)14(=-x x 的解是 。

12、方程03272=++x x 的根的情况是 .13、在四边形ABCD 中,(1)AB∥CD,(2)AD∥BC,(3)AB=CD ,(4)AD=BC ,在这四个条件中任选两个作为已知条件,能判定四边形ABCD 是平行四边形的概率是 .14、小华做小孔成像实验(如图),已知蜡烛与成像 板之间的距离为15cm ,则蜡烛与成像板之间的小孔纸板应放在离蜡烛__________cm 的地方时,蜡烛焰AB 是像''B A 的一半。

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018-2019学年九年级上学期期中考试数学试题(含答案)

2018~2019学年度第一学期期中质量调研九年级数学一、选择题(每小题3分,共30分)1.一元二次方程x 2-2x -1=0的根的情况为( )A .只有一个实数根B .有两个不相等的实数根C .有两个相等的实数根D .没有实数根2.一个长方形的面积为210 cm 2,宽比长少7 cm.设它的宽为x cm ,则可得方程( )A .2(x +7)+2x =210B .x +(x +7)=210C .x (x -7)=210D .x (x +7)=2103.有两个一元二次方程:①02=++c bx ax ,②02=++a bx cx ,其中a +c =0, 以下四个结论中,错误的是( ) A .如果方程①有两个相等的实数根,那么方程②也有两个相等的实数根; B .如果方程①和方程②有一个相同的实数根,那么这个根必定是x=1;C .如果4是方程①的一个根,那么14是方程②的一个根;D .方程①的两个根的符号相异,方程②的两个根的符号也相异;4.若二次函数c bx ax y ++=2的x 与y 的部分对应值如下表:则当0=x 时,y 的值为( )A .5B .-3C .-13D .-275.二次函数c bx ax y ++=2的图象如图所示,反比例函数x ay =与正比例函数x c b y )(+=在同一坐标系中的大致图象可能是A B C D 6.如果将抛物线2y x =向左平移4个单位,再向下平移2个单位后,那么此时抛物线的表达式是( ). A .2(4)2y x =--B .2(4)2y x =-+C .2(4)2y x =+-D .2(4)2y x =++xxxxxyyyyy2018.107.若1(4,)A y -,1(3,)B y -,1(1,)C y 为二次函数242y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是( ).A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y <<8.如图,Rt OAB △的顶点(2,4)A -在抛物线2y ax =上,将Rt OAB △绕点O 顺时针旋转90︒,得到OCD △,边CD 与该抛物线交于点P ,则点P 的坐标为( ).A .B .(2,2)C .D .(第8题) (第9题) (第10题)9.如图,在Rt ABC △中,90C =︒∠,6cm AC =,2cm BC =,点P 在边AC 上,从点A 向点C 移动,点Q 在边CB 上,从点C 向点B 移动,若点P ,Q 均以1cm/s 的速度同时出发,且当一点移动终点时,另一点也随之停止,连接PQ ,则线段PQ 的最小值是( ). A.20cmB .18cmC .D .10.如图,正方形OABC 的边长为2,OA 与x 轴负半轴的夹角为15︒,点B 在抛物线2(0)y ax a =<的图象上,则a 的值为( ).A .12-B .C .2-D . 二、填空题(每小题3分,共24分)11.将一元二次方程(2)(1)3x x -+=化成一般形式,且使得二次项系数为正数,则化成一般形式后的一元二次方程是 .12.已知关于x 的方程x 2+3x +a =0的一个根为-4,则另一个根为 .13.某药品原价每盒64元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒36元,则该药品平均每次降价的百分率是 . 14.若抛物线y =x 2-k x +k -1的顶点在x 轴上,则k = .15.若抛物线2(2)3y x m x =-+-+的顶点在y 轴上,则m =__________.16.若抛物线的顶点坐标为(2,9),且它在x 轴截得的线段长为6,则该抛物线的表达式为________.17.二次函数22y x ax a =-+在 03x ≤≤的最小值是-2,则a =__________18.如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .点B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为 .三、解答题(共76分)19.⑴ 22(3)5x -= ⑵ 01422=+-x x⑶ 03322=--x x⑷03)32=+--x x ( 20.(6分)已知关于x 的方程x 2+8x +12-a =0有两个不相等的实数根.⑴ 求a 的取值范围;⑵ 当a 取满足条件的最小整数时,求出方程的解.21.(6分)如图,△ABC 中,∠C =90°,BC =6,AC =4.点P 、Q 分别从点A 、B 同时出发,点P 沿A →C 的方向以每秒1个单位长的速度向点C 运动,点Q 沿B →C 的方向以每秒2个单位长的速度向点C 运动.当其中一个点先到达点C 时,点P 、Q 停止运动.当四边形ABQP 的面积是△ABC 面积的一半时,求点P 运动的时间.P22.(8分)某工厂设计了一款工艺品,每件成本40元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是80元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于65元.如果降价后销售这款工艺品每天能盈利3000元,那么此时销售单价为多少元?23.(本题满分8分)受益于国家支付新能源汽车发展和“一带一路”发展战略等多重因素,我市某汽车零部件生产企业的利润逐年提高.据统计,2014年利润为2亿元,2016年利润为2.88亿元.(1)求该企业从2014年到2016年利润的年平均增长率.(2)若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?24.(本题满分10分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y (单位:个)与销售单价x (单位:元)有如下关系:60(3060)y x x =-+≤≤.设这种双肩包每天的销售利润为w 元. (1)求w 与x 之间的函数解析式.(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?25.(本题满分10分)如图1,在平面直角坐标系中,二次函数2(0)y ax bx c a =++>的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点,A 点在原点的左侧,B 点的坐标为(3,0),OB OC =,13OA OC =. (1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图2,若点(2,)G y 是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,APG △的面积最大?求出此时P 点的坐标和APG △的最大面积.26.已知关于x 的一元二次方程x2﹣(m+1)x+(m2+1)=0有实数根. (1)求m 的值;(2)先作y=x2﹣(m+1)x+(m2+1)的图象关于x 轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;(3)在(2)的条件下,当直线y=2x+n (n≥m )与变化后的图象有公共点时,求n2﹣4n 的最大值和最小值.27.(本题满分10分)已知二次函数22y ax bx =+-的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 的坐标为(4,0),且当2x =-和5x =时二次函数的函数值y 相等. (1)求实数a 、b 的值.(2)如图1,动点E 、F 同时从A 点出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F 个单位长度的速度沿射线AC 方向运动,当点E 停止运动时,点F 随之停止运动.设运动时间为t 秒.连接EF ,将AEF △沿EF 翻折,使点A 落在点D处,得到DEF △.①是否存在某一时刻t ,使得DCF △为直角三角形?若存在,求出t 的值;若不存在,请说明理由.②设DEF △与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式.参考答案及评分意见一、选择题 1-5 BDBCB ;6.【答案】C ;【解析】22242(4)(4)2y x y x y x =−−−−→=+−−−−→=+-向左平移向下平移个单位个单位. 故选C . 7.【答案】B ;【解析】二次函数2242(2)6y x x x =+-=+-,∴对称轴2x =-, ∴当14x =-,23x =-,31x =时,213y y y <<.故选B .8.【答案】C ;【解析】将(2,4)A -代入2y ax =中得:1a =,∴2y x =,由题意知,2OB =,4BA =,∴2OD =,将2y =代入2y x =得,x =∴P .故选C .9.【答案】C ;【解析】由题意知,AP t =,CQ t =,6CP t =-,222222(6)21236PQ PC CQ t t t t =+=-+=-+22(3)18t =-+,又∵02t ≤≤,故2t =时,220PQ =最小, 此时PQ =.故选C .10.【答案】B ;【解析】∵正方形OABC 的边长为2,∴OB =,由题意知,15AOB =︒∠,∴30COB =︒∠,∴BC ,OC ,故(B ,代入2y ax =中得:6a =,a =.故选B .二、填空题11.012=+-x x ; 12.1; 13.25%; 14.K=2;15.【答案】2;【解析】由题意知:对称轴202m x -==,解得2m =. 16.【答案】2(2)9y x =--+;【解析】∵抛物线在x 轴上截得的线段长为6,且对称轴为2x =, ∴抛物线与x 轴的两交点为(1,0)-,(5,0),设2(2)9y a x =-+,将(5,0)代入得:1a =-, ∴2(2)9y x =--+. 17.±218.3三、解答题(共76分)19.⑴ 5)3(22=-x⑴ 01422=+-x x2103±=-x -----------------------2分 21)1(2=-x ---------------------- 2分2103±=x ----------------------- 4分 221±=x ----------------------- 4分 ⑶ 03322=--x x ⑷03)32=+--x x ( 3,3,2-=-==c b a03)32=---)((x x -------- 1分03342>=-ac b ------------- 1分0]31)[3=---)((x x43332233)3(±=⨯±--=x -- 2分04)3=+--)((x x ------- 2分 4333433321-=+=x x ,-----4分 4,321==x x --------------- 4分20. ⑴ 根据题意得:0)12482>--a (解得:4->a⑵ ∵ 4->a ∴ 最小的整数为﹣3 ------------------------------------------------------------ ∴ x 2+8x +12﹣(﹣3)=0 即:x 2+8x +15=0解得:x 1=-3,x 2=-521.设点P 运动了x 秒,则AP =x ,BQ =2x由AC =4,BC =6得:PC =4-x ,QC =6-2xP根据题意得:ABC ABQP S S △四边形21= ∴ ABC PQC S S △△21= ∵ ∠C =90 ∴642121)26)4(21⨯⨯⨯=⋅-⋅x x -( 解得:11=x ,62=x 经检验,x =6舍去答:点P 运动的时间是1秒.22.解:设降价x 元后销售这款工艺品每天能盈利3000元. 根据题意可得:3000)550)(4080(=+--x x解这个方程得:201021==x x ,(不合题意,舍去) 当x =10时,80-x =70>65;当x =20时,80-x =60<65(不符合题意,舍去)答:此时销售单价应定为75元.23.【解析】(1)设这两年该企业年利润平均增长率为x ,则:22(1) 2.88x +=, 解得10.220%x ==,2 2.2x =-(不合题意,舍去) 故这两年该企业年利润平均增长率为20%.(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业的年利润为 2.88(120%) 3.456+=,3.456 3.4>,故该企业2017年的利润能超过3.4亿元. 24.【解析】(1)(30)w x y =-⋅(60)(30)x x =-+-2901800x x =-+-,w 与x 之间的函数解析式:2901800w x x =-+-.(2)根据题意得:22901800(45)225w x x x =-+-=--+, ∵10-<,当45x =时,w 有最大值,最大值是225.(3)当200w =时,2901800200x x -+-=,解得140x =,250x =, ∵5048<,250x =不符题意,舍去,故销售单价应定为40元. 25.【解析】(1)由已知得:(0,3)C -,(1,0)A -,将A ,B ,C 三点的坐标代入,得09303a b c a b c C -+=⎧⎪++=⎨⎪=-⎩,∴223y x x =--.(2)存在.∵(1,4)D -,∴直线CD 的解析式为:3y x =--,∴E 点的坐标为(3,0)-, 由A 、C 、E 、F 四点的坐标得:2AE CF ==,AE CF ∥,∴以A 、C 、E 、F 为顶点,的四边形为平移四边形,∴存在点F ,坐标为(2,3)-. (3)过点P 作y 轴的平行线与AG 交于点Q ,易得(2,3)G -,直线AG 为1y x =--, 设2(,23)P x x x --,则(,1)Q x x -,22PQ x x =-++,21(22)32APG APQ GPQ S S S x x =+=-++⨯△△△,当12x=时,APGS△最大,此时115,24P⎛⎫-⎪⎝⎭,APGS△最大为278.26.解:(1)对于一元二次方程x2﹣(m+1)x+(m2+1)=0,△=(m+1)2﹣2(m2+1)=﹣m2+2m﹣1=﹣(m﹣1)2,∵方程有实数根,∴﹣(m﹣1)2≥0,∴m=1.(2)由(1)可知y=x2﹣2x+1=(x﹣1)2,图象如图所示:平移后的解析式为y=﹣(x+2)2+2=﹣x2﹣4x﹣2.(3)由消去y得到x2+6x+n+2=0,由题意△≥0,∴36﹣4n﹣8≥0,∴n≤7,∵n ≤m ,m =1, ∴1≤n ≤7,令y ′=n 2﹣4n =(n ﹣2)2﹣4,∴n =2时,y ′的值最小,最小值为﹣4, n =7时,y ′的值最大,最大值为21, ∴n 2﹣4n 的最大值为21,最小值为﹣4.27.【解析】(1)由题意得:164204222552a b a b a b +-=⎧⎨--=+-⎩,解得:12a =,32b =-.(2)①由(1)知213222y x x =--,∵(4,0)A ,∴(1,0)B -,(0,2)C ,∴4OA =,1OB =,2OC =,∴5AB =,AC =BC = ∴22225AC BC AB +==,∴ABC △为Rt △,且90ACB =︒∠,∵2AE t =,AF ,AF AB AE AC =EAF CAB =∠∠,∴AEF ACB △∽△, ∴90AEF ACB ==︒∠∠,∴翻折后,A 落在D 处,∴DE AE =,∴24AD AE t ==,12EF AE t ==, 若DCF △为Rt △,点F 在AC 上时,i )∴若C 为直角顶点,则D 与B 重合,∴1522AE AB ==,55224t =÷=,如图2 ii )若D 为直角顶点,∵90CDF =︒∠,∴90ODC EDF +=︒∠∠,∵EDF EAF =∠∠,∴90OBC EAF +=︒∠∠,∴ODC OBC =∠∠,∴BC DC =, ∵OC BD ⊥,∴1OD OB ==,∴3AD =,∴34AE =,∴34t =,如图3 当点F 在AC 延长线上时,90DFC >︒∠,DCF △为钝角三角形,综上所述,34t =或54.②i )当504t <≤时,重叠部分为DEF △,∴2122S t t t =⨯⨯=.ii )当524t <≤时,设DF 与BC 相交于点G ,则重叠部分为四边形BEFG ,如图4,过点G 作GH BE ⊥于H ,设GH x =,则2x BH =,2DH x =,∴32xDB =,∵45DB AD AB t =-=-,∴3452x t =-,∴2(45)3x t =-,∴1122(45)(45)223DEF DBG S S S t t t t ===⨯⨯--⨯-△△2134025533t t =-+-.iii )当522t <≤时,重叠部分为BEG △,如图5,∵2(45)52BE DE DB t t t =-=--=-,22(52)GE BE t ==-, ∴21(52)2(52)420252S t t t t =⨯-⨯-=-+.。

人教版2018-2019年九年级上期中数学试题(含答案)

人教版2018-2019年九年级上期中数学试题(含答案)

