北师大版九年级上数学中段考试卷2
北师大版九年级上册数学期中考试试题及答案
北师大版九年级上册数学期中考试试卷一、单选题1.下列方程是一元二次方程的是()A.3(x+1)2=-2(x+1)B.2x2-3x=2(x-1)2C.ax2+bx+c=0D.94+x-2=02.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断3.用配方法解方程y2-94y-1=0,正确的是()A.(y-94)2=134,y=94B.(y-32)2=134,y=32C.(y-32)2=134,y=32D.(y-98)2=14564,y=984.如图,下列条件能使平行四边形ABCD是菱形的为()①AC⊥BD;②∠BAD=90°;③AB=BC;④AC=BD.A.①③B.②③C.③④D.①5.下列命题中错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.矩形的对角线相等D.两组对边分别相等的四边形是平行四边形6.根据下列表格的对应值:x… 6.17 6.18 6.19 6.20…ax2+bx+c…-0.02-0.010.010.04…判断方程ax2+bx+c=0(a≠0,a,b,c为常数)一个解x的取值范围是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.若关于x的方程x2﹣x+a=0有实根,则a的值可以是()A.2B.1C.0.5D.0.258.如图,在菱形ABCD中,∠BAD=120°,已知ΔABC的周长是15,则菱形ABCD的周长是()A.10B.15C.20D.309.如图,矩形纸片ABCD,长AD=9m,宽AB=3cm,将其折叠,使点D与点B重合,那么折叠后DE的长为()A.7cm B.6cm C.5.5cm D.5cm10.如图,在矩形ABCD中,点E是AD的中点,∠EBC的平分线交CD于点F,将△DEF 沿EF折叠,点D恰好落在BE上M点处,延长BC、EF交于点N,有下列四个结论:①DF=CF;DEF,其中,将正确结论的序号全部选②BF⊥EN;③△BEN是等边三角形;④S△BEF=3S△对的是()A.①②③B.①②④C.②③④D.①②③④二、填空题11.一个口袋中有3个红球、7个白球,这些球除颜色外都相同,从口袋中随机摸出一个球,这个球是白球的概率是_______.12.某种水果的原价为15元/箱,经过连续两次增长后的售价为30元/箱.设平均每次增长的百分率为x ,根据题意列方程是________.13.若关于x 的一元二次方程x 2-mx-n=0有一个根是2,则2m+n=_______.14.已知方程(x-3)(x+m )=0与方程x 2-2x-3=0的解完全相同,则m=______.15.一个三角形的两边长分别为3和6,第三边的长是方程()()240x x --=的一个根,则这个三角形的周长是__________.16.如图,在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条宽度相等的金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,则可列方程为____.17.如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是___.18.M 为矩形ABCD 中AD 的中点,P 为BC 上一点,PE ⊥MC ,PF ⊥MB ,当AB 、BC 满足_________时,四边形PEMF 为矩形.三、解答题19.解方程:(用适当的方法解方程)(1)解方程:x 2﹣6x+2=0.(2)(2x+5)-3x (2x+5)=020.列方程解应用题某商场销售一批名牌衬衫,平均每天销售出20件,每件盈利40元,为了扩大销售,增加利润,尽快减少库存,商场决定采取降价措施.经调查发现,如果衬衫每降价5元,商场平均每天就可多售出10件.(1)如果衬衫每降价4元,则商场平均每天可盈利多少元?(2)若商场平均每天要想盈利1200元,每件衬衫应降价多少元?21.已知关于x的一元二次方程3x2+ax-2=0.(1)若该方程的一个根为-2,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程总有两个不相等的实数根.22.如图,在正方形ABCD中,E为CD上点,F为BC延长线上一点,CE=CF,(1)猜想线段BE与DF的关系,并证明你的结论.(2)连接EF,若∠BED=120°,求∠EFD的度数.23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,垂足为F,交直线MN于E,连接CD,BE.(1)求证:CE=AD;(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)在满足(2)的条件下,当△ABC满足什么条件时,四边形BECD是正方形?(不必说明理由)24.如图,已知AB∥DE,AB=DE,AC=FD,∠CEF=90°.(1)求证:△ABF≌△DEC;(2)求证:四边形BCEF是矩形.25.校园空地上有一面墙,长度为20m,用长为32m的篱笆和这面墙围成一个矩形花圃,如图所示.(1)能围成面积是126m2的矩形花圃吗?若能,请举例说明;若不能,请说明理由.(2)若篱笆再增加4m,围成的矩形花圃面积能达到170m2吗?请说明理由.26.(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE,求证:CE=CF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果∠GCE=45°,请你利用(1)的结论证明:GE=BE+GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,AD∥BC(BC>AD),∠B=90°,AB=BC,E是AB上一点,且∠DCE=45°,BE=4,DE=10,求直角梯形ABCD的面积.参考答案1.A【解析】【分析】根据一元二次方程的定义,必须满足四个条件:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数,据此将选项中的方程化成一般形式后,再判断即可.【详解】解:∵方程()()23121x x +=-+化简后得:23850x x ++=,∴是一元二次方程;方程()222321x x x -=-化简后得:20x -=,∴是一元一次方程;∵方程20ax bx c ++=中,当0a =时,∴是一元一次方程;∵方程9420x +-=化简后得:104x +=,∴是一元一次方程;综上所述,只有A 选项是一元二次方程;故选:A .【点睛】本题考查了一元二次方程的判别式,熟悉相关定义,将方程化成一般式,是解题的关键.2.B【解析】【分析】把a=1,b=-2,c=1代入△=b 2-4ac ,然后计算△,最后根据计算结果判断方程根的情况.【详解】解:∵a=1,b=-2,c=1,∴△=b 2-4ac=(-2)2-4×1×1=0,∴方程有两个相等的实数根.故选B .【点睛】本题考查了一元二次方程ax 2+bx+c=0(a≠0,a ,b ,c 为常数)的根的判别式△=b 2-4ac .当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.D【解析】【分析】方程常数项移到右边,两边加上一次项系数一半的平方,变形后开方即可求出解.【详解】解:y 2-94y-1=0,方程移项得:y 2-94y=1,配方得:y 2-94y+8164=1+8164,即(y-98)2=14564,则y-98=±8∴y=98±8,故选:D .【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.4.A【解析】【分析】根据菱形的判定定理以及所给条件证明平行四边形ABCD 是菱形,菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等的四边形是菱形;③对角线互相垂直的平行四边形是菱形.据此判断即可.【详解】解:①▱ABCD 中,AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形,即可判定▱ABCD 是菱形;故①正确;②▱ABCD 中,∠BAD =90°,根据有一个角是直角的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故②错误;③▱ABCD 中,AB =BC ,根据一组邻边相等的平行四边形是菱形,即可判定▱ABCD 是菱形;故③正确;④▱ABCD 中,AC =BD ,根据对角线相等的平行四边形是矩形,即可判定▱ABCD 是矩形,而不能判定▱ABCD 是菱形;故④错误.故正确的为①③故选:A .【点睛】此题考查了菱形的判定与矩形的判定定理.此题难度不大,注意掌握菱形的判定定理是解此题的关键.5.B【解析】【分析】根据平行四边形的性质和判定、矩形的性质和判定逐个判断即可求解.【详解】解:平行四边形的对边相等,故A 正确;对角线相等的四边形不一定是矩形,也可能是等腰梯形,故B 错误;矩形的对角线相等,故C 正确;两组对边分别相等的四边形是平行四边形,故D 正确.故选:B .【点睛】本题考查了平行四边形的性质和判定、矩形的性质和判定,熟练掌握各知识点是解题的关键.6.C【解析】【分析】根据在6.18和6.19之间有一个值能使ax 2+bx+c 的值为0,于是可判断方程ax 2+bx+c=0一个解x 的范围.【详解】解:由2y ax bx c =++,得 6.17x >时y 随x 的增大而增大,得 6.18x =时,0.01y =-,6.19x =时,0.01y =,∴20ax bx c ++=的一个解x 的取值范围是6.18 6.19x <<,故选:C .【点睛】本题考查了估算一元二次方程的近似解,解答此题的关键是利用函数的增减性.7.D【解析】【详解】∵关于x 的方程式x 2﹣x+a=0有实根,∴△=(﹣1)2﹣4a≥0,解得a≤0.25.故选D .8.C【解析】【分析】依题意,依据菱形对角线的性质可得,菱形ABCD 中,AC 平分角120BAD ∠=︒,然后可知ABC ∆为等边三角形,可得5AB =,即可求解;【详解】解:由题知,在菱形ABCD 中,AB BC CD AD ===,AC 为菱形的对角线,依据菱形对角线的性质可得,AC 平分角BAD ∠,∴60BAC ∠=︒;又AB BC CD AD ===,∴ABC ∆为等边三角形,又因为ABC ∆的周长为15;∴5AB BC AC ===;∴菱形ABCD 的周长为:20;故选:C【点睛】本题主要考查菱形的基本性质,属于基础性应用,关键在结合三角形的性质进行实际计算;9.D【解析】【分析】由矩形的性质和折叠的性质以及勾股定理得出方程,解方程即可.【详解】由折叠的性质得:BE=DE,设DE长为xcm,则AE=(9﹣x)cm,BE=xcm,∵四边形ABCD是矩形,∴∠A=90°,根据勾股定理得:AE2+AB2=BE2,即(9﹣x)2+32=x2,解得:x=5,即DE长为5cm,故选:D.【点睛】此题考查矩形的性质,翻折变换,勾股定理;熟练掌握矩形和翻折变换的性质,运用勾股定理进行计算是解题的关键.10.B【解析】【分析】根据矩形与折叠性质得出DF=MF,根据角平分线性质得出CF=MF,可判断①,利用等角余角性质得出∠BFM=∠BFC,再证∠BFE=∠BFN即可判断②,证明△DEF≌△CNF可判断③,推出BM=3EM即可判断④.【详解】解:∵四边形ABCD是矩形,∴∠D=∠BCD=90°,由折叠的性质可得:∠EMF=∠D=90°,即FM⊥BE,CF⊥BC,DF=MF.∵BF平分∠EBC,∴CF=MF.∴DF=CF.故①正确,符合题意.∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,∴∠BFM=∠BFC.∵∠MFE=∠DFE=∠CFN,∴∠BFE=∠BFN.∵∠BFE+∠BFN=180°,∴∠BFE=90°,即BF⊥EN.故②正确,符合题意.∵在△DEF和△CNF中,易由ASA得△DEF≌△CNF,∴EF=FN.∴BE=BN.但无法求得△BEN各角的度数,∴△BEN不一定是等边三角形.故③错误,不符合题意.∵∠BEM=∠BFC,BM⊥FM,BC⊥CF,∴BM=BC=AD=2DE=2EM.∴BM=3EM.∴S△BE F=3S△EMF=3S△DEF.故④正确,符合题意.综上所述,正确的结论是①②④.故选B.【点睛】本题考查矩形性质,角平分线性质,线段中点,折叠性质,三角形全等判定与性质,掌握矩形性质,角平分线性质,线段中点,折叠性质,三角形全等判定与性质是解题关键.11.7 10【解析】【分析】由一个口袋中有3个红球,7个白球,这些球除色外都相同,直接利用概率公式求解即可求得答案.【详解】解:∵一个口袋中有3个红球,7个白球,这些球除色外都相同,∴从口袋中随机摸出一个球,这个球是白球的概率是:77 3710=+,故答案为:710.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.12.()215130x +=【解析】【分析】设平均每次涨价的百分率为x ,利用经过两次涨价后的价格=原价(1⨯+涨价的百分率)2,即可得出关于x 的一元二次方程,据此求解即可.【详解】解:设平均每次涨价的百分率为x ,依题意得:()215130x +=.故答案为:()215130x +=.【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.13.4【解析】【分析】根据一元二次方程的解的定义把2x =代入20x mx n --=得到420m n --=得24m n +=,然后利用整体代入的方法进行计算.【详解】把2x =代入方程20x mx n --=得:420m n --=,即24m n +=,故答案为:4.【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.14.1【解析】【分析】利用因式分解法把方程x2-2x-3=0变形,根据解完全相同可求m值.【详解】解:把方程x2-2x-3=0左边因式分解得,(x-3)(x+1)=0,∵方程(x-3)(x+m)=0与方程x2-2x-3=0的解完全相同,∴m=1,故答案为:1.【点睛】本题考查了一元二次方程的解法,解题关键是熟练运用因式分解法解方程.15.13【解析】【分析】解方程(x-4)(x-2)=0,根据三角形三边的关系得到三角形第三边的长为4,然后计算三角形的周长.【详解】解:(x-4)(x-2)=0,x-4=0或x-2=0,所以x1=4,x2=2,因为2+3<6,所以x=2舍去,所以三角形第三边的长为4,所以三角形的周长=3+6+4=13,故答案为:13.【点睛】本题考查了解一元二次方程-因式分解法.先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了三角形三边的关系.16.(80+2x)(50+2x)=5400【解析】【分析】整个挂图的面积=挂图的长×挂图的宽=(原矩形风景画的长+2x)×(原矩形风景画的宽+2x),列出方程即可.【详解】解:∵挂图的长为80+2x,宽为50+2x,∴可列方程为(80+2x)(50+2x)=5400.故答案为:(80+2x)(50+2x)=5400.【点睛】本题考查了用一元二次方程解决实际问题,用x的代数式表示挂图的长和宽是解题的关键.17.2【解析】【分析】连接AE,由折叠的性质可得AF=AB=AD,BG=GF,易证Rt△ADE≌Rt△AFE,得到DE=EF,设DE=x,在Rt△CEG中利用勾股定理建立方程求解.【详解】如图所示,连接AE,∵四边形ABCD为正方形,∴AB=BC=CD=AD=6,∠B=∠C=∠D=90°∵G为BC的中点∴BG=GC=3由折叠的性质可得AF=AB=6,BG=GF=3,在Rt△ADE和Rt△AFE中,∵AE=AE,AF=AD=6∴Rt △ADE ≌Rt △AFE (HL )∴DE=EF设DE=EF=x ,则EC=6-x在Rt △CEG 中,GC 2+EC 2=GE 2,即()()222363x x +-=+解得2x =故答案为:2.【点睛】本题考查正方形中的折叠问题,利用正方形的性质证明DE=EF ,然后利用勾股定理建立方程是解题的关键.18.12AB BC =##2BC AB=【解析】【详解】∵在矩形ABCD 中,M 为AD 边的中点,AB=12BC ,∴AB=DC=AM=MD ,∠A=∠D=90°,∴∠ABM=∠MCD=45°,∴∠BMC=90°,又∵PE ⊥MC ,PF ⊥MB ,∴∠PFM=∠PEM=90°,∴四边形PEMF 是矩形.故答案为:AB=12BC .19.(1)x1,x 2(2)x 1=-52,x 2=13.【解析】【分析】(1)利用配方法求解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:(1)x 2﹣6x+2=0,移项得:x 2-6x=-2,配方得:x 2-6x+9=-2+9,即(x-3)2=7,开方得:,∴原方程的解是:x 1,x 2;(2)(2x+5)-3x (2x+5)=0,∴(2x+5)(1-3x )=0,∴2x+5=0或1-3x =0,∴x 1=-52,x 2=13.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.20.(1)1008元;(2)20元【解析】【分析】(1)根据题意可得,降价4元,每天就可多售出的件数是:41085⨯=(件),再利用衬衣平均每天售出的件数⨯每件盈利=每天销售这种衬衣利润,直接求解即可;(2)设每件衬衫应降价x 元,则每天就可多售出的件数是2x ,利用衬衣平均每天售出的件数⨯每件盈利=每天销售这种衬衣利润列出方程,然后解答即可.【详解】解:(1)根据题意可得,降价4元,每天就可多售出的件数是:41085⨯=(件),则,商场平均每天可盈利:()()2084041008+⨯-=(元);(2)设每件衬衫应降价x 元,则每天就可多售出的件数是2x ,依题意得()()202401200x x +-=,解得120x =,210x =,因为尽快减少库存,所以取120x =答:若商场每件衬衫降价4元,商场每天可盈利1008元,每件衫应降价20元,商场平均每天要想盈利1200元.【点睛】本题主要考查了一元二次方程的应用,读懂题意,能根据平均每天售出的件数⨯每件盈利=每天销售的利润计算,是解题关键.21.(1)a=5,x=13;(2)见解析【解析】【分析】(1)解:设方程的另一根为t ,利用根与系数的关系得到-2+t=3a -,-2t=23-,然后通过解方程组可得到a 和t 的值;(2)先计算判别式的值得到Δ=a 2-4×3×(-2)=a 2+24,然后利用非负数的性质得到Δ>0,则根据判别式的意义可判断不论a 取何实数,该方程都有两个不相等的实数根.【详解】(1)解:设方程的另一根为t ,根据题意得-2+t=3a -,-2t=23-所以解得t=13,所以a=5;(2)证明:Δ=a 2-4×3×(-2)=a 2+24∴Δ>0,∴不论a 取何实数,该方程都有两个不相等的实数根.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a-,x 1x 2=c a.也考查了根的判别式.22.(1)BE=DF ,BE ⊥DF ,证明见解析;(2)∠EFD 的度数是15°.【解析】【分析】(1)可利用边角边证明BE、DF所在的两个直角三角形全等,进而证明这两条线段相等且垂直;(2)由(1)中的全等可得∠DFC=∠BEC=60°,易得∠CFE=45°,相减即可得到所求角的度数.【详解】解:(1)BE=DF.BE⊥DF,理由如下:如图,∵四边形ABCD是正方形,∴BC=CD,∠BCD=∠DCF=90°,又∵CE=CF,∴△BCE≌△DCF,∴BE=DF,∠EBC=∠FDC,延长BE交DF于点G,∵∠BEC=∠DEG,∴∠DGE=∠BCE=90°,∴BE=DF.BE⊥DF;(2)∵△BCE≌△DCF,∠BED=120°,∴∠BEC=60°,∴∠DFC=∠BEC=60°,∵∠DCF=90°,CE=CF,∴∠CFE=45°,∴∠EFD=∠DFC-∠CFE=15°.【点睛】本题综合考查了正方形的性质及全等三角形的判定与性质.用到的知识点为:考查两条线段的大小关系,一般考虑相等,证明这两条线段所在的三角形的全等是常用的方法.23.(1)见解析;(2)菱形,理由见解析;(3)∠A=45°.【解析】【分析】(1)根据∠ACB=90°,DE⊥BC可得DE//AC,即可证明四边形ADEC是平行四边形,根据平行四边形的性质即可得结论;(2)根据直角三角形斜边中线的性质可得AD=BD=CD,可得BD=CE,根据AB//MN可证明BECD是平行四边形,根据有一组邻边相等的平行四边形是菱形即可得结论;(3)根据正方形的性质可得∠CBD=45°,根据∠ACB=90°可得△ABC为等腰直角三角形,可得答案.【详解】(1)∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD.(2)四边形BECD是菱形,理由如下:∵D为AB中点,∠ACB=90°,∴AD=BD=CD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵BD=CD,∴四边形BECD是菱形.(3)当△ABC是等腰直角三角形时,四边形BECD是正方形,理由如下:由(2)可知,四边形BECD是菱形,∴∠BDC=90°时,四边形BECD 是正方形,∴∠CBD =45°,∵∠ACB=90°,∴△ABC 是等腰直角三角形,∴当△ABC 是等腰直角三角形时,四边形BECD 是正方形.24.(1)证明见解析;(2)证明见解析.【解析】(1)首先根据AB ∥DE 得到∠A =∠D ,然后利用SAS 定理判定全等即可;(2)首先判定四边形BCEF 为平行四边形,然后根据有一个角是直角的平行四边形为矩形判定矩形即可.【详解】证明:(1)∵AB ∥DE ,∴∠A =∠D ,∵AC =FD ,∴AC ﹣CF =DF ﹣CF ,即AF =CD ,在△ABF 与△DEC 中,AF DC A D AB DE =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEC(SAS);(2)∵△ABF ≌△DEC ,∴EC =BF ,∠ECD =∠BFA ,∴∠ECF =∠BFC ,∴EC ∥BF ,∴四边形BCEF 是平行四边形,∵∠CEF =90°,∴平行四边形BCEF 是矩形.25.(1)长为18米、宽为7米或长为14米、宽为9米;(2)若篱笆再增加4m ,围成的矩形花圃面积不能达到170m 2.【解析】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,再根据矩形面积公式列方程求解即可得到答案.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,再根据矩形面积公式列方程,求得方程无解,即假设不成立.【详解】(1)假设能,设AB的长度为x米,则BC的长度为(32﹣2x)米,根据题意得:x(32﹣2x)=126,解得:x1=7,x2=9,∴32﹣2x=18或32﹣2x=14,∴假设成立,即长为18米、宽为7米或长为14米、宽为9米.(2)假设能,设AB的长度为y米,则BC的长度为(36﹣2y)米,根据题意得:y(36﹣2y)=170,整理得:y2﹣18y+85=0.∵△=(﹣18)2﹣4×1×85=﹣16<0,∴该方程无解,∴假设不成立,即若篱笆再增加4m,围成的矩形花圃面积不能达到170m2.26.(1)证明见解析;(2)证明见解析;(3)108.【解析】(1)根据正方形的性质,可直接证明△CBE≌△CDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知∠BCE=∠DCF,即可证明∠ECF=∠BCD=90°,根据∠GCE=45°,得∠GCF=∠GCE=45°,利用全等三角形的判定方法得出△ECG≌△FCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CF⊥AD的延长线于点F.则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角△ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,∵BC=CD,∠B=∠CDF,BE=DF,∴△CBE≌△CDF,∴CE=CF;(2)如图,延长AD至F,使DF=BE,连接CF,由(1)知△CBE≌△CDF,∴∠BCE=∠DCF,∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,又∵∠GCE=45°,∴∠GCF=∠GCE=45°,∵CE=CF,∠GCE=∠GCF,GC=GC,∴△ECG≌△FCG,∴GE=GF,∴GE=DF+GD=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2,∴(12−4)2+(12−DF)2=(4+DF)2,∴DF=6,∴AD=6,∴S四边形ABCD =12(AD+BC)×AB=12×(6+12)×12=108.。
北师大版九年级上册数学期中测试卷及答案
北师大版九年级上册数学期中考试试题(带答案)一、选择题(本大题共10小题,每小题4分,共40分)1.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:92.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是()A.B.C.D.3.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.对一元二次方程x2﹣ax=3进行配方时,两边同时加上()A.)2B.C.D.a25.已知x:y=3:2,则下列各式中不正确的是()A.B.C.D.6.在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6 B.8 C.10 D.127.如图,△ABC中,DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.24 B.12 C.8 D.68.若方程3(x﹣7)(x﹣2)=k的根是7和2,则k的值为()A.0 B.2 C.7 D.2或79.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF 为()A.80°B.70°C.65°D.60°10.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2二、填空题(本大题共6小题,每小题4分,共211.一元二次方程x2+2x+a=0有实根,则a的取值范围是.12.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.13.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.15.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.16.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的面积为.三、解答题(本大题共9小题,共86分)17.8分)解方程:(1)x2﹣3x=0(2)3x2+2x﹣5=0.18.8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)以点O为位似中心,与△ABC位似的△A1B1C1满足A1B1:AB=2:1,请在网格内画出△A1B1C1;(2)A1的坐标是,C1的坐标是.19.8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.20.(8分)如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.8分)已知关于x的一元二次方程(x﹣2)2=3m﹣1有两个不相等的实数根,求m的取值范围.22.10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,连接DE 交AC于F.(1)求证:△ADC∽△ACB;(2)若AD=4,AB=6,求的值.23.(10分)某超市在销售中发现:“宝宝乐”牌童装进价为60元,当定价为100元时,平均每天可售出20件,为了迎接“十一”国庆节,商场决定采取适当的降价措施,经调查发现:如果每件童装降价5元,那么平均每天就可多售出10件,要想平均每天盈利1200元,那么每件童装应该降价多少元?24.(12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD 为1阶准菱形.(1)理解与判断:邻边长分别为1和3的平行四边形是阶准菱形;邻边长分别为3和4的平行四边形是阶准菱形;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.25.1如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A;2.C;3.D;4.A;5.D;6.A;7.B;8.A;9.D;10.B;二、填空题(本大题共6小题,每小题4分,共211.a≤1;12.20;13.18;14.25%;15.5;16.;三、解答题(本大题共9小题,共86分)17.18.19.20.21.22.23.24.25.北师大版九年级上册数学期中考试试题(带答案)一、选择题(本大题共10小题,每小题4分,共40分)1.若△ABC∽△DEF,相似比为3:2,则对应高的比为()A.3:2 B.3:5 C.9:4 D.4:92.一个布袋里装有3个红球、2个白球,每个球除颜色外均相同,从中任意摸出一个球,则摸出的球是白球的概率是()A.B.C.D.3.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.对一元二次方程x2﹣ax=3进行配方时,两边同时加上()A.)2 B.C.D.a25.已知x:y=3:2,则下列各式中不正确的是()A.B.C.D.6.在一个不透明的袋中,有若干个白色乒乓球和4个黄色乒乓球,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回袋中,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,那么,估计袋中白色乒乓球的个数为()A.6 B.8 C.10 D.127.如图,△ABC中,DE∥BC,AD=5,BD=10,DE=4,则BC的值为()A.24 B.12 C.8 D.68.若方程3(x﹣7)(x﹣2)=k的根是7和2,则k的值为()A.0 B.2 C.7 D.2或79.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,点E为垂足,连接DF,则∠CDF 为()A.80°B.70°C.65°D.60°10.关于x的方程m(x+h)2+k=0(m,h,k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是()A.x1=﹣6,x2=﹣1 B.x1=0,x2=5 C.x1=﹣3,x2=5 D.x1=﹣6,x2=2二、填空题(本大题共6小题,每小题4分,共211.一元二次方程x2+2x+a=0有实根,则a的取值范围是.12.已知菱形两条对角线的长分别为5cm和8cm,则这个菱形的面积是cm2.13.如图,身高为1.8米的某学生想测量学校旗杆的高度,当他站在B处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AB=2米,BC=18米,则旗杆CD的高度是米.14.某公司4月份的利润为160万元,要使6月份的利润达到250万元,则平均每月增长的百分率是.15.在正方形ABCD中,O是对角线AC、BD的交点,过O作OE⊥OF,分别交AB、BC于E、F,若AE=4,CF=3,则EF的长为.16.如图,矩形ABCD中,由8个面积均为1的小正方形组成的L型模板如图放置,则矩形ABCD的面积为.三、解答题(本大题共9小题,共86分)17.8分)解方程:(1)x2﹣3x=0(2)3x2+2x﹣5=0.18.8分)如图,在已知的平面直角坐标系中,△ABC的顶点都在正方形网格的格点上,若A,B两点的坐标分别是A(﹣1,0),B(0,3).(1)以点O为位似中心,与△ABC位似的△A1B1C1满足A1B1:AB=2:1,请在网格内画出△A1B1C1;(2)A1的坐标是,C1的坐标是.19.8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB.(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.20.(8分)如图,某校在开展积极培育和践行社会主义核心价值观的活动中,小光同学将自己需要加强的“文明”、“友善”、“法治”、“诚信”的价值取向文字分别贴在4张质地、大小完全一样的硬纸板上,制成卡片,随时提醒自己要做个遵纪守法的好学生.小光同学还把卡片编成一道数学题考同桌小亮:将这4张卡片洗匀后背面朝上放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取另一张卡片,让小亮同学用列表法或画树状图法,求出两次抽到卡片上的文字含有“文明”、“诚信”价值取向的概率(卡片名称可用字母表示).21.8分)已知关于x的一元二次方程(x﹣2)2=3m﹣1有两个不相等的实数根,求m的取值范围.22.10分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,连接CE,连接DE 交AC于F.(1)求证:△ADC∽△ACB;(2)若AD=4,AB=6,求的值.23.(10分)某超市在销售中发现:“宝宝乐”牌童装进价为60元,当定价为100元时,平均每天可售出20件,为了迎接“十一”国庆节,商场决定采取适当的降价措施,经调查发现:如果每件童装降价5元,那么平均每天就可多售出10件,要想平均每天盈利1200元,那么每件童装应该降价多少元?24.(12分)邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,▱ABCD中,若AB=1,BC=2,则▱ABCD 为1阶准菱形.(1)理解与判断:邻边长分别为1和3的平行四边形是阶准菱形;邻边长分别为3和4的平行四边形是阶准菱形;(2)操作、探究与计算:①已知▱ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出▱ABCD及裁剪线的示意图,并在图形下方写出a的值;②已知▱ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出▱ABCD是几阶准菱形.25.1如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;(4)当t为何值时,△PQF为等腰三角形?试说明理由.参考答案一、选择题(本大题共10小题,每小题4分,共40分)1.A;2.C;3.D;4.A;5.D;6.A;7.B;8.A;9.D;10.B;二、填空题(本大题共6小题,每小题4分,共211.a≤1;12.20;13.18;14.25%;15.5;16.;三、解答题(本大题共9小题,共86分)17.18.19.20.21.22.23.24.25.做好时间规划才能更有效率充分——利用你的一天时间我们都知道,对于中学生来讲,很大程度上,一个人学习成绩的好坏,是与他是否会管理自己的时间有关的。
中考数学试题北师大版经典中考
数学中考模拟试卷全卷分A卷和B卷,A卷满分100分,B卷满分50分;考试时间l20分钟。
A卷分第Ⅰ卷和第Ⅱ卷,第Ⅰ卷为选择题,第Ⅱ卷为其他类型的题。
A卷(共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共30分)1. 8的立方根是()(A) 2 (B) ±2 (C) 4 (D) ±42.已知a)(A)1± (B) 1 (C)1- (D) 03.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()(A) 4⨯2.110-0.2110-⨯(B) 4(C) 5⨯2110-2.110-⨯ (D) 64.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()(A) 3 (B) 4 (C) 5 (D) 6主视图左视图俯视图5.下列事件中,属于不确定事件的有()①太阳从西边升起;②任意摸一张体育彩票会中奖;③掷一枚骰子,数字“6”朝上;④小明长大后成为一名宇航员(A) ①②③ (B) ①③④ (C) ②③④ (D) ①②④6. 某中学篮球队12名队员的年龄情况如下:则这个队队员年龄的众数和中位数分别是()(A)15岁,16岁; (B)15岁,15岁; (C)15岁,15.5岁; (D)16岁,15岁7. 关于x的方程()06862=+--xxa有实数根,则整数a的最大值是()(A) 6 (B) 7 (C) 8 (D) 98. 把一个长方形纸片沿EF折叠后,点D、C分别落在D’、C’的位置,若︒=∠65EFB,则AE∠D’等于()(A) ︒70 (B)︒65 (C)︒50 (D)︒259.已知O是四边形ABCD内一点,OA=OB=OC,∠ABC=∠ADC=︒70,则∠DAO+∠DCO的大小是()(A)︒70 (B)︒110 (C) ︒140 (D)︒150 10. 已知圆锥的底面半径为5cm,侧面积为65πcm2,设圆锥的母线与高的夹角为θ,则θsin的值为()(A)125(B)135(C)1310(D)1312第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共20分)将答案直接写在该题目中的横线上.11.分解因式:=+-aaa251023______ ___12.函数1-=xxy中,自变量x的取值范围是13.如图,路灯距离地面8米,身高1.6米的小明站在(第10题图)OAMB(第13题图)距离灯的底部(点O )20米的A 处,则小明的影长为___________米. 14.若,m n n m -=-且,3,4==n m 则()2n m += 15.如图,已知点A 、B 在双曲线xky =(x >0)上,AC ⊥x 轴于点C ,BD ⊥y 轴于点D ,AC 与BD 交于点P ,P 是AC 的中点,若△ABP 的面积为3,则k = .三、(第16题每小题5分,第17题6分,共16分) 16.解答下列各题:(1)计算: 2202(3)( 3.14)8sin 45π----+--︒.(2)先化简:)2(2222a b ab a aba b a ++÷--,当1-=b 时,请你为a 任意选一个适当的数代入求值。
2024-2025学年九年级数学上学期期中测试卷(陕西专用,北师大版九上全部)(考试版A4)
2024-2025学年九年级数学上学期期中模拟卷(陕西专用)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
4.测试范围:北师大版九年级(九上全册)。
5.难度系数:0.69。
一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.下列函数不是反比例函数的是( )A.y=3x﹣1B.y=―x3C.xy=5D.y=12x2.如图是某个几何体的三视图,则该几何体是( )A.圆锥B.长方体C.三棱柱D.圆柱3.若双曲线y=k―1x的图象经过第二、四象限,则k的取值范围是( )A.k>1B.k<1C.k=1D.不存在4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.7左右,则布袋中白球可能有( )A.15个B.20个C.30个D.35个5.如图,AD∥BE∥CF,若AB=2,AC=5,EF=4,则DE的长度是( )A .6B .23C .53D .836.在长为30m ,宽为20m 的长方形田地中开辟三条入口宽度相等的道路,已知剩余田地的面积为468m 2,求道路的宽度设道路的宽度为x (m ),则可列方程( )A .(30﹣2x )(20﹣x )=468B .(20﹣2x )(30﹣x )=468C .30×20﹣2×30x ﹣20x =468D .(30﹣x )(20﹣x )=4687.如图,正方形四个顶点分别位于两个反比例函数y =3x和y =n x 的图象的四个分支上,则实数n 的值为( )A .﹣3B .―13C .13D .38.如图,在菱形ABCD 中,DE ⊥AB ,垂足为E ,DE AE =34,BE =1,F 是BC 的中点.现有下列四个结论:①DE =3;②四边形DEBC 的面积等于9;③(AC +BD )(AC ﹣BD )=80;④DF =DE .其中正确结论的个数为( )A .1个B .2个C .3个D .4个二、填空题(共5小题,每小题3分,计15分)9.广场上,一个大型字母宣传牌垂直于地面放置,其投影如图所示,则该投影属于__________.(填“平行投影”或“中心投影”)10.反比例函数y =k x的图象经过点(1,6)和(m ,﹣3),则m =__________.11.已知等腰三角形的两边长是方程x 2﹣9x +18=0的两个根,则该等腰三角形的周长为__________.12.如图,在菱形ABCD 中,AC =24,BD =10.E 是CD 边上一动点,过点E 分别作EF ⊥OC 于点F ,EG⊥OD 于点G ,连接FG ,则FG 的最小值为__________.13.如图,在Rt △ABC 中,∠C =90°,AC =10cm ,BC =8cm .点P 从点C 出发,以2cm /s 的速度沿着CA向点A 匀速运动,同时点Q 从点B 出发,以1cm /s 的速度沿BC 向点C 匀速运动,当一个点到终点时,另一个点随之停止.经过__________秒后,△PCQ 与△ABC 相似.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:x 2﹣4x +1=0.15.(5分)已知:a 2=b 3=c 4≠0,且2a ﹣b +c =10.求a 、b 、c 的值.16.(5分)一个几何体由一些大小相同的小正方块儿搭建,如图是从上面看到的这个几何体的形状如图,小正方形的数字表示在该位置的小正方块儿的个数,请在网格中画出从正面和左面看到的几何体的形状图..17.(5分)如图所示,BE,CF是△ABC的高,D是BC边的中点,求证:DE=DF.18.(5分)已知矩形ABCD中,AB=2,在BC中取一点E,沿AE将△ABE向上折叠,使B点落在AD上的F点,若四边形EFDC与矩形ABCD相似,求AD的长.19.(5分)如图,小明用自制的直角三角形纸板DEF测量水平地面上树AB的高度,已知两直角边EF:DE=2:3,他调整自己的姿势和三角形纸板的位置,使斜边DF保持水平,并且边DE与点B在同一直线上,DM垂直于地面,测得AM=21m,边DF离地面的距离为1.6m,求树高AB.20.(5分)如图所示某地铁站有三个闸口.(1)一名乘客随机选择此地铁闸口通过时,选择A闸口通过的概率为 .(2)当两名乘客随机选择此地铁闸口通过时,请用树状图或列表法求两名乘客选择不同闸口通过的概率.21.(6分)如图,小亮利用所学的数学知识测量某旗杆AB的高度.(1)请你根据小亮在阳光下的投影,画出旗杆AB在阳光下的投影.(2)已知小亮的身高为1.72m,在同一时刻测得小亮和旗杆AB的投影长分别为0.86m和6m,求旗杆AB的高.22.(7分)如图,在平面直角坐标系中,每个小正方形的边长都是1个单位长度,△ABC的顶点都在格点上.(1)以原点O 为位似中心,在第三象限内画出将△ABC 放大为原来的2倍后的位似图形△A 1B 1C 1;(2)已知△ABC 的面积为72,则△A 1B 1C 1的面积是__________.23.(7分)实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y (毫克/百毫升)与时间x(时)变化的图象如图(图象由线段OA 与部分双曲线AB 组成)所示.国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数表达式;(2)参照上述数学模型,假设某驾驶员晚上22:00在家喝完50毫升该品牌白酒,第二天早上6:30能否驾车去上班?请说明理由.24.(8分)如图所示,A、B、C、D是矩形的四个顶点,AB=16cm,AD=6cm,动点P,Q分别从点A,C 同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动(1)P,Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2?(2)P,Q P和点Q的距离第一次是10cm?25.(8分)如图,已知四边形ABCD为正方形,AB=E为对角线AC上一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG 是正方形;(2)探究:CE +CG 的值是否为定值?若是,请求出这个定值;若不是,请说明理由.26.(10分)如图,12y kx =+的图象与反比例函数2y mx =图象相交于A 、B 两点,已知点B 坐标为(3,﹣1).(1)求一次函数和反比例函数的表达式;(2)求得另一个交点A(﹣1,3),观察图象,请直接写出不等式kx+2≤mx的解集;(3)P为y轴上的点,Q为反比例函数图象上的点,若以ABPQ为顶点的四边形是平行四边形,求出满足条件的点P的坐标.。
新北师大版九年级数学上册期中考试题[1]
九年级数学上册期中考试试卷姓名: 成绩:一. 选择题(3*10=30分)1.在下列方程中, 一元二次方程的个数是().①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-5x=0A. 1个B. 2个C. 3个 D. 4个2. 已知粉笔盒里有4支红色粉笔和n支白色粉笔, 每支粉笔除颜色外均相同,现从中任取一支粉笔, 取出红色粉笔的概率是, 则n的值是().A. 4B. 6C. 8D. 103.若关于x的方程kx2-6x+9=0有实数根, 则k的的取值范围是()A. k((B. k((C. k((且k((((D. k((且k(((4.如果, 那么有()A. B. C. D.5.A、B两地的实际距离AB=5千米, 画在地图上的距离=2㎝, 这张地图的比例尺是()A. 2∶5B. 1∶25000C. 25000∶1D. 1∶2500006.下列各组线段中, 能成比例线段的是()A. 1㎝, 3㎝, 4㎝, 6㎝B. 30㎝, 12㎝, 0.8㎝, 0.2㎝C. 0.1㎝, 0.2㎝, 0.3㎝, 0.4㎝ D、 12㎝, 16㎝, 45㎝, 60㎝7、关于x的方程:(m2-1)x2+mx-1=0是一元二次方程, 则m的取值范围是()A.m≠0 B、m≠1 C、m≠-1 D、m≠±18.用配方法解方程x2-4x+2=0,下列配方法正确的是()。
A.(x-2)2=2B. (x+2)2=2C. (x-2)2= -2D. (x-2)2=69.2011年某市政府投资2亿元人民币建设了廉租房8万平方米, 预计到2013年底三年共累计投资9.5亿元人民币建设廉租房, 若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x, 根据题意, 列出方程为().A. 2(1+x) =9.5B.2(1+x)+2(1+x) =9.5C.2+2(1+x)+2(1+x)2=9.5D.8+8(1+x)+8(1+x)2=9.5二. 填空题(3*6=18分)11.已知菱形的周长为40cm,一条对角线长为16 cm , 则这个菱形的面积为_________cm2。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.下列方程是一元二次方程的是( )A .2x 2+y =1B .9y =3y ﹣1C .3x﹣2x 2=8 D .2x 2=1 2.如图,在△ABC 中,已知△ADE =△B ,则下列等式成立的是( )A .AE AD AB AC = B .AD AE AB AC = C .DE AE BC AB= D .DE AD BC AC = 3.某水果超市为了吸引顾客来店购物,设立了一个如图所示的可以自由转动的转盘,开展有奖购物活动.顾客购买商品满200元就能获得一次转动转盘的机会,当转盘停止时,指针落在“一袋苹果”的区域就可以获得一袋苹果;指针落在“一袋橘子”的区域就可以获得一袋橘子.若转动转盘2000次,指针落在“一袋橘子”区域的次数有600次,则某位顾客转动转盘一次,获得一袋橘子的概率大约是( )A .0.3B .0.7C .0.4D .0.24.如图,11AOB 与22A OB 位似,位似中心为O 且11AOB 与22A OB 在原点O 的两侧,若11AOB 与22A OB 的周长之比为1:2,点1A 的坐标为()1,2-,则点1A 的对应点2A 的坐标为A .()1,4-B .()2,4-C .()4,2-D .()2,1-5.在六张卡片上分别写有6,227-,3.1415,π,0上的数为无理数的概率是( )A .23B .12C .13D .16 6.若关于x 的方程x 2+2x -3=0与213x x a =+-有一个解相同,则a 的值为( ) A .1 B .1或-3 C .-1 D .-1或37.如图,在Rt ABC △中,90C ∠=︒,ABC ∠的角平分线交AC 于点D ,过点D 分别作BC 和AB 的平行线,交AB 于点E ,交BC 于点H ,连接EH 交BD 于点G ,在AE 上截取EF BE =,连接DF .下列说法中正确的是( )△:1:2GH FD =;△2BD BF BC =⋅;△四边形EBHD 是菱形;△29ADF ABC S S =△△A .1个B .2个C .3个D .4个8.如图,在 ABCD 中,CD=2AD ,BE△AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:△△ABC=2△ABF ;△EF=BF ;△S 四边形DEBC =2S △EFB ;△△CFE=3△DEF,其中正确结论的个数共有( )A .1个B .2个C .3个D .4个9.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AM MD等于( )A.35B.23C.38D.4510.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH△AB于点H,连接OH,若△DHO=20°,则△ADC的度数是()A.120° B.130° C.140° D.150°二、填空题11.已知13a cb d==,则a cb d++的值是_____.12.关于x的方程20x mx+=的一个根是−1,则m的值为______.13.如图,在平行四边形ABCD中,AC交BD于O,试添加一个条件使四边形ABCD成为矩形.你添加的条件是__.(只填一个即可)14.关于x的方程2(5)410a x x---=有实数根,则a的取值范围是_______.15.如图,在矩形ABCD中,E,F,G,H分别为边AB,AD,CD,BC的中点,若AB=6,AD=8,则图中阴影部分的面积为_____.16.已知一等腰三角形的一边长为5,另一边长为方程x2﹣8x+12=0的根,该等腰三角形的周长为____.17.如图,某一时刻一根2米长的竹竿EF 影长GE 为1.2米,此时,小红测得一棵被风吹斜的杨树与地面成30角,树顶端B 在地面上的影子点D 与B 到垂直地面的落点C 的距离是3.6米,则树长AB 等于________米.18.如图,正方形ABCD 的边长为4,对角线,AC BD 相交于点O ,点E ,F 分别在,BC CD 的延长线上,且2,1CE DF ==,G 为EF 的中点,连接OE ,交CD 于点H ,连接GH ,则GH 的长为________.三、解答题19.解方程:(1)22284x x x ++=+(2)()()23230x x x -+-=20.如图,在菱形ABCD 中,CE =CF.求证:AE =AF.21.如图,AF ,AG 分别是ABC 和ADE 的高,BAF DAG ∠=∠.(1)求证:AABC DE∽△△;(2)若3DE=,25ADAB=,求BC的长.22.某商场一种商品的进价为每件30元,售价为每件40元,每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件25.6元,求每次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,若每天要想获得504元的利润,每件应降价多少元?23.如图,在矩形ABCD中,已知对角线AC、BD相交于点O,E是CD中点,连接OE,过点C作//CF BD交线段OE的延长线于点F,连接DF.(1)求证:ODE FCE≌;(2)求证:四边形ODFC是菱形.24.如图,A、B在一直线上,小明从点A出发沿AB方向匀速前进,4秒后走到点D,此时他(CD)在某一灯光下的影长为AD,继续沿AB方向以同样的速度匀速前进4秒后到点F,此时他(EF)的影长为2米,然后他再沿AB方向以同样的速度匀速前进2秒后达点H,此时他(GH)处于灯光正下方.(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);(2)求小明沿AB方向匀速前进的速度.25.如图,△ABC在平面直角坐标系中,三个顶点坐标分别为A(0,3)、B(3、4)、C(2,2)(网格中每个正方形的边长是1个单位长度).(1)以点B为位似中心,在网格内画出△A′BC′,使△A′BC′与△ABC位似,且位似比为2:1,则点C′的坐标是______;(2)△A′BC′的面积是_______平方单位;(3)在x轴上找出点P,使得点P到B与点A距离之和最小,请直接写出P点的坐标.26.如图1,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,BD=24,在菱形ABCD的外部以AB为边作等边三角形ABE.点F是对角线BD上一动点(点F不与点B 重合),将线段AF绕点A顺时针方向旋转60°得到线段AM,连接FM.(1)求AO的长;(2)如图2,当点F在线段BO上,且点M,F,C三点在同一条直线上时,求证:ACAM;(3)连接EM,若△AEM的面积为40,请直接写出△AFM的周长.参考答案1.D【解析】【分析】根据一元二次方程的定义逐个判断即可.【详解】解:A.含有二个未知数,不是一元二次方程,故本选项不符合题意;B.是一元一次方程,不是一元二次方程,故本选项不符合题意;C.不是整式方程,不是一元二次方程,故本选项不符合题意;D.是一元二次方程,故本选项符合题意;故选:D.【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键,注意:只含有一个未知数,并且所含未知数的项的次数最高是2的整式方程,叫一元二次方程.2.B【解析】【详解】△△A=△A,△ADE=△B,△△AED△△ACB,△AD AEAB AC=,故选B.3.A【解析】【分析】用频率估计概率即可得到答案.【详解】某位顾客转动转盘一次,获得一袋橘子的概率大约是6000.3 2000=.故选:A.【点睛】本题考查用频率估计概率,掌握大量的重复试验时频率可视为事件发生概率的估计值.4.B【解析】【分析】根据位似变换的概念得到△A1OB1△△A2OB2,△A1OB1与△A2OB2的相似比为1:2,根据位似变换的性质计算,得到答案.【详解】解:△△A1OB1与△A2OB2位似,△△A1OB1△△A2OB2,△△A1OB1与△A2OB2的周长之比为1:2,△△A1OB1与△A2OB2的相似比为1:2,△A1的坐标为(-1,2),△A1OB1与△A2OB2在原点O的两侧,△点A1的对应点A2的坐标为(2,-4),故选:B.【点睛】本题考查的是位似变换的概念和性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.5.C【解析】【分析】首先根据无理数定义确定哪些是无理数,再根据概率的公式计算即可.【详解】解:在6,227-,3.1415,π,0π2个,△从中随机抽取一张,卡片上的数为无理数的概率是21 63 =,故选:C.【点睛】此题考查概率的计算公式,正确掌握无理数的定义会判断无理数是解题的关键.6.C【解析】【分析】解出一元二次方程,将根代入分式方程即可求出a 的值.【详解】解:解方程2230x x +-=,得:x 1=1,x 2=﹣3,△x=﹣3是方程213x x a=+-的增根, △当x=1时,代入方程213x x a =+-,得:21131a=+-, 解得a=﹣1.故选:C .【点睛】 本题考查了解一元二次方程﹣因式分解法,分式方程的解.此题属于易错题,解题时要注意分式的分母不能等于零.7.C【解析】【分析】△由题意可证四边形EBHD 是平行四边形,可得GH EG =,BG DG =,由三角形中位线定理可得EG DF ∥,12GE DF =,可得12GH DF =; △通过证明BDF BCD ,可得BD BF BC BD =,可证2BD BF BC =⋅; △由菱形的判定可证四边形EBHD 是菱形;△条件不足,无法证明.【详解】ED BC ∥,DH AB ∥,∴四边形EBHD 是平行四边形,GH EG ∴=,BG DG =,EF BE =,EG DF ∴∥,12GE DF =, 12GH DF ∴=,即:1:2GH FD =,故△正确; BD 平分ABC ∠,ABD DBC ∴∠=∠,ED BC ∥,EDB DBC ∴∠=∠,EDB EBD ∴∠=∠,BE DE ∴=,BE DE EF ∴==,90BDF C ∴∠=︒=∠,BDF BCD ∴,BD BF BC BD∴=,即2BD BF BC =⋅,故△正确; BE DE =,∴平行四边形EBHD 是菱形,故△正确; 条件不足,无法证明29ADF ABC S S =△△,故△错误. 故选:C .8.D【解析】 如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE△△FCG 得EF=FG ,BE△BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图延长EF 交BC 的延长线于点G ,取AB 的中点H ,连接FH .△CD=2AD ,DF=FC ,△CF=CB ,△△CFB=△CBF ,△CD△AB ,△△CFB=△FBH ,△△CBF=△FBH,△△ABC=2△ABF.故△正确,△DE△CG,△△D=△FCG,△DF=FC,△DFE=△CFG,△△DFE△△FCG,△FE=FG,△BE△AD,△△AEB=90°,△AD△BC,△△AEB=△EBG=90°,△BF=EF=FG,故△正确,△S△DFE=S△CFG,△S四边形DEBC=S△EBG=2S△BEF,故△正确,△AH=HB,DF=CF,AB=CD,△CF=BH,△CF△BH,△四边形BCFH是平行四边形,△CF=BC,△四边形BCFH是菱形,△△BFC=△BFH,△FE=FB,FH△AD,BE△AD,△FH△BE,△△BFH=△EFH=△DEF,△△EFC=3△DEF,故△正确,故选D.【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.9.A【解析】【详解】解:设AB=a,根据题意知AD=2a,由四边形BMDN是菱形知BM=MD,设AM=b,则BM=MD=2a-b.在Rt△ABM中,由勾股定理即可求值.试题解析:△四边形MBND是菱形,△MD=MB.△四边形ABCD是矩形,△△A=90°.设AB=a,AM=b,则MB=2a-b,(a、b均为正数).在Rt△ABM中,AB2+AM2=BM2,即a2+b2=(2a-b)2,解得a=4b3,△MD=MB=2a-b=53 b,△3553AM bMD b==.故选A.10.C【解析】【分析】由四边形ABCD是菱形,可得OB=OD,AC△BD,又由DH△AB,△DHO=20°,可求得△OHB 的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得△ABD的度数,然后求得△ADC的度数.【详解】△四边形ABCD是菱形,△OB=OD,AC△BD,△ADC=△ABC,△DH△AB,△OH=OB=12BD,△△DHO=20°,△△OHB=90°﹣△DHO=70°,△△ABD=△OHB=70°,△△ADC =△ABC =2△ABD =140°,故选C .【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH 是等腰三角形是关键.11.13【解析】【分析】根据比例的性质求解即可.【详解】 解:由13a cb d ==,得3a b =,3c d =,1333a ca cb d ac ++==++, 故答案为13.【点睛】本题考查了比例的性质,解题关键是熟练运用比例的性质进行变形求解.12.1【解析】【分析】把1x =-代入方程20x mx +=,即可求出m 的值.【详解】20x mx +=的一个根是1-,∴把1x =-代入方程20x mx +=得:10m -=,1m ∴=.故答案为:1.【点睛】本题考查了一元二次方程的解,了解方程解的含义是解题的关键.13.AC=BD 或△ABC=90°(答案不唯一)【解析】【分析】根据矩形的判定即可得出答案.【详解】解:根据“有一个角是直角的平行四边形是矩形”可得△ABC=90°,根据“对角线相等的平行四边形是矩形”可得AC=BD ,故答案为:AC=BD 或△ABC=90°(答案不唯一).【点睛】本题考查的是矩形的判定,掌握平行四边形和矩形的区别和联系是解决本题的关键. 14.1a ≥【解析】【分析】分情况讨论当二次项系数为零时:原式为一元一次方程有实数根;当二次项系数不为零时:根据一元二次方程根的情况结合根的判别式列出不等式,求解即可.【详解】解:△关于x 的方程2(5)410a x x ---=有实数根,当50a -=时,即5a =时,原方程为410x --=有实数根;当50a -≠时,即5a ≠时,则240b ac -≥,即2(4)4(5)(1)0a --⨯-⨯-≥,解得:1a ≥,综上,a 的取值范围是1a ≥,故答案为:1a ≥.【点睛】本题主要考查一元二次方程根的判别式,熟知一元二次方程根与根的判别式的关系是解题的关键.15.24【解析】【分析】连接AC ,根据三角形中位线定理得到EH△AC ,EH=12AC ,得到△BEH△△BAC ,根据相似三角形的性质计算即可.【详解】解:连接AC,△E、H分别为边AB、BC的中点,△EH△AC,EH=12AC,△△BEH△△BAC,△S△BEH=14S△BAC=18S矩形ABCD,同理可得,图中阴影部分的面积=12×6×8=24,故答案为:24.【点睛】本题考查的是三角形中位线定理、相似三角形的性质,掌握三角形中位线定理、相似三角形的面积比等于相似比的平方是解题的关键.16.12,16,17【解析】【分析】先求出一元二次方程的根,再讨论5是等腰三角形的底还是腰,求出三角形周长.【详解】解:28120x x-+=()()260x x--=,解得12x=,26x=,若5是等腰三角形的底,则等腰三角形的腰只能是6,因为2不能构成三角形,此时周长是17,若5是等腰三角形的腰,则等腰三角形的底可以是2或6,那么周长是12或16.故答案是:12,16,17.【点睛】本题考查等腰三角形的性质和解一元二次方程,解题的关键是分类讨论等腰三角形的腰长和底长,需要注意构成三角形的条件.17.12【解析】【分析】先利用△BDC△△FGE 得到3.6BC =21.2,可计算出BC=6,然后在Rt△ABC 中利用含30度的直角三角形三边的关系即可得到AB 的长.【详解】解:如图,CD=3.6m ,△△BDC△△FGE , △BC CD =EF GE, 即3.6BC =21.2, △BC=6,在Rt△ABC 中,△△A=30°,△AB=2BC=12,即树长AB 是12米.故答案为12.【点睛】本题考查了相似三角形的应用,熟练掌握相似三角形的性质是解题的关键.18 【解析】【分析】先作辅助线构造直角三角形,求出CH 和MG 的长,再求出MH 的长,最后利用勾股定理求解即可.【详解】解:如图,作OK△BC ,垂足为点K ,△正方形边长为4,△OK=2,KC=2,△KC=CE ,△CH 是△OKE 的中位线 △112CH OK ==, 作GM△CD ,垂足为点M ,△G 点为EF 中点,△GM 是△FCE 的中位线, △112GM CE ==,()()1115412222MC FC CD DF ==+=⨯+=, △53122MH MC HC =-=-=,在Rt△MHG 中,GH ==【点睛】本题综合考查了正方形的性质、三角形中位线定理、勾股定理等内容,解决本题的关键是能作出辅助线构造直角三角形,得到三角形的中位线,利用三角形中位线定理求出相应线段的长,利用勾股定理解直角三角形等.19.(1)13x =23x =(2)13x =-或23x =【解析】【分析】(1)根据配方法解一元二次方程,即可求解;(2)根据因式分解法解一元二次方程,即可求解.【详解】(1)22284x x x ++=+,262x x -=,2226323x x -+=+,2(3)11x -=,3x ∴-=13x ∴=23x =(2)()()23230x x x -+-=,(32)(3)0x x x ---=,(3)(3)0x x ---=,30x ∴--=或30x -=,13x ∴=-或23x =.【点睛】本题主要考查解一元二次方程,掌握配方法和因式分解法解方程是解题的关键. 20.证明见解析【解析】【分析】由四边形ABCD 为菱形,可得AD=AB=CD=CB ,△B=△D .又因为CE=CF ,所以CD -CE=CB -CF ,即DE=BF .可证△ADE△△ABF ,所以AE=AF .【详解】证明:△四边形ABCD 为菱形,△AD=AB=CD=CB ,△B=△D .又△CE=CF ,△CD -CE=CB -CF ,即DE=BF .在△ADE 和△ABF 中AD AB D B DE CF ⎧⎪∠∠⎨⎪⎩===,△△ADE△△ABF (SAS ).△AE=AF .【点睛】此题主要考查了菱形的性质以及全等三角形的判断和性质形,能够灵活运用菱形知识解决有关问题是解题的关键.21.(1)见解析;(2)152BC =【解析】【分析】(1)由直角三角形的性质得出B ADE ∠=∠,可证明ABC ADE ; (2)由相似三角形的性质可得到答案.【详解】(1)AF ,AG 分别是ABC 和ADE 的高,AF BC ∴⊥,AG DE ⊥,90AFB ∴∠=︒,90AGD ∠=︒,BAF DAG ∠=∠,B ADE ∴∠=∠,BAC DAE ∴∠=∠,ABC ADE ;(2)ABC ADE △△,AD DE AB BC∴=, 25AD AB =,3DE =, 235BC∴=, 152BC ∴=. 