九年级上册期中调研测试数 学 试 题一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的,将正确答案的代号字母填入括号内.1.下面计算正确的是( )A .B .C .D .236=÷ 2.与 是同类二次根式的是( )A .B .C .D .313.方程 的解是 ( )A .B .C . ,D . , 4.化简:3131-++的结果为 ( ) A .B .C .D .5.已知△ABC ∽△DEF ,且相似比为1∶2,则△ABC 与△DEF 的面积比为 ( )A .1∶4B .4∶1C . ∶2D .2∶1 6.一元二次方程 的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根7.如图,AB ∥CD ∥EF , 与 相交于点 ,且 , ,,那么CEBC的值等于 ( )A .21 B .53 C .52 D .518.某旅游景点 月份共接待游客 万人次, 月份共接待游客 万人次.设每月的平均增长率为 ,则可列方程为( )A .B .C .D .9.若△ABC 的每条边长增加各自的 得△ABC ,则 的度数与其对应角 的度数相比 ( )A .增加了B .减少了C .增加了D .没有改变10.若x=-2是关于x 的一元二次方程x 2+23ax -a 2=0的一个根,则a 的值为 ( ) A .-1或4B .-1或-4C .1或-4D .1或4二、填空题(每小题3分,共15分)11.计算:28-= .12.若代数式 的值与代数式 的值相等,则 的值为 . 13.若23=n m ,则mnm -= .14.如图,在Rt△ABC中,,,,点是中点,过点作交于点,则的长度是.15.对于实数,,我们可以用符号表示,两数中较小的-;若,则x的值数.如,3为.三、解答题(8+9+9+9+9+10+10+11=75分)16.(8分)计算()()()2132-+-3-32217.(9分)解方程:18.(9分)先化简,再求值:144)113(2+++÷+-+x x x x x ,其中x =2-2.19.(9分)大家知道在用配方法解一般形式的一元二次方程时,都要先把二次项系数化为 ,再进行配方.现请你先阅读如下方程( )的解答过程,并按照此方法解方程( ).方程( ) .解:032222=--x x ,13122)2(2+=+-x x ,4)12(2=-x ,212±=-x ,221-=x ,2232=x . 方程( )26232=-x x .20.(9分)关于 的一元二次方程()0243222=+++-m m x m x .(1)试说明方程根的情况;(2)选取一个合适的m 的值,使该方程有两个不相等的实数根,并求出这两个根.21.(10分)某市政府于2017年初投资了112万元,建成40个公共自行车站点、配置720辆公共自行车正式启用公共自行车租赁系统;今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2019年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.依据以上信息请完成下列问题:(1)每个站点的造价和公共自行车的单价分别是多少万元?(2)若2017年到2019年市政府配置公共自行车数量的年平均增长率相同.请你求出2018年市政府配置公共自行车的数量22.(10分)(1)探究:如图①,在矩形 中, , ,点 是对角线 上的一点,Rt △PEF 的两条直角边 , 分别交 , 于点 , ,若PE//AB ,PF//AD ,求PNPM的值.(2)应用:如图②,在矩形 中, , ,点 是对角线 上的一点,Rt △PEF 的两条直角边 , 分别交 , 于点 , ,则PN PM= .23.(11分)如图,在平面直角坐标系中,矩形 的顶点 在 轴正半轴上,边 , ( )的长分别是方程 的两个根, 是边 上的一动点(不与A 、B重合).(1)填空:AB= ,OA= . (2)若动点D 满足△BOC 与△AOD 相似,求直线 的解析式.(3)若动点D 满足53DB DA ,且点 为射线 上的一个动点,当△PAD是等腰三角形时,直接写出点的坐标.数学试题参考答案及评分标准一、选择题(每小题3分,共30分)1—5 ADCDA 6—10 BBADC 二、填空题(每小题3分,共15分)11.2; 12. 31±; 13.31; 14. 42515. 2或-1 三、解答题(8+9+9+9+9+10+10+11=75分)16.原式=()()13412432+--- ………4分=()34131--- ………6分 3414+-= …………8分 22248164241,4,2.172±=-±=-±-==-==a acb b xc b a 解: ……………5分,……………9分18.原式=[1)1)(1(13+-+-+x x x x ]•2)2(1++x x …………2分 =1)2)(2(+-+-x x x •2)2(1++x x ……………4分 =22+-x x , ………………6分 当x=2-2时,原式=122224222222-=-=+-+-. …………9分 19.解:()()()2222222323+=+⨯⨯-x x ………2分 ()4232=-x ……………4分 223±=-x …………6分33261+=x 33261-=x ……………9分 20.解:(1)ac b 42-=∆()[]()m m m +⨯⨯-+-=2222443 916+=m ……3分当时即169m ,0->>∆该方程有两个不相等的实数根. 时即169m ,0-==∆该方程有两个相等的实数根. 时即169m ,0-<<∆该方程没有实数根. …………5分 (2)取值正确,求解正确 …………9分21解:(1)设每个站点造价x 万元,自行车单价为y 万元.根据题意可得: ⎩⎨⎧=+=+5.340220512011272040y x y x 解得:⎩⎨⎧==1.01y x 答:每个站点造价为1万元,自行车单价为0.1万元.……………5分(2)设2017年到2019年市政府配置公共自行车数量的年平均增长率为a . 根据题意可得:720(1+a )2=2205 ……………7分解此方程:(1+a )2=144441, 即:%75431==a ,12332-=a (不符合题意,舍去) ()1260%751720=+⨯答:2018年市政府配置公共自行车的数量的为1260辆. …………………10分22.解:(1)PE//AB ,AC CP AB PM = ………2分PF//ADAC CP AD PN = …………4分所以AD PN AB PM = 又AB=3,AD=4 即43==AD AB PN PM ……………7分(2)43…………10分23.(1)8;3 ……………2分(2)若△BOC ∽△DOA. 则OADA OC BC = 即383DA = 所以89=AD 若△BOC ∽△ODA ,可得AD=8(与题意不符,舍去) 设直线 解析式为 ,则k 893-=, 即38-=k , 直线 的解析式为x y 38-=.………7分(3)当△PAD是等腰三角形时,点的坐标为,,,…………………………11分因为,,△是等腰直角三角形,,,根据△PAD是等腰三角形,分种情况讨论:①如图所示,当时,点的坐标为;②如图所示,当时,过作轴的垂线,垂足为,则,△OEP2是等腰直角三角形,,点的坐标为;③如图所示,当时,,∴△ADP3是等腰直角三角形,,,过作轴的垂线,垂足为,则△OP3F是等腰直角三角形,,点的坐标为;④如图所示,当时,,过作轴的垂线,垂足为,则△是等腰直角三角形,,点的坐标为;综上所述,当△PAD是等腰三角形时,点的坐标为,,,.。

最新人教版2018-2019学年九年级上学期期中数学模拟试题及答案解析-精品试卷

最新人教版2018-2019学年九年级上学期期中数学模拟试题及答案解析-精品试卷

九年级(上)期中数学试卷一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=22.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正方形D.正五边形3.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cm B.4cm C.5cm D.6cm4.下列函数解析式中,一定为二次函数的是( )A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第( )象限.A.四B.三C.二D.一6.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( ) A.B. C.D.7.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或108.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm29.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( )A.1个B.2个C.3个D.4个二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=__________.12.二次函数y=﹣x2+2x﹣3图象的顶点坐标是__________.13.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是__________.14.两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了__________.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为__________.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是__________.(结果保留π)17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为__________元时,该服装店平均每天的销售利润最大.18.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有__________个三角形(用含n的代数式表示)三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(1)计算:(﹣1)2015+()2﹣(π﹣3.14)0+()﹣1(2)先化简,再求值:(+)•(x2﹣1),其中x满足x2﹣4x+3=0.20.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.22.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?23.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)24.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.数学试卷一、选择题:本题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,不选或选出的答案超过一个均记零分.1.一元二次方程x2﹣2x=0的根是( )A.x1=0,x2=﹣2 B.x1=1,x2=2 C.x1=1,x2=﹣2 D.x1=0,x2=2【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.【点评】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.2.下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正方形D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:C.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=( )A.3cm B.4cm C.5cm D.6cm【考点】垂径定理;勾股定理.【分析】连接OA,先利用垂径定理得出AC的长,再由勾股定理得出OC的长即可解答.【解答】解:连接OA,∵AB=6cm,OC⊥AB于点C,∴AC=AB=×6=3cm,∵⊙O的半径为5cm,∴OC===4cm,故选B.【点评】本题考查了垂径定理,以及勾股定理,熟练掌握垂径定理的应用是解题的关键.4.下列函数解析式中,一定为二次函数的是( )A.y=3x﹣1 B.y=ax2+bx+c C.s=2t2﹣2t+1 D.y=x2+【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=ax2+bx+c (a≠0)是二次函数,故B错误;C、s=2t2﹣2t+1是二次函数,故C正确;D、y=x2+不是二次函数,故D错误;故选:C.【点评】本题考查了二次函数的定义,y=ax2+bx+c (a≠0)是二次函数,注意二次函数都是整式.5.若一元二次方程x2﹣2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第( )象限.A.四B.三C.二D.一【考点】根的判别式;一次函数图象与系数的关系.【分析】根据判别式的意义得到△=(﹣2)2+4m<0,解得m<﹣1,然后根据一次函数的性质可得到一次函数y=(m+1)x+m﹣1图象经过的象限.【解答】解:∵一元二次方程x2﹣2x﹣m=0无实数根,∴△<0,∴△=4﹣4(﹣m)=4+4m<0,∴m<﹣1,∴m+1<1﹣1,即m+1<0,m﹣1<﹣1﹣1,即m﹣1<﹣2,∴一次函数y=(m+1)x+m﹣1的图象不经过第一象限,故选D.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一次函数图象与系数的关系.6.在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是( )A.B. C.D.【考点】二次函数的图象.【专题】压轴题.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为( )A.10 B.14 C.10或14 D.8或10【考点】解一元二次方程-因式分解法;一元二次方程的解;三角形三边关系;等腰三角形的性质.【专题】压轴题.【分析】先将x=2代入x2﹣2mx+3m=0,求出m=4,则方程即为x2﹣8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是等边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2﹣2mx+3m=0的一个根,∴22﹣4m+3m=0,m=4,∴x2﹣8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.【点评】此题主要考查了一元二次方程的解,解一元二次方程﹣因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.8.如图,圆形铁片与直角三角尺、直尺紧靠在一起平放在桌面上.已知铁片的圆心为O,三角尺的直角顶点C落在直尺的10cm处,铁片与直尺的唯一公共点A落在直尺的14cm处,铁片与三角尺的唯一公共点为B,下列说法错误的是( )A.圆形铁片的半径是4cm B.四边形AOBC为正方形C.弧AB的长度为4πcm D.扇形OAB的面积是4πcm2【考点】切线的性质;正方形的判定与性质;弧长的计算;扇形面积的计算.【专题】应用题.【分析】由BC,AC分别是⊙O的切线,B,A为切点,得到OA⊥CA,OB⊥BC,又∠C=90°,OA=OB,推出四边形AOBC是正方形,得到OA=AC=4,故A,B正确;根据扇形的弧长、面积的计算公式求出结果即可进行判断.【解答】解:由题意得:BC,AC分别是⊙O的切线,B,A为切点,∴OA⊥CA,OB⊥BC,又∵∠C=90°,OA=OB,∴四边形AOBC是正方形,∴OA=AC=4,故A,B正确;∴的长度为:=2π,故C错误;S扇形OAB==4π,故D正确.故选C.【点评】本题考查了切线的性质,正方形的判定和性质,扇形的弧长、面积的计算,熟记计算公式是解题的关键.9.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO 绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为( )A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【考点】坐标与图形变化-旋转;一次函数图象上点的坐标特征.【专题】压轴题.【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.也考查了一次函数图象上点的坐标特征和含30度的直角三角形三边的关系.10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有( )A.1个B.2个C.3个D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.【点评】本题考查的是二次函数的图象、二次函数的最值、二次函数与不等式,掌握二次函数的性质、正确获取图象信息是解题的关键.二、填空题:本大题共8小题,共32分,只要求填写最后结果,每小题填对得4分.11.若一元二次方程ax2﹣bx﹣2015=0有一根为x=﹣1,则a+b=2015.【考点】一元二次方程的解.【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【解答】解:把x=﹣1代入一元二次方程ax2﹣bx﹣2015=0得:a+b﹣2015=0,即a+b=2015.故答案是:2015.【点评】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.12.二次函数y=﹣x2+2x﹣3图象的顶点坐标是(1,﹣2).【考点】二次函数的性质.【分析】此题既可以利用y=ax2+bx+c的顶点坐标公式求得顶点坐标,也可以利用配方法求出其顶点的坐标.【解答】解:∵y=﹣x2+2x﹣3=﹣(x2﹣2x+1)﹣2=﹣(x﹣1)2﹣2,故顶点的坐标是(1,﹣2).故答案为(1,﹣2).【点评】本题考查了二次函数的性质,求抛物线的顶点坐标有两种方法①公式法,②配方法.13.如图,用一张半径为24cm的扇形纸板制作一顶圆锥形帽子(接缝忽略不计),如果圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积是240πcm2.【考点】圆锥的计算.【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算即可.【解答】解:这张扇形纸板的面积=×2π×10×24=240π(cm2).故答案为:240πcm2【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.14.两块大小一样斜边为4且含有30°角的三角板如图5水平放置.将△CDE绕C点按逆时针方向旋转,当E点恰好落在AB上时,△CDE旋转了30°.【考点】旋转的性质.【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数;【解答】解:∵三角板是两块大小一样斜边为4且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′=2,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30°.【点评】考查了含有30°角的直角三角形的性质,等边三角形的判定,旋转的性质和扇形面积的计算,本题关键是得到CE′是△ACB的中线.15.某校要组织一次乒乓球邀请赛,参赛的每两个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排2天,每天安排5场比赛.设比赛组织者应邀请x个队参赛,则x满足的方程为x(x﹣1)=2×5.【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】关系式为:球队总数×每支球队需赛的场数÷2=2×5,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=2×5.故答案是:x(x﹣1)=2×5.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.16.如图,在等腰直角三角形ABC中,∠ACB=90°,AB=4.以A为圆心,AC长为半径作弧,交AB于点D,则图中阴影部分的面积是8﹣2π.(结果保留π)【考点】扇形面积的计算;等腰直角三角形.【分析】根据等腰直角三角形性质求出∠A度数,解直角三角形求出AC和BC,分别求出△ACB 的面积和扇形ACD的面积即可.【解答】解:∵△ACB是等腰直角三角形ABC中,∠ACB=90°,∴∠A=∠B=45°,∵AB=4,∴AC=BC=AB×sin45°=4,∴S△ACB===8,S扇形ACD==2π,∴图中阴影部分的面积是8﹣2π,故答案为:8﹣2π.【点评】本题考查了扇形的面积,三角形的面积,解直角三角形,等腰直角三角形性质的应用,解此题的关键是能求出△ACB和扇形ACD的面积,难度适中.17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.【考点】二次函数的应用.【分析】根据“利润=(售价﹣成本)×销售量”列出每天的销售利润y(元)与销售单价x (元)之间的函数关系式;把二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.【点评】此题题考查二次函数的实际应用,为数学建模题,借助二次函数解决实际问题,解决本题的关键是二次函数图象的性质.18.如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n个图案有3n+1个三角形(用含n的代数式表示)【考点】规律型:图形的变化类.【专题】规律型.【分析】由题意可知:第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…依此规律,第n个图案有3n+1个三角形.【解答】解:∵第(1)个图案有3+1=4个三角形,第(2)个图案有3×2+1=7个三角形,第(3)个图案有3×3+110个三角形,…∴第n个图案有3n+1个三角形.故答案为:3n+1.【点评】此题考查图形的变化规律,找出图形之间的运算规律,利用规律解决问题.三、解答题:本大题共6小题,共58分.解答要写出必要的文字说明,证明过程或演算步骤)19.(1)计算:(﹣1)2015+()2﹣(π﹣3.14)0+()﹣1(2)先化简,再求值:(+)•(x2﹣1),其中x满足x2﹣4x+3=0.【考点】分式的化简求值;实数的运算;零指数幂;负整数指数幂.【分析】(1)根据0指数幂及负整数指数幂的计算法则、数的乘方法则分别计算出各数,再根据实数混合运算的法则进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:(1)原式=﹣1+﹣1+2=;(2)原式=•(x2﹣1)=2x+2+x﹣1=3x+1,解方程x2﹣4x+3=0得,(x﹣1)(x﹣3)=0,x1=1,x2=3.当x=1时,原式无意义;当x=3时,原式=3×3+1=10.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.如图,在直角坐标系中,A(0,4),C(3,0).(1)①画出线段AC关于y轴对称线段AB;②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)①如图,利用关于y轴对称的点的坐标特征得到B点坐标,则可得到线段AB;②如图,利用网格特点和性质得性质作AD平行x轴,再以C点为圆心,CA为半径画弧交AD 于D,则线段CD为所作;(2)先证明ABCD为平行四边形,由于过平行四边形中心的直线平分平行四边形的面积,所以确定平行四边形ABCD的中心坐标,然后利用一次函数图象上点的坐标特征求k.【解答】解:(1)①如图,AB为所作;②如图,CD为所作;(2)∵AB与AC关于y轴对称,∴AB=AC,∴∠ABC=∠ACB,∵AD∥x轴,∴∠DAC=∠ACB,∠ADC=∠DCx,∵线段CA绕点C顺时针旋转一个角,得到对应线段CD,∴CA=CD,∴∠CAD=∠ADC,∴∠ABC=∠DCx,∴AB∥CD,∴四边形ABCD为平行四边形,∵A(0,4),C(3,0),∴平行四边形ABCD的中心坐标为(,2),把(,2)代入y=kx得,k=2,解得k=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换和平行四边形的判定与性质.21.如图,以△ABC的BC边上一点O为圆心的圆,经过A,B两点,且与BC边交于点E,D 为BE的下半圆弧的中点,连接AD交BC于F,AC=FC.(1)求证:AC是⊙O的切线;(2)已知圆的半径R=5,EF=3,求DF的长.【考点】切线的判定.【专题】证明题.【分析】(1)连结OA、OD,如图,根据垂径定理的推理,由D为BE的下半圆弧的中点得到OD⊥BE,则∠D+∠DFO=90°,再由AC=FC得到∠CAF=∠CFA,根据对顶角相等得∠CFA=∠DFO,所以∠CAF=∠DFO,加上∠OAD=∠ODF,则∠OAD+∠CAF=90°,于是根据切线的判定定理即可得到AC是⊙O的切线;(2)由于圆的半径R=5,EF=3,则OF=2,然后在Rt△ODF中利用勾股定理计算DF的长.【解答】(1)证明:连结OA、OD,如图,∵D为BE的下半圆弧的中点,∴OD⊥BE,∴∠D+∠DFO=90°,∵AC=FC,∴∠CAF=∠CFA,∵∠CFA=∠DFO,∴∠CAF=∠DFO,而OA=OD,∴∠OAD=∠ODF,∴∠OAD+∠CAF=90°,即∠OAC=90°,∴OA⊥AC,∴AC是⊙O的切线;(2)解:∵圆的半径R=5,EF=3,∴OF=2,在Rt△ODF中,∵OD=5,OF=2,∴DF==.【点评】本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.也考查了勾股定理.22.已知二次函数y=x2﹣2mx+m2+3(m是常数).(1)求证:不论m为何值,该函数的图象与x轴没有公共点;(2)把该函数的图象沿y轴向下平移多少个单位长度后,得到的函数的图象与x轴只有一个公共点?【考点】抛物线与x轴的交点;二次函数图象与几何变换.【专题】代数综合题.【分析】(1)求出根的判别式,即可得出答案;(2)先化成顶点式,根据顶点坐标和平移的性质得出即可.【解答】(1)证明:∵△=(﹣2m)2﹣4×1×(m2+3)=4m2﹣4m2﹣12=﹣12<0,∴方程x2﹣2mx+m2+3=0没有实数解,即不论m为何值,该函数的图象与x轴没有公共点;(2)解:y=x2﹣2mx+m2+3=(x﹣m)2+3,把函数y=(x﹣m)2+3的图象沿y轴向下平移3个单位长度后,得到函数y=(x﹣m)2的图象,它的顶点坐标是(m,0),因此,这个函数的图象与x轴只有一个公共点,所以,把函数y=x2﹣2mx+m2+3的图象沿y轴向下平移3个单位长度后,得到的函数的图象与x轴只有一个公共点.【点评】本题考查了二次函数和x轴的交点问题,根的判别式,平移的性质,二次函数的图象与几何变换的应用,主要考查学生的理解能力和计算能力,题目比较好,有一定的难度.23.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出2016年的房价,进而确定出100平方米的总房款,即可做出判断.【解答】解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.24.如图,直线y=﹣3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x﹣2)2+k经过点A、B,并与X轴交于另一点C,其顶点为P.(1)求a,k的值;(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求Q点的坐标;(3)在抛物线及其对称轴上分别取点M、N,使以A,C,M,N为顶点的四边形为正方形,求此正方形的边长.【考点】二次函数综合题.【专题】几何综合题.【分析】(1)先求出直线y=﹣3x+3与x轴交点A,与y轴交点B的坐标,再将A、B两点坐标代入y=a(x﹣2)2+k,得到关于a,k的二元一次方程组,解方程组即可求解;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF与Rt△BQE中,用勾股定理分别表示出AQ2=AF2+QF2=1+m2,BQ2=BE2+EQ2=4+(3﹣m)2,由AQ=BQ,得到方程1+m2=4+(3﹣m)2,解方程求出m=2,即可求得Q点的坐标;(3)当点N在对称轴上时,由NC与AC不垂直,得出AC为正方形的对角线,根据抛物线的对称性及正方形的性质,得到M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,此时,MF=NF=AF=CF=1,且AC⊥MN,则四边形AMCN为正方形,在Rt△AFN中根据勾股定理即可求出正方形的边长.【解答】解:(1)∵直线y=﹣3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x﹣2)2+k经过点A(1,0),B(0,3),∴,解得,故a,k的值分别为1,﹣1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3﹣m)2,∵AQ=BQ,∴1+m2=4+(3﹣m)2,∴m=2,∴Q点的坐标为(2,2);(3)当点N在对称轴上时,NC与AC不垂直,所以AC应为正方形的对角线.又∵对称轴x=2是AC的中垂线,∴M点与顶点P(2,﹣1)重合,N点为点P关于x轴的对称点,其坐标为(2,1).此时,MF=NF=AF=CF=1,且AC⊥MN,∴四边形AMCN为正方形.在Rt△AFN中,AN==,即正方形的边长为.【点评】本题是二次函数的综合题型,其中涉及到的知识点有二元一次方程组的解法,等腰三角形的性质,勾股定理,二次函数的性质,正方形的判定与性质,综合性较强,难度适中.。