22.(1)两次下降的百分率为20%;(2)每件应降价3元【解析】(1)设每次降价的百分率为x ,根据两次降价,从40降至25.6列方程求解即可; (2)根据总利润=单件利润×销售量列方程求解即可.【详解】(1)设两次下降的百分率为x ,由题意得:240(1)25.6x -=,解得:10.220x ==%,2 1.8x =(不符合题意,舍去),答:两次下降的百分率为20%;(2)设每件应降价y 元,由题意得:(4030)(488)504y y --+=,整理得:y 2-4y +3=0,解得:11y =,23y =,因为要尽快减少库存,所以3y =,答:每件应降价3元.23.(1)见解析;(2)见解析【解析】(1)根据两直线平行,内错角相等可得△ODE=△FCE ,根据线段中点的定义可得CE=DE ,然后利用“角边角”证明△ODE 和△FCE 全等;(2)根据全等三角形对应边相等可得OD=FC ,再根据一组对边平行且相等的四边形是平行四边形判断出四边形ODFC 是平行四边形,根据矩形的对角线互相平分且相等可得OC=OD ,然后根据邻边相等的平行四边形是菱形证明即可.【详解】解:证明:(1)△CF△BD ,△△ODE=△FCE ,△E 是CD 中点,△CE=DE ,在△ODE 和△FCE 中,ODE FCE CE DEDEO CEF ∠=∠⎧⎪=⎨⎪∠=∠⎩, △△ODE△△FCE (ASA );(2)△△ODE△△FCE ,△OD=FC ,△CF△BD ,△四边形ODFC 是平行四边形,在矩形ABCD 中,OC=OD ,△四边形ODFC 是菱形.24.(1)答案见解析;(2)1.5米/秒【解析】(1) 利用影长为AD ,进而得出延长AC ,HG 得到O 点,进而求出答案;(2)首先设速度为x 米/秒,然后利用△COG 和△OAH 相似,△EOG 和△OMH 相似得出答案. 【详解】解: (1)如图(2)设速度为x 米/秒根据题意得CG//AH△△COG△△OAH △CG OG AH OH =即:OG63 OH105xx==又△CG//AH,△△EOG△△OMH△CG OG AH OH=即:2x3 2+2x5=△ 1.5x=答:小明沿AB方向匀速前进的速度为1.5米/秒.【点睛】本题考查了相似三角形的应用以及中心投影,注意从实际问题中抽象出几何图形,然后利用相似比计算相应线段的长是解题关键.25.(1)(1,0);(2)10;(3)(97,0).【解析】【分析】(1)利用位似图形的性质得出对应点位置,即可得出答案;(2)利用勾股定理逆定理可得△A′BC′是直角三角形,利用三角形面积公式求出△A′BC′面积即可;(3)作A关于y轴的对称点A″,连接A″B,交x轴于点P,根据对称性质可得A″B即为PA+PB的最小值,根据A″和B点坐标可得直线A″B的解析式,令y=0即可得P点坐标.【详解】(1)如图所示:C′(1,0);故答案为:(1,0);(2)△A′B2=62+22=40,A′C′2=42+22=20,C′B2=42+22=20,△A′B2=A′C′2+C′B2,△△A′BC′是直角三角形,△△A′BC′的面积是:1210平方单位;故答案为:10(3)作A关于y轴的对称点A″,连接A″B,交x轴于点P,△PA=PA″,△PA″+PB=PA+PB=BA″,即为PA+PB的最小值,设A″B直线解析式为:y=kx+b,把(3,4),(0,﹣3),代入得:343k bb+=⎧⎨=-⎩,解得:733kb⎧=⎪⎨⎪=-⎩,故A″B直线解析式为:y=73x﹣3,当y=0时,x=97,故P(97,0).【点睛】本题考查位似变换以及坐标与图形的性质、待定系数法求一次函数解析式及轴对称的性质,正确得出对应点的坐标是解题关键.26.(1)AO=5;(2)证明过程见解析;(3)【解析】【分析】(1)在RT△OAB中,利用勾股定理(2)由四边形ABCD是菱形,求出△AFM为等边三角形,△M=△AFM=60°,再求出△MAC=90°,在Rt△ACM中tan△M=ACAM,求出AC;(3)求出△AEM△△ABF,利用△AEM的面积为40求出BF,在利用勾股定理AF=△AFM的周长为【详解】解:(1)△四边形ABCD是菱形,△AC△BD,OB=OD=12BD,△BD=24,△OB=12,在Rt△OAB中,△AB=13,.(2)如图2,△四边形ABCD是菱形,△BD垂直平分AC,△FA=FC,△FAC=△FCA,由已知AF=AM,△MAF=60°,△△AFM为等边三角形,△△M=△AFM=60°,△点M,F,C三点在同一条直线上,△△FAC+△FCA=△AFM=60°,△△FAC=△FCA=30°,△△MAC=△MAF+△FAC=60°+30°=90°,在Rt△ACM中△tan△M=AC AM,△tan60°=AC AM,.(3)如图,连接EM ,△△ABE 是等边三角形, △AE=AB ,△EAB=60°,由(2)知△AFM 为等边三角形, △AM=AF ,△MAF=60°, △△EAM=△BAF ,在△AEM 和△ABF 中, AE ABEAM BAF AM AF=⎧⎪∠=∠⎨⎪=⎩,△△AEM△△ABF (SAS ), △△AEM 的面积为40,△ABF 的高为AO △12BF•AO=40,BF=16, △FO=BF ﹣BO=16﹣12=4△△AFM 的周长为。
北师大版九年级上册期中考试数学试卷含答案
北师大版九年级上册数学期中测试卷(满分:150分,考试用时120分钟)一、选择题(本大题共15个小题,每小题3分,共45分)1.一元二次方程x2-3x+2=0的两根为x1,x2,则x1+x2的值是( )A.2 B.-2 C.3 D.-32.一元二次方程x2-4x+5=0的根的情况是( )A.有两个不相等的实数根 B.有两个相等的实数根C.只有一个实数根 D.没有实数根3.如果2是方程x2-3x+c=0的一个根,那么c的值是( )A.4 B.-4 C.2 D.-24.下列说法中正确的个数是( )①不可能事件发生的概率为0;②一个对象在试验中出现的次数越多,频率就越大;③在相同条件下,只要试验的次数足够多,频率就可以作为概率的估计值;④收集数据过程中的“记录结果”这一步,就是记录每个对象出现的频率.A.1 B.2 C.3 D.45.三角形两边的长是3和4,第三边的长是方程x2-12x+35=0的根,则该三角形的周长为( ) A.14 B.12C.12或14 D.以上都不对6.下列命题正确的是( )A.对角线互相垂直的四边形是菱形B.一组对边相等,另一组对边平行的四边形是平行四边形C.对角线相等的四边形是矩形D.对角线互相垂直平分且相等的四边形是正方形7.某校准备修建一个面积为180平方米的矩形活动场地,它的长比宽多11米,设场地的宽为x米,则可列方程为( )A.x(x-11)=180 B.2x+2(x-11)=180C.x(x+11)=180 D.2x+2(x+11)=1808.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是( )A.34B.15C.25D.359.关于x的一元二次方程(m-2)x2+2x+1=0有实数根,则m的取值范围是( )A.m≤3 B.m<3C.m<3且m≠2 D.m≤3且m≠210.如图,矩形ABCD的对角线A C、BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是( )A.4 B.6 C.8 D.1011.暑假快到了,父母打算带兄妹俩去某个景点旅游一次,长长见识,可哥哥坚持去黄山,妹妹坚持去泰山,争执不下,父母为了公平起见,决定设计一款游戏,若哥哥赢了就去黄山,妹妹赢了就去泰山.下列游戏中,不能选用的是( )A .掷一枚硬币,正面向上哥哥赢,反面向上妹妹赢B .同时掷两枚硬币,两枚都正面向上,哥哥赢,一正一反向上妹妹赢C .掷一枚骰子,向上的一面是奇数则哥哥赢,反之妹妹赢D .在不透明的袋子中装有两黑两红四个球,除颜色外,其余均相同,随机摸出一个是黑球则哥哥赢,是红球则妹赢12.将进货单价为40元的商品按50元出售时,售出500个,经市场调查发现:该商品每涨价1元,其销量减少10个,为了赚8 000元,则售价应定为( )A .60元B .80元C .60元或80元D .70元13.如图,正△AEF 的边长与菱形ABCD 的边长相等,点E 、F 分别在BC 、CD 上,则∠B 的度数是( )A .70°B .75°C .80°D .95°14.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB =BC ,②∠ABC =90°,③AC =BD ,④AC ⊥BD 中选两个作为补充条件,使平行四边形ABCD 为正方形(如图),现有下列四种选法,你认为其中错误的是( )A .①②B .②③C .①③D .②④15.如图,E ,F ,G ,H 分别是BD ,BC ,AC ,AD 的中点,且AB =CD ,下列结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG =12(BC -AD);⑤四边形EFGH 是菱形,其中正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(本大题共5小题,每小题5分,共25分)16.一元二次方程x 2+x =0的解是________________.17.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,若∠AOB =60°,AC =10,则AB =________.18.若x 1、x 2是方程2x 2-3x -4=0的两个根,则x 1x 2+x 1+x 2的值为________.19.某班要从甲、乙、丙、丁四位班干部(两男两女)中任意两位参加学校组织的志愿者服务活动,则恰好选中一男一女的概率是________.20.如图,正方形ABCD的边长为4,∠DAC的平分线交DC于点E,若点P,Q分别是AD和AE上的动点,则DQ+PQ的最小值是________.三、解答题(本大题共7个小题,各题分值见题号后,共80分)21.(8分)用适当的方法解方程:(1)x2-4x+3=0; (2)(x-2)(3x-5)=1.22.(8分)如图,在矩形ABCD中,点O在边AB上,∠AOC=∠BOD,求证:AO=OB.23.(10分)某公司今年销售一种产品,1月份获得利润20万元,由于产品畅销,利润逐月增加,3月份的利润比2月份的利润增加4.8万元,假设该产品利润每月的增长率相同,求这个增长率.24.(12分)商店只有雪碧、可乐、果汁、奶汁四种饮料,每种饮料数量充足,某同学去该店购买饮料,每种饮料被选中的可能性相同.(1)若他去买一瓶饮料,则他买到奶汁的概率为________;(2)若他两次去买饮料,每次买一瓶,且两次所买饮料品种不同,请用树状图法或列表法求出他恰好买到雪碧和奶汁的概率.25.(12分)如图,在正方形ABCD 中,点M 是对角线BD 上的一点,过点M 作ME ∥CD 交BC 于点E ,作MF ∥BC 交CD 于点F.求证:AM =EF.26.(14分)某批发商以每件50元的价格购进800件T 恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T 恤一次性清仓销售,清仓时单价为40元,设第二个月单价降低x 元.(1)填表(不需化简):月(2)如果批发商希望通过销售这批T 恤获利9 000元,那么第二个月的单价应是多少元?27.(16分)已知:ABCD 的两边AB ,AD 的长是关于x 的方程x 2-mx +m 2-14=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?求出这时菱形的边长; (2)若AB 的长为2,那么ABCD 的周长是多少?参考答案1.C 2.D 3.C 4.C 5.B 6.D 7.C 8.C 9.D 10.C 11.B 12.C 13.C 14.B 15.C 16.x 1=0,x 2=-1 17.5 18.-12 19.23 20.2 221.(1)x 1=1,x 2=3.(2)x 1=11+136,x 2=11-136.22.证明:∵四边形ABCD 为矩形,∴∠A =∠B =90°,AD =BC. ∵∠AOC =∠BOD ,∴∠AOC -∠DOC =∠BOD -∠DOC ,即∠AOD =∠BOC. ∴△AOD ≌△BOC(AAS). ∴AO =OB.23.设这个增长率为x.依题意得20(1+x )2-20(1+x)=4.8. 解得x 1=0.2,x 2=-1.2(不合题意,舍去).0.2=20%. 答:这个增长率是20%. 24.(1)14(2)画树状图:由树状图可知,所有等可能的结果共有12种,满足条件的结果有2种, 所以他恰好买到雪碧和奶汁的概率为212=16. 25.证明:连接MC.∵在正方形ABCD 中,AD =CD ,∠ADM =∠CDM , 又∵DM =DM , ∴△ADM ≌△CDM. ∴AM =CM.∵ME ∥CD ,MF ∥BC ,∴四边形CEMF 是平行四边形. 又∵∠ECF =90°, ∴CEMF 是矩形. ∴EF =MC. 又∵AM =CM , ∴AM =EF.26.(1)80-x 200+10x 800-200-(200+10x)(2)根据题意,得80×200+(80-x)(200+10x)+40[800-200-(200+10x)]-50×800=9 000,整理,得x 2-20x +100=0.解得x 1=x 2=10.当x =10时,80-x =70>50.所以第二个月的单价应是70元. 27.(1)∵四边形ABCD 是菱形,∴AB =AD.又∵Δ=m 2-4(m 2-14)=m 2-2m +1=(m -1)2,当(m -1)2=0时,即m =1时,四边形ABCD 是菱形.把m =1代入x 2-mx +m 2-14=0,得x 2-x +14=0.解得x 1=x 2=12.∴菱形ABCD 的边长是12.(2)把AB =2代入x 2-mx +m 2-14=0,得4-2m +m 2-14=0.解得m =52.把m =52代入x 2-mx +m 2-14=0,得x 2-52x +1=0.解得x 1=2,x 2=12.∴AD =12.∵四边形ABCD 是平行四边形, ∴ABCD 的周长是2(2+12)=5.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.下列方程中,关于x 的一元二次方程是()A .2230x x --=B .2210x y --=C .()270x x x -+=D .20ax bx c ++=2.如图,在平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,AE 与BD 相交于点F ,若S △BEF =2,则S △ABD =()A .24B .25C .26D .233.若方程(a-2)x²+ax-3=0是关于x 的一元二次方程,则a 的取值范围是()A .a≥2且a≠2B .a≥0且a≠2C .a≥2D .a≠24.如图,在平行四边形ABCD 中,M 、N 是BD 上两点,BM DN =,连接AM 、MC 、CN 、NA ,添加一个条件,使四边形AMCN 是矩形,这个条件是()A .12OM AC =B .MB MO =C .BD AC ⊥D .AMB CND∠=∠5.如图,菱形ABCD 的面积为120cm 2,正方形AECF 的面积为50cm 2,则AB 的长为()A .9cmB .12cmC .13cmD .15cm6ABCD 中,30B ∠=︒,过点A 作AE BC ⊥于点E ,现将△ABE沿直线AE 翻折至△AFE 的位置,AF 与CD 交于点G .则CG 等于()A 1B .1C .12D .27.在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的概率是0.2,则估计盒子中大约有红球()A .12个B .16个C .20个D .25个8.如图,矩形ABCD 中,AB=8,BC=4.点E 在边AB 上,点F 在边CD 上,点G 、H 在对角线AC 上.若四边形EGFH 是菱形,则AE 的长是()A .B .C .5D .69.如图,在ABCD 中,CD=2AD ,BE ⊥AD 于点E ,F 为DC 的中点,连接EF 、BF ,下列结论:①∠ABC=2∠ABF ;②EF=BF ;③S 四边形DEBC =2S △EFB ;④∠CFE=3∠DEF,其中正确结论的个数共有()A .1个B .2个C .3个D .4个10.如图,已知直线a ∥b ∥c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,若AC =8,CE =12,BD =6,则BF 的值是()A .14B .15C .16D .1711.如图,在正方形ABCD 中,E 、F 分别是BC 、CD 上的点,且∠EAF=45°,AE 、AF 分别交BD 于M 、N ,连按EN 、EF ,有以下结论:①△ABM ∽△NEM ;②△AEN 是等腰直角三角形;③当AE=AF 时,2BEEC=④BE+DF=EF ;⑤若点F 是DC 的中点,则CE 23=CB .其中正确的个数是()A .2B .3C .4D .512.如图,四边形ABCD 和A′B′C′D′是以点O 为位似中心的位似图形,若OA :OA′=2:3,则四边形ABCD 与四边形A′B′C′D′的面积比为()A .4:9B .2:5C .2:3D二、填空题13.已知菱形的周长为24,较大的内角为120°,则菱形的较长的对角线长为_____.14.方程x 2=2x 的解是_______.15.在平面直角坐标系中,矩形OABC 的顶点坐标分别是(0O ,0),(8A ,0),(8B ,6),(0C ,6),已知矩形111OA B C 与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,则点1B 的坐标是______.16.如图,矩形纸片ABCD ,BC=10,AB=8,E 是边CD 上一点,连接AE 、折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上,若DE=5,则GE 的长为____.三、解答题17.解方程:①2x 2﹣4x ﹣3=0;②5(x+1)2=7(x+1).18.(1)解方程(3)30x x x -+-=;(2)解方程2220x x --=;(3)已知a≠0,b≠0,a≠b 且x=1是方程ax²+bx-10=0的一个解,求2222a b a b--的值.19.已知:如图,在△ABC 中,AB=AC ,D 为边BC 上一点,以AB ,BD 为邻边作平行四边形ABDE ,连接AD ,EC .(1)求证:△ADC ≌△ECD ;(2)当点D 在什么位置时,四边形ADCE 是矩形,请说明理由.20.某超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为每个50元,可售出400个;定价每增加1元,销售量将减少10个,设每个定价增加x 元,(1)当定价增加5元时,获利是多少元?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?21.如图,在△ABC 中,∠ACB=90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE(1)求证:AB ⊥AE ;(2)若BC 2=AD•AB ,求证:四边形ADCE 为正方形.22.元旦期间,某超市销售两种不同品牌的苹果,已知1千克甲种苹果和1千克乙种苹果的进价之和为18元.当销售1千克甲种苹果和1千克乙种苹果利润分别为4元和2元时,陈老师购买3千克甲种苹果和4千克乙种苹果共用82元.(1)求甲、乙两种苹果的进价分别是每千克多少元?(2)在(1)的情况下,超市平均每天可售出甲种苹果100千克和乙种苹果140千克,若将这两种苹果的售价各提高1元,则超市每天这两种苹果均少售出10千克,超市决定把这两种苹果的售价提高x元,在不考虑其他因素的条件下,使超市销售这两种苹果共获利960元,求x的值.23.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.24.已知如图,矩形ABCD的周长为64,AB=12,对角线AC的垂直平分线分别交AD、BC于E、F,连接AF、CE、EF,且EF与AC相交于点O.(1)求证:四边形AECF是菱形;(2)求S△ABF 与S△AEF的比值.25.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B 出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t 为何值时,△EPQ 为等腰三角形?参考答案1.A 【解析】【详解】试题解析:A 、符合一元二次方程的定义,正确;B 、方程含有两个未知数,错误;C 、原方程可化为-7x=0,是一元一次方程,错误;D 、方程二次项系数可能为0,错误.故选A .考点:一元二次方程的定义.2.A 【解析】【分析】已知平行四边形ABCD 中,E 是BC 上一点,BE :EC =1:2,可知△BEF ∽△ADF 得出相似比1==3BE BF EF AD DF AF =,所以211(39S BEF S ADF ==V V 得出18S ADF =V 根据2S BEF =V ,在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ,得出6S ABF =V ,S ABD S ABF S ADF =+V V V 求得答案.【详解】在平行四边形ABCD 中AD=BC ,AD ∥BC ∴△BEF ∽△ADF ,∴1==3BE BF EF AD DF AF =∴211(39S BEF S ADF ==V V ∵2S BEF =V ∴18S ADF =V 在△BEF 中,把EF 作为底边,在三角形ABF 中,把AF 作为底边,高相等,面积比即是底边的比,即13S BEF EF S ABF AF ==V V ∴6S ABF =V 且18S ADF =V ∴61824S ABD S ABF S ADF =+=+=V V V 故选:A .【点睛】本题考查了相似三角形的判定定理和性质,如果两个三角形相似,面积比就等于相似比的平方,可以作为求解三角形面积的方法.3.D 【解析】【分析】根据一元二次方程的定义得到a-2≠0,由此求得a 的取值范围.【详解】解:依题意得:a-2≠0,解得a≠2.故选D .【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax 2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.A 【解析】【分析】由平行四边形的性质可知:OA OC =,OB OD =,再证明OM ON =即可证明四边形AMCN 是平行四边形.【详解】∵四边形ABCD 是平行四边形,∴OA OC =,OB OD =,∵对角线BD 上的两点M 、N 满足BM DN =,∴OB BM OD DN -=-,即OM ON =,∴四边形AMCN 是平行四边形,∵12OM AC =,∴MN AC =,∴四边形AMCN 是矩形.故选:A .【点睛】本题考查了矩形的判定,平行四边形的判定与性质,解题的关键是灵活运用所学知识解决问题.5.C 【解析】【分析】根据正方形的面积求出AC 的长,根据菱形的面积求出BD 的长,再利用菱形的对角线互相垂直平分计算菱形的边长.【详解】解:因为正方形AECF 的面积为50cm 2,所以AC=10cm=因为菱形ABCD 的面积为120cm 2,所以BD=21202410cm ⨯=所以菱形的边长=13cm 故选C .【点睛】此题考查正方形和菱形的性质,关键是根据正方形和菱形的面积进行解答.6.A 【解析】【分析】在Rt △ABE 中,∠B=30°,BE=32,根据△ABE 沿直线AE 翻折至△AFE 的位置可知BF=3,结合菱形ABCD 32,则利用菱形对边平行即CG ∥AB ,再根据平行线段成比例可得CG CFAB BF ==求得1【详解】∵∠B=30°,AE ⊥BC∴AE=2,BE=32∴BF=3,32,则又∵CG ∥AB ∴CG CFAB BF=33=解得1.【点睛】本题考查了菱形的性质,平行线段成比例,图形的翻折,解本题的关键是通过利用菱形对边平行发现与要求线段CG 与其他线段成比例的关系.7.B 【解析】【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x 个,由题意可得:44x +=0.2,解得:x=16,故选B ..【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的概率得到相应的等量关系8.C 【解析】【详解】连接EF 交AC 于点M ,由四边形EGFH 为菱形可得FM=EM ,EF ⊥AC ;利用“AAS 或ASA”易证△FMC ≌△EMA ,根据全等三角形的性质可得AM=MC ;在Rt △ABC 中,由勾股定理求得AC=tan ∠BAC=12BC AB =;在Rt △AME 中,AM=12AC=,tan ∠BAC=12EM AM =可得Rt △AME 中,由勾股定理求得AE=5.故答案选C .【点睛】本题考查了菱形的性质;矩形的性质;勾股定理;锐角三角函数.9.D 【解析】【分析】如图延长EF 交BC 的延长线于G ,取AB 的中点H 连接FH .证明△DFE ≌△FCG 得EF=FG ,BE ⊥BG ,四边形BCFH 是菱形即可解决问题.【详解】解:如图延长EF交BC的延长线于点G,取AB的中点H,连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,∵S△DFE=S△CFG,=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选D.【点睛】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.10.B【解析】【分析】三条平行线截两条直线,所得的对应线段成比例.直接根据平行线分线段成比例定理即可得出结论.【详解】解:∵a∥b∥c,AC=8,CE=12,BD=6,∴AC BD AE BF=,即86=812BF +,解得:=15BF,故选:B.【点睛】本题考查的是平行线分线段成比例定理,熟知三条平行线截两条直线,所得的对应线段成比例是解答此题的关键.11.C【解析】【分析】①如图,证明△AMN ∽△BME 和△AMB ∽△NME ,②利用相似三角形的性质可得∠NAE=∠AEN=45°,则△AEN 是等腰直角三角形可作判断;③先证明CE=CF ,假设正方形边长为1,设CE=x ,则BE=1-x ,表示AC 的长为AO+OC 可作判断;④如图3,将△ADF 绕点A 顺时针旋转90°得到△ABH ,证明△AEF ≌△AEH (SAS ),则EF=EH=BE+BH=BE+DF ,可作判断;⑤如图4中,设正方形的边长为2a ,则DF=CF=a ,,想办法求出BE ,EC 即可判断.【详解】如图,∵四边形ABCD 是正方形,∴∠EBM=∠ADM=∠FDN=∠ABD=45°.∵∠MAN=∠EBM=45°,∠AMN=∠BME ,∴△AMN ∽△BME ,∴AM MN BM EN =,∴AM BM MN EN=,∵∠AMB=∠EMN ,∴△AMB ∽△NME ,故①正确,∴∠AEN=∠ABD=45°,∴∠NAE=∠AEN=45°,∴△AEN 是等腰直角三角形,故②正确,在△ABE 和△ADF 中,∵90AB AD ABE ADF AE AF =⎧⎪∠=∠=︒⎨⎪=⎩,∴Rt △ABE ≌Rt △ADF(HL),∴BE=DF .∵BC=CD ,∴CE=CF ,假设正方形边长为1,设CE=x ,则BE=1﹣x ,如图2,连接AC ,交EF 于H ,∵AE=AF ,CE=CF ,∴AC 是EF 的垂直平分线,∴AC ⊥EF ,OE=OF ,Rt △CEF 中,OC 12=EF 22=,在△EAF 中,∠EAO=∠FAO=22.5°=∠BAE=22.5°,∴OE=BE .∵AE=AE ,∴Rt △ABE ≌Rt △AOE(HL),∴AO=AB=1,∴AC 2==AO+OC ,∴122+x 2=∴x=22-,∴1222222BE EC -==-③如图3,∴将△ADF 绕点A 顺时针旋转90°得到△ABH ,则AF=AH ,∠DAF=∠BAH .∵∠EAF=45°=∠DAF+∠BAE=∠HAE .∵∠ABE=∠ABH=90°,∴H 、B 、E 三点共线,在△AEF 和△AEH 中,AE AE FAE HAE AF AH =⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△AEH(SAS),∴EF=EH=BE+BH=BE+DF ,故④正确,如图4中,设正方形的边长为2a ,则DF=CF=a ,AF =a,∵DF ∥AB ,∴12FN DF AN AB ==,∴AN=NE 23=AF =a ,∴AE =3=a ,∴BE 23=a ,∴EC 43=a 23=BC ,故⑤正确.故选:C .【点睛】本题考查相似三角形的判定和性质、正方形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、线段垂直平分线的性质和判定等知识,解题的关键是灵活应用所学知识解决问题,学会添加常用辅助线构造全等三角形,属于中考压轴题.12.A【解析】【分析】根据题意求出两个相似多边形的相似比,根据相似多边形的性质解答.【详解】解:∵四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,OA:OA′=2:3,∴DA:D′A′=OA:OA′=2:3,∴四边形ABCD与四边形A′B′C′D′的面积比为:4:9,故选:A.【点睛】本题是对相似图形的考查,熟练掌握多边形相似的性质是解决本题的关键.13.【解析】【分析】由菱形的性质可得AB=6,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【详解】解:如图所示:∵菱形ABCD的周长为24,∴AB=6,AC⊥BD,BD=2OB,∵∠BAD=120°,∴∠ABC=60°,∴∠ABO=12∠ABC=30°,∴AO=3,∴∴BD=故答案为:.【点睛】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.14.x 1=0,x 2=2【解析】【分析】先移项得到x 2﹣2x =0,再把方程左边进行因式分解得到x (x ﹣2)=0,方程转化为两个一元一次方程:x =0或x ﹣2=0,即可得到原方程的解为x 1=0,x 2=2.【详解】解:∵x 2﹣2x =0,∴x (x ﹣2)=0,∴x =0或x ﹣2=0,∴x 1=0,x 2=2.故答案为:x 1=0,x 2=2.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并能够根据方程的特征灵活选用合适的方法解答是解题的关键.15.()4,3或()4,3--【解析】【分析】由矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,又由点B 的坐标为(8,6),即可求得答案.【详解】解:如图,∵矩形OA 1B 1C 1与矩形OABC 位似,位似中心为坐标原点O ,位似比为12,∴点B 1的坐标是:(4,3)或(-4,-3).故答案为:(4,3)或(-4,-3).【点睛】本题考查了位似图形的性质,注意位似图形是特殊的相似图形,注意数形结合思想的应用.16.955.【解析】【分析】由勾股定理求出AE 的长,证明△ABH ∽△EAD ,得出AH AB DE AE =求出AH 的长,得出AG 的长,即可得出答案.【详解】∵四边形ABCD 为矩形,∴AB=CD=8,AD=BC=10,∠BAD=∠D=90°,∴AE 2222105AD DE =+=+=5由折叠及轴对称的性质可知,△ABF ≌△GBF ,BF 垂直平分AG ,∴BF ⊥AE ,AH=GH ,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH ,∴△ABH ∽△EAD ,∴AH AB DE AE =,即555AH =解得:AH 855=∴AG=2AH 1655=,∴GE=AE ﹣55555=.【点睛】本题考查了正方形的性质,翻折变换的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握翻折变换和矩形的性质,证明三角形相似是解题的关键.17.①x 1=22,x 2=22;②x 1=﹣1,x 2=25.【解析】【分析】①直接利用一元二次方程的求根公式,求方程的解;②先移项得到5(x+1)2﹣7(x+1)=0,然后利用因式分解法解方程,即可求解.【详解】①2x 2﹣4x ﹣3=0,a =2,b =﹣4,c =﹣3,∴△=b 2﹣4ac =16﹣4×2×(﹣3)=40,∴2b x a -±==,∴x 1x 2;②5(x+1)2﹣7(x+1)=0,(x+1)(5x+5﹣7)=0,x+1=0或5x+5﹣7=0,∴x 1=﹣1,x 2=25.【点睛】本题主要考查解一元二次方程,掌握公式法和因式分解法解一元二次方程,是解题的关键.18.(1)123,1x x ==-;(2)1211x x ==(3)5.【解析】【分析】(1)提公因式因式分解后可解;(2)把方程左边化为完全平方式的形式,再利用直接开方法求出x 的值即可;(3)把x=1代入方程求得a+b=10,然后将其整体代入化简后的分式并求值.【详解】解:(1)因式分解得(3)(1)0x x -+=,∴123,1x x ==-;(2)∵原方程可化为(x-1)2=3,1x ∴-=1x ∴=±1211x x ∴==(3)解:∵x=1是方程ax²+bx-10=0的根,∴a+b=10,∴225222a b a b a b -+==-,故答案是:5.【点睛】本题考查的是一元二次方程的解法,熟练掌握直接开平方法、因式分解法、配方法、公式法是解题关键.19.(1)证明见解析;(2)点D 在BC 的中点上时,四边形ADCE 是矩形.【解析】【分析】(1)利用等边对等角以及平行四边形的性质可以证得∠EDC=∠ACB ,则易证△ADC ≌△ECD ,利用全等三角形的对应边相等即可证得;(2)根据平行四边形性质推出AE=BD=CD ,AE ∥CD ,得出平行四边形,根据AC=DE 推出即可.【详解】解:(1)证明:∵AB=AC ,∴∠B=∠ACB ,又∵▱ABDE 中,AB=DE ,AB ∥DE ,∴∠B=∠EDC=∠ACB ,AC=DE ,在△ADC 和△ECD 中,{EDC=ACB DC=CDAC DE=∠∠,∴△ADC ≌△ECD (SAS ).(2)点D 在BC 的中点上时,四边形ADCE 是矩形,∵四边形ABDE 是平行四边形,∴AE=BD ,AE ∥BC ,∵D 为边长中点,∴BD=CD ,∴AE=CD ,AE ∥CD ,∴四边形ADCE是平行四边形,∵△ADC≌△ECD,∴AC=DE,∴四边形ADCE是矩形,即点D在BC的中点上时,四边形ADCE是矩形.考点:平行四边形的性质;等腰三角形的性质;全等三角形的判定与性质;矩形的判定的应用.20.(1)5250元;(2)当定价为70元时利润达到6000元,此时的进货量为200个【解析】【分析】(1)根据利润=每件商品利润×销售量,列式即可求解;(2)总利润=每件商品利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;【详解】(1)定价增加5元即为:50+5=55元时,销售量为:400-10×5=350获利为:(50+5﹣40)(400﹣5×10)=5250元(2)设每个定价增加x元,根据题意(x+10)(400﹣10x)=6000,整理得:x2﹣30x+200=0解得,x1=10,x2=20,∵要使进货量较少,∴x=20,∴定价为50+20=70元,进货量为:400﹣10x=400﹣200=200.当定价为70元时利润达到6000元,此时的进货量为200个.【点睛】本题是一元二次方程的实际应用问题,现列出关于x的关系式,求解一元二次方程,根据条件对x值取舍,确定最终符合题意的答案.21.(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论.(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【详解】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE∵在△BCD和△ACE中,BC AC {BCD ACE CD CE=∠=∠=,∴△BCD≌△ACE(SAS)∴∠B=∠CAE=45°∴∠BAE=45°+45°=90°∴AB⊥AE(2)∵BC2=AD•AB,BC=AC,∴AC2=AD•AB∴AC AD AB AC=∵∠DAC=∠CAB,∴△DAC∽△CAB∴∠CDA=∠BCA=90°∵∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形∴四边形ADCE 为正方形.22.(1)甲、乙两种苹果的进价分别为10元/千克,8元/千克;(2)x 的值为2或7.【解析】【分析】(1)根据题意列二元一次方程组即可求解,(2)根据题意列一元二次方程即可求解.【详解】(1)解:设甲、乙两种苹果的进价分别为a 元/千克,b 元/千克.由题得:()()18344282a b a b +=⎧⎨+++=⎩解之得:108a b =⎧⎨=⎩答:甲、乙两种苹果的进价分别为10元/千克,8元/千克(2)由题意得:()()()()410010214010960x x x x +-++-=解之得:12x =,27x =经检验,12x =,27x =均符合题意答:x 的值为2或7.【点睛】本题考查了二元一次方程组和一元二次方程的实际应用,中等难度,列方程是解题关键.23.(1)证明见解析;(2)485.【解析】【分析】(1)先证得△ADB ≌△CDB 求得∠BCD=∠BAD ,从而得到∠ADF=∠BAD ,所以AB ∥FD ,因为BD ⊥AC ,AF ⊥AC ,所以AF ∥BD ,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.【详解】(1)证明:∵BD 垂直平分AC ,∴AB=BC ,AD=DC ,在△ADB 与△CDB 中,AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩,∴△ADB ≌△CDB (SSS )∴∠BCD=∠BAD ,∵∠BCD=∠ADF ,∴∠BAD=∠ADF ,∴AB ∥FD ,∵BD ⊥AC ,AF ⊥AC ,∴AF ∥BD ,∴四边形ABDF 是平行四边形,(2)解:∵四边形ABDF 是平行四边形,AF=DF=5,∴▱ABDF 是菱形,∴AB=BD=5,∵AD=6,设BE=x ,则DE=5-x ,∴AB 2-BE 2=AD 2-DE 2,即52-x 2=62-(5-x )2解得:x=75,∴245AE =,∴AC=2AE=485.考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.24.(1)证明见解析;(2)8:17.【解析】【分析】(1)根据SSS 证明△AOE ≌△COF ,根据全等得出OE=OF ,推出四边形是平行四边形,再根据EF ⊥AC 即可推出四边形是菱形;(2)由(1)知S △AEF =S △ACF ,再分别求得S △ABF 与S △AEF 的面积即可得到其比值.【详解】∴AD∥BC,∴∠OAE=∠OCF.∵EF垂直平分AC,∴AO=CO,∠AOE=∠COF=90°,∴△AOE≌△COF(ASA),∴OE=OF,∴四边形AFEC是平行四边形,又∵EF⊥AC,∴四边形AFEC是菱形;(2)∵△AOE≌△COF,∴S△AEF=S△ACF∵S△ABF=3BF,S△AEF=3FC,∴S△ABF:S△AEF=BF:FC.∵矩形ABCD的周长为64,AB=12,∴BC=20,设FC=x,则AF=x,BF=20﹣x在Rt△ABF中,由勾股定理122+(20﹣x)2=x2解得:x68 5 =,BF32 5 =,∴S△ABF:S△AEF=BF:FC=8:17.【点睛】此题主要考查了矩形的性质、线段的垂直平分线性质、菱形的判定以及勾股定理等知识的综合应用.熟练掌握菱形的判定方法是解题的关键.25.(1)4114s或4013s;(2)t=1或3或207或196秒【解析】【分析】(1)①当PQ⊥AB时,△PQE是直角三角形.证明△PQE∽△ACB,将PE、QE用时间t 表示,由三角形对应线段成比例的性质即可求出t值;②当PQ⊥DE时,证明△PQE∽△DAE,(2)分三种情形讨论,①当点Q在线段BE上时,EP=EQ;②当点Q在线段AE上时,EQ=EP;③当点Q在线段AE上时,EQ=QP;④当点Q在线段AE上时,PQ=EP,分别列出方程即可解决问题.【详解】解:(1)在Rt△ABC中,AC=12cm,BC=16cm,∴AB20cm.∵D、E分别是AC、AB的中点.∴AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=12BC=8cm,①如图1中,PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴PE QE AE DE=,由题意得:PE=8﹣2t,QE=4t﹣10,即82410 108t t--=,解得t=41 14;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴PE QE ED AE=,∴82410 810t t--=,∴t=40 13,∴当t为4114s或4013s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)①如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.②如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.③如图5中,当点Q在线段AE上时,由EQ=QP,可得12(8﹣2t):(4t﹣10)=4:5,解得t=20 7.④如图6中,当点Q在线段AE上时,由PQ=EP,可得12(4t﹣10):(8﹣2t)=4:5,解得t=19 6.综上所述,t=1或3或207或196秒时,△PQE是等腰三角形.【点睛】本题主要考查了相似三角形的判定和性质及等腰三角形的判定,注意分类讨论,灵活的用含t的代数式表示线段的长度是解题的关键.。
北师大版2022~2023学年九年级数学第一学期期中质量检测题【含答案】
北师大版2022~2023学年九年级数学第一学期期中质量检测题( 分值:150分)本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间为120分钟.答卷前,请考生务必将自己的姓名、座号和准考证号填写在答题卡上,并同时将考点、姓名、准考证号和座号填写在试卷规定的位置.考试结束后,只交答题卡.第Ⅰ卷 (选择题 共60分)一、选择题(本题共15个小题,每题只有一个正确答案,每小题4分,共60分)1. 菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形2. 已知平行四边形ABCD ,下列条件中,不能判定这个平行四边形为矩形的是( )A .∠A=∠B B .∠A=∠C C .AC =BD D .AB⊥BC3.解一元二次方程x2﹣8x﹣5=0,用配方法可变形为( )A .(x+4)2=11B .(x﹣4)2=11C .(x+4)2=21D .(x﹣4)2=214.若x0是方程ax2+2x+c=0(a≠0)的一个根,设M=1﹣ac,N=(ax0+1)2,则M 与N 的大小关系正确的为( )A .M >NB .M=NC .M <ND .不确定5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .21B .41C .61D .1216.在一个暗箱里放有a 个除颜色外其它完全相同的球,这a 个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a 大约是( )A .12B .9C .4D .37.如图,在△ABC 中,DE ∥BC ,AD =6,BD =3,AE =4,则EC 的长为( )A.1 B .2 C.3 D. 4第7题 图 第8题 图 第9题图 第10题图8.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD =∠ACB B .∠ADB =∠ABC B .AB 2=AD •AC D .AD AB AB BC=9.如图,点D 、E 分别为△ABC 的边AB 、AC 上的中点,则△ADE 的面积与四边形BCED 的面积的比为( )A .1:2B .1:3C .1:4D .1:110.如图,在直角坐标系中,有两点A (6,3)、B (6,0).以原点O 为位似中心,相似比为31,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A .(2,1)B .(2,0)C .(3,3)D .(3,1)11.已知点A (-2,y 1),B (-3,y 2)是反比例函y=x 6-图象上的两点,则有( )A .y 1>y 2B .y 1<y 2C .y 1= y 2 D.不能确定12.函数xa y =(0≠a )与a ax y -=(0≠a )在同一平面直角坐标系中的大致图象是( )13.某村耕地总面积为 50 公顷,且该村人均耕地面积 y (单位:公顷/人)与总人口x (单位:人)的函数图象如图所示,则下列说法正确的是( )A .该村人均耕地面积随总人口的增多而增多B .该村人均耕地面积 y 与总人口 x 成正比例C .若该村人均耕地面积为 2 公顷,则总人口有 100 人A CBD .当该村总人口为 50 人时,人均耕地面积为 1 公顷14. 如图,菱形ABCD 的边AD⊥y 轴,垂足为点E ,顶点A 在第二象限,顶点B 在y 轴的正半轴上,反比例函数()0,0y >≠=x k x k 的图象同时经过顶点C.D ,若点C 的横坐标为5,BE=3DE.则k 的值为( ) A.25B.3C.415D.515.如图,在正方形ABCD 中,点P 是AB 上一动点(不与A 、B 重合),对角线AC 、BD 相交于点O ,过点P 分别作AC 、BD 的垂线,分别交AC 、BD 于点E 、F ,交AD 、BC 于点M 、N.下列结论:①△APE≌△AME;②PM+PN=AC;③PE 2+PF 2=PO 2;④△POF∽△BNF;⑤当△PMN∽△AMP 时,点P 是AB 的中点.其中正确的结论有( )A .5个B .4个C .3个D .2个第Ⅱ卷(非选择题 共90分)二、填空题(本题共7个小题,每题4分,共28分)16.若3x=5y ,则y x = ;已知0,2≠++===f d b f e d c b a 且,则fd be c a ++++= .17. 一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖茶杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起,则颜色搭配正确的概率是 .18.把长度为20cm 的线段进行黄金分割,则较长线段的长是________cm .(结果保留根号)19.如图所示,一个底面为等边三角形的三棱柱,底面边长为2,高为4,如图放置,则其左视图的面积是 .主视图 俯视图 左视图20.如下图,为了测量校园内一棵不可攀的树的高度,实验学校“玩转数学”社团做了如下的探索:根据《自然科学》中的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把镜子放在离树(AB )9米的点E 处,然后沿着直线BE 后退到点D ,这是恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.7米,观察者目高CD=1.8米,则树(AB)的高度为____________米.第20题图第21题图21.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.22.如图,在RT△A BC中,∠C=90°,BC=8,AC=6,动点Q从B点开始在线段BA上以每秒2个单位长度的速度向点A移动,同时点P从A点开始在线段AC上以每秒1个单位长度的速度向点C移动.当一点停止运动,另一点也随之停止运动.设点Q,P移动的时间为t秒.当t= 秒时△APQ与△ABC相似.三.解答题23.(8分)同一时刻,物体的高与影子的长成比例,某一时刻,高1.6m的人影长1.2m,一电线杆影长为9m,则电线杆的高为多少米?24.(8分)在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一男生一女生的概率.25.(8分)如图,在△ABC 中, 点D,E 分别是AB,AC 边上的两点,且AB=8,AC=6,AD=3,AE=4,DE=6,求BC 的长.26.(12分)如图,△ABC 为锐角三角形,AD 是BC 边上的高,正方形EFGH 的一边FG 在BC 上,顶点E 、H 分别在AB 、AC 上,已知BC=40cm ,AD=30cm .(1)求证:△AEH∽△ABC;(2)求这个正方形的边长与面积.27.(12分)如图,已知反比例函数x k y =与一次函数b x y +=的图象在第一象限相交于点A (1,4+-k ).(1)试确定这两个函数的表达式;(2)求出这两个函数的另一个交点B的坐标,并求出△AOB的面积.(3)直接写出当反比例函数值大于一次函数值时,x的取值范围.28(14分)已知:如图,在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,点P由B点出发沿BA方向向点A匀速运动,速度为2cm/s;点Q由A点出发沿AC方向向点C匀速运动,速度为cm/s;若设运动的时间为t(s)(0<t<3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.数学试题答案一选择题1—5BB DB C 6~10 ABDBA 11~15 AADCB二填空题16. 35 217. 用A 和a 分别表示第一个有盖茶杯的杯盖和茶杯;12用B 和b 分别表示第二个有盖茶杯的杯盖和茶杯、经过搭配所能产生的结果如下:Aa 、Ab 、Ba 、Bb .所以颜色搭配正确的概率是.1218. (105—10) 注:无括号也不再扣分19. 4320. 621. 622. 13501130或三解答题23.解设电线杆高x 米,由题意得:x 1.6=91.2 ---------------------------------------------------5分 X=12 ---------------------------------------------------7分答:电线高为12米 --------------------------------------------------8分24.解:(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,刚好是男生的概率=433 =73;---------------------------------------------2分(2)画树状图为:---------------5分共有12种等可能的结果数,------------------------6分其中刚好是一男生一女生的结果数为6,----------------------------7分所以刚好是一男生一女生的概率==.----------------------8分25解:∵,-------------------------------1分, -----------------------------------2分∴AC AD =AB AE-------------------------------------3分∵∠A=∠A ,---------------------------------4分∴△ADE ∽△ACB.----------------------------------5分∴21==AC AD BC DE 即216=BC --------------------------------------7分∴BC=12---------------------------------------------8分26解:(1)证明:∵四边形EFGH 是正方形,∴EH ∥BC ,-----------------------1分∴∠AEH=∠B ,----------------------2分∠AHE=∠C ,-----------------------3分∴△AEH ∽△ABC .-------------------4分(2)解:如图设AD 与EH 交于点M .-----------------------5分∵∠EFD=∠FEM=∠FDM=90°,∴四边形EFDM 是矩形,∴EF=DM ,设正方形EFGH 的边长为x ,-------------------6分∵△AEH ∽△ABC ,∴=,-------------------------------------------8分∴=,-------------------------------------10分∴x=,-----------------------------------------11分∴正方形EFGH 的边长为cm ,面积为cm 2.------------------------12分27题(1)∵点A (1,4k -+)在反比例函数k y x =的图象上∴=4k k -+解得=2k ----------------------------------------------------1分∴A (1,2)∵点A (1,2)在一次函数y x b =+的图象上∴12b +=解得1b =-----------------------------------------2分反比例函数的解析式为2y x =,一次函数的解析式为1y x =+-------4分(2)解方程组12y x y x =+⎧⎪⎨=⎪⎩得21x y =-⎧⎨=-⎩或12x y =⎧⎨=⎩∵点B 在第三象限 ∴点B 坐标为2-1------------------6分∵1y x =+,当0y =时1x =-∴点C 坐标为1-0------------7分∴S △A O B =23-----------------------------10分(3)x<- 2或0<x<1----------------------------------12分注:写出一种情况给1分28题已知:如图,在Rt △ACB 中,∠C=90°,AC=3cm ,BC=3cm ,点P 由B 点出发沿BA 方向向点A 匀速运动,速度为2cm/s ;点Q 由A 点出发沿AC 方向向点C 匀速运动,速度为cm/s ;若设运动的时间为t (s )(0<t <3),解答下列问题:(1)如图①,连接PC,当t为何值时△APC∽△ACB,并说明理由;(2)如图②,当点P,Q运动时,是否存在某一时刻t,使得点P在线段QC的垂直平分线上,请说明理由;(3)如图③,当点P,Q运动时,线段BC上是否存在一点G,使得四边形PQGB为菱形?若存在,试求出BG长;若不存在请说明理由.【考点】相似形综合题.【分析】(1)先根据勾股定理求出AB,再用△APC∽△ACB,得出,即:,求出时间;(2)先用垂直平分线的性质得出QM=CM=CQ=(3﹣t),然后用平行线分线段成比例建立方程求出结论;(3)先由平行四边形的性质建立方程求出时间t,即求出PQ,PB,即可得到PQ≠PB判断出四边形PQGB不可能是菱形.解:(1)在Rt△ACB中,∠C=90°,AC=3cm,BC=3cm,∴AB=6,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,∵△APC∽△ACB,∴,∴,∴t=;(2)存在,理由:如图②,由运动知,BP=2t,AQ=t,∴AP=6﹣2t,CQ=3﹣t,∵点P是CQ的垂直平分线上,∴QM=CM=CQ=(3﹣t),∴AM=AQ+QM=t﹣(3﹣t)=(t﹣1)过点P作PM⊥AC,∵∠ACB=90°,∴PM∥BC,∴,∴,∴t=或t=(舍),∴t=.(3)不存在,理由:由运动知,BP=2t,AQ=t,∴AP=6﹣2t,假设线段BC上是存在一点G,使得四边形PQGB为平行四边形,∴PQ∥BG,PQ=BG,∴△APQ∽△ABC,∴,∴,∴t=,PQ=,∴BP=2t=3,∴PQ≠BP,∴平行四边形PQGB不可能是菱形.即:线段BC上不存在一点G,使得四边形PQGB为菱形.【点评】此题是相似形综合题,主要考查了勾股定理,线段的垂直平分线的性质,相似三角形的判定和性质,平行四边形的性质,菱形的判定,解本题的关键是用方程的思想解决问题.。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.方程x(x+2)=0的根是()A.x=2B.x=0C.x1=0,x2=﹣2D.x1=0,x2=2 2.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.153.如图,在菱形ABCD中,AB=6,∠ABD=30°,则菱形ABCD的面积是()A.18B.C.36D.4.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC5.一元二次方程x(x﹣3)=0的根是()A.0B.3C.0和3D.1和36.如图,菱形ABCD中,AB=2,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B C.2D17.如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.给出以下结论:①DG=DF;②四边形EFDG是菱形;③EG2=12GF×AF;④当AG=6,EG=BE)A.①②③B.①②④C.①③④D.①②③④8.某校文学小组在举行的图书共享仪式上互赠图书,每位同学都把自己的图书向本组其他成员增送一本,全组共互赠了1260本书,设全组共有x名同学,依题意,可列出方程为A.x(x﹣1)=1260B.x(x+1)=1260C.2x(x﹣1)=1260D.12x(x﹣1)=12609.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,DH⊥AB于点H,连接OH,若∠DHO=20°,则∠ADC的度数是()A.120°B.130°C.140°D.150°10.下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.二、填空题11.方程23530x x-=-的一次项系数是__________.12.已知23a cb d==,若b+d≠0,则a cb d++=_____.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于7”的概率是_____. 14.已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD垂直平分线EF,分别交AD 、BC 于点E 、F ,则AE 的长为__________cm .15.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC 的度数是__________.16.如图,Rt △ABC 中,∠C =90°,以斜边AB 为边向外作正方形ABDE ,且正方形对角线交于点O ,连接OC ,已知AC =3,OC =,则另一直角边BC 的长为_____.三、解答题17.解下列方程(1)2x 2﹣4x ﹣3=0(2)(x ﹣1)2=(1﹣x )18.已知关于x 的一元二次方程(a +c)x 2+2bx +(a -c)=0,其中a ,b ,c 分别为△ABC 三边的长.(1)如果x =-1是方程的根,试判断△ABC 的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由.19.袋中装有除数字不同其它都相同的六个小球,球上分别标有数字1,2,3,4,5,6.(1)从袋中摸出一个小球,求小球上数字小于3的概率;(2)将标有1,2,3数字的小球取出放入另外一个袋中,分别从两袋中各摸出一个小球,求数字之和为偶数的概率.(要求用列表法或画树状图求解)20.在矩形ABCD 中,点E 在BC 上,AE AD =,DF ⊥AE ,垂足为F .(1)求证.DF AB=(2)若30FDC ∠=︒,且4AB =,求AD .21.某商店从厂家以每件18元购进一批商品出售,若每件售价为a 元,则可售出(320﹣10a )件,但物价部门限定每件商品加价不能超过进价的25%,若商店要想获得400元利润,则售价应定为每件多少元?需售出这种商品多少件?22.在 ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB.23.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B .(1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.24.如图,△ABC 在平面直角坐标系中,三个顶点坐标分别为A (0,3)、B (3、4)、C (2,2)(网格中每个正方形的边长是1个单位长度).(1)以点B为位似中心,在网格内画出△A′BC′,使△A′BC′与△ABC位似,且位似比为2:1,则点C′的坐标是______;(2)△A′BC′的面积是_______平方单位;(3)在x轴上找出点P,使得点P到B与点A距离之和最小,请直接写出P点的坐标.25.如图,AC是矩形ABCD的对角线,过AC的中点O作EF⊥AC,交BC于点E,交AD 于点F,连接AE,CF.(1)求证:四边形AECF是菱形;(2)若3DCF=30°,求四边形AECF的面积.(结果保留根号)参考答案1.C【解析】【分析】本题可根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【详解】解:x(x+2)=0,∴x=0或x+2=0,解得x1=0,x2=﹣2.故选:C.【点睛】此题考查解一元二次方程,正确掌握解方程的方法及能依据每个方程的特点选择恰当的解法是解题的关键.2.A【解析】【详解】试题解析:∵骰子六个面中奇数为1,3,5,∴P(向上一面为奇数)31. 62 ==故选A.3.B【解析】【详解】过点A作AE⊥BC于E,如图,∵在菱形ABCD中,AB=6,∠ABD=30°,∴∠BAE=30°,∵AE⊥BC,∴AE=∴菱形ABCD的面积是6⨯=,故选B.4.B【解析】【分析】根据平行线分线段成比例定理即可得到答案.【详解】∵DE∥FG∥BC,DB=4FB,∴31EG DFGC FB===3.故选B.【点睛】此题主要考查平行线分线段成比例定理的理解及运用.根据平行线分线段成比例定理解答是解题的关键.5.C【解析】【详解】试题分析:x=0或x﹣3=0,所以x1=0,x2=3.故选C.考点:因式分解法解一元二次方程6.B【解析】【分析】先根据四边形ABCD是菱形可知,AD∥BC,由∠A=120°可知∠B=60°,作点P关于直线BD的对称点P′,连接P′Q,PC,则P′Q的长即为PK+QK的最小值,由图可知,当点Q与点C重合,CP′⊥AB时PK+QK的值最小,再在Rt△BCP′中利用锐角三角函数的定义求出P′C的长即可.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,∵∠A=120°,∴∠B=180°-∠A=180°-120°=60°,作点P 关于直线BD 的对称点P′,连接P′Q ,P′C ,则P′Q 的长即为PK+QK 的最小值,由图可知,当点Q 与点C 重合,CP′⊥AB 时PK+QK 的值最小,在Rt △BCP′中,∵BC=AB=2,∠B=60°,∴sin 2P Q CP BC B ''==⋅=⨯故选B .【点睛】本题考查的是轴对称-最短路线问题及菱形的性质,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.D【解析】【分析】先依据翻折的性质和平行线的性质证明∠DGF=∠DFG ,从而得到GD=DF ,接下来依据翻折的性质可证明DG=GE=DF=EF ,连接DE ,交AF 于点O .由菱形的性质可知GF ⊥DE ,OG=OF=12GF ,接下来,证明△DOF ∽△ADF ,由相似三角形的性质可证明DF 2=FO•AF ,于是可得到GE 、AF 、FG 的数量关系,过点G 作GH ⊥DC ,垂足为H .利用(2)的结论可求得FG=4,然后再△ADF 中依据勾股定理可求得AD 的长,然后再证明△FGH ∽△FAD ,利用相似三角形的性质可求得GH 的长,最后依据BE=AD-GH 求解即可.【详解】解:∵GE ∥DF ,∴∠EGF =∠DFG .∵由翻折的性质可知:GD =GE ,DF =EF ,∠DGF =∠EGF ,∴∠DGF =∠DFG .∴GD =DF .故①正确;∴DG =GE =DF =EF .∴四边形EFDG 为菱形,故②正确;如图1所示:连接DE ,交AF 于点O .∵四边形EFDG 为菱形,∴GF ⊥DE ,OG =OF =12GF .∵∠DOF =∠ADF =90°,∠OFD =∠DFA ,∴△DOF ∽△ADF .∴DFAF =OFDF ,即DF 2=FO•AF .∵FO =12GF ,DF =EG ,∴EG 2=12GF•AF .故③正确;如图2所示:过点G 作GH ⊥DC ,垂足为H .∵EG 2=12GF•AF ,AG =6,EG =∴20=12FG (FG+6),整理得:FG 2+6FG ﹣40=0.解得:FG =4,FG =﹣10(舍去).∵DF =GE =AF =10,∴AD =∵GH ⊥DC ,AD ⊥DC ,∴GH ∥AD .∴△FGH ∽△FAD .∴GHAD=FGAF410,∴GH,∴BE=AD﹣GH=故选:D.【点睛】本题考查了四边形与三角形的综合应用,掌握矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FO•AF是解题答问题②的关键,依据相似三角形的性质求得GH的长是解答问题④的关键.8.A【解析】【分析】设全组共有x名同学,那么每名同学要赠送(x﹣1)本,那么总共送x(x﹣1)本,据此可得出方程.【详解】设全组共有x名同学,那么每名同学送出的图书是(x﹣1)本;则总共送出的图书为x(x﹣1);又知实际互赠了1260本图书,∴x(x﹣1)=1260;故选:A.