2018——2019学年度初三上数学期中考试卷(解析版)

2018——2019学年度初三上数学期中考试卷(解析版)

4页A 23B13C12D167某种商品的原价为36元/盒,经过连续两次降价后的售价为25元/盒设平均每次降价的百分率为x,根据题意所列方程正确的是(C)A 36(1-x)2=36-25B 36(1-2x)=25C 36(1-x)2=25D 36(1-x2)=258若实数x,y满足(x2+y2+1)(x2+y2-2)=0,则x2+y2的值是(B)A 1B 2C 2或-1D -2或-19关于x的一元二次方程kx2+2x+1=0有两个实根,则实数k的取值范围是(C)A k≤1B k<1C k≤1且k≠0D k<1且k≠010如图,在菱形ABCD中,点E是AB边上一点,且∠A=∠EDF=60°,有下列结论:①AE=BF;②△DEF是等边三角形;③△BEF是等腰三角形;④∠ADE=∠BEF其中结论正确的个数是(A)A 3个B 4个C 1个D 2个二填空题(每小题3分,共18分)11关于x的方程x2+mx-6=0有一根为2,则另一根是__-3__,m=__1__ 12在一个不透明的口袋中装有仅颜色不同的红白两种小球,其中红球3个,白球n个,若从袋中任取一个球,摸出白球的概率是45,则n=__12__13如图,在矩形ABCD中,AB=12AC,BC=3,则OB=__1__第2页,共4页14 如图,某小区规划在一个长30 m ,宽20 m 的长方形ABCD 上修建三条同样宽的通道,使其中两条与AB 平行,另一条与AD 平行,其余部分种花草 要使每一块花草的面积都为78 m 2,那么通道的宽应设计成多少m ?设通道的宽为x m ,由题意列得方程__(30-2x )(20-x )=6×78__第13题图 第14题图 第15题图15 如图,是一个菱形衣挂的平面示意图,每个菱形的边长为16 cm ,当锐角∠CAD =60°时,把这个衣挂固定在墙上,两个钉子CE 之间的距离是cm (结果保留根号)16 在一个口袋中有4个完全相同的小球,把它们分别标号1,2,3,4,随机地摸出一个小球然后放回,再随机地摸出一个小球,则两次摸出的小球的标号之和等于4的概率是__316__三 解答题(共72分)17 (10分)解方程:(1)-12x 2-3x +6=0; (2)x +5=x 2-25x 1=-3+21,x 2=-3-21 x 1=-5,x 2=618 (10分)如图所示,可以自由转动的转盘被3等分,指针落在每个扇形内的机会均等 小明和小华利用这个转盘做游戏,若采用下列游戏规则,你认为对双方公平吗?请用列表或画树状图的方法说明理由列表略 所有等可能的情况有9种,其中两数之积为偶数的情况有5种,两数之积为奇数的情况有4种,∴P (小明获胜)=59,P (小华获胜)=49 ∵59>49,∴该游戏不公平19 (10分)现有5个质地 大小完全相同的小球上分别标有数字-1,-2,1,2,3 先将标有数字-2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里 现分别从这两个盒子里各随机取出一个小球(1)请利用列表或画树状图的方法表示取出的两个小球上的数字之和所有可能的结果;(2)求取出两个小球上的数字之和等于0的概率(1)树状图如图所示:(2)由树状图可知所有可能出现的结果共有6种,∴P (和为0)=26=1320 (10分)如图,四边形ABCD 是矩形,把矩形沿AC 折叠,点B 落在点E第3页,共4页处,AE 与DC 的交点为O ,连接DE(1)求证:△ADE ≌△CED ; (2)求证:DE ∥AC(1)∵ 四边形ABCD 是矩形,∴AD =BC ,AB =CD 又∵AC 是折痕,∴BC =CE =AD ,AB =AE =CD 又DE =ED ,∴△ADE ≌△CED (2)∵△ADE ≌△CED ,∴∠EDC =∠DEA 又∵△ACE 与△ACB 关于AC 所在直线对称,∴∠OAC =∠CAB 又∵∠OCA =∠CAB ,∴∠OAC =∠OCA ∵∠DOE =∠AOC ,∴2∠OAC =2∠DEA ,∴∠OAC=∠DEA ,∴DE ∥AC21 (10分)在矩形ABCD 中,AB =6 cm ,BC =12 cm ,点P 从点A 开始沿AB 边向点B 以1 cm /s 的速度运动,同时点Q 从点B 开始沿BC 边向点C 以2 cm /s 的速度运动,P ,Q 两点分别到达B ,C 两点后停止移动,那么几秒后△PBQ 的面积是5 cm 2?设x 秒后△PBQ 的面积为5 cm 2,则12(6-x )·2x =5,解得x 1=1,x 2=5 答:1秒或5秒后,△PBQ 的面积是5 cm 222 (10分)某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售,一个月能售出500 kg ,销售单价每涨价1元,月销售量就减少10 kg 针对这种水产品的销售情况,请回答以下问题:(1)当销售单价定为每千克55元时,计算月销售量和销售利润; (2)商店想在月销售成本不超过10 000元的情况下,使月销售利润达到8 000元,销售单价应定为多少?(1)450 kg 6 750元 (2)设销售单价为x 元,则(x -40)[500-10(x -50)]=8 000,解得x 1=60,x 2=80,当x =60时,月销售成本超过了10 000元,应舍去 因此,销售单价为每千克80元23 (12分)猜想与证明:如图①摆放矩形纸片ABCD 与矩形纸片ECGF,使B ,C ,G 三点在一条直线上,CE 在边CD 上,连接AF ,若点M 为AF 的中点,连接DM ,ME ,试猜想DM 与ME 的关系,并证明你的结论拓展与延伸:(1)若将“猜想与证明”中的纸片换成正方形纸片ABCD 与正方形纸片ECGF ,其他条件不变,则DM 和ME 的关系为__DM =ME __;(2)如图②摆放正方形纸片ABCD 与正方形纸片ECGF ,使点F 在边CD 上,点M 仍为AF 的中点,试证明(1)中的结论仍然成立第4页,共4页证明:如图①,延长EM 交AD 于点H ,∵四边形ABCD 和ECGF 是矩形,∴AD ∥EF ,∴∠EFM =∠HAM ,又∵∠FME=∠AMH ,FM =AM ,∴在△FME 和△AMH中,⎩⎨⎧∠EFM =∠HAM ,FM =AM ,∠FME =∠AMH ,∴△FME ≌△AMH (ASA )∴HM =EM 在Rt △HDE 中,HM =EM ,∴DM =HM =ME ,∴DM =ME (1)DM =ME (2)如图②,连接AE ,∵四边形ABCD 和ECGF 是正方形,∴∠FCE =45°,∠FCA =45°,∴AE 和EC 在同一条直线上,在Rt △ADF 中,AM =MF ,∴DM =AM =MF ,在Rt △AEF 中,AM =MF ,∴AM =M F =ME ,∴DM =ME。

人教版2018-2019学年第一学期九年级数学上册期中试卷及答案

人教版2018-2019学年第一学期九年级数学上册期中试卷及答案

2018-2019学年度第一学期九年级期中质量调研
数学试卷
一、选择题(本大题共12 小题,每小题3分,共36 分)
1. 下列各点,在二次函数的图象上的是
A.(0,0)
B.(-1,-1)
C.(1,9)
D.(2,-2)
2. 下列图案中,可以看作是中心对称图形的有
A.1个
B.2个
C.3个
D.4个
3. 在平面直角坐标系中,点P(-3,2)绕原点O顺时针旋转180°,所得到的对应点P '的坐标为
A.(3,2)
B.(2,-3)
C.(-3,-2)
D.(3,-2)
4. 下列命题中不正确的是
A.圆是轴对称图形,任何一条直径所在直线都是圆的对称轴
B.圆是中心对称图形,圆心是它的对称中心
C.同弧或等弧所对的圆心角相等
D.平分弦的直径一定垂直于这条弦
5. 抛物线的顶点坐标为
A.(4,7)
B.(-4,7)
C.(4,-7)
D.(-4,-7)
6.抛物线向上平移3个单位,再向左平移两个单位,那么得到的抛物线解析式为()
7. 如图,以△ABC的边BC为直径的圆O分别交AB,AC于点D、E,连接OD、OE,若,则∠A的度数为。

2018-2019人教版九上期中数学试题(含答案)

2018-2019人教版九上期中数学试题(含答案)

2018——2019学年第一学期期中考试 一、选择题:1.C ;2.B ;3.B ;4.C ;5.A ; 6.A ; 7.B ; 8.D ; 9.B ; 10.D .二、填空题:11.(3,2)P ';12.2018; 13.y =-x 2+2x (答案不唯一);14815.84º;16. 三、解答题17.12x x ==.……………………………………………………………………………… 6分 18.令y =0,得2023x x =+-,解得,121,3x x ==- ∴抛物线与x 轴交点坐标为(1,0),(-3,0).…………………………………………………………… 2分 令x =0,得y =-3∴抛物线与y 轴交点坐标为(0,-3).……………………………………………………………………… 4分 又2223(1)4y x x x =+-=+-,∴抛物线顶点坐标为(-1,-4). …………………………………… 6分19.(1)由题知: △=2(3)410k --⨯⨯>解得:k <94…………………………………………………………………………………………………… 3分 (2)由(1)知:k <94,取k =-4得方程2340x x --=,解得:121,4x x =-=.……………………… 7分20.设每年比上一年利润增长的百分率为x .依题意,列方程得:200(1+x )2=242 ……………………………………………………………………… 3分 解得:120.110%, 2.1x x ===-(不合题意,舍去)∴x =10% …………………………………………………………………………………………………… 6分 ∴该企业2019年预计利润是242×(1+10%)=266.2(万元). …………………………………………… 7分21.(1)设所求的函数解析式为:y =kx +b由题知:65556060k b k b =+⎧⎨=+⎩,解得1120k b =-⎧⎨=⎩∴y =-x +120 ……………………………………………………………………………………………… 3分(2) W =(50-x ) (-x +120)=-(x -85)2+1225 …………………………………………………………… 5分 ∵a =-1<0,∴当x <85时,W 随x 增大而增大. ……………………………………………………6分 由题知:50≤x ≤80 …………………………………………………………………………………………7分 ∴当x =80时,W 有最大值,且最大值为1200.………………………………………………………… 8分 即当试销单价定为80元时,该商店可获得最大利润,最大利润是1200元.22.(1)略……………………………………………………………………… 3分(2) 由(1)得2222P P PA P A ''=+=又2210P B PD '==,28PB =∴22210P B PB P P ''=+=…………………………………………………… 6分∴△BP P '是直角三角形,且∠BP P '=90º∴∠BPQ =180º-90º-45º=135º.………………………………………… 8分 23.(1)证明:连AD ,AC .∵∠ADC +∠AEC =∠AEC +∠CKF =180º∴∠CKF =∠ADC ………………………………………………………… 2分又∵CD ⊥直径AB ,∴⌒AC =⌒AD ,∴∠ACD =∠ADC …………………… 3分又∵∠AKD =∠ACD ∴∠AKD =∠CKF ………………………………………………………… 4分(2)连OD .则OD =5,DE =3 ……………………………………………… 5分∴OE 4=,∴AE =OE +OA =9.………………………… 8分(第22题图) (第23题图) E24.(1)△=222(5)4625(3)16m m m m m -+=-+=-+…………………………………………… 2分 ∵2(3)m -≥0∴△>0……………………………………………………………………………………………………3分 ∴不论m 为何值时,该方程总有两个不相等的实数根.……………………………………………4分(2)由题知:x 1, x 2是方程x 2-(m -5) x -m = 0的两根∴x 1+x 2=m -5,x 1x 2=-m ……………………………………………………………………………6分∴AB =12x x -===8分 ∴当m =3时,AB 存在最小值,最小值为AB =4.……………………………………………………10分25.(1)证明: ∵点A 在x 轴上,令y =0,得20ax bx c ++=∵b =a +c ,∴2()0ax a c x c +++=即(1)()0x ax c ++= 解得121,c x x a=-=-∴该抛物线过x 轴上的定点A (-1,0).…………………………………………………………………4分(2)解:①当点C 在点A 右侧时,如图1所示.∵四边形P ACQ 平行四边形,∴点C 恰好与点B 重合.由已知得P (0,∴Q (0设抛物线解析式为y =2ax +把A (-1,0)代入,得a∴y =28分②当点C 在点A 左侧时,如图2所示.∵四边形P ACQ 平行四边形,∴P A =CQ由抛物线对称性,得CQ =AQ∴P A =AQ∴点A 在PQ 的垂直平分线上.∴PQ =2OA =2,∴Q (-2.设抛物线解析式为y =2(2)a x +把A (-1,0)代入,得a∴y 22)x +12分综上,存在符合要求的抛物线,其解析式为y =2y 22)x +。