【点睛】此题考查列一元二次方程,本题弄清每名同学送出的图书是(x-1)本是解题的关键.9.C【解析】【分析】由四边形ABCD是菱形,可得OB=OD,AC⊥BD,又由DH⊥AB,∠DHO=20°,可求得∠OHB的度数,然后由直角三角形斜边上的中线等于斜边的一半,证得△OBH是等腰三角形,继而求得∠ABD的度数,然后求得∠ADC的度数.【详解】∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∠ADC=∠ABC,∵DH⊥AB,∴OH=OB=12 BD,∵∠DHO=20°,∴∠OHB=90°﹣∠DHO=70°,∴∠ABD=∠OHB=70°,∴∠ADC=∠ABC=2∠ABD=140°,故选C.【点睛】本题考查了菱形的性质、直角三角形的性质以及等腰三角形的判定与性质,证得△OBH是等腰三角形是关键.10.B【解析】【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【详解】解:设小正方形的边长为1,那么已知三角形的三边长分别为,所以三边之比为1:2A、三角形的三边分别为2,,三边之比为3,故本选项错误;B、三角形的三边分别为2,4,1:2C、三角形的三边分别为2,32:3D44,故本选项错误.故选:B.【点睛】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.11.-5【解析】【分析】根据任何一个关于x的一元二次方程经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫一元二次方程的一般形式.其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项;b叫做一次项系数,c叫做常数项可得答案.【详解】方程3x2﹣5x﹣3=0的一次项系数是﹣5.故答案为:﹣5.【点睛】本题考查了一元二次方程的一般形式,关键是掌握要确定二次项系数,一次项系数和常数项,必须先把一元二次方程化成一般形式.12.23【解析】【分析】分别设a=2m,c=2n,根据23a cb d==可用m、n表示出b、d,代入所给代数式即可得答案.【详解】设a=2m,c=2n,∵23a cb d==,∴b=3m,d=3n,∴a cb d++=2m2n3m3n++=23,故答案为:2 3【点睛】本题考查等比性质的应用,若a c kb d==,则a cb d++=k,熟练掌握等比性质是解题关键.13.15 36【解析】【分析】画树状图展示所有36种等可能的结果数,再找出“两枚骰子的点数和小于7”的结果数,然后根据概率公式求解.【详解】画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于7”的结果数为15,所以“两枚骰子的点数和小于7”的概率15 36;故答案为:15 36 .【点睛】此题考查列表法与画树状图法,解题关键在于根据题意画出树状图.14.7 8【解析】【详解】连接EB,∵BD垂直平分EF,∴ED=EB,设AE=xcm,则DE=EB=(4﹣x)cm,在Rt△AEB中,AE2+AB2=BE2,即:x2+32=(4﹣x)2,解得:x=78故答案为78cm .15.45︒【解析】【分析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠= 180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.16.9【解析】【分析】过O 作OF ⊥BC ,过A 作AM ⊥OF ,根据正方形的性质得出∠AOB=90°,OA=OB ,求出∠BOF=∠OAM ,根据AAS 证△AOM ≌△BOF ,推出AM=OF ,OM=FB ,求出四边形ACFM 为矩形,推出AM=CF ,AC=MF=3,得出等腰三角形三角形OCF ,根据勾股定理求出CF=OF=6,求出BF ,即可求出答案.【详解】解:过O 作OF ⊥BC 于F ,过A 作AM ⊥OF 于M ,∵∠ACB =90°,∴∠AMO =∠OFB =90°,∠ACB =∠CFM =∠AMF =90°,∴四边形ACFM 是矩形,∴AM =CF ,AC =MF =3,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB,∴∠AOM+∠BOF=90°,又∵∠AMO=90°,∴∠AOM+∠OAM=90°,∴∠BOF=∠OAM,在△AOM和△OBF中0AM BOF AMO OFB OA0B∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM≌△OBF(AAS),∴AM=OF,OM=FB,∴OF=CF,∵∠CFO=90°,∴△CFO是等腰直角三角形,∵OC=,由勾股定理得:CF=OF=6,∴BF=OM=OF﹣FM=6﹣3=3,∴BC=6+3=9.故答案为:9.【点睛】本题考查了等腰直角三角形,勾股定理,正方形的性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.17.(1)x1x2(2)x1=1,x2=0.【解析】【分析】(1)利用公式法解方程即可;(2)先移项,利用因式分解法解方程即可.【详解】(1)∵a =2,b =﹣4,c =﹣3,∴△=(﹣4)2﹣4×2×(﹣3)=40>0,则x 22,即x 1=22+,x 2=22;(2)(x ﹣1)2=(1-x ),(x ﹣1)2+(x ﹣1)=0,(x ﹣1)•x =0,解得:x 1=1,x 2=0.【点睛】本题考查解一元二次方程,解一元二次方程常用的方法有直接开平方法、公式法、因式分解法、配方法等,熟练掌握并灵活运用适当的方法是解题关键.18.(1)△ABC 是等腰三角形,理由见解析;(2)△ABC 是直角三角形.理由见解析.【解析】【详解】试题分析:(1)由方程解的定义把x=﹣1代入方程得到a ﹣b=0,即a=b ,于是由等腰三角形的判定即可得到△ABC 是等腰三角形;(2)由判别式的意义得到△=0,整理得222a b c =+,然后由勾股定理的逆定理得到△ABC 是直角三角形.试题解析:解:(1)△ABC 是等腰三角形.理由如下:∵x=﹣1是方程的根,∴(a+c )×1﹣2b+(a ﹣c )=0,∴a+c ﹣2b+a ﹣c=0,∴a ﹣b=0,∴a=b ,∴△ABC 是等腰三角形;(2)△ABC 是直角三角形.理由如下:∵方程有两个相等的实数根,∴△=2(2)4()()0b a c a c -+-=,∴2224440b a c -+=,∴222a b c =+,∴△ABC 是直角三角形.考点:1.根的判别式;2.等腰三角形的判定;3.勾股定理的逆定理.19.(1)13;(2)49.【解析】【分析】(1)先列出摸出一个小球的所有可能的结果,再找出小球上数字小于3的结果,然后利用概率公式求解即可;(2)先用表格列出从两袋中摸出小球的所有可能的结果,再计算两个小球数字之和,从而得出数字之和为偶数的结果,然后利用概率公式计算即可.【详解】(1)依题意,从袋中摸出一个小球的结果有6种,即1,2,3,4,5,6,它们每一种出现的可能性相等其中,小球上数字小于3的结果有2种,即1,2故小球上数字小于3的概率为2163 P==;(2)依题意,用列表法列出从两袋中摸出小球的所有可能的结果如下:4561(1,4)(1,5)(1,6)2(2,4)(2,5)(2,6)3(3,4)(3,5)(3,6)其中,数字之和为偶数的结果有4种,即(1,5),(2,4),(2,6),(3,5)故两个小球上数字之和为偶数的概率为49 P=.【点睛】本题考查了简单事件的概率计算、利用列举法求概率,依据题意,正确列出事件的所有可能的结果是解题关键.20.(1)证明见解析;(2)8【解析】【分析】(1)利用“AAS”证△ADF≌△EAB即可得;(2)由∠ADF+∠FDC=90°、∠DAF+∠ADF=90°得∠FDC=∠DAF=30°,据此知AD=2DF,根据DF=AB可得答案.【详解】(1)证明:在矩形ABCD中,∵AD∥BC,∴∠AEB=∠DAF,又∵DF⊥AE,∴∠DFA=90°,∴∠DFA=∠B,又∵AD=EA,∴△ADF≌△EAB,∴DF=AB.(2)∵∠ADF+∠FDC=90°,∠DAF+∠ADF=90°,∴∠FDC=∠DAF=30°,∴AD=2DF,∵DF=AB,∴AD=2AB=8.【点睛】本题主要考查矩形的性质,解题的关键是掌握矩形的性质和全等三角形的判定与性质及直角三角形的性质.21.每件商品的售价应定为22元,需要卖出这种商品100件.【解析】【分析】可根据关键语“若每件售价x元,则每件盈利(x-18)元,则可卖出(320-10x)件”,根据每件的盈利×销售的件数=获利,即可列出方程求解.【详解】解:设每件商品的售价定为x元,则(x﹣18)(320﹣10x)=400,整理得x2﹣50x+616=0,∴x1=22,x2=28∵18(1+25%)=22.5,而28>22.5∴x=22.卖出商品的件数为320﹣10×22=100.答:每件商品的售价应定为22元,需要卖出这种商品100件.【点睛】本题考查了一元二次方程的应用,解题时可根据题意列出方程,判断所求的解是否符合题意,舍去不合题意的解.22.(1)见解析(2)见解析【解析】【分析】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,即可证明;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【点睛】本题考查了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.23.(1)证明见解析;(2)253.【解析】【分析】(1)易证∠APD=∠B=∠C,从而可证到△ABP∽△PCD,即可得到BP ABCD CP=,即AB•CD=CP•BP,由AB=AC即可得到AC•CD=CP•BP;(2)由PD∥AB可得∠APD=∠BAP,即可得到∠BAP=∠C,从而可证到△BAP∽△BCA,然后运用相似三角形的性质即可求出BP的长.【详解】解:(1)∵AB=AC,∴∠B=∠C.∵∠APD=∠B,∴∠APD=∠B=∠C.∵∠APC=∠BAP+∠B,∠APC=∠APD+∠DPC,∴∠BAP=∠DPC,∴△ABP∽△PCD,∴BP AB CD CP=,∴AB•CD=CP•BP.∵AB=AC,∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B,∴△BAP∽△BCA,∴BA BP BC BA=.∵AB=10,BC=12,∴101210BP =,∴BP=253.【点睛】本题主要考查了相似三角形的判定与性质、等腰三角形的性质、平行线的性质、三角形外角的性质等知识,把证明AC•CD=CP•BP 转化为证明AB•CD=CP•BP 是解决第(1)小题的关键,证到∠BAP=∠C 进而得到△BAP ∽△BCA 是解决第(2)小题的关键.24.(1)(1,0);(2)10;(3)(97,0).【解析】【分析】(1)利用位似图形的性质得出对应点位置,即可得出答案;(2)利用勾股定理逆定理可得△A′BC′是直角三角形,利用三角形面积公式求出△A′BC′面积即可;(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,根据对称性质可得A″B 即为PA+PB 的最小值,根据A″和B 点坐标可得直线A″B 的解析式,令y=0即可得P 点坐标.【详解】(1)如图所示:C′(1,0);故答案为:(1,0);(2)∵A′B 2=62+22=40,A′C′2=42+22=20,C′B 2=42+22=20,∴A′B 2=A′C′2+C′B 2,∴△A′BC′是直角三角形,∴△A′BC′的面积是:1210平方单位;故答案为:10(3)作A 关于y 轴的对称点A″,连接A″B ,交x 轴于点P ,∴PA=PA″,∴PA″+PB=PA+PB=BA″,即为PA+PB 的最小值,设A″B 直线解析式为:y =kx+b ,把(3,4),(0,﹣3),代入得:343k bb+=⎧⎨=-⎩,解得:733 kb⎧=⎪⎨⎪=-⎩,故A″B直线解析式为:y=73x﹣3,当y=0时,x=9 7,故P(97,0).【点睛】本题考查位似变换以及坐标与图形的性质、待定系数法求一次函数解析式及轴对称的性质,正确得出对应点的坐标是解题关键.25.(1)证明见解析(2)【解析】【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【详解】(1)∵O是AC的中点,且EF⊥AC,∴AF=CF ,AE=CE ,OA=OC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFO=∠CEO ,在△AOF 和△COE 中,{AFO CEOAOF COEOA OC∠=∠∠=∠=∴△AOF ≌△COE (AAS ),∴AF=CE ,∴AF=CF=CE=AE ,∴四边形AECF 是菱形;(2)∵四边形ABCD 是矩形,∴在Rt △CDF 中,cos ∠DCF=CDCF ,∠DCF=30°,∴CF=cos 30CD︒=2,∵四边形AECF 是菱形,∴CE=CF=2,∴四边形AECF 是的面积为:。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、单选题1.下列说法错误的是()A .对角线互相垂直的平行四边形是矩形B .矩形的对角线相等C .对角线相等的菱形是正方形D .两组对边分别相等的四边形是平行四边形2.一个菱形的两条对角线分别为4和5,则这个菱形的面积是()A .8B .10C .15D .203.在矩形ABCD 中,对角线AC 与BD 相交于点O ,34ADB ∠=︒,则BAO ∠的度数是A .46°B .54°C .56°D .60°4.如图,公路AC 、BC 互相垂直,公路AB 的中点M 与点C 被湖隔开,若测得AB 的长为3.2km ,则M ,C 之间的距离是()A .0.8kmB .1.6kmC .2.0kmD .3.2km 5.用配方法解方程2640x x ++=时,原方程变形为()A .2(3)9x +=B .2(3)13x +=C .2(3)5x +=D .2(3)4x +=6.一个不透明的盒子中放入四张卡片,每张卡片上都写有一个数字,分别是﹣2,﹣1,0,1.卡片除数字不同外其它均相同,从中随机抽取两张卡片,抽取的两张卡片上数字之积为负数的概率是()A .14B .13C .12D .347.已知等腰三角形的两边长分别是一元二次方程2680x x -+=的两根,则该等腰三角形的底边长为()A .2B .4C .8D .2或48.某地一家餐厅新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是()A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60509.如图矩形ABCD 的两条对角线相交于点O ,CE 垂直平分DO ,AB 1=,则BE 等于()A .32B .43C .23D .210.如图,在边长为2的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则PBQ 周长的最小值为()AB .3C 1D .二、填空题11.一元二次方程()211x x +=+的根是_____.12.若关于x 的方程21(1)7a a x +--=0是一元二次方程,则a =____.13.x 2﹣4x+1=(x ﹣2)2﹣______.14.如图所示,平行四边形ABCD 的对角线AC 、BD 相交于点O ,试添加一个条件:___,使得平行四边形ABCD 为菱形.15.若关于x 的一元二次方程2(1)10k x x -++=有实数根,则k 的最大整数值是_________.16.一个袋子中6个红球,若干白球,它们除颜色外完全相同,现在经过大量重复的摸球试验发现,摸出一个球是白球的频率稳定在0.4附近,则袋子中白球有_____个.17.如图,正方形ABCD 的对角线BD 是菱形BEFD 的一边,菱形BEFD 的对角线BF 交CD 于点P ,则∠FPC 的度数是______.18.如图,在Rt ABC 中,90A ∠= ,AB=6,BC=10,P 是BC 边上的一点,作PE 垂直AB ,PF 垂直AC ,垂足分别为E 、F ,求EF 的最小值是_____.三、解答题19.用适当的方法解方程:(1)x 2+2x ﹣1=0;(用配方法)(2)3x 2﹣5x+1=0;(用公式法)(3)3(2x+1)2=4x+2;(用因式分解法)(4)3x 2+5x =3x+3.(选择适当的方法)20.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A 的概率.21.如图,菱形ABCD 的对角线AC 与BD 相交于点O ,∠ABC ∶∠BAD =1∶2,AC ∥BE ,CE ∥BD .(1)求∠DBC 的度数;(2)求证:四边形OBEC 是矩形.22.如图,在正方形ABCD 中,点P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.23.某公园内有一块长30m,宽20m的矩形空地,准备将其建成一个矩形花坛,要求在花坛中修建三条长方形的矩形小道(如图),剩余的地方种植花草,要使种植花草的面积为532m2,那么小道的宽度应为多少米?(注:所有小道宽度相等)24.某服装专卖店在销售中发现,一款衬衫每件进价为70元,销售价为100元时,每天可售出20件,今年受“疫情”影响,为尽快减少库存,商店决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么平均可多售出2件.试问:每件衬衫降价多少元时,平均每天赢利750元?25.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:△AFE≌△DBE;(2)若AB⊥AC,试判断四边形ADCF是不是菱形?若是,证明你的结论;若不是,请说明理由.参考答案1.A【解析】根据特殊平行四边形的性质判断即可;【详解】经过判断,对角线互相垂直的平行四边形是菱形,故A错误;B、C、D均正确;故答案选A.【点睛】本题主要考查了特殊平行四边形的判定,准确判断是解题的关键.2.B【解析】【分析】根据菱形的面积计算公式计算即可;【详解】∵菱形的两条对角线分别为4和5,∴菱形的面积14510 2=⨯⨯=;故答案选B.【点睛】本题主要考查了菱形的面积计算,准确计算是解题的关键.3.C【解析】【分析】由矩形的性质得∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,则OA=OD,由等腰三角形的性质得∠OAD=∠ADB=34°,进而得出答案.【详解】解:∵四边形ABCD是矩形,∴∠BAD=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OD,∴∠OAD=∠ADB=34°,∴∠BAO=90°−∠OAD=90°−34°=56°;故选:C.【点睛】本题考查了矩形的性质、等腰三角形的判定与性质等知识;熟练掌握矩形的性质和等腰三角形的性质是解题的关键.4.B【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.【详解】∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=3.2km,∴CM=1.6km,故选:B.【点睛】此题考查直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解题的关键.5.C【解析】【分析】方程整理后,配方得到结果,即可做出判断.【详解】解:方程配方得:x2+6x+5+4-5=0,即(x+3)2=5.故选:C.【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.B【解析】【分析】画树状图展示所有12种等可能的结果数,再找出抽取的两张卡片上数字之积为负数的结果数,然后根据概率公式求解.【详解】解:画树状图如下:由树状图可知共有12种等可能结果,其中抽取的两张卡片上数字之积为负数的结果有4种,所以抽取的两张卡片上数字之积为负数的概率为412=13,故选B.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.7.A【解析】【分析】解一元二次方程求出方程的解,得出三角形的边长,用三角形存在的条件分类讨论边长,即可得出答案.【详解】解:x2-6x+8=0(x-4)(x-2)=0解得:x=4或x=2,当等腰三角形的三边为2,2,4时,不符合三角形三边关系定理,此时不能组成三角形;当等腰三角形的三边为2,4,4时,符合三角形三边关系定理,此时能组成三角形,所以三角形的底边长为2,故选:A.本题考查了等腰三角形的性质,三角形的三边关系,解一元二次方程,能求出方程的解并能够判断三角形三边存在的条件是解此题的关键.8.D【解析】【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.A【解析】【分析】根据矩形的性质可证明ODC ,OAB 都是等边三角形,根据等边三角形的性质即可求出OE 的长,即可的答案;【详解】四边形ABCD 是矩形,OA OB OD OC ∴===,CE 垂直平分相等OD ,CO CD ∴=,OC OD CD ∴==,OCD ,AOB 都是等边三角形,OB AB OD 1∴===,OE DE ==12OD=12,13BE 122∴=+=,【点睛】本题考查矩形的性质、等边三角形的判断和性质、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.10.C【解析】【分析】由于点B 与点D 关于AC 对称,所以如果连接DQ ,交AC 于点P ,那么PBQ 的周长最小,此时PBQ 的周长BP PQ BQ DQ BQ.=++=+在Rt CDQ 中,由勾股定理先计算出DQ 的长度,再得出结果即可.【详解】连接DQ ,交AC 于点P ,连接PB 、BD ,BD 交AC 于O .四边形ABCD 是正方形,AC BD ∴⊥,BO OD =,CD 2cm =,∴点B 与点D 关于AC 对称,BP DP ∴=,BP PQ DP PQ DQ ∴+=+=.在Rt CDQ 中,DQ ===,PBQ ∴的周长的最小值为:BP PQ BQ DQ BQ 1++=+=+.故选C .【点睛】此题考查轴对称问题,根据两点之间线段最短,确定点P 的位置是解题关键.11.10x =,21x =-【分析】利用因式分解法求解可得.【详解】解:2(1)1x x +=+ ,2(1)(1)0x x ∴+-+=,则(1)0x x +=,0x ∴=或10x +=,解得10x =,21x =-,故答案为:10x =,21x =-.12.﹣1.【解析】根据一元二次方程的定义得到由此可以求得a 的值.【详解】解:∵关于x 的方程(a ﹣1)xa2+1﹣7=0是一元二次方程,∴a 2+1=2,且a ﹣1≠0,解得,a =﹣1.故答案为﹣1.13.3【解析】利用配方法的步骤整理即可.【详解】解:x 2﹣4x+1=x 2﹣4x+4﹣3=(x ﹣2)2﹣3,故答案为3,14.AD=DC (答案不唯一)【详解】由四边形ABCD 是平行四边形,添加AD=DC ,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形;添加AC ⊥BD ,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD 为菱形.故答案为:AD=DC (答案不唯一).15.0【解析】关于x 的一元二次方程2(1)10k x x -++=有实数根,则△=240b a -≥,且k-1≠0,求出k 的取值范围即可解决本题.【详解】解:关于x 的一元二次方程2(1)10k x x -++=有实数根,则()=1410k 10△--≥⎧⎪⎨-≠⎪⎩k ,解得:54k ≤且k≠1,则k 的最大整数值为;0,故答案为:0.16.4【解析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】设袋子中白球有x 个,由题意得,6x x+=0.4,解得:x =4,经检验x=4是原方程的解故袋子中白球有4个,故答案为:4.17.112.5°【解析】利用正方形的性质得到90BCD ∠︒=,45CBD ∠︒=,再根据菱形的性质得BF 平分,EBD ∠,所以22.5CBP ∠︒=,然后根据三角形外角性质计算∠FPC 的度数.【详解】解:∵四边形ABCD 为正方形,90BCD ∴∠︒=,45CBD ∠︒=,∵四边形BEFD 为菱形,∴BF 平分∠EBD ,22.5CBP ∴∠︒=,22.590112.5FPC PBC BCP ∴∠∠∠︒︒︒=+=+=.故答案为:112.5︒.18.4.8【解析】根据已知得出四边形AEPF 是矩形,得出EF=AP ,要使EF 最小,只要AP 最小即可,根据垂线段最短得出即可.【详解】解:连接AP ,∵∠BAC=90°,PE ⊥AB ,PF ⊥AC ,∴∠BAC=∠AEP=∠AFP=90°,∴四边形AFPE 是矩形,∴EF=AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠BAC=90°,BC=10,AB=6,由勾股定理得:AC=8,由三角形面积公式得:116810AP 22⨯⨯=⨯⋅,∴AP=4.8,即EF=4.8,故答案为:4.8.【点睛】本题利用了矩形的性质和判定、勾股定理以及垂线段最短的应用.19.(1)x1=﹣x 2=﹣1(2)x 1x 2(3)x 1=﹣12,x 2=﹣16(4)1211,33x x --==【解析】【分析】(1)根据配方法求解即可;(2)根据公式法求解即可;(3)根据因式分解法求解即可;(4)根据公式法求解即可;(1)解:x 2+2x ﹣1=0,x 2+2x =1,x 2+2x+1=1+1,即(x+1)2=2,∴x+1=,∴x 1=﹣x 2=﹣1(2)解:3x 2﹣5x+1=0,∵a =3,b =﹣5,c =1,∴Δ=(﹣5)2﹣4×3×1=13>0,则x即x 1=56,x 2=56-;(3)解:3(2x+1)2=4x+2,3(2x+1)2﹣2(2x+1)=0,(2x+1)[3(2x+1)﹣2]=0,2x+1=0或6x+1=0,x 1=﹣12,x 2=﹣16.(4)解:3x 2+5x =3x+3,3x 2+2x-3=0∵a =3,b =2,c =-3,∴Δ=22﹣4×3×(﹣3)=40>0,∴x =223-±⨯=13-,∴x 1=13-+,x 2【点睛】本题考查解一元二次方程的解法,熟练掌握解法解一元二次方程的方法:配方法、公式法、因式分三种方法是解题的关键.20.(1)详见解析;(2)16【解析】(1)利用用树状图(或列表法)列举出所有情况;(2)让恰好选中医生甲和护士A 的情况数除以总情况数即为所求的概率.【详解】解:(1)用列表法或树状图表示所有可能结果如下:护士医生A B 甲(甲,)A (甲,)B 乙(乙,)A (乙,)B丙(丙,)A(丙,)B(2)因为共有6种等可能的结果,其中恰好选中医生甲和护士A的有1种,所以P(恰好选中医生甲和护士1)6A=.(3分)【点睛】本题考查的是用列表法或者用树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.树状图法适用于两步或两步以上完成的事件;解题的关键是还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.21.(1)30°(2)证明见解析【解析】【分析】(1)由四边形ABCD是菱形,得到对边平行,且BD为角平分线,利用两直线平行得到一对同旁内角互补,根据已知角之比求出相应度数,进而求出∠BDC度数;(2)由四边形ABCD是菱形,得到对角线互相垂直,利用两组对边平行的四边形是平行四边形,再利用有一个角为直角的平行四边形是矩形即可得证.【详解】(1)∵四边形ABCD是菱形,∴AD∥BC,∠DBC=12∠ABC,∴∠ABC+∠BAD=180°,∵∠ABC:∠BAD=1:2,∴∠ABC=60°,∴∠BDC=12∠ABC=30°;(2)证明:∵四边形ABCD是菱形,∴AC ⊥BD ,即∠BOC=90°,∵BE ∥AC ,CE ∥BD ,∴BE ∥OC ,CE ∥OB ,∴四边形OBEC 是平行四边形,则四边形OBEC 是矩形.【点睛】此题考查了矩形的判定,菱形的性质,熟练掌握判定与性质是解本题的关键.22.(1)见解析;(2)90°【解析】【分析】(1)由四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,得AB =BC ,∠ABP =∠CBP =45°,利用SAS 可证得△ABP ≌△CBP 即可证明PC =PE .(2)由△ABP ≌△CBP ,得∠BAP =∠BCP ,从而得∠DAP =∠DCP ,再由PA =PE 即可证出∠DCP =∠E ,进而可证出∠CPE =∠EDF =90°.【详解】(1)证明:∵四边形ABCD 是正方形,BD 是正方形ABCD 的对角线,∴AB =BC ,∠ABP =∠CBP =45°,在△ABP 和△CBP 中,=AB BC ABP CBP PB PB =⎧⎪∠∠⎨⎪=⎩,∴△ABP ≌△CBP (SAS ),∴PA =PC ,∵PA =PE ,∴PC =PE ,(2)解:由(1)知,△ABP ≌△CBP ,∴∠BAP =∠BCP ,∴∠DAP =∠DCP ,∵PA =PE ,∴∠DAP =∠E ,∴∠DCP=∠E,∵∠CFP=∠EFD,∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°.【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,等腰三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解.23.小道进出口的宽度应为1米.【解析】【分析】观察图形可知,种植花草的地方拼凑起来可以得到一个新矩形,设小道进出口的宽度为x 米,则新矩形的长是(30﹣2x)m,宽是(20﹣x)m,根据面积公式列方程,求解即可.【详解】设小道进出口的宽度为x米,依题意得(30﹣2x)(20﹣x)=532,整理,得x2﹣35x+34=0,解得,x1=1,x2=34.∵34>20(不合题意,舍去),∴x=1.答:小道进出口的宽度应为1米.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据实际意义对求得的根进行取舍.24.每件衬衫降价15元时,平均每天赢利750元【解析】【分析】设每件衬衫降价x元,则平均每天可售出(20+2x)件,再写出单件利润的表达式(100﹣70﹣x),两者乘积为总利润,解方程,根据题意对根进行取舍,即可求出答案.【详解】设每件衬衫降价x元,则平均每天可售出(20+2x)件,依题意,得:(100﹣70﹣x)(20+2x)=750,整理,得:x 2﹣20x+75=0,解得:x 1=5,x 2=15.∵尽快减少库存,∴x =15.答:每件衬衫降价15元时,平均每天赢利750元.【点睛】本题考查一元二次方程的实际应用,解题关键是根据题中的等量关系列方程,注意根据题意对求得的根进行取舍.25.(1)证明见解析;(2)四边形ADCF 是菱形,证明见解析【解析】【分析】(1)根据平行线的性质可得∠AFE=∠DBE ,然后利用AAS 判定△AFE ≌△DBE 即可;(2)首先证明四边形ADCF 是平行四边形,再根据直角三角形斜边上的中线等于斜边的一半可得AD=CD ,进而可得四边形ADCF 是菱形.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DBE (AAS );(2)解:四边形ADCF 是菱形,理由如下:∵△AFE ≌△DBE ,∴AF=BD ,∵AD 是斜边BC 的中线,∴BD=DC∴AF=DC .∵AF∥BC,∴四边形ADCF是平行四边形,∵AC⊥AB,AD是斜边BC的中线,∴AD=12BC=DC,∴平行四边形ADCF是菱形.。
2022-2023学年北京师范大学附属实验中学九年级上学期数学期中考试试卷含答案
4.在答题卡上,选择题须用2B铅笔将选中项涂黑涂满,作图题用2B铅笔绘图,其他试题用黑色字迹签字笔作答.
一、单项选择题(本题共8小题,在每小题给出的四个选项中,只有一项最符合题意.每小题2分,共16分)
1.抛物线 的顶点坐标是( )
A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)
(1)尺规作图(保留作图痕迹,不写作法);
①作线段 的垂直平分线 ,分别交 于点D,垂足为E;
②以点D 圆心, 长为半径作弧,交 于点F(F,A两点不重合),连接 .
(2)引理的结论为: .
证明:连接 , , ,
∵ 为 的垂直平分线
∴
∴
又∵四边形 为圆 内接四边形
∴ ___________ ···①
A. B.
C. D.
8.如图,在边长为2的正方形 中,点M在AD边上自A至D运动,点N在 边上自B至A运动,M,N速度相同,当N运动至A时,运动停止,连接 , 交于点P,则 的最小值为( )
A.1B.2C. D.
二、填空题(本题共8小题,每小题2分,共16分)
9.如图, , ,则 ___________.
5.如图,点A,B,C均在 上,当 时, 的度数是( )
A.25°B.30°C.40°D.50°
6.在△ABC中,AB=AC=5,BC=8,以A为圆心作一个半径为3的圆,下列结论中正确的是( )
A.点B在⊙A内B.点C在⊙A上
C.直线的图像可能是( )
2.一元二次方程 有一根为零的条件是()
A. B. C. D.
3.如图,在平面直角坐标系中,一条圆弧经过 , ,O三点,那么这条圆弧所在圆的圆心为图中的( )
北师大版九年级上册数学期中考试试卷有答案-2022年最新修改
北师大版九年级上册数学期中考试试题一、单选题1.用配方法解方程x2﹣6x﹣1=0时,配方结果正确的是()A.(x﹣3)2=10B.(x﹣3)2=8C.(x﹣6)2=10D.(x﹣3)2=1 2.下列方程是一元二次方程的是()A.2x+1=0B.y2+x=1C.x2+1=0D.1x+x2=13.若点C是线段AB的中点,则CA与BA的比值是()A.1B.2C.12D.234.平行四边形ABCD如图所示,E为AB上的一点,F、G分别为AC与DE、DB的交点.若:3:2AB AE ,则四边形BGFE与ABCD的面积之比为()A.7:60B.8:70C.5:43D.3:265.在Rt△ABC中,∠ACB=90°,AC=3,∠BAC=30°,把Rt△ABC沿AB翻折得到Rt△ABD,过点B作BE⊥BC,交AD于点E,点F是线段BE上一点,且∠ADF=45°.则下列结论:①AE=BE;②△BED∽△ABC;③BD2=AD⋅DE;④,其中正确的有()A.①④B.②③④C.①②③D.①②③④6.如图是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅱ”所示区域内的概率是()A .13B .14C .16D .187.小芳掷一枚硬币10次,有7次正面向上,当她掷第11次时,正面向上的概率为()A .711B .12C .811D .18.若0是关于x 的一元二次方程mx 2+5x +m 2-m =0的一个根,则m 等于()A .1B .0C .0或1D .无法确定9.如图,已知AD ∥BE ∥CF ,AB BC=23,DE =3,则DF 的长为()A .2B .4.5C .3D .7.510.如图,已知ABC 与DEF 位似,位似中心为点O ,ABC 的面积与DEF 面积之比为16:9,则:CO OF 的值为()A .3:4B .4:7C .4:3D .7:411.如图,矩形ABCD 中,AB =2BC ,点E 在CD 上,AE =AB ,则∠ABE 的度数为()A .60°B .70°C .72°D .75°12.如图,在矩形ABCD 中,AD=2AB ,点M 、N 分别在边AD 、BC 上,连接BM 、DN .若四边形MBND 是菱形,则AMMD等于()A .35B .23C .38D .45二、填空题13.若23x y =,则x y y+的值为_____.14.方程x 2=3x 的解为:_____.15.已知关于x 的一元二次方程(k +1)x 2+2x +1=0有实数根,则k 的取值范围是________.16.如图,等边△EFG 的顶点分别在矩形ABCD 的边AD 、AB 、CD 上,若AE =1,DE =4,则DG 的值为________.三、解答题17.解方程:()()2323x x x -=-18.先化简,再求值:22122()121x x x xx x x x ----÷+++,其中x 满足x 2-2x -2=0.19.在一个不透明的盒子中,共有“一白三黑”4个围棋子,它们除了颜色之外没有其他区别.(1)随机地从盒中提出1子,则提出黑子的概率是多少?(2)随机地从盒中提出两子,请你用画树状图或列表的方法表示所有等可能的结果,并求恰好提出“一黑一白”子的概率.20.如图,已知菱形ABCD,点E、F是对角线BD所在直线上的两点,且∠AED=45°,DF=BE,连接CE、AF、CF,得四边形AECF.(1)求证四边形AECF是正方形;(2)若BD=4,BE=3,求菱形ABCD的面积.21.某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.650cm,求丝绸花边的宽度;(1)若丝绸花边的面积为2(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另外每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天把销售单价定为多少元所获利润为22500元.22.已知如图,在菱形ABCD中,对角线AC、BD相交于点O,DE//AC,AE//BD.(1)求证:四边形AODE是矩形;(2)若△ABC是边长为4的正三角形,求四边形AODE的面积.23.某公司2月份销售新上市的A产品20套,由于该产品的经济适用性,销量快速上升,4月份该公司A产品达到45套,并且2月到3月和3月到4月两次的增长率相同.(1)求该公司销售A产品每次的增长率;(2)若A产品每套盈利2万元,则平均每月可售30套.为了尽量减少库存,该公司决定采取适当的降价措施,经调查发现,A产品每套每降2万元,公司平均每月可多售出80套;若该公司在5月份要获利70万元,则每套A产品需降价多少?24.如图,在矩形ABCD中,E为AD边上的一点,过C点作CF⊥CE交AB的延长线于点F.(1)求证:△CDE∽△CBF;(2)若B为AF的中点,CB=3,DE=1,求CD的长.25.如图,在矩形ABCD中,AB=8,BC=6,点E是对角线BD上一点.(1)如图1,当CE⊥BD时,求CE的值;(2)如图2,当△BCE为等腰三角形时,直接写出DE的值;(3)如图3,当点F 在AB 边上,且四边形CEFG 为矩形,连接BG .①EFCE的值是否为定值?如果是,请求出此定值;若不是,请说明理由;②请直接写出BG 的最大值.参考答案1.A 2.C 3.C 4.A 5.D 6.A 7.B 8.A 9.D 10.C 11.D 12.A 13.5314.x 1=0,x 2=315.k≤0且k≠-116.17.13x =-或23x =18.1219.(1)34;(2)12.20.(1)见解析;(2)25.【分析】(1)连接AC,根据菱形的性质即可证明四边形AECF是正方形;(2)根据菱形ABCD的性质和BD=4,BE=3,DF=BE,可得EF=10,OA=5,进而可得菱形ABCD的面积.【详解】证明:(1)如图,连接AC,∵四边形ABCD是菱形,∴OA=OC,OB=OD,AC⊥EF,∵BE=DF,∴OB+BE=OD+DF,即OE=OF,∵OA=OC,OE=OF,∴四边形AECF是平行四边形,∵AC⊥EF,∴四边形AECF是菱形;∵∠AED=45°,∴∠OAE=90°-45°=45°=∠AED,∴OA=OE,∴AC=EF,∴四边形AECF是正方形;(2)∵四边形ABCD是菱形,BD=4,BE=3,DF=BE,∴EF=BE+BD+DF=2BE+BD=10,∴OE=12EF=5,∵∠AED=45°,AC⊥EF,∴OA=tan AED∠·OE=tan45︒·5=5,∴AC=10,∴菱形ABCD的面积=12AC•BD=12×10×5=25.故答案为:25.21.(1)5cm;(2)75元.【解析】(1)设花边的宽度为x cm,根据题意得:(60-2x)(40-x)=60×40-650,然后求解即可;(2)设每件工艺品降价x元出售,根据题意直接列方程求解即可.【详解】解:(1)设花边的宽度为x cm,根据题意得:(60-2x)(40-x)=60×40-650,整理得x2-70x+325=0,解得:x=5或x=65(舍去).答:丝绸花边的宽度为5cm.(2)设每件工艺品降价x元出售,由题意得:(100-x-40)(200+20x)-2000=22500解得:1225x x==;∴售价为100-25=75(元).答:当售价定为75元时能达到利润22500元.【点睛】本题主要考查一元二次方程的实际应用,关键是根据题意得到一元二次方程,然后进行求解即可.22.(1)证明见解析;(2)【解析】【分析】(1)根据菱形的性质得出AC BD⊥,再根据平行四边形的判定定理得四边形AODE为平行四边形,由矩形的判定定理得出四边形AODE 是矩形;(2)由ABC ∆是等边三角形,得出122OA AC ==,由勾股定理得出OB =得出OD OB ==AODE 的面积.【详解】(1)证明://DE AC ,//AE BD ,∴四边形AODE 是平行四边形,在菱形ABCD 中,AC BD ⊥,∴平行四边形AODE 是矩形,故四边形AODE 是矩形;(2)解:∵ABC ∆是等边三角形,∴OA=AB=BC=4,在菱形ABCD 中,AC BD ⊥,OA=OC ,OB=OD.1422OA ∴=⨯=,∴OD=OB ===∴四边形AODE 的面积122OA OD =⨯== .【点睛】本题考查了矩形的判定以及菱形的性质,还考查了平行四边形的判定,掌握平行四边形的判定方法是解题的关键.23.(1)该公司销售A 产品每次的增长率为50%(2)每套A 产品需降价1万元【解析】(1)设该公司销售A 产品每次的增长率为x ,利用增长率表示4约分销售量为20(1+x )2根据4月份销量等量关系列方程即可;(2)设每套A 产品需降价y 万元,则平均每月可售出(30+802y)套,求出每套利润,根据每套利润×销售套数=70万,列方程求解即可.(1)解:设该公司销售A 产品每次的增长率为x ,依题意,得:20(1+x)2=45,解得:x1=0.5=50%,x2=-2.5(不合题意,舍去).答:该公司销售A产品每次的增长率为50%.(2)解:设每套A产品需降价y万元,则平均每月可售出(30+802y)套,依题意,得:(2-y)(30+802y)=70,整理,得:4y2-5y+1=0,解得:y1=14,y2=1,∵尽量减少库存,∴y=1.答:每套A产品需降价1万元.24.(1)证明见解析;(2)【解析】(1)如图,通过证明∠D=∠1,∠2=∠4即可得;(2)由△CDE∽△CBF,可得CD:CB=DE:BF,根据B为AF中点,可得CD=BF,再根据CB=3,DE=1即可求得.【详解】(1)∵四边形ABCD是矩形,∴∠D=∠1=∠2+∠3=90°,∵CF⊥CE,∴∠4+∠3=90°,∴∠2=∠4,∴△CDE∽△CBF;(2)∵四边形ABCD是矩形,∴CD=AB,∵B 为AF 的中点,∴BF=AB ,∴设CD=BF=x ,∵△CDE ∽△CBF ,∴CD DE CB BF =,∴13x x=,∵x>0,∴即:25.(1)CE =245(2)DE 的值为5或4或145(3)①是,EF CE 的值为34;②BG 最大值为245【解析】(1)勾股定理求得BD ,进而根据等面积法即可求得CE 的值;(2)当△BCE 为等腰三角形时,分,,BC BE CB CE EC EB ===三种情况分析讨论;(3)①过E 作AB 、CD 的垂线,交CD 于M ,交AB 于N ,则四边形MCBN 是矩形,进而证明MCE NEF ∽,可得EF CE =EN CM ,由tan DBA ∠=EN BN =AD AB =34,CM BN =,即可求得EF CE 为定值;②证明△CDE ∽△CBG ,BG DE =BC CD =34,BG =34DE ,求BG 最大值,即求DE 最大值,又DE 在△CDE 中,当CE 取最小值即CE ⊥BD 时,DE 取最大值为325,则BG 最大值为34DE .(1)解:∵四边形ABCD 是矩形,∴90BCD ∠=︒在Rt BCD 中,AB =8,BC =6,∴10BD ==1122BDC S BC DC DB EC =⋅=⋅ △4824105DC BCCE DB ⋅∴===∴CE =245;(2)①当BC BE =时,如图,6BC BE == 1064DE BD BE ∴=-=-=②当CB CE =时,如图,过点C 作CH BD ⊥于点H ,由(1)可得245CH =由cos BC BHDBC BD BC∠==则23618105BC BH BD ===,CB CE CH BD=⊥ 3625BE BH ∴==36141055DE BD BE ∴=-=-③当EC EB =时,如图,则ECB EBC∠=∠90EBC BDC ECB ECD ∠+∠=∠+∠=︒ EDC ECD∴∠=∠DE CE∴=152DE EB BD ∴===综上所述,DE 的长为5或4或145;(3)①是,EFCE 的值为34,如图,过E 作AB 、CD 的垂线,交CD 于M ,交AB 于N ,90CME ENF ∴∠=∠=︒,四边形MCBN 是矩形∴90CEM MCE ∠+∠=︒,MC BN= 四边形CEFG 是矩形90CEF ∴∠=︒90CEM NEF ∴∠+∠=︒MCE NEF∴∠=∠MCE NEF∴ ∽∴EF CE =ENCMtan DBA ∠= ENBN =AD AB =34;MC BN=∴EFCE =ENCM =ENBN =ADAB =34;②由①知EF ADEC AB=,,EF CG AD BC AB CD=== CGBCCE CD∴=又90DCE ECB BCG∠=︒-∠=∠∴△CDE∽△CBG,∴BGDE=BCCD=34,∴BG=34DE,求BG最大值,即求DE最大值,又DE在△CDE中,当CE取最小值即CE⊥BD时,由(2)可知183255 DE DB=-=∴DE取最大值为32 5.∴BG最大值为34DE=332=45⨯245.。
24-25学年九年级数学期中测试卷(北师大版)(解析版)【测试范围:第一章~第四章】A4版
2024-2025学年九年级数学上学期期中测试卷(北师大版)(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第四章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)用配方法解一元二次方程2x2﹣2x﹣1=0,下列配方正确的是( )A.(x―14)2=34B.(x―14)2=32C.(x―12)2=34D.(x―12)2=32【分析】方程整理后,利用完全平方公式配方得到结果,即可作出判断.【解答】解:方程2x2﹣2x﹣1=0,整理得:x2﹣x=1 2,配方得:x2﹣x+14=34,即(x―12)2=34.故选:C.2.(3分)如图,AB∥CD∥EF,AF交BE于点G,若AC=CG,AG=FG,则下列结论错误的是( )A .DG BG =12B .CD EF =12C .DG BE =13D .CG CF =13【分析】根据平行线分线段成比例定理进行逐项判断即可.【解答】解:∵AB ∥CD ,∴DG BG =CG AG ,∵AC =CG ,∴DG BG =CG AG =12,故A 正确,不符合题意;∵CD ∥EF ,∴CD EF =CG FG ,∵AC =CG ,AG =FG ,∴FG =2CG ,∴EG =2DG ,∴CD EF =CG FG =12,故B 正确,不符合题意;∵AB ∥CD ∥EF ,∴BG EG =AG FG ,∵AG =FG ,∴BG =EG ,∴BE =2BG ,∵DG BG =CG AG =12,∴BG =2DG ,∵BE =4DG ,∴DGBE=14,故C错误,符合题意;∵CD∥EF,∴CGCF=DGDE∵BG=2DG,BE=4DG,∴DE=3DG,∴CGCF=DGDE=13,故D正确,不符合题意;故选:C.3.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为( )A.4B.4.5C.5D.5.5【分析】由菱形的性质得出BD=12,由菱形的面积得出AC=9,再由直角三角形斜边上的中线性质即可得出结果.【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=12BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD =12AC•BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=12AC=4.5,故选:B.4.(3分)已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是( )A .m ≥23B .m <23C .m >23且m ≠1D .m ≥23且m ≠1【分析】利用一元二次方程有实数根的条件得到关于m 的不等式组,解不等式组即可得出结论.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2+2x ﹣3=0有实数根,∴Δ=22―4(m ―1)×(―3)≥0m ―1≠0,解得:m ≥23且m ≠1.故选:D .5.(3分)下列说法正确的是( )A .邻边相等的平行四边形是矩形B .矩形的对角线互相平分C .对角线互相垂直的四边形是菱形D .一组对边相等,另一组对边平行的四边形是平行四边形【分析】由菱形的判定、矩形的判定与性质、平行四边形的判定与性质分别对各个选项进行判断即可.【解答】解:A 、邻边相等的平行四边形是菱形,故选项A 不符合题意;B 、矩形的对角线互相平分,故选项B 符合题意;C 、对角线互相垂直的平行四边形是菱形,故选项C 不符合题意;D 、一组对边相等,另一组对边平行的四边形不一定是平行四边形,故选项D 不符合题意;故选:B .6.(3分)在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x 人.若每组共需进行15场比赛,则根据题意可列方程为( )A .12x (x ﹣1)=15B .12x (x +1)=15C .x (x ﹣1)=15D .x (x +1)=15【分析】设一共邀请了x 支球队参加比赛,赛制为单循环形式(每两支球队之间都进行一场比赛),则每个队参加(x ﹣1)场比赛,则共有x(x―1)2场比赛,可以列出一元二次方程.【解答】解:由题意得,x(x―1)2=15.故选:A .7.(3分)掷一个骰子,向上一面的点数大于2且小于5的概率为p 1,抛两枚硬币,正面均朝上的概率为p 2,则( )A .p 1<p 2B .p 1>p 2C .p 1=p 2D .不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1=26=13;投掷一次正面朝上的概率为12,两次正面朝上的概率为p2=12×12=14,∵13>14,∴p1>p2.故选:B.8.(3分)顶角为36°的等腰三角形我们把这种三角形称为“黄金三角形”,它的底与腰的比值为黄金比.如图,在△ABC中,∠A=36°,AB=AC,BD平分∠ABC交AC于点D,若CD=1,则AC的长为( )A B C D【分析】根据等腰三角形的性质得到∠ABC=∠ACB,根据角平分线的性质得到∠ABD=∠DBC,证明△CBD∽△CAB,根据相似三角形的性质列出比例式,解方程得到答案.【解答】解:∵AB=AC,∠A=36°,∴∠ABC=∠ACB=72°,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠DBC=∠A,∠ABD=∠A,∠BDC=36°+36°=72°=∠C,∴AD=BD=BC,∵∠C=∠C,∴△CBD∽△CAB,∴BCAC=CDBC,即AD1+AD=1AD,整理得:AD2﹣AD﹣1=0,解得:AD1=AD2=则AC=AD+CD=+1=故选:D .9.(3分)如图,在平面直角坐标系中,四边形OABC 为矩形,且A (0,2),C (4,0).点E 为OC 上一点,连接AE ,射线AF ⊥AE .以点A 为圆心,适当长为半径作弧,分别交AE ,AF 于点N ,M ,再分别以点M ,N 为圆心,大于12MN 的长为半径作弧,两弧交于点P ,作射线AP ,交BC 于点G .若OE =1,则点G 的坐标为( )A .(4,23)B .(4,1)C .(4D .(4【分析】延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,求出CG ,可得结论.【解答】解:延长CB 交射线AF 于点Q ,过点G 作GH ⊥AF 于点H ,如解图所示.∵AE ⊥AF ,四边形ABCO 是矩形,∴∠EAF =∠OAB =90°,∴∠OAE =∠BAF ,∵GH ⊥AF ,∴∠GHF =∠ABQ =∠AOE =90°,∵∠AQB =∠CQH ,∴△GHQ ∽△ABQ ∽△AOE ,∴GH HQ =AB BQ =AO OE =21,∴GH =2HQ ,BQ =12AB =2.∴AQ ==AP 平分∠EAF ,∴∠HAG =45°.又∵GH⊥AF,∴AH=HG.设HQ=x,则AH=HG=2x.∴AQ=AH+HQ=3x,即3x=∴x=∴HG=∴GQ===10 3.∴CG=BC+BQ―GQ=2+2―103=23.∴点G的坐标为(4,23 ),故选:A.10.(3分)如图,在正方形ABCD中,点E是CD上一点,延长CB至点F,使BF=DE,连结AE,AF,EF,EF交AB于点K,过点A作AG⊥EF,垂足为点H,交CF于点G,连结HD,HC.下列四个结论:①AH=HC;②HD=CD;③∠FAB=∠DHE;④AK•HD=2.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【分析】①证明△EAF是等腰直角三角形,根据直角三角形斜边中线可得AH=12EF=CH,可得①正确;②证明∠DAH与∠AHD不一定相等,则AD与DH不一定相等,可知②不正确;③证明△ADH≌△CDH(SSS),则∠ADH=∠CDH=45°,再由等腰直角三角形的性质可得结论正确;④证明△AKF∽△HED,列比例式可得结论正确.【解答】解:①∵四边形ABCD是正方形,∴AD=AB,∠ADE=∠ABC=90°,∴∠ADE=∠ABF=90°,∵DE=BF,∴△ADE≌△ABF(SAS),∴AE=AF,∠DAE=∠BAF,∵∠DAE+∠EAB=90°,∴∠BAF+∠EAB=90°,即∠EAF=90°,∵AG⊥EF,∴EH=FH,∴AH=12 EF,Rt△ECF中,∵EH=FH,∴CH=12 EF,∴AH=CH;故①正确;③∵AH=CH,AD=CD,DH=DH,∴△ADH≌△CDH(SSS),∴∠ADH=∠CDH=45°,∵△AEF为等腰直角三角形,∴∠AFE=45°,∴∠AFK=∠EDH=45°,∵四边形ABCD为正方形,∴AB∥CD,∴∠BKF=∠CEH,∴∠AKF=∠DEH,∴∠FAB=∠DHE,故③正确;②∵∠ADH=∠AEF,∴∠DAE=∠DHE,∵∠BAD=∠AHE=90°,∴∠BAE=∠AHD,∵∠DAE与∠BAG不一定相等,∴∠DAH与∠AHD不一定相等,则AD与DH不一定相等,即DH与CD不一定相等,故②不正确;④∵∠FAB=∠DHE,∠AFK=∠EDH,∴△AKF∽△HED,∴AKEH=AFDH,∴AK•DH=AF•EH,在等腰直角三角形AFH中,AF==,∴AK•HD=2.故④正确;∴本题正确的结论有①③④,共3个.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.(3分)若xy=23,则代数式x―yx+2y的值是 .【分析】利用x与y的比可x=2t,y=3t,然后把它们代入代数式中进行分式的运算.【解答】解:∵xy=23,∴设x=2t,y=3t,∴x―yx+2y=2t―3t2t+6t=―t8t=―18.故答案为―1 8.12.(3分)在一个不透明的袋子中,有除颜色外完全相同的6个白球和若干个红球.通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,由此可估计袋中红球的个数为 .【分析】根据摸到红球的频率,可以得到摸到白球的概率,从而可以求得总的球数,从而可以得到红球的个数.【解答】解:由题意可得:摸到白球的频率之和为:1﹣0.4=0.6,∴总的球数为:6÷0.6=10,∴红球有:10﹣6=4(个),故答案为:4.13.(3分)设α,β是x2+x﹣18=0的两个实数根,则α2+3α+2β的值是 .【分析】先根据一元二次方程根的定义得到α2+α=18,则α2+3α+2β化为(α2+α)+2(α+β),再根据根与系数的关系得到x1+x2=﹣1,然后利用整体代入的方法计算.【解答】解:∵α,β是x2+x﹣18=0的两个实数根,∴α2+α﹣18=0,α+β=﹣1,∴α2+α=18,∴α2+3α+2β=(α2+α)+2(α+β)=18﹣2=16.故答案为:16.14.(3分)菱形有一个内角为120°,较长的对角线长为 .【分析】由菱形ABCD中,对角线AC和BD相交于点O,∠BAD=120°,BD=BAC的度数,利用菱形的性质可求出∠ABO的度数,进而得到AO的长,根据菱形的面积等于对角线乘积的一半则可求得答案.【解答】解:∵菱形ABCD中,∠BAD=120°,∴∠BAC=12∠BAD=60°,AC⊥BD,∴∠ABO=30°,∵BD=∴BO=设AO=x,则AB=2x,故x2+(2=(2x)2,解得:x=3,∴AO=3,∴AC=6,∴菱形的面积=×6÷2=故答案为:15.(3分)如图,在△ABC中,E是BC上一点,EC=2BE,点F是AC的中点,若S△ABC=12,求S△ADF ﹣S△BED= .【分析】过F 作FH ∥AE 交BC 于H ,由EC =2BE ,得到S △AEC =23S △ABC =23×12=8,根据点F 是AC 的中点,得到S △BCF =S △ABF =12S △ABC =12×12=6,根据平行线等分线段定理得到CH =EH ,求得BD =DF ,得到S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,根据相似三角形的性质得到S △BDE =14×4=1,于是得到结论.【解答】解:过F 作FH ∥AE 交BC 于H ,∵EC =2BE ,∴S △AEC =23S △ABC =23×12=8,∵点F 是AC 的中点,∴S △BCF =S △ABF =12S △ABC =12×12=6,∵FH ∥AE ,点F 是AC 的中点,∴CH =EH ,∵EC =2BE ,∴BE =EH ,∵DE ∥FH ,∴BD =DF ,∴S △BFH =23S △BCF =23×6=4,S △ADF =12S △ABF =3,∵DE ∥FH ,∴△BDE ∽△BFH ,∴S △BDE S △BFH =14,∴S △BDE =14×4=1,∴S △ADF +S △BED 的值为1+3=4,故答案为:4.16.(3分)如图,在边长为4的菱形ABCD 中,∠ABC =120°,将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',分别连接A 'B ,D ′B ,则A 'B +D ′B 的最小值为 .【分析】根据菱形的性质得到AB =4,∠ABC =120°,得出∠BAC =30°,根据平移的性质得到A ′D ′=AD =4,A ′D ′∥AD ,推出四边形A ′BCD ′是平行四边形,得到A ′B =D ′C ,于是得到A 'B +BD '的最小值=CD ′+BD ′的最小值,根据平移的性质得到点D ′在过点D 且平行于AC 的定直线上,作点C 关于定直线的对称点E ,连接BE 交定直线于D ′,则BE 的长度即为BA '+BD '的最小值,求得CE =CB ,得到∠E =∠CBE =30°,于是得到结论.【解答】解:∵在边长为4的菱形ABCD 中,∠ABC =120°,∴AB =CD =4,∠BAC =∠DAC =30°,∵将△ADC 沿射线AC 的方向平移得到△A 'D 'C ',∴A ′D ′=AD =4,A ′D ′∥AD ,∵四边形ABCD 是菱形,∴AD=CB,AD∥CB,∴∠ADC=120°,∴A′D′=CB,A′D′∥CB,∴四边形A′BCD′是平行四边形,∴A′B=D′C,∴A'B+BD'的最小值=BD′+CD′的最小值,∵点D′在过点D且平行于AC的定直线上,∴作点C关于定直线的对称点E,连接BE交定直线于D′,则BE的长度即为BD'+BA'的最小值,在Rt△CHD中,∵∠D′DC=∠ACD=30°,AD=4,∴CH=EH=12AD=2,∴CE=4,∴CE=CB,∵∠ECB=∠ECA′+∠ACB=90°+30°=120°,∴∠E=∠BCE=30°,∴BE=2×=故答案为:三.解答题(共8小题,满分72分)17.(6分)解方程:(1)x2﹣4x+2=0;(2)3(x﹣5)2+2(x﹣5)=0.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【解答】解:(1)∵x2﹣4x+2=0,∴x2﹣4x=﹣2,∴x2﹣4x+4=﹣2+4,即(x﹣2)2=2,∴x―2=±∴x1=2+x2=2―(2)3(x﹣5)2+2(x﹣5)=0,(x﹣5)[3(x﹣5)+2]=0,x﹣5=0或3x﹣13=0,∴x1=5,x2=13 3.18.(6分)小华和小林想用标杆来测量如图1所示的古塔的高,如图2,小林在F处竖立了一根标杆EF,小华走到C处时,站立在C处恰好看到标杆顶端E和塔的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=1.5米,EF=2.4米,CF=1.8米,FA=71.2米,点C、F、A在一条直线上,CD⊥AC,EF⊥AC,AB⊥AC,根据以上测量数据,请你求出该塔的高AB.【分析】过D作DP⊥AB于P,交EF于N,根据相似三角形的判定和性质即可得到结论.【解答】解:过D作DP⊥AB于P,交EF于N,则DN=CF=1.8米,AP=DC=1.5米,DP=AC=CF+AF=1.8+71.2=73(米),EN=EF﹣CD=2.4﹣1.5=0.9(米),由题意得,∠EDN=∠BDP,∠BPD=∠END=90°,∴△DEN∽△DBP,∴BPEN=DPDN,∴AB―1.50.9=731.8,∴AB=38(米),答:树AB的高度为38米.19.(8分)如图,在平面直角坐标系中,已知△ABC的三个顶点坐标分别是A(2,﹣1),B(1,(1)将△ABC向上平移4个单位长度,得到△A1B1C1;(点A、B、C分别对应A1、B1、C1)(2)以原点O为位似中心,在第二象限将△ABC放大得到△A2B2C2,使得△ABC与△A2B2C2的位似比为12,并直接写出C2的坐标.【分析】(1)先根据平移的性质在坐标系中描点,再顺次连接即可得;(2)先根据位似图形的性质在坐标系中描点并顺次连接即可得.【解答】解:(1)如图1,△A1B1C1即为所作.;(2)如图2,△A2B2C2即为所作.C2(﹣6,6).20.(8分)如图,BD是△ABC的角平分线,过点D作DE∥BC交AB于点E,DF∥AB交BC于点F.(1)求证:四边形BEDF为菱形;(2)如果∠A=90°,∠C=30°,BD=12,求菱形BEDF的边长.【分析】(1)先证四边形BEDF是平行四边形,再证BE=DE,即可证四边形BEDF为菱形;(2)过点D作DH⊥BC于H,由含30°角的直角三角形的性质可求解.【解答】(1)证明:∵DE∥BC DF∥AB,∴四边形BEDF是平行四边形,∵DE∥BC,∴∠EDB=∠DBF,∵BD平分∠ABC,∴∠ABD=∠DBF,∴∠ABD=∠EDB,∴DE=BE,∴平行四边形BEDF是菱形;(2)解:如图,过点D作DH⊥BC于H,∵∠A=90o,∠C=30o,∴∠ABC=60°,由(1)得:四边形BEDF是菱形,∴BE=DE=BF=DF,∵DF∥AB,∴∠ABC=∠DFC=60°,∵BD平分∠ABC,∴∠ABD=∠DBC=30°,∵BD=12,∴DH=12BD=6,∵∠FDH=90°﹣∠DFC=30°,∴FH==∴DF=2DH=即菱形BEDF的边长为21.(10分)某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了 名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角α= 度;(2)若该校有1600名学生,估计该校参加D 组(阅读)的学生人数;(3)学校计划从E 组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.【分析】(1)①由B 组的人数除以所占百分比即可;②求出A 组、C 组的人数,补全条形统计图即可;③由360°乘以C 组所占的比例即可;(2)由该校共有学生人数乘以参加D 组(阅读)的学生人数所占的比例即可;(3)画树状图,共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,再由概率公式求解即可.【解答】(1)①此次调查一共随机抽取学生人数为:100÷25%=400(名),故答案为:400;②A 组的人数:400×15%=60(名),C 组的人数:400﹣100﹣140﹣40﹣60=60(名),补全条形统计图如下:③扇形统计图中圆心角α=360°×60400=54°,故答案为:54;(2)1600×140400=560(名),答:参加D 组(阅读)的学生人数为560名;(3)画树状图如下:共有12种等可能的结果,其中恰好抽中甲、乙两人的结果有2种,∴恰好抽中甲、乙两人的概率为212=16.22.(10分)根据以下销售情况,解决销售任务.任务2:,由盈利=每件盈利×销售量,分别列式计算即可;任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,列出一元二次方程,解方程即可.【解答】解:任务1,甲店每天的销售量为(20+2a)件,乙店每天的销售量为(32+2b)件,故答案为:(20+2a)件,(32+2b)件;任务2,当a=5时,甲店每天的盈利为(40﹣5)×(20+2×5)=1050(元);当b=4时,乙店每天的盈利为(30﹣4)×(32+2×4)=1040(元);任务3,设每件衬衫下降m元时,两家分店一天的盈利和为2244元,由题意得:(40﹣m)(20+2m)+(30﹣m)(32+2m)=2244,整理得:m2﹣22m+121=0,解得:m1=m2=11,即每件衬衫下降11元时,两家分店一天的盈利和为2244元.23.(12分)阅读下面材料:小元遇到这样一个问题:如图1,在正方形ABCD中,点E、F分别为DC、BC边上的点,∠EAF =45°,连结EF,设DE=a,EF=b,FB=c,则把关于x的一元二次方程ax2﹣bx+c=0叫做正方形ABCD的关联方程,正方形ABCD叫做方程ax2﹣bx+c=0的关联四边形.探究方程ax2﹣bx+c=0是否存在常数根t.小元是这样思考的:要想解决这个问题,首先应想办法把这些分散的线段集中到同一条线段上.他先后尝试了平移、翻折、旋转的方法,发现通过旋转可以解决此问题.他的方法是把△ADE绕点A顺时针旋转90°得到△ABG(如图2),此时GF即是DE+BF.请回答:t= .参考小元得到的结论和思考问题的方法,解决下列问题:(1)如图1,若AD=10,DE=4,则正方形ABCD的关联方程为 ;(2)正方形ABCD的关联方程是2x2﹣bx+3=0,则正方形ABCD的面积= .【分析】阅读下面材料:由四边形ABCD是正方形,把△ADE绕点A顺时针旋转90°得到△ABG,可证明△GAF≌△EAF (SAS),从而GF=EF,即BG+BF=EF,有a+c=b,即a﹣b+c=0,故关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,即t=1;(1)在Rt△CEF中,CF2+CE2=EF2,可得(10﹣c)2+62=(c+4)2,从而可解得正方形ABCD的关联方程为4x2―587x+307=0;(2)由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,可得b=5,即得DE=2,BF=3,EF=5,设正方形ABCD的边长为m,有(m﹣2)2+(m﹣3)2=52,解得正方形ABCD的边长为6,正方形ABCD的面积为36.【解答】解:阅读下面材料:如图:∵四边形ABCD是正方形,∴∠D=∠ABC=∠BAD=90°,∵把△ADE绕点A顺时针旋转90°得到△ABG,∴AE=AG,∠ABG=∠D=90°,∠GAB=∠EAD,DE=BG=a,∴∠AGB+∠ABC=180°,∠EAD+∠BAE=90°=∠GAB+∠BAE,∴G,B,F共线,∠GAE=90°,∵∠EAF=45°,∴∠GAF=∠EAF=45°,在△GAF和△EAF中,AG=AE∠GAF=∠EAF AF=AF,∴△GAF≌△EAF(SAS),∴GF=EF,即BG+BF=EF,∵BG=a,EF=b,FB=c,∴a+c=b,即a﹣b+c=0,∴关于x的一元二次方程ax2﹣bx+c=0有一个根是x=1,∴t=1,故答案为:1;(1)如图:∵四边形ABCD是正方形,∴BC=CD=AD=10,∵DE=4=a,∴CE=CD﹣DE=6,由阅读材料知DE+BF=EF=b,FB=c,∴EF=4+c,CF=BC﹣BF=10﹣c,在Rt△CEF中,CF2+CE2=EF2,∴(10﹣c)2+62=(c+4)2,解得c=30 7,∴b=EF=4+c=58 7,而a=4,∴正方形ABCD的关联方程为4x2―587x+307=0,化简整理得14x2﹣29x+15=0,故答案为:14x2﹣29x+15=0;(2)如图:由阅读材料知,正方形ABCD的关联方程2x2﹣bx+3=0存在常数根x=1,∴2×12﹣b+3=0,解得b=5,∴正方形ABCD的关联方程是2x2﹣5x+3=0,∴DE=2,BF=3,EF=5,设正方形ABCD 的边长为m ,在Rt △CEF 中,CF 2+CE 2=EF 2,∴(m ﹣2)2+(m ﹣3)2=52,解得m =6,∴正方形ABCD 的边长为6,∴正方形ABCD 的面积为36,故答案为:36.24.(12分)教材再现:(1)如图1,在矩形ABCD 中,AB =3,AD =4,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE +PF 的值为 125 .知识应用:(2)如图2,在矩形ABCD 中,点M ,N 分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点C 1处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM ,BC 的垂线,垂足分别为E 和F ,以PE ,PF 为邻边作平行四边形PEQF ,若DM =13,CN =5,▱PEQF 的周长是否为定值?若是,请求出▱PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边△ABC 外一点时,过点P 分别作直线AB 、AC 、BC 的垂线、垂足分别为点E 、D 、F .若PE +PF ﹣PD =3,请直接写出△ABC 的面积.【分析】(1)由矩形的性质得出S 矩形ABCD =12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,再由勾股定理得AC =5,则S △AOD =3,OA =OD =52,然后由三角形面积即可得出结论;(2)先求DM =BM =BN =13,则AD =BC =18,再由勾股定理得AB =12,然后由三角形面积求出PE +PF =12,即可解决问题;(3)由S △ABC =S △ABP +S △BCP ﹣S △ACP ,可求AB 的长,从而求出S △ABC .【解答】解:(1)如图1,设AC 与BD 的交点为O ,连接PO ,∵四边形ABCD 是矩形,∴S 矩形ABCD =AB •BC =3×4=12,OA =OC =OB =OD ,S △ABD =S △BCD ,∠ABC =90°,BC =AD =4,∴AC ==5,S △AOD =S △ABO =S △BOC =S △COD ,∴S △AOD =14S 矩形ABCD =14×12=3,OA =OD =12AC =52,∴S △AOD =S △AOP +S △DOP =12OA •PE +12OD •PF =12OA (PE +PF )=12×52×(PE +PF )=3,解得:PE +PF =125,故答案为:125;(2)▱PEQF 的周长是定值,理由如下:∵四边形ABCD 是矩形,∴AD =BC ,∠A =∠ABC =90°,AD ∥BC ,∴∠DMN =∠BNM ,连接BP ,过点M 作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH =AB ,由折叠的性质得:DM =BM ,∠DMN =∠BMN ,∴∠BNM =∠BMN ,∴DM =BM =BN =13,∴AD =BC =BN +CN =13+5=18,∴AM =AD ﹣DM =18﹣13=5,在Rt △ABM 中,由勾股定理得:AB ===12,∴MH =12,∵S △BMN =S △PBM +S △PBN ,PE ⊥BM ,PF ⊥BN ,∴12BN •MH =12BM •PE +12BN •PF ,∵BM =BN ,∴PE +PF =MH =12,∴▱PEGF 的周长=2(PE +PF )=2×12=24;(3)如图3,连接AP ,BP ,CP ,∵S △ABC =S △ABP +S △BCP ﹣S △ACP ,2=12AB •PE +12BC •PF ―12AC •PD=PE +PF ﹣PD ,∵PE +PF ﹣PD =3,∴AB =∴S △ABC =2=。