人教版2018-2019学年九年级数学(上册)期中试题及答案

人教版2018-2019学年九年级数学(上册)期中试题及答案

2018-2019学年九年级(上)期中数学试卷一.选择题(本题共10小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表格中.)1.下列各式计算正确的是()A.B.C.D.2.化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y3.下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.a2﹣b2=(a+b)(a﹣b)C.a2﹣4a﹣5=a(a﹣4)﹣5 D.4.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b25.解方程﹣3去分母得()A.1=1﹣x﹣3(x﹣2)B.1=x﹣1﹣3(2﹣x)C.1=x﹣1﹣3(x﹣2)D.﹣1=1﹣x﹣3(x﹣2)6.如果正数x、y同时扩大10倍,那么下列分式中值缩小10倍的是()A.B. C.D.7.已知5个正数a 1,a 2,a 3,a 4,a 5的平均数是a ,且a 1>a 2>a 3>a 4>a 5,则数据:a 1,a 2,a 3,0,a 4,a 5的平均数和中位数是( )A .a ,a 3B .a ,C . a ,D .,8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:某同学根据表中数据分析得出下列结论: (1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(2015•泗洪县校级模拟)对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有( ) A .1个 B .2个 C .3个 D .4个10.南京到上海铁路长300km ,为了适应两市经济的发展,客车的速度比原来每小时增加了40km ,因此从南京到上海的时间缩短了一半,设客车原来的速度是xkm/h ,则根据题意列出的方程是( )A .B .C .D .二.填空题(本题共8小题,请将结果填写在空格处)11.约分①= ; ②= .12.利用因式分解计算(﹣2)101+(﹣2)100= .13.若代数式的值为0,则x= .14.把下列有理式中,是分式的代号填在横线上 .①﹣3x ;②;③;④﹣;⑤;⑥;⑦﹣;⑧.15.附加题:已知,则= .16.已知a+b=2,ab=2,则a3b+a2b2+ab3的值为.17.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是年.18.一名学生军训时连续射靶6次,命中的环数分别为6,8,5,6,9,8.则这名学生射击环数的方差是.三.解答题(本大题共6小题,解答要写出必要的文字说明、证明过程或演算步骤)19.把下列各式分解因式:(1)3x﹣12x3(2)(x2+4)2﹣16x2(3)y(y+4)﹣4(y+1)(4).20.计算(1).(2)(﹣)÷()21.解下列方程(1)(2).22.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.23.某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?24.新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?【选做题】(不计入总分)25.附加题:观察下列等式:,,,将以上三个等式两边分别相加得:.(1)直接写出下列各式的计算结果:=(2)猜想并写出:=(﹣).(3)探究并解方程:.2018-2019学年九年级(上)期中数学试卷参考答案与试题解析一.选择题(本题共10小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项填在下面的表格中.)1.下列各式计算正确的是()A.B.C.D.【考点】分式的混合运算;约分.【分析】按同底数幂除法法则,约分,分式混合运算法则进行运算,看结果是否正确即可.【解答】解:A、式应该为x3,错误;B、化简正确;C、的结果应该为﹣m﹣3,错误;D、=,错误.故选B.【点评】本题主要考查分式的混合运算,不是很难.2.化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y【考点】分式的加减法.【专题】计算题.【分析】因为分母相同,则分子直接相减,即x2﹣y2=(x+y)(x﹣y)=﹣(x+y)(y﹣x),然后进行化简.【解答】解:.故选A.【点评】在分式的化简过程中应注意符号的转变.3.下列各式从左到右的变形中,是因式分解的是()A.(a+3)(a﹣3)=a2﹣9B.a2﹣b2=(a+b)(a﹣b)C.a2﹣4a﹣5=a(a﹣4)﹣5 D.【考点】因式分解的意义.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、是整式的乘法,不是因式分解,故本选项错误;B、符合因式分解的定义,故本选项正确;C、右边不是积的形式,不是因式分解,故本选项错误;D、是整式的乘法,不是因式分解,故本选项错误;故选B.【点评】本题考查了因式分解的意义,关键是熟练掌握定义,区别开整式的乘除运算.4.如图在边长为a的正方形中挖掉一个边长为b的小正方形(a>b),把剩下的部分拼成一个矩形,通过计算两处图形的面积,验证了一个等式,此等式是()A.a2﹣b2=(a+b)(a﹣b)B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a+2b)(a﹣b)=a2+ab+b2【考点】平方差公式的几何背景.【专题】计算题;压轴题.【分析】利用正方形的面积公式可知剩下的面积=a2﹣b2,而新形成的矩形是长为a+b,宽为a﹣b,根据两者相等,即可验证平方差公式.【解答】解:由题意得:a2﹣b2=(a+b)(a﹣b).故选A.【点评】此题主要考查平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做平方差公式.5.解方程﹣3去分母得()A.1=1﹣x﹣3(x﹣2)B.1=x﹣1﹣3(2﹣x)C.1=x﹣1﹣3(x﹣2)D.﹣1=1﹣x﹣3(x﹣2)【考点】解分式方程.【分析】本题的最简公分母是(x﹣2).方程两边都乘最简公分母,可把分式方程转换为整式方程.【解答】解:方程两边都乘(x﹣2),得1=x﹣1﹣3(x﹣2).故选C.【点评】单独的一个数和字母也必须乘最简公分母.6.如果正数x、y同时扩大10倍,那么下列分式中值缩小10倍的是()A.B. C.D.【考点】分式的基本性质.【分析】直接利用分式的基本性质化简进而求出答案.【解答】解:A、∵正数x、y同时扩大10倍,∴,无法化简,故此选项错误;B、∵正数x、y同时扩大10倍,∴,无法化简,故此选项错误;C、∵正数x、y同时扩大10倍,∴=,∴正数x、y同时扩大10倍,分式的值缩小10倍的是,故此选项正确;D、=,故此选项错误.故选:C.【点评】此题主要考查了分式的基本性质,正确化简分式是解题关键.7.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C.a,D.,【考点】中位数;算术平均数.【专题】计算题;压轴题.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.8.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如表:某同学根据表中数据分析得出下列结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(2015•泗洪县校级模拟)对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有()A.1个B.2个C.3个D.4个【考点】众数;加权平均数;中位数.【分析】先把数据按大小排列,然后根据定义分别求出众数、中位数和平均数,最后逐一判断.【解答】解:从小到大排列此数据为:2,2,3,3,3,3,3,3,6,6,10.数据3出现了6次,最多,为众数;第6位是3,3是中位数;平均数为(2+2+3+3+3+3+3+3+6+6+10)÷11=4.故选A.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.南京到上海铁路长300km,为了适应两市经济的发展,客车的速度比原来每小时增加了40km,因此从南京到上海的时间缩短了一半,设客车原来的速度是xkm/h,则根据题意列出的方程是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】由“从南京到上海的时间缩短了一半”,等量关系为:原来用的时间=现在用的时间×,把相关数值代入即可.【解答】解:设客车原来的速度是xkm/h,现在的速度是(x+40)km/h,由题意得,=×.故选:C.【点评】考查列分式方程,根据减少的时间得到相应的等量关系是解决本题的关键.二.填空题(本题共8小题,请将结果填写在空格处)11.约分①=;②=.【考点】约分.【专题】计算题.【分析】①分子分母都约去公因式5ab即可;②先把分母因式分解,然后约分即可.【解答】解:①原式=;②原式==.故答案为,.【点评】本题考查了约分的:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.12.利用因式分解计算(﹣2)101+(﹣2)100=﹣2100.【考点】因式分解的应用.【分析】提公因式(﹣2)100,再进行计算.【解答】解:(﹣2)101+(﹣2)100=(﹣2)100[﹣2+1]=﹣2100;故答案为:﹣2100.【点评】本题是利用因式分解简化计算问题,用因式分解的方法将式子变形,使计算简便.13.若代数式的值为0,则x=1.【考点】分式的值为零的条件.【专题】计算题.【分析】根据分式的值为零的条件得到|x|﹣1=0且x+1≠0,然后解方程和不等式即可.【解答】解:∵代数式的值为0,∴|x|﹣1=0且x+1≠0,∴x=1.故答案为1.【点评】本题考查了分式的值为零的条件:当分式的分子为零,分母不为零时,分式的值为零.14.把下列有理式中,是分式的代号填在横线上②⑤⑥.①﹣3x;②;③;④﹣;⑤;⑥;⑦﹣;⑧.【考点】分式的定义.【分析】根据分母中含有字母的式子是分式,可得答案.【解答】解:;②;⑤;⑥是分式,故答案为:②⑤⑥.【点评】本题考查了分式的定义,分母中含有字母的式子是分式,注意π是常数不是字母.15.附加题:已知,则=1.【考点】分式的化简求值.【专题】压轴题.【分析】根据题意可得到a+b=4ab,而所求代数式可以化简为,把前面的等式代入即可求出其值.【解答】解:∵,∴a+b=4ab,则===1.【点评】主要考查了分式的化简式求值问题.分式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取关于ab,与a+b的关系,然后把所求的分式变形整理出题设中的形式,利用“整体代入法”求分式的值.16.已知a+b=2,ab=2,则a3b+a2b2+ab3的值为4.【考点】提公因式法与公式法的综合运用.【分析】首先对所求的式子提公因式ab,然后利用完全平方公式分解,最后把a+b=2,ab=2代入求值.【解答】解:原式=ab(a2+2ab+b2)=ab(a+b)2,当a+b=2,ab=2时,原式=×2×22=4.故答案是:4.【点评】本题考查了分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.下图是根据某地相邻两年6月上旬日平均气温情况绘制的折线统计图,通过观察图形,可以判断这两年6月上旬气温比较稳定的年份是2005年.【考点】折线统计图.【专题】图表型.【分析】折线统计图中折线越起伏的表示数据越不稳定,相反,折线越平稳的表示数据越稳定;从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【解答】解:从两幅图中可以看出:2004年6月上旬折线起伏较大,所以2004年6月上旬气温比较不稳定,则2005年6月上旬折线较平稳,则2005年6月上旬气温比较稳定.【点评】本题考查的是折线统计图的综合运用.从折线统计图中不仅能看出数据的多少,还能看出数据的变化情况.18.一名学生军训时连续射靶6次,命中的环数分别为6,8,5,6,9,8.则这名学生射击环数的方差是2.【考点】方差.【分析】根据方差的计算公式计算即可.【解答】解:这名学生射击环数的平均数==7,这名学生射击环数的方差==2,故答案为:2.【点评】本题考查方差的定义.它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.三.解答题(本大题共6小题,解答要写出必要的文字说明、证明过程或演算步骤)19.把下列各式分解因式:(1)3x﹣12x3(2)(x2+4)2﹣16x2(3)y(y+4)﹣4(y+1)(4).【考点】提公因式法与公式法的综合运用.【分析】(1)先提取公因式,再用平方差公式分解即可;(2)先用平方差公式,再用完全平方公式分解即可;(3)先用乘法公式展开,再合并,最后用平方差公式分解即可;(3)先用乘法公式展开,再提取公因式,最后用完全平方公式和平方差公式分解即可;【解答】解:(1)3x﹣12x3=3x(1﹣4x2)=3x(1﹣2x)(1+2x),(2)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2,(3)y(y+4)﹣4(y+1)=y2+4y﹣4y﹣4=(y+2)(y﹣2)(4)=2x2﹣1﹣x4=﹣(x4﹣2x2+1)=﹣(x2﹣1)2=﹣(x+1)2(x﹣1)2【点评】此题是提公因式和公式法的综合运用,主要考查了提取公因式分解因式和平方差公式,完全平方公式分解因式的方法,解本题的关键是分解因式的方法得选择.20.计算(1).(2)(﹣)÷()【考点】分式的混合运算.【专题】计算题;分式.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式===;(2)原式=•=3(x+2)﹣(x﹣2)=3x+6﹣x+2=2x+8.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.解下列方程(1)(2).【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到y的值,经检验即可得到分式方程的解.【解答】解:(1)去分母得:(x﹣2)2﹣12=x2﹣4,整理得:x2﹣4x+4﹣12=x2﹣4,解得:x=﹣1,经检验x=﹣1是分式方程的解;(2)去分母得:y﹣2=2y﹣6+1,解得:y=3,经检验y=3是增根,分式方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.22.已知A=﹣(1)化简A;(2)当x满足不等式组,且x为整数时,求A的值.【考点】分式的化简求值;一元一次不等式组的整数解.【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A 式进行计算即可.【解答】解:(1)A=﹣=﹣=﹣=(2)∵∴∴1≤x<3,∵x为整数,∴x=1或x=2,①当x=1时,∵x﹣1≠0,∴A=中x≠1,∴当x=1时,A=无意义.②当x=2时,A==.【点评】(1)此题主要考查了分式的化简求值,注意化简时不能跨度太大,而缺少必要的步骤.(2)此题还考查了求一元一次不等式组的整数解问题,要熟练掌握,解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件求得不等式组的整数解即可.23.某校学生会决定从三名学生会干事中选拔一名干事,对甲、乙、丙三名候选人进行了笔试和面试,三人的测试成绩如下表所示:根据录用程序,学校组织200名学生采用投票推荐的方式,对三人进行民主测评,三人得票率(没有弃权,每位同学只能推荐1人)如扇形统计图所示,每得一票记1分.(1)分别计算三人民主评议的得分;(2)根据实际需要,学校将笔试、面试、民主评议三项得分按4:3:3的比例确定个人成绩,三人中谁的得分最高?【考点】加权平均数;统计表;扇形统计图;算术平均数.【分析】(1)根据百分数乘法的意义,分别用200乘以三人的得票率,求出三人民主评议的得分各是多少即可.(2)首先根据加权平均数的计算方法列式计算,分别求出三人的得分各是多少;然后比较大小,判断出三人中谁的得分最高即可.【解答】解:(1)甲民主评议的得分是:200×25%=50(分);乙民主评议的得分是:200×40%=80(分);丙民主评议的得分是:200×35%=70(分).(2)甲的成绩是:(75×4+93×3+50×3)÷(4+3+3)=729÷10=72.9(分)乙的成绩是:(80×4+70×3+80×3)÷(4+3+3)=770÷10=77(分)丙的成绩是:(90×4+68×3+70×3)÷(4+3+3)=774÷10=77.4(分)∵77.4>77>72.9,∴丙的得分最高.【点评】(1)此题主要考查了加权平均数、算术平均数的含义和求法的应用,要熟练掌握.(2)此题还考查了统计表和扇形统计图的应用,要熟练掌握,要注意从中获取信息,并能应用获取的信息解决实际问题.24.新世纪广场进货员预测一种应季衬衫能畅销市场,就用8万元购进这种衬衫,面市后果然供不应求,商场又用17.6万元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了4元,商场销售这种衬衫时每件定价都是58元,最后剩下的150件按八折销售,很快售完,在这两笔生意中,商场共赢利多少元?【考点】分式方程的应用.【专题】销售问题.【分析】盈利=总售价﹣总进价,应求出衬衫的数量.总价明显,一定是根据单价来列等量关系.本题的关键描述语是:“单价贵了4元”;等量关系为:第一次的单价=第二次的单价﹣4.【解答】解:设商场第一次购进x件衬衫,则第二次购进2x件,根据题意得:.160000=176000﹣8x解这个方程得:x=2000.经检验:x=2000是原方程的根.∴2x=4000商场利润:(2000+4000﹣150)×58+58×0.8×150﹣80000﹣176000=90260(元).答:在这两笔生意中,商场共盈利90260元.【点评】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【选做题】(不计入总分)25.附加题:观察下列等式:,,,将以上三个等式两边分别相加得:.(1)直接写出下列各式的计算结果:=(2)猜想并写出:=(﹣).(3)探究并解方程:.【考点】规律型:数字的变化类;解一元二次方程-因式分解法;解分式方程.【专题】计算题.【分析】(1)由等式:,,,两边分别相加得:,类比上面的做法得到答案;(2)因﹣=,再由﹣=猜想出结论;(3)由(2)的结论,可以推出=(﹣),进一步解出方程.【解答】解:因为(1),,,…=﹣,所以,=1﹣+﹣+﹣+…+﹣,=1﹣,=;(2)因为﹣=,所以=(﹣);(3)类比(2)的结论,可以得到,=(﹣),所以,(﹣+﹣+﹣)=,=,解得x1=﹣9,x2=2,经检验,x1=﹣9是增根,x2=2是原方程的根.【点评】解决此类问题,从特殊中找出一般情况,利用类比的思想进一步解决问题.。

人教版2019届九年级(上)期中数学试卷(解析版)

人教版2019届九年级(上)期中数学试卷(解析版)