北师大版数学九年级上册期中考试试卷带答案解析
北师大版数学九年级上册期中考试试卷一、选择题(本大题共10个小题,每小题3分,共30分).1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.43.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4B.3C.2D.4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.5.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定6.如图,AB∥CD∥EF,则在图中下列关系式一定成立的是()A.B.C.D.7.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是()A.2x2=9.5 B.2(1+x)=9.5C.2(1+x)2=9.5 D.2+2(1+x)+2(1+x)2=9.58.根据下列表格对应值:x 3.24 3.25 3.26ax2+bx+c ﹣0.02 0.01 0.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x <3.289.若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A.m>B.m≥C.m>且m≠2 D.m≥且m≠210.如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为()A.﹣B.C.﹣D.不确定二、填空题(本大题共8小题,每小题3分,共24分.)11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加条件,才能保证四边形EFGH是矩形.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= cm.13.若,则的值为.14.已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为.15.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.16.在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离约为25厘米,则甲、乙两地的实际距离约为千米.17.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得.18.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.三、解答题19.解下列方程(1)25x2+10x+1=0(2)(y+2)2=(3y﹣1)2.20.已知:平行四边形ABCD的两边AB、BC的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)试说明:无论m取何值方程总有两个实数根(2)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.22.小莉的爸爸买了某演唱会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用树状图或列表的方法表示出两张牌数字相加和的所有可能出现的结果;(2)哥哥设计的游戏规则公平吗?为什么?若不公平,请设计一种公平的游戏规则.23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.24.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?25.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分).1.下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形【考点】命题与定理.【分析】利用特殊四边形的判定定理对个选项逐一判断后即可得到正确的选项.【解答】解:A、一组邻边相等的平行四边形是菱形,故选项错误;B、正确;C、对角线垂直的平行四边形是菱形,故选项错误;D、两组对边平行的四边形才是平行四边形,故选项错误.故选:B.2.下面关于x的方程中:①ax2+bx+c=0;②3(x﹣9)2﹣(x+1)2=1;③x+3=;④(a2+a+1)x2﹣a=0;(5)=x﹣1,一元二次方程的个数是()A.1 B.2 C.3 D.4【考点】一元二次方程的定义.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.【解答】解:①ax2+bx+c=0的二次项系数可能为0;②3(x﹣9)2﹣(x+1)2=1是一元二次方程;③x+3=不是整式方程;④(a2+a+1)x2﹣a=0整理得[(a+)2+]x2﹣a=0,由于[(a+)2+]>0,故(a2+a+1)x2﹣a=0是一元二次方程;⑤=x﹣1不是整式方程.故选B.3.如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则△AEF的面积是()A.4B.3C.2D.【考点】菱形的性质.【分析】首先利用菱形的性质及等边三角形的判定可得判断出△AEF 是等边三角形,再根据三角函数计算出AE=EF的值,再过A作AM⊥EF,再进一步利用三角函数计算出AM的值,即可算出三角形的面积.【解答】解:∵四边形ABCD是菱形,∴BC=CD,∠B=∠D=60°,∵AE⊥BC,AF⊥CD,∴BC×AE=CD×AF,∠BAE=∠DAF=30°,∴AE=AF,∵∠B=60°,∴∠BAD=120°,∴∠EAF=120°﹣30°﹣30°=60°,∴△AEF是等边三角形,∴AE=EF,∠AEF=60°,∵AB=4,∴BE=2,∴AE==2,∴EF=AE=2,过A作AM⊥EF,∴AM=AE•sin60°=3,∴△AEF的面积是: EF•AM=×2×3=3.故选:B.4.在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球的标号之和大于4的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球的标号之和大于4的有10种情况,∴两次摸出的小球的标号之和大于4的概率是: =.故选:C.5.如图,已知矩形ABCD中,R、P分别是DC、BC上的点,E、F分别是AP、RP的中点,当P在BC上从B向C移动而R不动时,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定【考点】三角形中位线定理.【分析】因为R不动,所以AR不变.根据中位线定理,EF不变.【解答】解:连接AR.因为E、F分别是AP、RP的中点,则EF为△APR的中位线,所以EF=AR,为定值.所以线段EF的长不改变.故选:C.6.如图,AB∥CD∥EF,则在图中下列关系式一定成立的是()A.B.C.D.【考点】平行线分线段成比例.【分析】根据AB∥CD∥EF,再利用平行线分线段成比例定理以及比例的性质进行变形,即可得出正确答案.【解答】解:∵AB∥CD∥EF,∴=, =,,;故选C.7.某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是()A.2x2=9.5 B.2(1+x)=9.5C.2(1+x)2=9.5 D.2+2(1+x)+2(1+x)2=9.5【考点】由实际问题抽象出一元二次方程.【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果教育经费的年平均增长率为x,根据从2013年到2015年共投入教育经费9.5亿元即可得出方程.【解答】解:设教育经费的年平均增长率为x,则2014的教育经费为:2(1+x)万元,2015的教育经费为:2(1+x)2万元,那么可得方程:2+2(1+x)+2(1+x)2=9.5.故选D.8.根据下列表格对应值:x 3.24 3.25 3.26ax2+bx+c ﹣0.02 0.01 0.03判断关于x的方程ax2+bx+c=0(a≠0)的一个解x的范围是()A.x<3.24 B.3.24<x<3.25 C.3.25<x<3.26 D.3.25<x <3.28【考点】估算一元二次方程的近似解.【分析】观察表格可知,随x的值逐渐增大,ax2+bx+c的值在3.24~3.25之间由负到正,故可判断ax2+bx+c=0时,对应的x的值在3.24<x<3.25之间.【解答】解:由图表可知,ax2+bx+c=0时,3.24<x<3.25.故选B.9.若关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,那么m的取值范围是()A.m>B.m≥C.m>且m≠2 D.m≥且m≠2【考点】根的判别式.【分析】根据一元二次方程的定义以及方程有解,结合根的判别式即可得出关于m的一元二次不等式组,解不等式即可得出结论.【解答】解:∵关于x 的一元二次方程(m﹣2)2x2+(2m+1)x+1=0有解,∴,解得:m≥且m≠2.故选D.10.如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1、B1、C1、D1,顺次连接得到四边形A1B1C1D1,再取各边中点A2、B2、C2、D2,顺次连接得到四边形A2B2C2D2,…,依此类推,这样得到四边形A n B n C n D n,则四边形A n B n C n D n的面积为()A.﹣B.C.﹣D.不确定【考点】三角形中位线定理;菱形的判定与性质;矩形的判定与性质.【分析】根据三角形的面积公式,可以求得四边形ABCD的面积是16;根据三角形的中位线定理,得A1B1∥AC,A1B1=AC,则△BA1B1∽△BAC,得△BA1B1和△BAC的面积比是相似比的平方,即,因此四边形A1B1C1D1的面积是四边形ABCD的面积的,依此类推可得四边形A n B n C n D n的面积.【解答】解:∵四边形A1B1C1D1的四个顶点A1、B1、C1、D1分别为AB、BC、CD、DA的中点,∴A1B1∥AC,A1B1=AC,∴△BA1B1∽△BAC,∴△BA1B1和△BAC的面积比是相似比的平方,即,又四边形ABCD的对角线AC=8,BD=4,AC⊥BD,∴四边形ABCD的面积是16,∴S A1B1C1D1=×16,∴四边形A n B n C n D n的面积=16×=.故选B.二、填空题(本大题共8小题,每小题3分,共24分.)11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加AC⊥BD 条件,才能保证四边形EFGH是矩形.【考点】矩形的判定;三角形中位线定理.【分析】根据三角形的中位线平行于第三边,HG∥BD,EH∥AC,根据平行线的性质∠EHG=∠1,∠1=∠2,根据矩形的四个角都是直角,∠EFG=90°,所以∠2=90°,因此AC⊥BD.【解答】解:∵G、H、E分别是BC、CD、AD的中点,∴HG∥BD,EH∥AC,∴∠EHG=∠1,∠1=∠2,∴∠2=∠EHG,∵四边形EFGH是矩形,∴∠EHG=90°,∴∠2=90°,∴AC⊥BD.故还要添加AC⊥BD,才能保证四边形EFGH是矩形.12.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长= 9 cm.【考点】三角形中位线定理;矩形的性质.【分析】先求出矩形的对角线AC,根据中位线定理可得出EF,继而可得出△AEF的周长.【解答】解:在Rt△ABC中,AC==10cm,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,EF=OD=BD=AC=cm,AF=AD=BC=4cm,AE=AO=AC=cm,∴△AEF的周长=AE+AF+EF=9cm.故答案为:9.13.若,则的值为.【考点】比例的性质.【分析】先由,根据分式的基本性质得出===,再根据等比性质即可求解.【解答】解:∵,∴===,∴=.故答案为.14.已知x1,x2是方程x2+6x+3=0的两实数根,则+的值为10 .【考点】根与系数的关系.【分析】先根据根与匇的关系得到x1+x2=﹣6,x1x2=3,再运用通分和完全平方公式变形得到+=,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=﹣6,x1x2=3,所以+====10.故答案为10.15.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.16.在比例尺为1:5 000 000的地图上,量得甲、乙两地的距离约为25厘米,则甲、乙两地的实际距离约为1250 千米.【考点】比例线段.【分析】根据比例尺=图上距离:实际距离,列出比例式直接求解即可.【解答】解:设甲、乙两地的实际距离是x厘米,则:1:5 000 000=25:x,∴x=125 000 000,∵125 000 000厘米=1250千米,∴两地的实际距离是1250千米.故答案为1250.17.现有一块长80cm、宽60cm的矩形钢片,将它的四个角各剪去一个边长为xcm的小正方形,做成一个底面积为1500cm2的无盖的长方体盒子,根据题意列方程,化简可得x2﹣70x+825=0 .【考点】由实际问题抽象出一元二次方程.【分析】本题设小正方形边长为xcm,则长方体盒子底面的长宽均可用含x的代数式表示,从而这个长方体盒子的底面的长是(80﹣2x)cm,宽是(60﹣2x)cm,根据矩形的面积的计算方法即可表示出矩形的底面面积,方程可列出.【解答】解:由题意得:(80﹣2x)(60﹣2x)=1500整理得:x2﹣70x+825=0,故答案为:x2﹣70x+825=0.18.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【考点】菱形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF是等边三角形,再利用菱形的边长为4求出时间t的值.【解答】解:延长AB至M,使BM=AE,连接FM,∵四边形ABCD是菱形,∠ADC=120°∴AB=AD,∠A=60°,∵BM=AE,∴AD=ME,∵△DEF为等边三角形,∴∠DAE=∠DFE=60°,DE=EF=FD,∴∠MEF+∠DEA═120°,∠ADE+∠DEA=180°﹣∠A=120°,∴∠MEF=∠ADE,∴在△DAE和△EMF中,∴△DAE≌EMF(SAS),∴AE=MF,∠M=∠A=60°,又∵BM=AE,∴△BMF是等边三角形,∴BF=AE,∵AE=t,CF=2t,∴BC=CF+BF=2t+t=3t,∵BC=4,∴3t=4,∴t=故答案为:.三、解答题19.解下列方程(1)25x2+10x+1=0(2)(y+2)2=(3y﹣1)2.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)直接开平方法求解可得.【解答】解:(1)∵(5x+1)2=0,∴5x+1=0,解得:x1=x2=﹣;(2)∵y+2=±(3y﹣1),即y+2=3y﹣1或y+2=﹣3y+1,解得:y=﹣或y=.20.已知:平行四边形ABCD的两边AB、BC的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)试说明:无论m取何值方程总有两个实数根(2)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?【考点】平行四边形的性质;根的判别式;菱形的判定.【分析】(1)利用根的判别式求出△的符号进而得出答案;(2)利用菱形的性质以及一元二次方程的解法得出答案;(3)将AB=2代入方程解得m=,进而得出x的值.【解答】(1)证明:∵关于x的方程x2﹣mx+﹣=0,△=m2﹣2m+1=(m﹣1)2∵无论m取何值(m﹣1)2≥0∴无论m取何值方程总有两个实数根;(2)解:∵四边形ABCD是菱形∴AB=BC即(m﹣1)2=0,∴m=1代入方程得:∴∴x1=x2=,即菱形的边长为;(3)解:将AB=2代入方程x2﹣mx+﹣=0,解得:m=,将代入方程,x2﹣mx+﹣=0,解得:x1=2,x2=,即BC=,故平行四边形ABCD的周长为5.21.已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.【考点】勾股定理的逆定理.【分析】令=k.根据a+b+c=12,得到关于k的方程,求得k值,再进一步求得a,b,c的值,从而判定三角形的形状.【解答】解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.22.小莉的爸爸买了某演唱会的一张门票,她和哥哥两人都很想去观看,可门票只有一张,读九年级的哥哥想了一个办法,拿了八张扑克牌,将数字为1,2,3,5的四张牌给小莉,将数字为4,6,7,8的四张牌留给自己,并按如下游戏规则进行:小莉和哥哥从各自的四张牌中随机抽出一张,然后将抽出的两张牌数字相加,如果和为偶数,则小莉去;如果和为奇数,则哥哥去.(1)请用树状图或列表的方法表示出两张牌数字相加和的所有可能出现的结果;(2)哥哥设计的游戏规则公平吗?为什么?若不公平,请设计一种公平的游戏规则.【考点】游戏公平性;列表法与树状图法.【分析】(1)用列表法列举出所以出现的情况,再用概率公式求出概率即可.(2)游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两纸牌上的数字之和为偶数或奇数时的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)4 6 7 81 1+4=5 1+6=7 1+7=8 1+8=92 2+4=6 2+6=8 2+7=9 2+8=103 3+4=7 3+6=9 3+7=10 3+8=115 5=4=9 5+6=11 5+7=12 5+8=13由上表可知,两张牌数字相加和的所有可能出现的结果共有16种.(2)不公平.因为上述16种结果出现的可能性相同,而和为偶数的结果有6种,和为奇数的结果有10种,即小莉去的概率为: =,哥哥去的概率为: =,∵<,∴小莉去的概率低于哥哥去的概率.可把小莉的数字5的牌与哥哥数字4的牌对调,使两人去的概率相同,即游戏公平.23.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD 是正方形?请说明你的理由.【考点】正方形的判定;平行四边形的判定与性质;菱形的判定.【分析】(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.24.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【考点】一元二次方程的应用.【分析】设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x)元,由于这种小型西瓜每降价O.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.【解答】解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x]﹣24=200.方程可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.因为为了促销故x=0.2不符合题意,舍去,∴x=0.3.答:应将每千克小型西瓜的售价降低0.3元.25.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP 之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.【解答】(1)证明:在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)解:在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).附赠材料:考试做题技巧会学习,还要会考试时间分配法:决定考场胜利的重要因素科学分配答题时间,是决定考场能否胜利的重要因素。
北师大版九年级上册数学期中考试试卷及答案
北师大版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.菱形具有而矩形不一定具有的性质是 ( )A .对角线互相垂直B .对角线相等C .对角线互相平分D .对角互补 2.符合下列条件之一的四边形不一定是菱形的是( )A .四条边相等B .两组邻边分别相等C .对角线相互垂直平分D .两条对角线分别平分一组对角3.一元二次方程22310x x ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定460,则它们重叠部分的面积为( )A B .1 C D .5.方程2210x x --=的两个解为1x 和2x ,则12x x +的值为( )A .2B .2-C .1D .1-6.矩形ABCD 中,4AB =,8BC =,矩形CEFG 上的点G 在CD 边,EF a =,2CE a =,连接BD 、BF 、DF ,则BDF 的面积是( )A .32B .16C .8D .16+2a 7.方程2(1)4x +=的解是( )A .13x =-,23x =B .13x =-,21x =C .11x =-,21x =D .11x =,23x =8.菱形的两条对角线的长分别是6和8,则这个菱形的面积是( )A .20B .24C .48D .509.已知下列命题:①两条对角线相等的四边形是矩形;②圆的切线垂直于半径;③圆周角等于圆心角的一半;④若半径分别为3,1的两圆相切,则两圆的圆心距为2或4.其中正确命题的个数是( )A .1B .2C .3D .410.如图,四边形ABCD 是菱形,AC =8,DB =6,DH ⊥AB 于H ,则DH 等于( )A .245B .125C .5D .4二、填空题11.某种药品原价为60元/盒,经过连续两次降价后售价为48.6元/盒.设平均每次降价的百分率为x ,则根据题意,可列方程为______.12.如图,已知正方形ABCD 的边长为2,E 是BC 边上的动点,BF AE ⊥交CD 于点F ,垂足为G ,连结CG .则CG 的最小值为________.13.如图,在ABC 中,点D 是边BC 上一动点,//DE AC ,//DF AB ,对ABC 及线段AD 添加条件________使得四边形AEFD 是正方形.14.方程()2x + ()3x + ()()2693x x x ++=的解的个数为________.15.若一元二次方程20x x k --=有两个不相等的实数根,则k ________.16.在ABC 中,已知45ABC ∠=,BD AC ⊥于D ,2CD =,3AD =,则BD 的长为________.17.已知一元二次方程220x mx --=的两根互为相反数,则m =________.三、解答题18.解方程:()()()11332x x +-= ()222310x x +-=(用配方法)19.如图,ABC 中,90C ∠=,AD 平分BAC ∠,ED BC ⊥,//DF AB ,求证:AD 与EF 互相垂直平分.20.如图,在ABC 中,AB AC =,D 为BC 的中点,//AE BC ,//DE AB .试说明: ()1AE DC =;()2四边形ADCE 为矩形.21.百货大楼服装柜在销售中发现:某品牌童装每件成本60元,现以每件100元销售,平均每天可售出20件.为了迎接“五•一”劳动节,商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多销售2件.要想平均每天销售这种童装盈利1200元,请你帮商场算一算,每件童装应定价多少元?22.如图,在Rt △ABC 中,∠ACB=90°,AC=6,BC=8,点D 为边CB 上的一个动点(点D 不与点B 重合),过D 作DO ⊥AB ,垂足为O ,点B′在边AB 上,且与点B 关于直线DO 对称,连接DB′,AD .(1)求证:△DOB ∽△ACB ;(2)若AD 平分∠CAB ,求线段BD 的长;(3)当△AB′D 为等腰三角形时,求线段BD 的长.23.在梯形ABCD 中,//AD BC ,//EF BC ,且AE :EB=3:2,AD=16,BC=21,求EF 的长.24.在一个不透明的口袋里装有颜色不同的黑、白两种颜色的球共4个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n 很大时,摸到白球的频率将会接近 ;(精确到0.1)(2)试估算口袋中白球有多少个?(3)若从中先摸出一球,放回后再摸出一球,请用列表或树状图的方法(只选其中一种),求两次摸到的球颜色相同的概率.25.如图,在Rt ABC △中,90ACB ︒∠=,D 为AB 的中点,//AE CD ,//CE AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若60B ︒∠=,6BC =,求菱形ADCE 的高.参考答案1.A【详解】菱形的对角线互相垂直平分,矩形的对角线相等互相平分.则菱形具有而矩形不一定具有的性质是:对角线互相垂直故选A2.B【分析】根据菱形的判定定理即可判断A;举出反例图形即可判断B;根据线段垂直平分线定理推出AB=AD,BC=CD,AB=BC,推出AB=BC=CD=AD,根据菱形的判定推出即可判断C;求出四边形ABCD是平行四边形,推出即可判断D.【详解】A、∵AB=BC=CD=AD,∴四边形ABCD是菱形,正确,故本选项错误;B、根据AB=AD,BC=CD,不能推出四边形ABCD是菱形,如图2,错误,故本选项正确;C、如图1, ∵AC⊥BD,OD=OB,∴AB=AD,BC=CD,∵BD⊥AC,AO=CO,∴AB=BC,∴AB=BC=CD=AD,∴四边形ABCD是菱形,正确,故本选项错误;D、如图1, ∵AC平分∠BAD和∠BCD,∴∠1=∠2, ∠3=∠4,∵∠1+∠3+∠ABC=180°, ∠2+∠4+∠ADC=1880°,∴∠ABC=∠ADC,同理可证∠BAD=∠BCD,∴四边形ABCD是平行四边形,∴AD∥BC,∵∠1=∠2,∴∠1=∠3,∴AB=BC,∴平行四边形ABCD是菱形,正确,故本选项错误.故选B.【点睛】本题考查了菱形的判定,平行四边形的性质和判定,线段垂直平分线性质,平行线的性质,角平分线定义,等腰三角形的性质和判定等知识点的综合运用,题目比较好.3.A【详解】试题分析:∵△=2342110-⨯⨯=>,∴方程有两个不相等的实数根.故选A.考点:根的判别式.4.D【分析】过A作AE⊥BC于E,AF⊥CD于F,则AE=AF∠AEB=∠AFD=90°,求出四边形ABCD是平行四边形,证出△AEB≌△AFD,推出AB=AD,求出四边形ABCD是菱形,根据菱形的性质得出AB=BC,解直角三角形求出AB,根据菱形的面积公式求出即可.【详解】过A作AE⊥BC于E,AF⊥CD于F,则AE=AF∠AEB=∠AFD=90°.∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∴∠ABE=∠ADF=60°.在△AEB和△AFD中,∵ABE ADFAEB AFDAE AF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEB≌△AFD,∴AB=AD,∴四边形ABCD是菱形,∴AB=BC.在Rt△AEB中,∠AEB=90°,AE∠ABE=60°,∴BE=tan60AE︒=1,AB=sin60AE︒=2,∴BC=AB=2,∴重叠部分的面积是BC×AE故选D.【点睛】本题考查了平行四边形的判定,菱形的性质和判定,解直角三角形,全等三角形的性质和判定的应用,能求出四边形ABCD 是菱形是解答此题的关键,难度适中.5.A【解析】【分析】根据根与系数的关系直接回答问题.【详解】∵方程2210x x --=的两个解为1x 和2x ,∴()122 2.x x +=--=故选A.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键. 6.B【解析】【分析】根据两个矩形面积之和加上三角形DGF 面积,减去△ABD 面积与△BEF 面积,求出△BDF 面积即可.【详解】根据题意得:△BDF 的面积2221118422(4)84(28)322416416222a a a a a a a a a a a ,=⨯+⋅+⨯--⨯⨯-+=++----=故选B.【点睛】考查矩形的性质,掌握矩形以及三角形的面积公式是解题的关键.7.B【解析】【分析】用直接开方法解方程即可.【详解】2(1)4x +=12x +=±,所以13x =-,21x =;故选:B.【点睛】考查一元二次方程的解法,掌握直接开方法是解题的关键.8.B【分析】由菱形的两条对角线的长分别是6和8,根据菱形的面积等于对角线乘积的一半,即可求得答案.【详解】∵菱形的两条对角线的长分别是6和8,∴这个菱形的面积是:12×6×8=24. 故选B .【点睛】本题考查了菱形的性质.此题比较简单,注意熟记定理是解答此题的关键.9.A【解析】【分析】根据矩形的判定,圆的切线的性质,圆周角定理,两圆相切的位置关系即可作出判断.【详解】①中,必须在平行四边形的基础上,错误;②中,应是垂直于过切点的半径,错误;③中,必须是同弧或等弧所对,错误;④中,两圆相切,可能内切,也可能外切,正确.故选:A.【点睛】考查圆与圆的位置关系,矩形的判定,圆周角定理,切线的性质,比较基础,难度不大. 10.A【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.【详解】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB5,∵S菱形ABCD =12AC BD AB DE⨯⨯=⨯,∴18652DH⨯⨯=⨯,∴DH=245,故选:A.【点睛】本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S 菱形ABCD = 12×AC×BD =AB×DH 是解此题的关键.11.2601x 48.6-=() 【详解】试题分析:平均每次降价的百分率为x ,第一次降价后售价为60(1-x),第二次降价后售价为60(1-x) (1-x)=601-x)2.据此列出方程:260(1x)48.6-=.考点:一元二次方程的应用(增长率问题).121【详解】解:由于OC 和OG 的长度是一定的,因此当O 、G 、C 在同一条直线上时,CG 取最小值,CG 的最小值为.1.【点睛】本题考查正方形的性质.13.ABC 是等腰直角三角形,AD 是角平分线【分析】正方形是特殊的菱形.【详解】首先,四边形AEDF 是平行四边形,当∠BAC=90°时,四边形AEDF 为矩形,只需令边相等即可.当AB=AC 时成立,所以增加的条件是ABC 是等腰直角三角形,AD 是角平分线.【点睛】掌握四边形的性质是解题的关键.14.2【分析】用图象法求解,分别画出y =(x +2 )(x +3 )(x +6)(x +9)与y =3x 2的图象,根据两图象的交点个数即可判断方程解的个数.【详解】y =(x +2 )(x +3 )(x +6)(x +9)与y =3x 2的图象如图:由图象可知有两个交点,故解的个数为2.故答案为2.【点睛】本题考查了高次方程,难度较大,关键是先画出两个函数的大致图象进行求解.15..14>-【分析】根据0>,得出关于k 的不等式求出k 的值;【详解】∵()()214141,k k =--⨯⨯-=+而方程有两个不相等的实数根,∴0>,即410k +> , 解得:1.4k >-故答案为:1.4>-【点睛】考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.16.6【解析】【分析】由题意可得出△ABD ≌△ABE ,△CBD ≌△CBF ,推出∠DBA=∠EBA ,∠DBC=∠FBC ,求出四边形BEGF 是正方形,设BD=x ,则BE=EG=GF=x ,AG=x-3,CG=x-2,在Rt △,AGC 中根据勾股定理求出(x-3)2+(x-2)2=(2+3)2,求出即可.【详解】分别以BA 和BC 为对称轴在△ABC 的外部作△BDA 和△BDC 的对称图形△BEA 和△BFC ,如图,由题意可得:△ABD ≌△ABE ,△CBD ≌△CBF∴∠DBA =∠EBA ,∠DBC =∠FBC ,又∵45ABC ∠=∴90EBF ∠=,又∵AD ⊥BC ,∴90,90E ADB F BDC ∠=∠=∠=∠=,又∵BE =BD ,BF =BD ,∴BE =BF ,∴四边形BEGF 是正方形,设BD =x ,则BE =EG =GF =x ,∵CD =2,AD =3,∴BE =2,CF =3∴AG =x −3,CG =x −2,在Rt △,AGC 中,222AG CG AC ,+= ()()()2223223x x -+-=+, 126,1x x ==-(舍去),即BD =6,故答案为6.【点睛】考查正方形的判定与性质,全等三角形的判定与性质,勾股定理,旋转的性质,掌握正方形的判定与性质是解题的关键.17.0【解析】【分析】根据题意可得x 1+x 2=0,然后根据根与系数的关系可得x 1+x 2=m ,据此求出m 的值.【详解】∵方程的两根互为相反数,∴120x x +=,∵12x x m +=,∴m =0.故答案为:0.【点睛】考查一元二次方程()200++=≠ax bx c a 根与系数的关系, 熟记公式1212,,b c x x x x a a+=-=是解决本题的关键.18.()117x =,25x =-; ()12332,44x x =-=-. 【解析】【分析】 ()1 用因式分解法解方程即可.()2用配方法解方程即可.【详解】()()()11332x x +-=去括号,得22332x x --=,移项及合并同类项,得22350x x --=,∴()()750x x -+=∴70x -=或50x +=,解得,17x =,25x =-;()222310x x +-=(用配方法)23212x x ⎛⎫+= ⎪⎝⎭, 23122x x ⎛⎫+= ⎪⎝⎭, 2391()4162x +-=, 2317()416x +=,∴344x +=±,∴34x =-,∴1233,44x x =-=. 【点睛】考查一元二次方程的解法,熟练掌握直接开方法,配方法,公式法,因式分解法是解题的关键.19.见解析【解析】【分析】欲证明AD 与EF 互相垂直平分,只需推知四边形AEDF 为菱形即可.【详解】∵如图,ABC 中,90C ∠=,ED BC ⊥,∴//ED AC ,则//ED AF .又∵//DF AB ,∴四边形AEDF 为平行四边形.又AD 平分BAC ∠,∴平行四边形AEDF 为菱形,∴AD 与EF 互相垂直平分.【点睛】考查菱形的判定与性质,掌握菱形的判定方法是解题的关键.20.见解析【解析】【分析】(1)根据已知条件可以判定四边形ABDE 是平行四边形,则其对边相等:AE=BD .结合中点的性质得到AE=CD ;(2)依据“对边平行且相等”的四边形是平行四边形判定四边形ADCE 是平行四边形,又由“有一内角为直角的平行四边形是矩形”证得结论.