人教版2018-2019学年九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.2.如图图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个3.下列运算正确的是()A.2x2•x3=2x5 B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x74.由中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4300000000人,这个数用科学记数法表示为()A.43×108B.4.3×109C.4.3×108D.4.3×10105.下列命题中,真命题是()A.圆周角等于圆心角的一半B.等弧所对的圆周角相等C.平分弦的直径垂直于弦D.过弦的中点的直线必经过圆心6.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1 7.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE =1:3,则S△DOE:S△AOC的值为()A.B.C.D.9.如图,圆O的弦AB垂直平分半径OC,则四边形OACB一定是()A.正方形B.长方形C.菱形D.梯形10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(每题3分,共30分)11.计算:﹣= .12.函数y=的自变量x的取值范围是.13.分解因式:3a2﹣6ab+3b2= .14.将二次函数y=x2+6x+3化成顶点式y=a(x﹣h)2+k的形式.15.双曲线,当x>0时,y随x的增大而减小,则m= .16.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为.18.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD= .19.菱形ABCD中∠A=60°,点E在直线BD上,直线AE交直线CD于F,CD=3DE,AF=6,则AE= .20.如图,正方形ABCD的顶点D在正方形ECGF的边EC上,顶点B在GC的延长线上,连接EG、BE,∠EGC的平分线GH过点D交BE于H,连接HF交EG于M,则的值为.三、解答题(21、22每题7分,23、24每题8分,25、26、27每题10分)21.先化简,再求代数式﹣2的值,其中x=3sin45°+2cos60°.22.图1,图2均为正方形网络,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)在图1中,画一个边长为整数的矩形,面积等于24,周长等于22.(2)在图2中,画一个有一个角是钝角的等腰三角形,且面积等于10.23.为推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图两个统计图,请根据相关信息,解答下列问题:(1)求本次抽样调查的学生的人数;(2)通过计算补全条形统计图;(3)若学校计划购买200双运动鞋,建议购买35号运动鞋约多少双?24.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.25.冬季将至,服装城需1100件羽绒服解决商场货源短缺问题,现由甲、乙两个加工厂生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,且加工生产480件羽绒服甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件羽绒服?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批羽绒服的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?26.已知,如图1,Rt△ABC中,∠C=90°,M为AB上的一点,MN⊥AC 于N,△AMN绕点A旋转得到△APQ,延长BC至点D,使CD=BC,延长PQ至点E,使QE=PQ,连接ED.BP.(1)求证:DE=BP;(2)如图2,连接PD,取PD中点F,连接CQ,FQ,若tan∠ABC=,则QC= QF.(3)如图3,在(2)的条件下,若AB=AM,AQ∥ED,CQ=12,求PD的长.27.已知:y=ax2﹣4ax交x轴于O、A两点,对称轴交x轴于点E,顶点为点D,若△AOD的面积为4.点P是x轴上方抛物线上一动点,作PH⊥x轴,垂足为H,连接PA,作直线HQ⊥PA交y轴于点Q,(1)求a的值.(2)在点P运动过程中,连接QD,若∠PAO=∠QDE,求HE的长度.(3)点Q关于AP的对称点为点K,若2HA=QH,求点P的坐标及KE的长.2018-2019学年九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D .【考点】正数和负数;绝对值.【分析】求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,故选:C .2.如图图形中,既是轴对称图形又是中心对称图形的有( )A .4个B .3个C .2个D .1个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:第一个、第三个图形既是轴对称图形又是中心对称图形.故选C.3.下列运算正确的是()A.2x2•x3=2x5 B.(x﹣2)2=x2﹣4 C.x2+x3=x5D.(x3)4=x7【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据单项式乘法、完全平方公式、合并同类项法则、幂的乘方的运算方法,利用排除法求解.【解答】解:A、2x2•x3=2x5,故本选项正确;B、应为(x﹣2)2=x2﹣4x+4,故本选项错误;C、x2与x3不是同类项,不能合并,故本选项错误;D、应为(x3)4=x12,故本选项错误.故选:A.4.由中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4300000000人,这个数用科学记数法表示为()A.43×108B.4.3×109C.4.3×108D.4.3×1010【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4300 000 000=4.3×109,故选:B.5.下列命题中,真命题是()A.圆周角等于圆心角的一半B.等弧所对的圆周角相等C.平分弦的直径垂直于弦D.过弦的中点的直线必经过圆心【考点】命题与定理.【分析】利用圆周角定理、垂径定理及其推理分别判断后即可确定正确的选项.【解答】解:A、同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半,故错误,为假命题;B、等弧所对的圆周角相等,正确,为真命题;C、平分弦(不是直径)的直径垂直于弦,故错误,为假命题;D、过先的中点且垂直于弦的直线必经过圆心,故错误,为假命题,故选B.6.如果将抛物线y=x2+2先向下平移1个单位,再向左平移1个单位,那么所得新抛物线的解析式是()A.y=(x﹣1)2+2 B.y=(x+1)2+1 C.y=x2+1 D.y=(x+1)2﹣1【考点】二次函数图象与几何变换.【分析】先确定抛物线y=x2+2的顶点坐标为(0,2),根据点平移的规律得到点(0,2)平移后得到对应点的坐标为(﹣1,1),然后根据顶点式写出新抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),把点(0,2)先向下平移1个单位,再向左平移1个单位得到对应点的坐标为(﹣1,1),所以所得新抛物线的解析式为y=(x+1)2+1.故选B.7.如图,滑雪场有一坡角为20°的滑雪道,滑雪道的长AC为100米,则滑雪道的坡顶到坡底的竖直高度AB的长为()A.B.C.1OOcos20°D.100sin20°【考点】解直角三角形的应用-坡度坡角问题.【分析】根据正弦的定义进行解答即可.【解答】解:∵sin∠C=,∴AB=AC•sin∠C=100sin20°,故选:D.8.如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE =1:3,则S△DOE:S△AOC的值为()A .B .C .D .【考点】相似三角形的判定与性质.【分析】证明BE :EC=1:3,进而证明BE :BC=1:4;证明△DOE ∽△AOC ,得到=,借助相似三角形的性质即可解决问题.【解答】解:∵S △BDE :S △CDE =1:3, ∴BE :EC=1:3; ∴BE :BC=1:4; ∵DE ∥AC , ∴△DOE ∽△AOC ,∴=,∴S △DOE :S △AOC ==,故选D .9.如图,圆O 的弦AB 垂直平分半径OC ,则四边形OACB 一定是( )A .正方形B .长方形C .菱形D .梯形【考点】垂径定理;菱形的判定.【分析】先根据垂径定理得出AD=BD,AC=BC,再根据全等三角形的判定定理得出△AOD≌△BCD,故可得出OA=BC,即OA=OB=BC=AC,由此即可得出结论.【解答】解:∵弦AB垂直平分半径OC,∴AD=BD,AC=BC,OD=CD,∵在△AOD与△BCD中,,∴△AOD≌△BCD,∴OA=BC,∴OA=OB=BC=AC,∴四边形OACB是菱形.故选C.10.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个【考点】二次函数的图象;二次函数图象与系数的关系;二次函数的最值;抛物线与x轴的交点;二次函数与不等式(组).【分析】①根据抛物线的顶点坐标确定二次三项式ax2+bx+c的最大值;②根据x=2时,y<0确定4a+2b+c的符号;③根据抛物线的对称性确定一元二次方程ax2+bx+c=1的两根之和;④根据函数图象确定使y≤3成立的x的取值范围.【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.二、填空题(每题3分,共30分)11.计算:﹣= ﹣3.【考点】二次根式的加减法.【分析】直接化简二次根式进而合并求出答案.【解答】解:﹣=3﹣3×2=﹣3.故答案为:﹣3.12.函数y=的自变量x的取值范围是x≥3 .【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x﹣3≥0且x﹣2≠0,解得x≥3且x≠2,所以,x≥3.故答案为:x≥3.13.分解因式:3a2﹣6ab+3b2= 3(a﹣b)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3a2﹣6ab+3b2=3(a2﹣2ab+b2)=3(a﹣b)2.故答案为:3(a﹣b)2.14.将二次函数y=x2+6x+3化成顶点式y=a(x﹣h)2+k的形式y=(x+3)2﹣6 .【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式即可.【解答】解:y=x2+6x+3=x2+6x+9﹣6=(x+3)2﹣6.故答案为:y=(x+3)2﹣6.15.双曲线,当x>0时,y随x的增大而减小,则m= ﹣2 .【考点】反比例函数的定义.【分析】根据反比例函数的定义列出方程求解,再根据它的性质决定解的取舍.【解答】解:根据题意得:,解得:m=﹣2.故答案为﹣2.16.如图,直径为10的⊙A经过点C(0,6)和点O(0,0),B是y轴右侧圆弧上一点,则cos∠OBC= .【考点】圆周角定理;坐标与图形性质;解直角三角形.【分析】首先根据圆周角定理,判断出∠OBC=∠ODC;然后根据CD是⊙A 的直径,判断出∠COD=90°,在Rt△COD中,用OD的长度除以CD的长度,求出∠ODC的余弦值为多少,进而判断出∠OBC的余弦值为多少即可.【解答】解:如图,延长CA交⊙A与点D,连接OD,∵同弧所对的圆周角相等,∴∠OBC=∠ODC,∵CD是⊙A的直径,∴∠COD=90°,∴cos∠ODC===,∴cos∠OBC=,故答案为:.17.如图,以点O为位似中心,将△ABC放大得到△DEF,若AD=OA,则△ABC与△DEF的面积之比为1:4 .【考点】位似变换.【分析】由AD=OA,易得△ABC与△DEF的位似比等于1:2,继而求得△ABC与△DEF的面积之比.【解答】解:∵以点O为位似中心,将△ABC放大得到△DEF,AD=OA,∴AB:DE=OA:OD=1:2,∴△ABC与△DEF的面积之比为:1:4.故答案为:1:4.18.如图,Rt△ABC中,∠ACB=90°,AC=3,BC=4,将△ABC绕点A逆时针旋转得到△AB′C′,AB′与BC相交于点D,当B′C′∥AB时,CD=.【考点】旋转的性质.【分析】设CD=x,由B′C′∥AB,可推得∠BAD=∠B′,由旋转的性质得:∠B=∠B′,于是得到∠BAD=∠B,AC=AC′=3,AD=BD=4﹣x,在直角△ADC中,由勾股定理可求得结论.【解答】解:设CD=x,∵B′C′∥AB,∴∠BAD=∠B′,由旋转的性质得:∠B=∠B′,AC=AC′=3,∴∠BAD=∠B,∴AD=BD=4﹣x,∴(4﹣x)2=x2+32,解得:x=.故答案为:.19.菱形ABCD中∠A=60°,点E在直线BD上,直线AE交直线CD于F,CD=3DE,AF=6,则AE= 4或8 .【考点】菱形的性质.【分析】有两种情形,画出图形,先证明△ABD、△BDC都是等边三角形,再根据平行线分线段成比例定理即可解决问题.【解答】解:①如图1中,∵四边形ABCD是菱形,∴AB=BC=CD=AD,DC∥AB,∵∠DAB=60°,∴∠DCB=∠DAB=60°,∴△ABD,△BDC都是等边三角形,∴DC=DB,∵CD=3DE,∴DB=3ED,∵DF∥AB,∴==,∵AF=6,∴AE=4.②如图2中,由①可知BD=3DE,∵DF∥AB,∴==,∵AF=6,∴AE=8.故答案为4或820.如图,正方形ABCD的顶点D在正方形ECGF的边EC上,顶点B在GC的延长线上,连接EG、BE,∠EGC的平分线GH过点D交BE于H,连接HF交EG于M,则的值为+1 .【考点】正方形的性质.【分析】取EG中点O,连接OH,先证明△BCE≌△DCG推出HG⊥BE,再证明△BGH≌△EGH,推出OH是三角形中位线,设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,利用△DHN∽△DGC,得=,求出a、b之间的关系,最后由△EFM∽△OMH,得==,推出==即可解决问题.【解答】解:取EG中点O,连接OH∵四边形ABCD是正方形,∴BC=DC,∠BCE=90°,同理可得CE=CG,∠DCG=90°,在△BCE和△DCG中,,∴△BCE≌△DCG,∴∠BEC=∠DGC,∵∠EDH=∠CDG,∠DGC+∠CDG=90°,∴∠EDH+∠BEC=90°,∴∠EHD=90°,∴HG⊥BE,在△BGH和△EGH中,,∴△BGH≌△EGH,∴BH=EH,∵EH=HB,EO=OG,∴HO∥BG,HO=BG=EF,设EC和OH相交于点N.设HN=a,则BC=2a,设正方形ECGF的边长是2b,则NC=b,CD=2a,∵OH∥BC,∴△DHN∽△DGC,∴=,即=,即a2+2ab﹣b2=0,解得:a=(﹣1+)b,或a=(﹣1﹣)b(舍去),则=﹣1,∵EF∥OH,∴△EFM∽△OMH,∴==,∴=,=,∴====,∴=+1.故答案为.三、解答题(21、22每题7分,23、24每题8分,25、26、27每题10分)21.先化简,再求代数式﹣2的值,其中x=3sin45°+2cos60°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先对括号内的式子进行通分相减,把除法转化为乘法,然后计算乘法即可化简,然后化简x的值,代入计算即可.【解答】解:原式=÷﹣2=•﹣2=x+1﹣2=x﹣1.当x=3sin45°+2cos60°=时,原式=.22.图1,图2均为正方形网络,每个小正方形的面积均为1.在这个正方形网格中,各个小正方形的顶点叫做格点.请在下面的网格中按要求画图,使得每个图形的顶点均在格点上.(1)在图1中,画一个边长为整数的矩形,面积等于24,周长等于22.(2)在图2中,画一个有一个角是钝角的等腰三角形,且面积等于10.【考点】勾股定理.【分析】(1)根据长方形的面积、周长公式,画一个长和宽为8和3的长方形即可;(2)根据勾股定理确定出三角形的腰长,再由钝角三角形的性质画出图形即可.【解答】解:(1)设该长方形的长为a,宽为b,则a+b=11,ab=24,显然a、b是关于x的一元二次方程x2﹣11x+28=0的两根,解方程x2﹣11x+28=0得到x1=8,x2=3,即a=8,b=3,所以该矩形的长为8,宽为3,如图1所示的矩形ABCD.(2)如图2所示,AC==5,BC=5,S△ABC=×4×5=10.23.为推动阳光体育运动的广泛开展,引导学生走向操场,走进大自然,走到阳光下,积极参加体育锻炼,学校准备购买一批运动鞋供学生借用,现从各年级随机抽取了部分学生的鞋号,绘制了如图两个统计图,请根据相关信息,解答下列问题:(1)求本次抽样调查的学生的人数;(2)通过计算补全条形统计图;(3)若学校计划购买200双运动鞋,建议购买35号运动鞋约多少双?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【解答】解:(1)本次接受随机抽样调查的学生人数为6+12+10+8+4=40;(2)40﹣12﹣10﹣8﹣4=6(人)补全条形统计图如下:(3)∵在40名学生中,鞋号为35的学生人数比例为30%,∴由样本数据,估计学校各年级中学生鞋号为35的人数比例约为30%,则计划购买200双运动鞋,有200×30%=60双为35号.24.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.【考点】圆周角定理;勾股定理;等腰直角三角形.【分析】(1)连接OA,由BC是⊙O的直径,AD⊥BC,易得∠C=∠OAE=∠B,又由F是弧BC中点,可得∠BAF=∠CAF,继而证得AE平分∠DAO;(2)首先连接OF,易得OF∥AD,即可得DE:OE=AD:OF,然后由勾股定理求得AD,BD的长,继而求得答案.【解答】(1)证明:连接OA,∵BC是⊙O的直径,∴∠BAC=90°,∴∠C+∠B=90°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C,∵OA=OC,∴∠OAC=∠C,∴∠BAD=∠OAC,∵F是弧BC中点,∴∠BAF=∠CAF,∴∠DAE=∠OAE,即AE平分∠DAO;(2)解:连接OF,∵∠BOF=2∠BAF=∠BAC=90°,∴OF⊥BC,∵AD⊥BC,∴OF∥AD,∴DE:OE=AD:OF,∵AB=6,AC=8,∴BC==10,∴AD==,∴BD==,∴OD=OB﹣BD=5﹣=,∴DE:OE=:5=24:25,∴OE=×=.25.冬季将至,服装城需1100件羽绒服解决商场货源短缺问题,现由甲、乙两个加工厂生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,且加工生产480件羽绒服甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件羽绒服?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批羽绒服的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)先设乙工厂每天可加工生产x件,则甲工厂每天可加工生产1.5件,根据加工生产480件羽绒服甲工厂比乙工厂少用4天,列出方程,求出x 的值,再进行检验即可求出答案;(2)设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.【解答】解:(1)设乙工厂每天可加工生产x件,则甲工厂每天可加工生产1.5x 件,根据题意可得:=+4,解得:x=40,经检验,x=40是原方程的根,也符合题意,则1.5x=60,答:甲工厂每天可加工生产60件,乙工厂每天可加工生产40件;(2)设甲工厂加工生产y天,根据题意得:3y+2.4×≤60,解得:y≥10.答:至少应安排甲工厂加工生产10天.26.已知,如图1,Rt△ABC中,∠C=90°,M为AB上的一点,MN⊥AC 于N,△AMN绕点A旋转得到△APQ,延长BC至点D,使CD=BC,延长PQ至点E,使QE=PQ,连接ED.BP.(1)求证:DE=BP;(2)如图2,连接PD,取PD中点F,连接CQ,FQ,若tan∠ABC=,则QC= QF.(3)如图3,在(2)的条件下,若AB=AM,AQ∥ED,CQ=12,求PD的长.【考点】几何变换综合题.【分析】(1)作辅助线,构建两个全等三角形:△ADE和△ABP,根据垂直平分线性质定理得出:AB=AD,AP=AE和夹角相等,两三角形全等,则DE=BP;(2)证明△ACQ∽△ABP得,再利用已知的tan∠ABC=得出AC与AB的比,利用中位线QF与DE的关系得出最后结论;(3)作辅助线,构建直角三角形,设△AMN的两直角边分别为3a和4a,表示出AB、AD、DG、AQ的长,利用已知的CQ=12和(2)中的结论QC=QF,求出QF的长,在直角△AGD和直角△PDE运用勾股定理列等式求出PD的长.【解答】解:(1)如图1,连接AE、AD,∵AC⊥BD,AQ⊥PE,BC=BD,PQ=QE,∴AB=AD,AP=AE,∴∠BAC=∠PAQ,∠BAC=∠CAD,∠PAQ=∠EAQ,∴∠BAD=∠PAE,∴∠MAP=∠EAD,∴△ABP≌△ADE,∴BP=ED;(2)如图2,∵∠BAC=∠PAQ,∴∠BAC﹣∠PAN=∠PAQ﹣∠PAN,∴∠BAP=∠CAQ,∵△PAQ≌△MAN,∴,∵MN∥BC,∴,∴,∴△ACQ∽△ABP,∴,∵tan∠ABC=,∴设AC=3k,BC=4k,则AB=5k,∴,∵ED=PB=2QF,∴,∴QC=;故答案为:.(3)如图3,过D作QF的垂线,交QF的延长线于G,则∠QGD=90°,∵PQ=QE,PF=FD,∴FQ∥DE,ED=2FQ,∵AQ∥DE,∴A、Q、F在同一条直线上,且∠EQG=∠E=90°,∴四边形QGDE是矩形,由MN∥BC得∠AMN=∠ABC,∴tan∠AMN=tan∠ABC=,设AN=3a,MN=4a,则AM=5a,AD=AB=4a,∵CQ=12,∴QF=12×=10,ED=20,∵△PQF≌△DGF,∴FG=FQ=10,DG=PQ=NM=4a,∵AQ=AN=3a,在Rt△AGD中,AD2=AG2+DG2,(4a)2=(4a)2+(20+3a)2,11a2﹣24a﹣80=0(a﹣4)(11a+20)=0a 1=4,a2=﹣(舍去)在Rt△PED中,PD====4.27.已知:y=ax2﹣4ax交x轴于O、A两点,对称轴交x轴于点E,顶点为点D,若△AOD的面积为4.点P是x轴上方抛物线上一动点,作PH⊥x轴,垂足为H,连接PA,作直线HQ⊥PA交y轴于点Q,(1)求a的值.(2)在点P运动过程中,连接QD,若∠PAO=∠QDE,求HE的长度.(3)点Q关于AP的对称点为点K,若2HA=QH,求点P的坐标及KE的长.【考点】二次函数综合题.【分析】(1)根据三角形面积公式求出点D坐标,然后代入抛物线解析式即可求出a.(2)如图1中,设点P(m,﹣m2+2m),求出直线PA,HQ的解析式,得到点Q坐标(0,﹣2),根据tan∠QDE=tan∠PAO=,列出方程即可解决问题.(3)设QH交PA于点F,作FN⊥AO于N,由△OQH∽△FAH,以及在RT △OQH中利用勾股定理,想办法求出点F、点K坐标即可解决问题.【解答】解:(1)令y=0,则ax2﹣4ax=0,x=0或4.∴•OA•DE=4,∴DE=2,∴点D坐标(2,2)代入y=ax2﹣4ax,2=4a﹣8a,∴a=﹣.(2)如图1中,由(1)可知抛物线y=﹣x2+2x,设点P(m,﹣m2+2m),设直线PA为y=kx+b,把P(m,﹣m2+2m),A(4,0)代入得,解得,∴直线PA为y=﹣mx+2m,∵直线QH⊥PA,设直线HQ为y=x+b′,把H(m,0)代入得,b′=﹣2,∴OQ=2,∴tan∠QDE=tan∠PAO=,∴4﹣m=2(﹣m2+2m)m1=1,m2=4(舍)∴HE=1.(3)设QH交PA于点F,作FN⊥AO于N.∵∠HFA=∠HOQ,∠OHQ=∠FHA,∴△OQH∽△FAH,∴AF:OQ=AH:QH=:2,∴AF=,设HQ=x,则AH=x,在RT△OHQ中,22+(4﹣x)2=x,解得x=(或2舍弃不合题意),∴AH=,OH=,FH=,∵•FH•FA=•AH•FN,∴××=××FN,∴FN=1,HN==,∵点F坐标(1,1),点Q(0,﹣2)又∵K、Q关于点F对称,∴点K坐标(2,4),∵点E坐标(2,0)∴KE=4.。

2018-2019学年度九年级上学期期中考试九数学试卷(解析版)

2018-2019学年度九年级上学期期中考试九数学试卷(解析版)

2018-2019学年度九年级上学期期中考试九数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)把方程(x﹣)(x+)+(2x﹣1)2=0化为一元二次方程的一般形式是()A.5x2﹣2x﹣2=0 B.5x2﹣4x﹣2=0 C.5x2﹣2=0 D.3x2﹣4x﹣2=0 【专题】常规题型.【分析】根据化为一元二次方程的一般式即可求出答案.【解答】解:化为一般式为:x2-3+4x2-4x+1=0∴5x2-4x-2=0故选:B.【点评】本题考查一元二次方程的一般式,解题的关键是正确理解一元二次方程的一般式,本题属于基础题型.2.(3分)关于x的方程(a2﹣2a﹣3)x2+ax+b=0是一元二次方程的条件是()A.a≠0B.a≠﹣3且a≠1C.a≠3且a≠﹣1 D.a≠3或a≠﹣1【专题】常规题型.【分析】依据一元二次方程的二次项系数不为零列不等式求解即可.【解答】解:∵关于x的方程(a2-2a-3)x2+ax+b=0是一元二次方程,∴a2-2a-3≠0.∴a≠3且a≠-1.故选:C.【点评】本题主要考查的是一元二次方程的定义,熟练掌握一元二次方程的定义是解题的关键.3.(3分)已知二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),则它与x轴的另一个交点的坐标是()A.(﹣3,0)B.(3,0)C.(1,0)D.(﹣2,0)【专题】常规题型;二次函数图象及其性质.【分析】先求出抛物线的对称轴,再根据轴对称性求出与x轴的另一个交点坐标.【解答】解:二次函数y=ax2+4ax+c的对称轴为:x=﹣=﹣2,∵二次函数y=ax2+4ax+c的图象与x轴的一个交点为(﹣1,0),∴它与x轴的另一个交点坐标是(﹣3,0).故选:A.【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握抛物线的对称性.4.(3分)若二次函数y=mx2﹣4x+m有最大值﹣3,则m等于()A.m=4 B.m=﹣1 C.m=1 D.m=﹣4【专题】常规题型.【分析】根据二次函数的最值公式列式计算即可得解.【解答】解:∵二次函数有最大值,∴m<0且=﹣3,解得m=﹣4.故选:D.【点评】本题考查了二次函数的最值问题,熟记最大(小)值公式是解题的关键.5.(3分)在平面直角坐标系中,将点P(﹣3,2)绕点A(0,1)顺时针旋转90°,所得到的对应点P′的坐标为()A.(﹣1,﹣2)B.(3,﹣2)C.(1,3)D.(1,4)【专题】平移、旋转与对称.【分析】建立平面直角坐标系,作出图形,然后根据图形写出点P′的坐标即可.【解答】解:如图所示,建立平面直角坐标系,点P′的坐标为(1,4).故选:D.【点评】本题考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更形象直观.6.(3分)方程x2﹣2x+4=0和方程x2﹣4x+2=0中所有的实数根之积是()A.8 B.2 C.6 D.4【专题】常规题型.【分析】由方程根与系数的关系可分别求得每个方程的两根,再共积即可求得答案.【解答】解:∵方程x2-2x+4=0的判别式△=(-2)2-4×4=-12<0,∴方程x2-2x+4=0无实数根,∵方程x2-4x+2=0,∴两根之积为2,∴方程x2-2x+4=0和方程x2-4x+2=0中所有的实数根之积为2,故选:B.【点评】本题主要考查方程根与系数的关系,掌握方程根与系数的关系是解题的关键,注意根与系数的关系应用的前提是该方程有实数根.7.(3分)若一次函数y=kx+b的图象与x轴、y轴都交于正半轴,则二次函数y=kx2+bx ﹣kb的图象可能是()A.B.C.D.【专题】解题方法.【分析】根据一次函数y=kx+b的图象与x轴、y轴都交于正半轴,可得k<0,b>0,根据二次函数y=kx2+bx-kb的系数可知对称轴为- >0,-kb>0,可得答案.【解答】解:∵一次函数y=kx+b的图象与x轴、y轴都交于正半轴,∴k<0,b>0,∴二次函数y=kx2+bx-kb的图象开口向下,∵对称轴为->0,-kb>0,故C符合题意,故选:C.【点评】本题考查了二次函数图象和一次函数的图象,利用一次函数图象与x轴、y轴都交于正半轴,考查二次函数的系数特点是解题关键.8.(3分)如图,点P是等边△ABC的内部一点,PA=5,PB=13,PC=12,则△ABP与△ACP 的面积之和是()A.+30 B.72+30 C.60 D.+30【专题】常规题型;构造法;等腰三角形与直角三角形;平移、旋转与对称.【分析】把△APC绕点A顺时针旋转60°得到△ADB,可证得△ADP为等边三角形,△PBD 为直角三角形,利用S△ABP+S△ACP=S△ADP+S△PBD可求得答案.【解答】解:如图,把△APC绕点A顺时针旋转60°得到△ADB,连接PD,则△ADP为等边三角形,∴DP=PA=5,∵PB=13,PD=PC=12,∴BD2+PD2=PB2,∴△BPD为直角三角形,∴S△ABP+S△ACP=S△ADP+S△PBD=×5×12+×52=+30,故选:A.【点评】本题主要考查旋转的性质、等边三角形及旋转的性质,利用旋转的性质构造直角三角形和等边三角形是解题的关键,注意等边三角形面积公式的应用,即等边三角形的边长为a,则等边三角形的面积等于9.(3分)若关于x的方程(a﹣3)x2﹣4x﹣1=0有实数根,则a满足()A.a≥﹣1且a≠3B.a≠3C.a>﹣1且a≠3D.a≥﹣1【专题】常规题型.【分析】根据根的判别式即可求出答案.【解答】解:当a﹣3=0时,∴﹣4x﹣1=0,∴x=﹣当a﹣3≠0时,∴△=16+4(a﹣3)≥0,∴a≥﹣1,综上所述,a≥﹣1故选:D.【点评】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.10.(3分)已知二次函数y=ax2+bx+c的图象如图所示,下列结论:①9a﹣3b+c=0;②4a ﹣2b+c>0;③方程ax2+bx+c﹣4=0有两个相等的实数根;④方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=﹣2,x2=2.其中正确结论的个数是()A.1 B.2 C.3 D.4【专题】二次函数图象及其性质.【分析】①根据x=-3时,对应的y=0,代入可得结论;②根据x=-2时,对应的y>0,代入可得结论;③根据顶点坐标中y=4,可得方程ax2+bx+c-4=0有两个相等的实数根;④将x-1替换x,由方程ax2+bx+c=0的两根x1=-3,x2=1,可得结论.【解答】解:①由抛物线的对称性可知:与x轴交于另一点为(-3,0),∴9a-3b+c=0;故①正确;②由图象得:当x=-2时,y>0,∴4a-2b+c>0,故②正确;③∵抛物线的顶点(-1,4),∴方程ax2+bx+c=4有两个相等的实数根,即方程ax2+bx+c-4=0有两个相等的实数根;故③正确;④由题意得:方程ax2+bx+c=0的两根为:x1=-3,x2=1,∴方程a(x-1)2+b(x-1)+c=0的两根是:x-1=-3或x-1=1,∴x1=-2,x2=2,故④正确;综上得:正确结论为:①②③④,4个,故选:D.【点评】本题主要考查二次函数图象与系数的关系,与方程相联系,掌握二次函数y=ax2+bx+c 与方程的关系,利用数形结合的思想,确定代数式的值.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若关于x的一元二次方程x2+(k+3)x+k=0的一个根是﹣2,则另一个根是.【分析】把方程的一个根-2代入方程得到关于k的方程,解方程求出k的值.根据根与系数的关系,由两根之和可以求出方程的另一个根.【解答】解:把x=-2代入x2+(k+3)x+k=0得到:(-2)2+(k+3)×(-2)+k=0,解得k=-2.设方程的另一根为t,则-2t=-2,解得t=1.故答案是:1.【点评】本题考查的是一元二次方程的根与系数的关系;把方程的解代入方程求出字母系数k的值是解决问题的关键.12.(3分)将抛物线y=x2﹣4x+5向右平移1个单位长度,再向下平移2个单位长度,则平移后的抛物线的顶点坐标是.【专题】函数思想.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:∵y=x2-4x+5=(x-2)2+1,∴抛物线y=x2-4x+5的顶点坐标是(2,1),∴将抛物线y=x2-4x+5向右平移1个单位长度,再向下平移2个单位长度,则平移后的抛物线的顶点坐标是(3,-1).故答案是:(3,-1).【点评】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平移后的函数解析式.13.(3分)如图,▱ABCD中,AE⊥BC于E,以B为中心,取旋转角等于∠ABC,将△BAE 顺时针旋转,得到△BA′E′,连接DA′.若∠ADC=70°,∠ADA′=50°,则∠DA′E′的度数为.【专题】多边形与平行四边形.【分析】根据平行四边形的性质得∠ABC=∠ADC=70°,AD∥BC,则根据平行线的性质可计算出∠DA′B=130°,接着利用互余计算出∠BAE=20°,然后根据旋转的性质得∠BA′E′=∠BAE=20°,于是可得∠DA′E′=150°.【解答】解:∵四边形ABCD为平行四边形,∴∠ABC=∠ADC=70°,AD∥BC,∴∠ADA′+∠DA′B=180°,∴∠DA′B=180°-50°=130°,∵AE⊥BE,∴∠BAE=20°,∵△BAE顺时针旋转,得到△BA′E′,∴∠BA′E′=∠BAE=20°,∴∠DA′E′=130°+20°=150°.故答案为:150°.【点评】本题考查了平行四边形的性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.14.(3分)已知函数y=的图象如图所示,观察图象,则当函数值y≥﹣6时,对应的自变量x的取值范围是.【专题】常规题型.【分析】根据图象以及不等式解法,分别解不等式,得出自变量的取值范围即可.【解答】解:∵y=,∴当函数值y≥﹣6时,分两种情况:①x≤2时,﹣x2+2≥﹣6,x2≤8,结合图象可以得出:﹣2≤x≤2,此时x≤2,所以﹣2≤x≤2,②x>2时,当函数值y≥﹣6时,﹣2x≥﹣6,解得:x≤3,此时x>2,所以2<x≤3.综上所述,y≥﹣6时,对应的自变量x的取值范围是:﹣2≤x≤3,故答案为﹣2≤x≤3.【点评】此题考查了二次函数的性质,函数的图象以及不等式的解法,根据图象得出不等式x2≤8的解集是解题关键.15.(3分)设m,n是一元二次方程x2﹣2018x+1=0的两个实数根,则代数式2017m2+2018n2﹣2018n﹣2017×20182的值是.【专题】计算题.【分析】根据根与系数的关系得出“m+n=2018,mn=1”,再将2017m2+2018n2-2018n-2017×20182变形为只含m+n与mn的代数式,代入数据即可得出结论.【解答】解:∵m、n是关于x的一元二次方程x2-2018x+1=0的两个实数根,∴m+n=2018,mn=1,n2-2018n+1=0,∴2017m2+2018n2-2018n-2017×20182=2017[(m+n)2-2mn]+n2-2018n-2017×20182=2017×(20182-2)-1-2017×20182=2017×20182-2017×2-1-2017×20182=-4035故答案为:-4035.【点评】本题考查了根与系数的关系,解题的关键是找出2017m2+2018n2-2018n-2017×20182=2017[(m+n)2-2mn]+n2-2018n-2017×20182.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积,再将代数式变形为只含两根之和与两根之积的形式是关键.16.(3分)如图,在△ABC中,∠ACB=90°,BC=2,AC=6,D为AC上一点,AD=4,将AD绕点A旋转至AD′,连接BD′,F为BD′的中点,则CF的最大值为.【专题】平移、旋转与对称.【分析】利用直角三角形斜边上的中线等于斜边的一半,可得CM的长,利用三角形中位线定理,可得MF的长,再根据当且仅当M、F、C三点共线且M在线段CF上时CF最大,即可得到结论.【解答】解:如图,取AB的中点M,连接MF和CM,∵将线段AD绕点A旋转至AD′,∴AD′=AD=4,∵∠ACB=90°,∵AC=6,BC=2,∴AB==2.∵M为AB中点,∴CM=,∵AD′=4.∵M为AB中点,F为BD′中点,∴FM=AD′=2.∵CM+FM≥CF,∴当且仅当M、F、C三点共线且M在线段CF上时,CF最大,此时CF=CM+FM=+2.故答案为:+2.【点评】本题考查了旋转的性质,解题的关键是掌握旋转的性质及直角三角形斜边上的中线等于斜边的一半,知道当且仅当M、F、C三点共线且M在线段CF上时CF最大是解题的关键.三、解答题(本大题共8小题,共72分)17.(9分)解下列方程:(1)x2﹣5x=6;(2)x2﹣x﹣1=0;(3)(x﹣2)2=2(x+3)(x﹣3).【专题】常规题型.【分析】根据一元二次方程的解法即可求出答案.【解答】解:(1)x2﹣5x﹣6=0(x﹣6)(x+1)=0x=6或x=﹣1(2)x2﹣x+=+1,(x﹣)2=x=(3)x2﹣4x+4=2x2﹣9x2+4x﹣13=0x2+4x+4=13+4(x+2)2=17x=﹣2±【点评】本题考查一元二次方程的解法,解题的关键是熟练运用一元二次方程的解法,本题属于基础题型.18.(8分)(1)在图1中画出△ABC关于O的中心对称图形△A′B′C′;(2)正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.在图2的正方形网格(每个小正方形的边长为1)中,画出格点△DEF,使DE=,DF=,EF=,并求出△DEF的面积.【专题】作图题.【分析】(1)画出A、B、C三点关于O的对称点,连接各对称点所得图形即为△ABC关于点O的中心对称图形.(2)找到直角边为1和3的直角三角形,其斜边为,直角边为1和2的直角三角形,其斜边为,直角边为2和3的直角三角形,其斜边为【解答】解:(1)如图(1):(2)如图(2):S△DEF═=3×3﹣3﹣1﹣1.5=3.5.【点评】本题考查了作图--旋转变换和勾股定理,充分利用格点是解题的关键一步.19.(8分)某班“数学兴趣小组”对函数y=x2﹣2|x|的图象和性质进行了探究,探究过程如下,请补充完整:(1)自变量x的取值范围是全体实数,x与y的几组对应值列表如下:x …﹣3 ﹣﹣2 ﹣1 0 1 2 3 …y … 3 m ﹣1 0 ﹣1 0 3 …其中,m=.(2)根据表中数据,在如图所示的平面直角坐标系中描点,并画出了函数图象的一部分,请画出该函数图象的另一部分.(3)探究函数图象发现:①函数图象与x轴有个交点,所以对应的方程x2﹣2|x|=0有个实数根;②方程x2﹣2|x|=有个实数根;③关于x的方程x2﹣2|x|=a有4个实数根时,a的取值范围是.【专题】常规题型;数形结合;二次函数图象及其性质.【分析】(1)根据当x=2或x=-2时函数值相等即可得;(2)将坐标系中y轴左侧的点按照从左到右的顺序用平滑的曲线依次连接可得;(3)①根据函数图象与x轴的交点个数与对应方程的解的个数间的关系可得;③关于x的方程x2-2|x|=a有4个实数根时,-1<a<0.【解答】解:(1)由函数解析式y=x2﹣2|x|知,当x=2或x=﹣2时函数值相等,∴当x=﹣2时,m=0,故答案为:0;(2)如图所示:(3)①由图象可知,函数图象与x轴有3个交点,所以对应的方程x2﹣2|x|=0有3个实数根;②由函数图象知,直线y=﹣与y=x2﹣2|x|的图象有4个交点,所以方程x2﹣2|x|=有4个实数根;③由函数图象知,关于x的方程x2﹣2|x|=a有4个实数根时,0<a<﹣1,故答案为:0<a<﹣1;故答案为:①3、3;②4;③0<a<﹣1.【点评】本题主要考查抛物线与x轴的交点,解题的关键是熟练掌握二次函数图象与x轴交点坐标和对应方程的解之间的关系.20.(9分)(1)如图1,正方形ABCD中,点E,F分别在BC,CD上,且∠EAF=45°,则有BE+DF=.若AB=2,则△CEF的周长为.(2)如图2,四边形ABCD中,∠BAD=∠C=90°,AB=AD,点E,F分别在BC,CD上,且∠EAF=45°,试判断BE,EF,DF之间的数量关系,并说明理由.【专题】几何图形.【分析】(1)延长EB至H,使BH=DF,连接AH,证△ADF≌△ABH,△FAE≌△HAE,根据全等三角形的性质得出EF=HE=BE+HB进而求出即可;(2)延长CB至M,使BM=DF,连接AM,证△ADF≌△ABM,证△FAE≌△MAE,即可得出答案.【解答】解:(1)延长EB至H,使BH=DF,连接AH,如图1,∵在正方形ABCD中,∴∠ADF=∠ABH,AD=AB,在△ADF和△ABH中,∵,∴△ADF≌△ABH(SAS),∴∠BAH=∠DAF,AF=AH,∴∠FAH=90°,∴∠EAF=∠EAH=45°,在△FAE和△HAE中,∵,∴△FAE≌△HAE(SAS),∴EF=HE=BE+HB,∴EF=BE+DF,∴△CEF的周长=EF+CE+CF=BE+CE+DF+CF=BC+CD=2AB=4.故答案为:EF;4.(2)延长CB至M,使BM=DF,连接AM,如图2,∵∠ABC+∠D=180°,∠ABC+∠ABM=180°,∴∠D=∠ABM,在△ABM和△ADF中,,∴△ABM≌△ADF(SAS),∴AF=AM,∠DAF=∠BAM,∵∠BAD=∠C=90°,∠EAF=45°,即∠BAD=2∠EAF,∴∠DAF+∠BAE=∠EAF,∴∠EAB+∠BAM=∠EAM=∠EAF,在△FAE和△MAE中,,∴△FAE≌△MAE(SAS),∴EF=EM=BE+BM=BE+DF,即EF=BE+DF.【点评】本题主要考查正方形的性质,全等三角形的判定以及勾股定理的综合应用.作出辅助线延长EB至H,使BH=DF,利用全等三角形性质与判定求出是解题关键.21.(8分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+1=0有两个不等的实数根x1,x2.(1)求实数k的取值范围;(2)若该方程的两个实数根x1,x2满足|x1|+|x2|=x12+x22﹣10,求k的值.【专题】判别式法.【分析】(1)由△>0,列出不等式,解不等式即可;(2)由根与系数的关系表示两根和与两根积,再把所求的式子,化简后代入计算即可.【解答】解:(1)由题意,△>0,∴(2k+1)2﹣4(k2+1)>0,解得k>.(2)依题意得:x1+x2=2k+1,x1•x2=k2+1,由(1)得:k,∴x1+x2>0,x1x2>0,∴x1、x2同为正根,∴|x1|+|x2|=x12+x22﹣10,可化为:x1+x2=x12+x22﹣10,2k+1=(x1+x2)2﹣2x1x2﹣10,2k+1=(2k+1)2﹣2(k2+1)﹣10,k2+k﹣6=0,(k+3)(k﹣2)=0,k1=﹣3,k2=2,∵k>,∴k=2.【点评】本题考查了根与系数的关系以及一元二次方程的解,根的判别式等知识,22.(8分)如图,要建一个面积为130m2的矩形仓库,仓库的一边靠墙(墙长为am),并在与墙平行的一边开一道1m宽的门.现有能围成32m长的木板,求建仓库的方案.【专题】一元二次方程及应用.【分析】设与仓库与墙垂直的一边是x米,长是(32-2x+1),根据面积为130平方米可列方程求解,再分类讨论即可;【解答】解:设与仓库与墙垂直的一边是x米,(32-2x+1)x=130,x=10或x=6.5,①当0<a<13设,没有符合题意的方案.②当13≤a<20时,建仓库的方案:与仓库与墙垂直的一边是10米,另一边是13米;③当a≥20时,方案一:与仓库与墙垂直的一边是10米,另一边是13米;方案二:与仓库与墙垂直的一边是6.5米,另一边是20米;【点评】本题考查一元二次方程的应用、理解题意的能力,关键是设出长,表示出宽,以面积做为等量关系列方程求解.23.(10分)某宾馆有50个房间供游客居住.,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价为x元(x为整数).(1)直接写出每天游客居住的房间数量y与x的函数解析式.(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?【专题】常规题型;二次函数的应用.【分析】(1)根据每天游客居住的房间数量等于50-减少的房间数即可解决问题;(2)构建二次函数,利用二次函数的性质解决问题.【解答】解:(1)y=50-x−12010=-110x+62;(2)w=(x-20)(-110x+62)=-110x2+64x-1240=-110(x-320)2+9000,∴当x=320时,w取得最大值,最大值为9000,答:当每间房价定价为320元时,宾馆每天所获利润最大,最大利润是9000元.【点评】本题考查二次函数的应用、解题的关键是构建二次函数解决实际问题中的最值问题,属于中考常考题型.24.(12分)如图1,抛物线y=﹣x2+bx+c经过点A(2,0),B(0,2),与x轴交于另一点C.(1)求抛物线的解析式及点C的坐标;(2)点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P分别向x轴、y轴作垂线,垂足分别为D,E,求四边形ODPE的周长的最大值;(3)如图2,点P是抛物线y=﹣x2+bx+c在第一象限上的点,过点P作PN⊥x轴,垂足为N,交AB于M,连接PB,PA.设点P的横坐标为t,当△ABP的面积等于△ABC面积的时,求t的值.专题】解题方法.【分析】(1)将点A和点B的坐标代入抛物线的解析式可求得b、c的值,从而可得到抛物线的解析式,然后令y=0可得到关于x的方程可求得点C的坐标;(2)设点P的坐标为(t,-t2+t+2),用含t的式子表示出PE、PD的长度,然后可得到四边形ODPE的周长与t的函数关系式,最后利用配方法可求得点P的横坐标,以及四边形ODPE周长的最大值;(3)先求得直线AB的解析式,设P点的坐标为(t,-t2+t+2),则点M的坐标为(t,-t+2),由S△ABP=S△PMB+S△PMA可得到△ABP的面积与t的函数关系式,【解答】解:(1)将点A和点B的坐标代入y=﹣x2+bx+c得:,解得:b=1,c=2.∴抛物线的解析式为y=﹣x2+x+2.令y=0,则0=﹣x2+x+2,解得:x=2或x=﹣1.∴点C的坐标为(﹣1,0).(2)设点P的坐标为(t,﹣t2+t+2),则PE=t,PD=﹣t2+t+2,∴四边形ODPE的周长=2(﹣t2+t+2+t)=﹣2(t﹣1)2+6,∴当P点坐标为(1,2)时,∴四边形ODPE周长最大值为6.(3)∵A(2,0),B(0,2),∴AB的解析式为y=﹣x+2.∵P点的横坐标为t,∴P点纵坐标为﹣t2+t+2.又∵PN⊥x轴,∴M点的坐标为(t,﹣t+2),∴PM=﹣t2+t+2﹣(﹣t+2)=﹣t2+2t.∴S△ABP=S△PMB+S△PMA=PM•ON+PM•AN=PM•OA=﹣t2+2t.又∵S△ABC=AC•OB=×3×2=3,∴﹣t2+2t=3×,解得:t1=t2=1.∴当t=1时,△ABP的面积等于△ABC的面积的.【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了代入系数法求二次函数的解析式、二次函数的最值、三角形的面积公式、解一元二次方程,得到PM的长度与点M的横坐标之间的关系是解题的关键.。

2018-2019学年最新人教版九年级数学上册期中质量检测试题1及答案解析-精品试卷

2018-2019学年最新人教版九年级数学上册期中质量检测试题1及答案解析-精品试卷

第一学期期中考试九年级数学试题(时间:110分钟满分:100分)注意事项:1.本试题分第l 卷和第Ⅱ卷两部分,共8页.第1卷第l 页至第2页为选择题,30分;第Ⅱ卷第3页至第8页为非选择题,70分;共100分.2.答卷前务必将自己的姓名、考号等填写在装订线内规定位置.第Ⅰ卷(选择题,共30分)一、选择题:本大题共l0小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.下列图形中,既是轴对称图形又是中心对称图形的是()2.下列方程是关于X 的一元二次方程的是()A .2x 2+3=x(2x 一1)B .09212=-+x x C .x 2=OD .ax 2+bx+c=O 3.若关于x 的一元二次方程x 2+bx+c=O 的两个实数根分别为x 1=-2,x2=4,则b+c 的值是()A .-l0B .10C .-6D .一l4.下列事件属于必然事件的是()A.明天太阳从东方升起B .购买2张彩票,其中1张中奖C .随机掷一枚骰子,朝上一面上的数字大于6D .投篮l0次,一次都没投中5.如图,PA 与圆D 相切于点A ,P0交⊙D 于点C ,点B 是优弧CBA 上一点,若∠P=26°,则∠ABC 的度数为()A .26°B .64°C .32°D .90°6.如图,从一块直径是2的圆形硬纸片上剪出一个圆心角为90°扇形.则这个扇形的面积为() A .πB .π43c .π21D .π427.已知3是关于x 的方程x 2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为()A .7B .10C .11D .10或ll8.如图,抛物线y=-x 2-2x+3与x 轴交于点A ,B ,把抛物线与线段AB 围城的图形记为C 1,将C l 绕点B 中心对称变换得C 2,C 2与x 轴交于另一点C ,将C 2绕点C 中心对称变换得C 3,连接C ,与C 3的顶点,则图中阴影部分的面积为()A .32B .24C .36D .489.如图,AB 是⊙D 的直径,AD 切⊙D 于点A ,EC=CB .则下列结论:①BA ⊥DA ; ②OC ∥AE ;③∠COE=2∠CAE ;④0D ⊥AC .一定正确的个数有()A .4个B .3个C .2个D .1个10.如图,抛物线y=ax 2+bx+c(a ≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为 (一1,O),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx+c=0的两个根是x 1=﹣1,x 2=3;③3a+c >0④当y >0时,x 的取值范围是﹣1≤x <3⑤若⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-21,310,,23y y 是抛物线上两点,则y 1<y 2.其中结论正确的个数是()A .4个B .3个C .2个D .1个一、选择题(答题栏)(每小题3分,共30分) 题号 l 2 3 4 5 6 7 8 9 lO 得分 评卷人 答案第Ⅱ卷(选择题共70分)二、填空题:本大题共5小题,每小题3分,共l5分.11.关于x 的一元二次方程群ax 2+bx+1=0有两个相等的实数根,写出一组满足条件的实数a ,b 的值 .12.把抛物线y=x2+bx+c向右平移3个单位长度,再向上平移2个单位长度,所得函数图象的解析式是y=x2-2x+5,则b+c= .13.在1×3的正方形网格格点上放三枚棋子,按图所示的位置己放置了两枚棋子,若第三枚棋子随机放在其他格点上,则以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为14.二次函数y=ax2+bx+c(a≠0)(a≠0,a,b,C为常数)的图象,若关于x的一元二次方程ax2+bx+c=m有实数根,则m的取值范围是.15.如图所示,⊙D内切△ABC,切点分别为M,G,N,DE切0D于F点,交AC,AB于点D,E,若△ABC的周长为l2,BC=2,则△ADE的周长是.三、解答题:本大题共7,J、题,共55分.16.(6分)解方程:3x(x-2)=2(2-x).17.(6分)如图,点D在等边△ABC的边BC上.(1)把△ACD绕点A顺时针旋转,使点C与点露重合,画出旋转后的△ABD′;(2)如果AC=4,CD=1,求(1)中点D旋转所走过的路程.18.(7分)一天,小明和小智一起玩卡片游戏,他们分别握有三张正面分别标有字母A,B,C,的不透明卡片.游戏约定:每人将各自的卡片背面朝工弄洗均匀,然后随机抽取一张,两张卡片中,如果同为元音或辅音字母,则为平局;如果一个元音字母一个辅音字母,则抽到元音字母者获胜.(1)请用列表或画树状图的方法列举出所有出现结果的可能性;(2)求小明获胜的概率.19.(8分)2016年9月5日,二十国集团领导人杭州峰会在杭州国际博览中心继续举行,这次峰会吸引了大批游客在“十一”假期间前往杭州旅游.为抓住商机,两个商家对同样一件售价为50元/个的产品进行促销活动.甲商家用如下方法促销:若购买该商品不超过l0个,按原价付款:若一次购买l0个以上.且购买的个数每增加一个,其价格减少l元,但该商品的售价不得低于35元/个;乙店一律按原价的80%销售.现购买该商品x个,如果全部在甲商家购买,则所需金额为y1元:如果全部在乙商家购买,则所需金额为y2元.(1)分别求出y l,y2与x之间的函数关系式;(2)若一位游客花800元,最多能购买多少个该商品?20.(8分)已知直线,与⊙0,AB是⊙0的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E.F时,求证::∠DAE=∠BAF.21.(9分)阅读下面材料【材料一】按一定顺序排列的一列数称为数列,记作:{a n}(n属于正整数).数列中的每一个数都叫做这个数列的项,排在第一位的数称为这个数列的第l项(通常也叫做首项),记作:a l;排在第二位的数称为这个数列的第2项,记作:a2;…;排在第打位的数称为这个数列的第n项,记作:a n.【材料二】如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示.例如:数列l0,l5,20,25是等差数列.如果数列a l,a2,a3,…,a n,…是等差数列,那么a2一a l=d,a3一a2=d,,…,a n-a n-l=d.即:a2=a l+d,a3=a2+d=a l+d+d=a l+2d,a4=a3+d=a l+3d,….根据上述材料,解答问题(1)下列数列属于等差数列的县(只填序号).①l,2,3,4,5.②2,4,6,8,10,11.③l,1,1,1,1.(2)已知数列{an}是等差数列,①a l=1,a2=4,a3=7,…。

2018-2019学年九 年级上期中数学试卷含答案解析

2018-2019学年九 年级上期中数学试卷含答案解析

2018—2019学年九年级(上)期中数学试卷一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣13.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.94.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4 B.6 C.16 D.185.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠18.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=2010.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是.12.(3分)若==,则=.13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为㎡.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于个面积单位.三、解答题16.画几何体的三种视图(注意符合三视图原则)17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•G E.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.参考答案与试题解析一、选择题1.(3分)顺次连接菱形各边中点所得的四边形一定是()A.等腰梯形B.正方形C.平行四边形D.矩形【解答】解:如图:菱形ABCD中,E、F、G、H分别是AB、BC、CD、AD的中点,∴EH∥FG∥BD,EH=FG=BD;EF∥HG∥AC,EF=HG=AC,故四边形EFGH是平行四边形,又∵AC⊥BD,∴EH⊥EF,∠HEF=90°∴边形EFGH是矩形.故选:D.2.(3分)若x=2关于x的一元二次方程x2﹣ax+2=0的一个根,则a的值为()A.3 B.﹣3 C.1 D.﹣1【解答】解:把x=2代入x2﹣ax+2=0,得22﹣2a+2=0,解得a=3.故选:A.3.(3分)用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是()A.种植10棵幼树,结果一定是“有9棵幼树成活”B.种植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”C.种植10n棵幼树,恰好有“n棵幼树不成活”D.种植n棵幼树,当n越来越大时,种植成活幼树的频率会越来越稳定于0.9【解答】解:用频率估计概率,可以发现,某种幼树在一定条件下移植成活的概率为0.9,是在大量重复实验中得到的概率的近似值,故A、B、C错误,D正确,故选:D.4.(3分)如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且=,若△AEF 的面积为2,则四边形EBCF的面积为()A.4B.6 C.16 D.18【解答】解:∵=,∴=,∵EF∥BC,∴△AEF∽△ABC,∴=()2=()2=,∵△AEF的面积为2,∴S△ABC=18,则S四边形EBCF=S△ABC﹣S△AEF=18﹣2=16.故选:C.5.(3分)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.6.(3分)某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()A.5.3米B.4.8米C.4.0米D.2.7米【解答】解:设这棵树的高度为x.∵在同一时刻同一地点任何物体的高与其影子长比值是相同的.∴∴x==4.8∴这棵树的高度为4.8米.故选:B.7.(3分)若双曲线位于第二、四象限,则k的取值范围是()A.k<1 B.k≥1 C.k>1 D.k≠1【解答】解:∵双曲线位于第二、四象限,∴k﹣1<0,∴k<1.故选:A.8.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D,E,F.AC与DF相交于点H,且AH=2,HB=1,BC=5,则的值为()A.B.2 C.D.【解答】解:∵AH=2,HB=1,∴AB=3,∵l1∥l2∥l3,∴==,故选:D.9.(3分)李明去参加聚会,每两人都互相赠送礼物,他发现共送礼物20件,若设有n人参加聚会,根据题意可列出方程为()A.=20 B.n(n﹣1)=20 C.=20 D.n(n+1)=20【解答】解:设有n人参加聚会,则每人送出(n﹣1)件礼物,由题意得,n(n﹣1)=20.故选:B.10.(3分)如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD 上的任意一点,则PK+QK的最小值为()A.1 B.C.2 D.+1【解答】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°﹣∠A=180°﹣120°=60°,作点P关于直线BD的对称点P′,连接P′Q,P′C,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,在Rt△BCP′中,∵BC=AB=2,∠B=60°,∴P′Q=CP′=BC•sinB=2×=.故选:B.二、填空题11.(3分)已知关于x的方程kx2﹣4x+2=0有两个实数根,则k的取值范围是k≤2且k ≠0..【解答】解:∵关于x的方程kx2﹣4x+2=0有两个实数根,∴,解得:k≤2且k≠0.故答案为:k≤2且k≠0..12.(3分)若==,则=.【解答】解:设===k,∴x=3k,y=4k,z=6k,∴==,故答案为.[来源:学+科+网]13.(3分)如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为6和8,那么点P到矩形的两条对角线AC和BD的距离之和是 4.8.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为6和8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD==10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.8.故答案为:4.8.14.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到桌面后在地面上形成(圆形)的示意图.已知桌面直径为1.2米,桌面离地面1米.若灯泡离地面3米,则地面上阴影部分的面积为0.81π㎡.【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴,∵OD=3米,CD=1米,∴OC=OD﹣CD=3﹣1=2(米),BC=×1.2=0.6(米),∴,∴AD=0.9 S⊙D=π×0.92=0.81πm2,这样地面上阴影部分的面积为0.81πm2.故答案为:0.81π.15.(3分)如图,反比例函数y=的图象与直线y=kx(k>0)相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于4个面积单位.【解答】解:设A的坐标是:(a,b),则ab=2,B的坐标是:(﹣a,﹣b),∴AC=2b,BC=2a,则△ABC的面积是:AC•BC=×2a•2b=2ab=2×2=4.故答案为4三、解答题16.画几何体的三种视图(注意符合三视图原则)【解答】解:.17.解方程:(1)x2﹣4x﹣5=0(2)x2﹣5x+1=0.【解答】解:(1)(x﹣5)(x+1)=0,x﹣5=0或x+1=0,所以x1=5,x2=﹣1;(2)△=(﹣5)2﹣4×1=21,x=,所以x1=,x2=.18.如图,转盘A的三个扇形面积相等,分别标有数字1,2,3,转盘B的四个扇形面积相等,分别有数字1,2,3,4.转动A、B转盘各一次,当转盘停止转动时,将指针所落扇形中的两个数字相乘(当指针落在四个扇形的交线上时,重新转动转盘).(1)用树状图或列表法列出所有可能出现的结果;(2)求两个数字的积为奇数的概率.【解答】解:(1)画树状图得:则共有12种等可能的结果;(2)∵两个数字的积为奇数的4种情况,∴两个数字的积为奇数的概率为:=.19.“泥兴陶,是钦州的一张文化名片.钦州市某妮兴陶公司以每只60元的价格销售一种成本价为40元的文化纪念杯,每星期可售出100只.后来经过市场调查发现,每只杯子的售价每降低1元,则平均何星期可多买出10只.若该公司销售这种文化纪念杯要想平均每星期获利2240元,请回答:(1)每只杯应降价多少元?(2)在平均每星期获利不变的情况下,为尽可能让利于顾客,赢得市场,该公司应该按原售价的几折出售?【解答】解(1)设每只杯子降价x元,根据题意,可列方程:(100+10x)(20﹣x)=2240,整理得到:x2﹣10x+24=0,解得x1=4,x2=6.所以每只杯子应降价4元或6元.(2)因为要保持每星期获利不变,且尽可能利于顾客,因为该公司应使价格尽量低,因此应降价6元.所以有,所以应按原价的九折出售.20.如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFGH的一边FG在BC上,顶点E、H分别在AB、AC上,已知BC=40cm,AD=30cm.(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.【解答】(1)证明:∵四边形EFGH是正方形,∴EH∥BC,∴∠AEH=∠B,∠AHE=∠C,∴△AEH∽△ABC.(2)解:如图设AD与EH交于点M.∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM是矩形,∴EF=DM,设正方形EFGH的边长为x,∵△AEH∽△ABC,∴=,∴=,∴x=,∴正方形EFGH的边长为cm,面积为cm2.21.如图,已知反比例函数与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x的取值范围.【解答】解:(1)∵已知反比例函数经过点A(1,﹣k+4),∴,即﹣k+4=k,∴k=2,∴A(1,2),∵一次函数y=x+b的图象经过点A(1,2),∴2=1+b,∴b=1,∴反比例函数的表达式为.一次函数的表达式为y=x+1.(2)由,消去y,得x2+x﹣2=0.即(x+2)(x﹣1)=0,∴x=﹣2或x=1.∴y=﹣1或y=2.∴或.∵点B在第三象限,∴点B的坐标为(﹣2,﹣1),由图象可知,当反比例函数的值大于一次函数的值时,x的取值范围是x<﹣2或0<x<1.22.如图,梯形ABCD中,AD∥BC,点E是边AD的中点,连结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,,求线段DC的长;(2)求证:EF•GB=BF•GE.【解答】解:(1)∵AD∥BC,∴△DEF∽△CBF,∴==,∴FC=3FD=6,∴DC=FC﹣FD=4;(2)证明:∵AD∥BC,∴△DEF∽△CBF,△AEG∽△CBG,∴=,=,∵点E是边AD的中点,∴AE=DE,∴=,∴EF•GB=BF•GE.23.如图,在Rt△ABC中,∠ACB=90°,AC=10cm,BC=15cm,点P从A出发沿AC向C点以1厘米/秒的速度匀速移动;点Q从C出发沿CB向B点以2厘米/秒的速度匀速移动.点P、Q分别从起点同时出发,移动到某一位置时所需时间为t秒(1)当t=4时,求线段PQ的长度(2)当t为何值时,△PCQ是等腰三角形?(4)当t为何值时,△PCQ的面积等于16cm2?(4)当t为何值时,△PCQ∽△ACB.【解答】解:(1)当t=4时,由运动知,AP=4cm,PC=AC﹣AP=6cm、CQ=2×4=8cm,∴PQ==10cm;(2)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ是等腰三角形,∴PC=CQ,∴10﹣2t=2t,∴t=2.5(3)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∴S△PQC=PC×CQ=t(10﹣t)=16,∴t1=2,t2=8,当t=8时,CQ=2t=16>15,∴舍去,∴当t=2时,△PQC的面积等于16cm2;(4)由运动知,AP=t,PC=AC﹣AP=10﹣t、CQ=2t,∵△PCQ∽△ACB,∴,∵AC=10,B C=15,∴,∴t=.。

2018-2019学年人教版九年级上学期数学期中测试题及答案

2018-2019学年人教版九年级上学期数学期中测试题及答案

2018-2019学年九年级(上)期中数学试卷、选择题:每天 3分,共12分,共计36分.1 •下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转 120。

后,能与 原图形完全重合的是()2.如图,点 A , B , C 是O O 上的三点,已知/ AOB=100 °那么/ ACB 的度数是( A. ac >05cm ,弦 AB=8cm ,则圆心 O 到弦 AB 的距离是()的图象如图,则下列结论中正确的是(50 ° D . 60° OB. 当x> 1时,y随x的增大而增大C. 2a+b=12D .方程ax +bx+c=0有一个根是x=35. 已知二次函数y=(x - 1)2+4,若y随x的增大而减小,则x的取值范围是()2A. x v—1B. x>4 C . x v 1 D . x> 16. 二次函数y=- 2x2+4x+1的图象如何平移可得到y=- 2x2的图象()A .向左平移1个单位,向上平移3个单位B. 向右平移1个单位,向上平移3个单位C. 向左平移1个单位,向下平移3个单位D .向右平移1个单位,向下平移3个单位7. 若(2, 5)、(4, 5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()bA. x= —B. x=1C. x=2D. x=3a8. 如图,将厶AOB绕点0按逆时针方向旋转45°后得到△ A'OB ;若/ AOB=15 °则/ AOB 的度数是()A. 25°B. 30°C. 35°D. 40°9.如图,将△ ABC绕点P顺时针旋转90°得到△ ABC',则点P的坐标是()xA. ( 1, 1)B.( 1, 2)C. ( 1, 3)D. ( 1, 4)10.如图,△ ABO中,AB丄OB , OB= . , AB=1,把△ ABO绕点O旋转150。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版初三(上册)数学期中检测卷一、选择题:(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.把答案填在答题卡的相应位置)1.9的平方根为()A.3 B.﹣3 C.±3 D.2.下列计算正确的是()A.a3+a2=a5 B.a3÷a2=a C.a3﹣a2=a D.(a3)2=a53.一组数据6,﹣3,0,1,6的中位数是()A.0 B.1 C.2 D.64.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.5.在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.6.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为()A.120°B.180°C.240° D.300°7.下面的多项式中,能因式分解的是()A.m2+n B.m2﹣m+1 C.m2﹣n D.m2﹣2m+18.下面四条直线,其中直线上每个点的坐标都是二元一次方程x﹣2y=2的解是()A. B. C. D.9.用圆心角为120°,半径为6cm的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是()A.cm B.3cm C.4cm D.4cm10.已知整数a1,a2,a3,a4…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|…依此类推,则a2017的值为()A.﹣1009 B.﹣1008 C.﹣2017 D.﹣2016二、填空题:(本大题共6小题,每小题4分,共24分.把答案填在答题卡的相应位置)11.太阳的半径约为696000千米,这个数据用科学记数法表示为千米.12.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.13.若3x=4,9y=7,则3x﹣2y的值为.14.如图,在△ABC中,∠A=30°,∠B=45°,AC=2,则BC=.15.如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x 轴平行,点P(3a,a)是反比例函数y=(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为.16.在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx ﹣3k+4与⊙O交于B、C两点,则弦BC的长的最小值为.三、解答题:(本大题共9小题,共86分,解答应写出文字说明,证明过程或演算步骤)17.计算:(﹣1)×(﹣3)+(﹣)0+(﹣8﹣2).18.化简:.19.如图,在▱ABCD中,点E在边BC上,点F在BC的延长线上,且BE=CF.求证:∠BAE=∠CDF.20.如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规在边AC上作一点P,且使PA=PB(不写作法,保留作图痕迹);(2)若PA:PC=2:1,求∠A的度数.21.“端午节”所示我国的传统佳节,民间历来有吃“粽子”的习俗,我市某食品厂为了解市民对去年销售较好的肉馅棕、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不用口味粽子的喜爱情况,在节前对某居民区进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个,用列表或画树状图的方法,求他第二个恰好吃到的是C粽的概率.22.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间;(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10分钟到达乙地,求从家到乙地的路程.23.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,C为⊙O上一点,且AC平分∠PAE,过点C作CD⊥PA于D.(1)求证:CD是⊙O的切线;(2)若AD:DC=1:3,AB=8,求⊙O的半径.24.已知△ABC中,AB=AC=5,cosB=,将△ABC绕点C旋转,得到△A1B1C.(1)如图1,若点B1在线段BA的延长线上①求证:AB∥A1C;②求△AB1C的面积;(2)如图2,点D为线段AC中点,点E是线段AB上的动点,在△ABC绕点C 旋转过程中,点E的对应点是点E1,求线段DE1长度的最大值和最小值.25.已如抛物线y=ax2+bx+c与直线y=mx+n相交于两点,这两点的坐标分别是(0,﹣)和(m﹣b,m2﹣mb+n),其中a,b,c,m,n为实数,且a,m不为0.(1)求c的值;(2)求证:抛物线y=ax2+bx+c与x轴有两个交点;(3)当﹣1≤x≤1时,设抛物线y=ax2+bx+c与x轴距离最大的点为P(x0,y0),求这时|y0|的最小值.人教版2017初三(上册)数学期中检测卷参考答案一、CBBCB CDCCB二、11.6.96×105.12..13..14..15.y=16.24.三、17.解:(﹣1)×(﹣3)+(﹣)0+(﹣8﹣2)=3+1﹣10=﹣618.解:原式=•=m﹣6.19.证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠B=∠DCF,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠BAE=∠CDF.20.解:(1)如图,点P为所作;(2)∵PA=PB,PA:PC=2:1,∴PB:PC=2:1,在Rt△BCP中,∵cos∠BPC==,∴∠BPC=60°.∵PA=PB,∴∠A=∠PBA,∵∠BPC=∠A+∠PBA,∴∠A=30°.21.解:(1)60÷10%=600(人)答:本次参加抽样调查的居民由600人;(2)600﹣180﹣60﹣240=120,120÷600×100%=20%,100%﹣10%﹣40%﹣20%=30%补全统计图如图所示:(3)8000×40%=3200(人)答:该居民区有8000人,估计爱吃D粽的人有3200人.(4)如图:P(C粽)=.22.解:(1)小明骑车速度:在甲地游玩的时间是1﹣0.5=0.5(h).(2)妈妈驾车速度:20×3=60(km/h)设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10∴y=20x﹣10设直线DE解析式为y=60x+b2,把点D(,0)代入得b2=﹣80∴y=60x﹣80…∴解得∴交点F(1.75,25).答:小明出发1.75小时被妈妈追上,此时离家25km.(3)方法一:设从家到乙地的路程为m(km)则点E(x1,m),点C(x2,m)分别代入y=60x﹣80,y=20x﹣10得:,∵∴∴m=30.方法二:设从妈妈追上小明的地点到乙地的路程为n(km),由题意得:∴n=5∴从家到乙地的路程为5+25=30(km).方法三:设从家到乙地的路程为n(km),由题意得:(n/20+0.5)﹣(n/60+4/3)=10/60∴n=30∴从家到乙地的路程为30(km).23.(1)证明:连接OC.∵OC=OA,∴∠OAC=∠OCA.∵AC平分∠PAE,∴∠DAC=∠OAC,∴∠DAC=∠OCA,∴AD∥OC.∵CD⊥PA,∴∠ADC=∠OCD=90°,即CD⊥OC,点C在⊙O上,∴CD是⊙O的切线.(2)解:过O作OM⊥AB于M.即∠OMA=90°,∵AB=8,∴由垂径定理得:AM=4,∵∠MDC=∠OMA=∠DCO=90°,∴四边形DMOC是矩形,∴OC=DM,OM=CD.∵AD:DC=1:3,∴设AD=x,则DC=OM=3x,OA=OC=DM=DA+AM=x+4,∵在Rt△AMO中,∠AMO=90°,根据勾股定理得:AO2=42+OM2.∴(x+4)2=42+(3x)2,解得x1=0(不合题意,舍去),x2=1.则OA=MD=x+4=5.∴⊙O的半径是5.24.解:(1)①证明:∵AB=AC,∴∠B=∠ACB,∵B1C=BC∴∠1=∠B,∵∠2=∠ACB(旋转角相等),∴∠1=∠2,∴AB∥A1C;②过A作AF⊥BC于F,过C作CM⊥AB于M,如图1,∵AB=AC,AF⊥BC∴BF=CF∵,AB=5,∴BF=3∴BC=6∴B1C=BC=6,∵CM⊥AB∴BM=B1M=∴BB1=,CM=,∴AB1=,∴△AB1C的面积为:;(2)如图2过C作CE⊥AB于E,以C为圆心CE为半径画圆交AC于E1,DE1有最小值.此时在Rt△BEC中,CE=,∴CE1=,∴DE1的最小值为CE1﹣CD=;如图,以C为圆心BC为半径画圆交AC的延长线于E1,DE1有最大值.此时DE1=DC+BC=+6=.25.解:(1)∵(0,)在y=ax2+bx+c上,∴=a×02+b×0+c,∴c=;(2)又可得n=,∵点(m﹣b,m2﹣mb+n)在y=ax2+bx+c上,∴m2﹣mb=a(m﹣b)2+b(m﹣b),∴(a﹣1)(m﹣b)2=0,若(m﹣b)=0,则(m﹣b,m2﹣mb+n)与(0,)重合,与题意不合,∴a=1,∴抛物线y=ax2+bx+c,就是y=x2+bx﹣,△=b2﹣4ac=b2﹣4×()=b2+2>0,∴抛物线y=ax2+bx+c与x轴有两个交点;(3)抛物线y=x2+bx的对称轴为x=,最小值为,设抛物线y=x2+bx在x轴上方与x轴距离最大的点的纵坐标为H,在x轴下方与x轴距离最大的点的纵坐标为h,①当<﹣1,即b>2时,如图1,在x轴上方与x轴距离最大的点是(1,y o),∴|H|=y o=+b>,在x轴下方与x轴距离最大的点是(﹣1,y o),∴|h|=|y o|=|﹣b|=b﹣>,∴|H|>|h|,∴这时|y o|的最小值大于;②当﹣1≤≤0,即0≤b≤2时,如图2,在x轴上方与x轴距离最大的点是(1,y o),∴|H|=y o=+b≥,当b=0时等号成立.在x轴下方与x轴距离最大的点是(,),∴|h|=||=≥,当b=0时等号成立.∴这时|y o|的最小值等于.③当0<≤1,即﹣2≤b<0时,如图3,在x轴上方与x轴距离最大的点是(﹣1,y o),∴|H|=y o=1+(﹣1)b﹣=﹣b>,在x轴下方与x轴距离最大的点是(,),∴|h|=|y o|=||=>.∴这时|y o|的最小值大于.④当1<,即b<﹣2时,如图4,在x轴上方与x轴距离最大的点是(﹣1,y o),∴|H|=﹣b>,在x轴下方与x轴距离最大的点是(1,y o),∴|h|=|+b|=﹣(b+)>,∴|H|>|h|,∴这时|y o|的最小值大于,综上所述,当b=0,x0=0时,这时|y o|取最小值,为|y o|=.。

相关文档
最新文档