【详解】()1如图,∵//AE BC ,∴//AE BD .又∵//DE AB ,∴四边形ABDE 是平行四边形,∴AE BD =.∵D 为BC 的中点,∴BD DC =,∴AE DC=;()2∵//AE CD,AE BD DC==,即AE DC=,∴四边形ADCE是平行四边形.又∵AB AC=,D为BC的中点,∴AD CD⊥,∴平行四边形ADCE为矩形.【点睛】考查平行四边形的判定与性质,矩形的判定与性质,掌握平行四边形和矩形的判定方法是解题的关键.21.每件童装应定价80.【分析】根据题意可以列出相应的一元二次方程,从而可以求得每件童装应定价多少元,注意商场决定采取适当的降价措施,以扩大销售量,增加盈利,尽量减少库存,也就意味着在获得相同利润的前提下,要降价多的那种情况.【详解】设每件童装应降价x元,由题意得:(100﹣60﹣x)(20+2x)=1200,解得:x1=10,x2=20,因要减少库存,故取x=20,100-20=80答:每件童装应定价80元.【点睛】本题考查一元二次方程的应用,解答此类问题的关键是明确题意,列出相应的方程,注意要联系实际情况.22.(1)证明见试题解析;(2)5;(3)50 13.【详解】试题分析:(1)公共角和直角两个角相等,所以相似.(2)由(1)可得三角形相似比,设BD =x ,CD ,BD ,BO 用x 表示出来,所以可得BD 长.(3)同(2)原理,BD =B′D =x , AB′,B′O ,BO 用x 表示,利用等腰三角形求BD 长.试题解析:(1)证明:∵DO ⊥AB ,∴∠DOB =90°,∴∠ACB =∠DOB =90°,又∵∠B =∠B .∴△DOB ∽△ACB .(2)∵AD 平分∠CAB ,DC ⊥AC,DO ⊥AB,∴DO =DC ,在 Rt △ABC 中,AC =6,BC =,8,∴AB =10,∵△DOB ∽△ACB,∴DO ∶BO ∶BD =AC ∶BC ∶AB =3∶4∶5,设BD =x ,则DO =DC =35x ,BO =45x , ∵CD +BD =8,∴35x +x =8,解得x =,5,即:BD =5. (3)∵点B 与点B′关于直线DO 对称,∴∠B =∠OB′D ,BO =B′O =45x ,BD =B′D =x , ∵∠B 为锐角,∴∠OB′D 也为锐角,∴∠AB′D 为钝角,∴当△AB′D 是等腰三角形时,AB′=DB′,∵AB′+B′O +BO =10,∴x +45x +45x =10,解得x =5013,即BD =5013, ∴当△AB′D 为等腰三角形时,BD =5013. 点睛:角平分线问题的辅助线添加及其解题模型.①垂两边:如图(1),已知BP 平分ABC ∠,过点P 作PA AB ⊥,PC BC ⊥,则PA PC =. ②截两边:如图(2),已知BP 平分MBN ∠,点A BM 上,在BN 上截取BC BA =,则ABP ∆≌CBP ∆.③角平分线+平行线→等腰三角形:如图(3),已知BP 平分ABC ∠,//PA AC ,则AB AP =;如图(4),已知BP 平分ABC ∠,//EF PB ,则BE BF =.(1) (2) (3) (4) ④三线合一(利用角平分线+垂线→等腰三角形):如图(5),已知AD 平分BAC ∠,且AD BC ⊥,则AB AC =,BD CD =.(5)23.EF 的长为19.【分析】如图(见解析),先根据平行四边形的判定与性质可得16CH AD ==,16FG =,再根据平行线分线段成比例定理推论可得3EG =,然后根据线段的和差即可得.【详解】如图,过点A 作//AH DC ,分别交EF 于点G ,BC 于点H ,∵//AD BC ,//AH DC ,∴四边形AHCD 是平行四边形,∴16CH AD ==,同理可得:16FG =,∵21BC =,∴21165BH BC CH =-=-=,∵//EF BC ,∴::AE AB EG BH =,:3:2AE EB =,∴:3:5AE AB =,∴:53:5EG =,解得3EG =,∴31619EF EG FG =+=+=.【点睛】本题考查了平行四边形的判定与性质、平行线分线段成比例定理推论等知识点,通过作辅助线,构造平行四边形是解题关键.24.(1)0.5;(2)2个;(3)12. 【分析】(1)由表的第三行从左往右看,摸到白球的频率越来越接近0.5,所以答案是0.5;(2)由(1)得到的频率可以估算出概率,再用概率乘以球的总个数可以得到白球的个数;(3)用列表法把所有结果列举出来,再用两个球颜色相同的结果数目除以总的结果数目即可得到答案.【详解】解:(1)由题可得:当n 很大时,摸到白球的频率接近0.5.故答案为:0.5;(2)由(1)摸到白球的概率为0.5,所以可估计口袋中白种颜色的球的个数=4×0.5=2(个);(3)列表得:由列表可得:共有16种等可能结果,其中两个球颜色相同的有8种可能,∴P(颜色相同)=816=12.【点睛】本题考查概率的综合应用,熟练掌握用频率估计概率的方法、用列表法计算概率的方法及概率的应用是解题关键.25.(1)见解析;(2)【分析】(1)先证明四边形ADCE是平行四边形,再由直角三角形斜边上的中线性质得出CD=1 2AB=AD,即可得出四边形ADCE为菱形;(2)过点D作DF⊥CE,垂足为点F;先证明△BCD是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt△CDF中,求出DF即可.【详解】解:(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,∵∠ACB=90°,D为AB的中点,∴CD=12AB=AD,∴四边形ADCE为菱形;(2)过点D作DF⊥CE,垂足为点F,如图所示:DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE∥AB,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt△CDF中,DF==【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.。
北师大版九年级上册数学期中考试试卷带答案-2022年
北师大版九年级上册数学期中考试试题2022年7月一、单选题1.萎形不一定具备的性质是()A.对边平行且相等B.对角相等C.对角线互相平分D.对角线相等2.一元二次方程x²+2x-3=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根3.若a、b、c、d是成比例线段,其中a=5,b=2.5,c=8,则线段d的长为()A.2B.4C.5D.64.如图,在矩形ABCD中,对角线AC,BD相交于点O,若∠AOB=60°,AC=10,则图中长度为5的线段共有()A.2条B.4条C.5条D.6条5.如图,AB//CD//EF,直线l1,l2与这三条平行线分别交于点A,C,E和点B,D,F,若AC=1,CE=3,BD=1.2,则BF的长为()A.2.4B.3.6C.4.8D.5.26.某农机厂四月份生产零件50万个,第二季度共生产零件182万个,设该厂五、六月份平均每月的增长率为x,x满足的方程是()A.50(1+x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)2=1827.在一个不透明的口袋中,装有一些除颜色外完全相同的红、黑、白三种颜色的小球.已知口袋中有红球5个,白球23个,且从口袋中随机摸出一个红球的概率是110,则口袋中黑球的个数为()A.22B.23C.25D.278.如图,E,F分别是正方形ABCD的边CD,AD上的点,且CE=DF,AE与BF交于点O,则下列结论①AE=BF;②AE⊥BF;③O为AE中点;④S△AOB=S四边形DEOF中,正确的有()A.4个B.3个C.2个D.1个二、填空题9.如果23ab=,那么b aa b-=+__________.10.定义一种运算“*”,其规则为a*b=a2﹣b2,则方程(x+2)*5=0的解为_____.11.有三张形状、大小、质地都相同的卡片,正面分别标有数字-1,2,3,将它们背面朝上,洗匀后随机抽取一张,不放回,再随机抽取一张,则抽取的两张卡片正面标有数字都是正数的概率为__________12.如图,在△ABC中,BD⊥AC于D,点E为AB的中点,AD=6,DE=5,则线段BD 的长等于________.13.如图,在菱形ABCD中,∠ABC=130°,EF垂直平分AD,交AD于点E,交对角线AC于点F,连接BF,则∠FBC的度数为___________14.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是_____.AD ,沿过点A的直线翻折,使点D落在BC边上15.如图,在矩形ABCD中,=6AB,10的点E处,折痕与边CD相交于点F,则CF的长为_____16.如图,在正方形ABCD中,E是边AB上一点,BE2,AE=3BE,P是对角线AC 上一动点,连接PB,PE,当点P在AC上运动时,△PBE周长的最小值为________三、解答题17.按指定的方法解方程:(1)x2+2-6=0;(公式法)(2)2(x+1)2=x2-1(因式分解法)18.先阅读以下材料,再按要求解答问.求代数式y²+4y+8的最小值.解∶y2+4y+8=y2+4y+4-4+8=y2+4y+4+4=(y+2)²+4,(y+2)2≥0,∴(y+2)2+4≥4∴y²+4y+8的最小值是4(1)求代数式x2+2x+4的最小值;(2)当m为何值时,代数式m2-6m+13有最小值,并求出这个最小值.19.防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C 三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.(1)小明从A测温通道通过的概率是________;(2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.20.如图,在平行四边形ABCD中,点E,G,F分别在AD,CD及对角线BD上,且EF//AB,FG//BC,若DE:DA=2:5,EF=4,求线段CG的长.21.某服装超市购进单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元.销售一段时间后发现:当销售单价为60元时,平均每月销售量为80件,而当销售单价每降低10元时,平均每月能多售出20件,同时,在销售过程中,每月还要支付其他费用450元,设销售单价为x元,平均月销售量为y件.(1)求出y与x的函数关系式,并写出自变量x的取值范围(2)当销售单价为多少元时,销售这种童装每月可获利1800元?22.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,点F,G在AB上,EF⊥AB,OG∥EF.(1)求证:四边形OEFG是矩形;(2)若AD=10,EF=4,求OE和BG的长.23.如图,在Rt△ABC中,∠C=90°,AC=30cm,BC-21cm,动点P从点B出发,以1cm/s的速度沿BC方向运动,动点Q从点C出发,以同样的速度沿CA方向运动,当点P 运动到点C时,点Q随之停止运动.(1)求运动多少s时,点P与点Q相距15cm;(2)在点P,Q运动的过程中,△PCQ的面积能否为56cm²?请说明理由.24.问题情境:如图1,点E为正方形ABCD内一点,∠AEB=90°,将Rt△ABE绕点B按顺时针方向旋转90°,得到△CBE′(点A的对应点为点C).延长AE交CE′于点F,连接DE.猜想证明:(1)试判断四边形BE'FE的形状,并说明理由;(2)如图2,若DA=DE,请猜想线段CF与FE'的数量关系并加以证明.参考答案1.D【解析】【分析】本题考查菱形的性质,菱形两组对边平行,四条边相等,两组对角相等,对角线互相垂直平分,以此可以求解.【详解】解:A、菱形的对边平行且四边相等,此选项说法正确,不符合题意;B、菱形的两组对角相等,此选项说法正确,不符合题意;C、菱形的对角线互相垂直平分,此选项说法正确,不符合题意;D、菱形的对角线不相等,此选项说法错误,符合题意.故选:D.【点睛】本题考查菱形的性质,熟悉菱形的性质是解题的关键.2.B【解析】【分析】计算一元二次方程的根的判别式,进而根据判别式的符号判断根的情况即可.【详解】由一元二次方程x²+2x -3=0,∴1,2,3a b c ===-,224212160b ac ∆=-=+=>,∴方程有两个不相等的实数根.故选B【点睛】本题考查了一元二次方程20ax bx c ++=(0a a b c ≠,,,为常数)的根的判别式24b ac ∆=-,理解根的判别式对应的根的三种情况是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.3.B【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.根据定义ad=cb ,将a ,b 及c 的值代入即可求得d .【详解】已知a ,b ,c ,d 是成比例线段,根据比例线段的定义得:ad=cb ,代入a=5cm ,b=2.5cm ,c=8cm ,解得:d=4.故线段d 的长为4cm.故选B.【点睛】本题考查成比例线段,解题突破口是根据定义进行计算即可.4.D【解析】【分析】根据矩形的性质以及等边三角形的判定与性质求解即可.【详解】解:∵四边形ABCD 为矩形,对角线AC ,BD 相交于点O ,∴OA=OB=OC=OD=12AC=5,∵∠AOB=60°,OA=OB,∴△AOB为等边三角形,∴AB=OA=OB=5,同理可得△COD为等边三角形,∴CD=OC=OD=5,∴长度为5的线段有OA、OB、OC、OD、AB、CD,共6条,故选:D.【点睛】本题考查矩形的性质以及等边三角形的判定与性质,理解并熟练运用矩形和等边三角形的性质是解题关键.5.C【解析】【分析】根据平行线分线段成比例定理列出比例式,求出BD,计算即可.【详解】解:∵AB//CD//EF,∴AC DB EC DF=,∴1 1.23DF =,∴DF=3.6,∴BF=BD+DF=1.2+3.6=4.8故答案为:4.8.【点睛】本题考查了平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.6.B【解析】【分析】设该厂五、六月份平均每月的增长率为x,根据题意第二季度共生产零件182万个,列一元二次方程即可.【详解】设该厂五、六月份平均每月的增长率为x,则50+50(1+x)+50(1+x)2=182故选B【点睛】本题考查了一元二次方程的应用,理解题意,列出一元二次方程是解题的关键.7.A【解析】【分析】设口袋中黑球的个数为x个,则随机摸出一个红球的结果有5次,所有等可能的结果有()523x++次,再利用概率的含义列方程,再解方程即可.【详解】解:设口袋中黑球的个数为x个,则51 52310x= ++2850,x∴+=22x∴=经检验:22x=是原方程的根,且符合题意;答:口袋中黑球的个数为22个.故选:A【点睛】本题考查的是随机事件的概率的含义,已知概率求数量,掌握利用随机事件的概率列方程是解题的关键.8.B【解析】【分析】根据正方形的性质得AB=AD=DC,∠BAD=∠D=90°,则由CE=DF易得AF=DE,根据“SAS”可判断△ABF≌△DAE,即可得AE与BF的关系;根据全等的性质得∠ABF=∠EAD,利用∠EAD+∠EAB=90°得到∠ABF+∠EAB=90°,则得AE与BF位置关系;连结BE,BE>BC,BA≠BE,而BO⊥AE,根据垂直平分线的性质得到OA与OE关系;最后根据△ABF ≌△DAE 得S △ABF=S △DAE ,则S △ABF-S △AOF=S △DAE-S △AOF ,即S △AOB 与S 四边形DEOF 的关系.【详解】解:连结BE,如图,∵四边形ABCD 为正方形,∴AB=AD=DC ,∠BAD=∠D=90°,而CE=DF ,∴AF=DE ,在△ABF 和△DAE 中AB DABAD ADE AF DE=⎧⎪=⎨⎪=⎩∠∠∴△ABF ≌△DAE ,∴AE=BF ,所以①正确;∴∠ABF=∠EAD ,而∠EAD+∠EAB=90°,∴∠ABF+∠EAB=90°,∴∠AOB=90°,∴AE ⊥BF ,所以②正确;∵BE >BC ,∴BA≠BE ,而BO ⊥AE ,∴OA≠OE ,所以③错误;∵△ABF ≌△DAE ,∴S △ABF=S △DAE ,∴S△ABF-S△AOF=S△DAE-S△AOF,∴S△AOB=S四边形DEOF,所以④正确.正确的有3个.故选B.【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.也考查了正方形的性质.9.1 5【解析】【分析】设a=2k,得到b=3k,代入b aa b-+化简即可求解.【详解】解:设a=2k,∵23 ab=,∴b=3k,∴3213255 b a k k ka b k k k--===++.故答案为:1 5【点睛】本题主要考查了比例化简求值,理解比例的意义,用含k的式子分别表示a、b是解题关键.10.x1=3,x2=﹣7.【解析】【分析】首先根据a*b=a2﹣b2,可得(x+2)*5=(x+2)2﹣52,然后解方程(x+2)2﹣52=0,首先把﹣52移到方程右边,然后再利用直接开平方法解方程即可.【详解】由题意得:(x+2)*5=(x+2)2﹣52,(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x 1=3,x 2=﹣7.故答案为:x 1=3,x 2=﹣7.【点睛】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移到等号的右边,化成x 2=a (a≥0)的形式,利用数的开方直接求解.11.13【解析】【分析】根据树状图可知所有可能总数,两个数字都是正数的个数,用概率公式计算即可得出答案.【详解】由树状图可知:总共有6种可能,两个数字都是正数的有2种,2163P ∴==.故答案为:13.12.8【分析】利用直角三角形斜边上的中线等于斜边的一半,进而结合勾股定理得出BD 的长.【详解】∵BD ⊥AC 于D ,点E 为AB 的中点,∴AB=2DE=2×5=10,∴在Rt △ABD 中,BD===8.故答案为8.13.105°【解析】连接FD ,根据垂直平分线的性质得出∠FAD=∠FDA ,根据菱形的性质推出∠FBA=∠FDA ,从而得出结论即可.【详解】解:如图所示,连接FD ,∵四边形ABCD 为菱形,∠ABC =130°,AC 为对角线,∴∠BAD=50°,∠FAD=12∠BAD=25°,∵EF 垂直平分AD ,交AD 于点E ,∴∠FAD=∠FDA=25°,由菱形基本性质可得AB=AD ,∠FAB=∠FAD ,在△AFB 和△AFD 中,A A FAB F D F D F A B A A =⎧⎪⎨⎪∠==⎩∠∴△AFB ≌△AFD (SAS ),∴∠FBA=∠FDA=25°,∴∠FBC=∠ABC-∠FBA=130°-25°=105°,故答案为:105°.【点睛】本题考查菱形的性质和垂直平分线的性质,理解并熟练运用菱形和垂直平分线的基本性质是解题关键.14.12【解析】【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【详解】解:x 2﹣7x+10=0(x ﹣2)(x ﹣5)=0,解得:x 1=2,x 2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.【点睛】本题考查因式分解法解一元二次方程,解题的关键是需要熟悉三角形三边的关系以及等腰三角形的性质.15.83##223【解析】【分析】在矩形ABCD 中,可得6AB DC ==,10AD BC ==,=90B C D ∠=∠=∠︒,在Rt ABE △中,易求=8BE ,从而=2CE ,设FC x =,则可得6EF x =-,在Rt EFC △中利用勾股定理建立关于x 的方程,解得答案.【详解】解:在矩形ABCD 中,=6AB ,10AD =,∴6AB DC ==,10AD BC ==,=90B C D ∠=∠=∠︒,∵矩形ABCD 沿过点A 的直线翻折,使点D 落在BC 边上的点E 处,∴=10AE AD =,DF EF =,在Rt ABE △中,B E =∴BE ,∴==108=2CE BC BE --,设FC x =,则6FD x =-,即6EF x =-,在Rt EFC △中,222FC CE EF +=,∴2222(6)x x +=-,解得83x =,即83FC =.故答案为:83.【点睛】本题考查与矩形有关的折叠问题,利用矩形的性质,可以求得各个线段的值,利用勾股定理建立方程是解题关键.16.【解析】【分析】由于BE 固定,要求△PBE 周长的最小值,即为求PE+PB 长度的最小值,根据正方形的性质推出PB=PD ,当D 、P 、E 三点共线时,PD+PE 最小,也即是PE+PB 最小,此时利用勾股定理求解即可.【详解】解:∵BE PBE 周长=PB+PE+BE ,∴要求△PBE 周长的最小值,即为求PE+PB 长度的最小值,如图所示,连接PD ,∵四边形ABCD 为正方形,∴PB=PD ,∴求PD+PE 的最小值即可,显然,当D 、P 、E 三点共线时,PD+PE 最小,也即是PE+PB 最小,此时,PD+PE=DE ,∵BE ,AE =3BE ,∴AE=AD=AB=4BE=此时,在Rt △ADE 中,DE ==∴PD+PE 最小值为即:PB+PE 最小值为∴△PBE 周长的最小值为故答案为:【点睛】本题考查正方形的基本性质,以及最短路径问题,理解正方形的基本性质,熟练掌握最短路径问题的处理方法是解题关键.17.(1)1x =2x =-(2)121,3x x =-=-【解析】【分析】(1)根据题意用公式法解一元二次方程;(2)根据题意用因式分解法解一元二次方程.【详解】(1)x 2+-6=01,6,a b c ===-2482432b ac ∴∆=-=+=x ∴==∴1x =,2x =-;(2)2(x +1)2=x 2-1()()()22111x x x +=+-()1(221)0x x x ++-+=解得121,3x x =-=-【点睛】本题考查了解一元二次方程,掌握解一元二次方程的方法是解题的关键.18.(1)3;(2)3m =,有最小值为4【解析】【分析】(1)利用配方法把224x x ++化为2(31)x ++,根据平方的非负性解答即可;(2)利用配方法把原始变形,根据平方的非负性解答即可.【详解】(1)2224(1)3x x x ++=++,2(1)0x +≥ ,2(1)33x ∴++≥224x x ∴++的最小值为3;(2)2222261363313(3)4m m m m m -+=-+-+=-+,2(3)0m -≥ ,2(3)44m ∴-+≥,∴当30m -=,即3m =时,有最小值为4.【点睛】本题考查配方法的应用,掌握配方法的一般步骤是解题的关键.19.(1)13;(2)13.【解析】【分析】(1)因为共开设了A 、B 、C 三个测温通道,小明从A 测温通道通过的概率是13.(2)根据题意画出树状图,再根据所得结果算出概率即可.【详解】(1)因为共开设了A 、B 、C 三个测温通道,小明从A 测温通道通过的概率是13,故答案为:13.(2)由题意画出树状图:由图可知,小明和小丽从同一个测温通道通过的概率=3193=.【点睛】本题考查概率的计算和树状图的画法,关键在于理解题意,由图得出相关概率.20.6【解析】【分析】根据平行得出△DEF ∽△DAB ,求出AB 长,再根据四边形DEFG 是平行四边形得出DG 长,进而求出CG 的长.【详解】解:∵EF//AB ,∴△DEF ∽△DAB ,∴25DE EF DA AB ==,∵EF =4,∴AB =10,∵EF//AB ,FG//BC ,∴四边形DEFG 是平行四边形,∴EF=DG =4,∵四边形ABCD 是平行四边形,∴AB =CD =10,∴CG =CD-DG =6.【点睛】本题考查了平行四边形的判定与性质,相似三角形的判定与性质,解题关键是熟练运用相似三角形的性质求出平行四边形的边长.21.(1)2200y x =-+(3060)x ≤≤;(2)55元【解析】【分析】(1)进而设销售单价为x 元,平均月销售量为y 件,根据题意先求得x 的取值范围,根据题意列出y 与x 的函数关系式;(2)根据题意列出方程,解一元二次方程,进而求得答案,注意x 的取值范围.【详解】(1)∵单价为30元的童装若干件,物价部门规定其销售单价不低于每件30元,不高于每件60元,设销售单价为x 元,∴3060x ≤≤,平均月销售量为y 件,则602080220010x y x -=⨯+=-+∴2200y x =-+()3060x ≤≤;(2)根据题意得()304501800x y --=即()30(2200)4501800x x --+-=解得1255,75x x == 3060x ≤≤55x ∴=答:当销售单价为55元时,销售这种童装每月可获利1800元.【点睛】本题考查了一元二次方程的应用,求函数关系式,根据题意列出函数关系和方程是解题的关键.22.(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是△DAB 的中位线,再结合已知条件OG ∥EF ,得到四边形OEFG 是平行四边形,再由条件EF ⊥AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=12AB=12AD=5,得到FG=5,最后BG=AB-AF-FG=2.【详解】解:(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点,∵点E 为AD 中点,∴OE 为△ABD 的中位线,∴OE ∥FG ,∵OG ∥EF ,∴四边形OEFG 为平行四边形∵EF ⊥AB ,∴平行四边形OEFG 为矩形.(2)∵点E 为AD 的中点,AD=10,∴AE=152AD =∵∠EFA=90°,EF=4,∴在Rt △AEF 中,3=AF .∵四边形ABCD 为菱形,∴AB=AD=10,∴OE=12AB=5,∵四边形OEFG 为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,解题的关键是掌握特殊四边形的性质和判定属于中考常考题型,需要重点掌握.23.(1)9秒或12秒;(2)不能,见解析【解析】【分析】(1)设x 秒后满足条件,根据题意分别利用含x 的式子表示PC 和CQ 的长度,从而运用勾股定理建立方程求解即可;(2)假设y 秒后满足条件,结合(1)的结论建立一元二次方程,并利用根的判别式判断即可.【详解】解:(1)设x 秒后满足点P 与点Q 相距15cm ,则由题意,BP=x ,CQ=x ,∴PC=BC-BP=21-x ,在Rt △PCQ 中,222PC CQ PQ +=,∴()2222115x x -+=,解得:9x =或12x =,∴运动9秒或12秒时,点P 与点Q 相距15cm ;(2)不能满足,理由如下:假设y 秒后满足△PCQ 的面积为56cm²,则由(1)可得:()11215622PCQ S PC CQ y y ==-= ,整理得:2211120y y -+=,∵()221411270∆=--⨯=-<,∴原方程无解,∴不能满足△PCQ 的面积为56cm².【点睛】本题考查一元二次方程的实际应用,理解题意,准确建立一元二次方程,并熟练运用根的判别式是解题关键.24.(1)正方形,理由见解析;(2)CF =E'F ,证明见解析.【解析】【分析】(1)由旋转的性质可得∠AEB =∠CE'B =90°,BE =BE',∠EBE'=90°,则可由正方形的判定证得四边形BE'FE 是正方形;(2)过点D 作DH ⊥AE 于点H ,由等腰三角形的性质可得AH =12AE ,由“AAS”可得△ADH ≌△BAE ,可得AH =BE =12AE ,由旋转的性质可得AE =CE',可得结论.【详解】解:(1)四边形BE'FE是正方形.理由如下:∵将Rt△ABE绕点B按顺时针方向旋转90°,∴∠AEB=∠CE'B=90°,BE=BE',∠EBE'=90°.又∵∠BEF=90°,∴四边形BE'FE是矩形.又∵BE=BE',∴四边形BE'FE是正方形.(2)CF=E'F;理由如下:如图2,过点D作DH⊥AE于点H,∵DA=DE,DH⊥AE,∴AH=12AE,∠ADH+∠DAH=90°.∵四边形ABCD是正方形,∴AD=AB,∠DAB=90°.∴∠DAH+∠EAB=90°.∴∠ADH=∠EAB.又∵AD=AB,∠AHD=∠AEB=90°,∴△ADH≌△BAE(AAS).∴AH=BE=12 AE.∵将Rt△ABE绕点B按顺时针方向旋转90°,∴AE=CE'.∵四边形BE'FE是正方形,∴BE=E'F.∴E'F=12CE'.∴CF=E'F.【点睛】本题是四边形综合题,考查了正方形的判定和性质,旋转的性质,全等三角形的判定和性质,等腰三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.。
北师大版九年级上册数学期中考试试卷含答案
北师大版九年级上册数学期中考试试题一、单选题1.若x 2﹣3x 的值等于零,则x 的值为()A .﹣3B .0C .0或3D .0或﹣32.若234a b c==,a ﹣b+c =18,则a 的值为()A .11B .12C .13D .143.若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A .1:4B .1:6C .1:9D .1:104.三角形两边的长是2和4,第三边的长是方程x 2﹣12x+35=0的根,则该三角形的周长为()A .11B .13C .11或13D .以上都不对5.如图,P 是直角△ABC 斜边AB 上任意一点(A ,B 两点除外),过点P 作一条直线,使截得的三角形与△ABC 相似,这样的直线可以作()A .4条B .3条C .2条D .1条6.如图,已知正方形ABCD 的边长为6,点E ,F 分别在边AB ,BC 上,BE =CF =2,CE 与DF 交于点H ,点G 为DE 的中点,连接GH ,则GH 的长为()AB C .4.5D .4.37.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,在DC 的延长线上取一点E ,连接OE 交BC 于点F ,若AB =4,BC =6,CE =1,则CF 的长为()AB .1.5C D .18.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F ,连接BD 、DP ,BD 与CF 交于点H .下列结论:①CF =2AE ;②△DFP ∽△BPH ;③DP 2=PH•PC ;④PE :BC =(3):3.正确的有()A .1个B .2个C .3个D .4个二、填空题9.一个不透明的口袋中装有10个黑球和若干个白球,小球除颜色外其余均相同,从中随机摸出一球记下颜色,再放回袋中,不断重复上述过程,一共摸了150次,其中有50次摸到黑球,由此估计口袋中白球的个数约为_____个.10.已知线段AB =4cm ,C 是AB 的黄金分割点,且AC >BC ,则AC =_____.11.若关于y 的一元二次方程24334ky y y --=+有实根,则k 的取值范围是______12.如图,矩形ABCD 的两条对角线AC ,BD 交于点O ,∠AOB =60°,AB =3,则矩形的周长为_____.13.如图,菱形ABCD 的周长为16cm ,BC 的垂直平分线EF 经过点A ,则对角线BD 长为_____________cm .14.某超市第二季度的营业额为200万元,第四季度的营业额为288万元.如果每季度营业额的平均增长率相同,那么每季度的平均增长率为_____.15.如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.16.如图,依次连接第一个矩形各边的中点得到一个菱形,再依次连接菱形各边的中点得到第二个矩形,按照此方法继续下去.已知第一个矩形的面积为1,则第n个矩形的面积为_____.三、解答题17.计算:(1)3x2+3=7x;(用配方法解方程)(2)4y(3﹣y)=(y﹣3)2.18.如图在平面直角坐标系中,△ABC的位置如图所示,顶点坐标分别为:A(﹣2,0),B(﹣3,2),C(﹣1,1).(1)做出△ABC关于y轴对称的图形△A1B1C1;(2)以原点O为位似中心,在y轴右侧画出△ABC的位似图形△A2B2C2,使它与△ABC的相似比是2:1;(3)若M(x,y)是线段AB上一点,则点M关于y轴对称的对应点M1的坐标为.19.为了参加全市中学生“党史知识竞赛”,某校准备从甲、乙2名女生和丙、丁2名男生中任选2人代表学校参加比赛.(1)如果已经确定女生甲参加,再从其余的候选人中随机选取1人,则女生乙被选中的概率是______;(2)求所选代表恰好为1名女生和1名男生的概率.20.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?21.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.22.如图,在▱ABCD中,对角线AC,BD交于点O,E是BD延长线上一点,且△ACE 是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,AB=a,求四边形ABCD的面积.23.如图,△ABD中,∠A=90°,AB=6cm,AD=12cm.某一时刻,动点M从点A出发沿AB方向以1cm/s的速度向点B匀速运动;同时,动点N从点D出发沿DA方向以2cm/s 的速度向点A匀速运动,运动的时间为ts.(1)求t为何值时,△AMN的面积是△ABD面积的2 9;(2)当以点A,M,N为顶点的三角形与△ABD相似时,求t值.24.如图,过矩形ABCD(AD>AB)的对角线AC的中点O作AC的垂直平分线EF,分别交AD、BC于点E、F,分别连接AF和CE.(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2=AC•AP.25.在四边形ABCD中,对角线AC、BD相交于点O,将△COD绕点O按逆时针方向旋转得到△C1OD1,旋转角为α(0°<α<90°),连接AC1、BD1,AC1与BD1交于点P.(1)如图1,若四边形ABCD是正方形.①求证:△AOC1≌△BOD1;②请直接写出AC1与BD1的位置关系;(2)如图2,若四边形ABCD是菱形,AC=3,BD=5,设AC1=kBD1.判断AC1与BD1的位置关系,请说明理由,并求出k的值.(3)如图3,若四边形ABCD 是平行四边形,AC =6,BD =12,连接DD 1,设AC 1=kBD 1.请直接写出k 的值和AC 12+(kDD 1)2的值.参考答案1.C 【解析】根据题意得出x 2﹣3x =0,再利用因式分解法求解即可.【详解】解:根据题意,得:x 2﹣3x =0,∴x (x ﹣3)=0,则x =0或x ﹣3=0,解得x 1=0,x 2=3,则x 的值为:0或3.故选:C .2.B 【解析】设234a b c===k ,则可利用k 分别表示a 、b 、c ,再利用a ﹣b+c =18,所以2k ﹣3k+4k =18,然后解k 的方程,从而得到a 的值.【详解】解:设234a b c===k ,∴a =2k ,b =3k ,c =4k ,∵a ﹣b+c =18,∴2k ﹣3k+4k =18,解得k =6,∴a =2×6=12故选:B .3.C 【解析】根据相似三角形的判定与性质即可得出答案.【详解】解:如图,△ABC 与△DEF 都为等腰直角三角形,且EF :AB =1:3,则△ABC ∽△EFD ,∴21(9EFD ABC S EF S AB ∆∆==,故选:C .【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键.4.A 【解析】先求出方程的解,再根据三角形的三边关系定理看看能否组成三角形,最后求出三角形的周长即可.【详解】解:解方程x2﹣12x+35=0得:x=7或5,当三角形的三边为2,4,7时,2+4<7,不符合三角形的三边关系定理,不能组成三角形;当三角形的三边为2,4,5时,符合三角形的三边关系定理,能组成三角形,此时三角形的周长是2+4+5=11;综合上述:三角形的周长是11,故选:A.【点睛】本题考查了解一元二次方程和三角形的三边关系定理,能求出符合的所有情况是解此题的关键.5.B【解析】根据已知及相似三角形的判定方法(或平行线截线段成比例)进行分析,从而得到最后答案.【详解】解:如图,过点P可作PE∥BC或PE″∥AC,∴△APE∽△ABC、△PBE″∽△ABC;过点P还可作PE′⊥AB,可得:∠EPA=∠C=90°,∠A=∠A∴△APE∽△ACB;∴满足这样条件的直线的作法共有3种.故选:B6.A【解析】根据正方形的四条边都相等可得BC=DC,每一个角都是直角可得∠B=∠DCF=90°,然后利用“边角边”证明△CBE≌△DCF,得∠BCE=∠CDF,进一步得∠DHC=∠DHE=90°,从而知GH =12DE ,利用勾股定理求出DE 的长即可得出答案.【详解】解:∵四边形ABCD 为正方形,∴∠B =∠DCF =90°,BC =DC ,在△CBE 和△DCF 中,BC CC B DCF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△CBE ≌△DCF (SAS ),∴∠BCE =∠CDF ,∵∠BCE+∠DCH =90°,∴∠CDF+∠DCH =90°,∴∠DHC =∠DHE =90°,∵点G 为DE 的中点,∴GH =12DE ,∵AD =AB =6,AE =AB ﹣BE =6﹣2=4,∴DE ===∴GH故选A .【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解.7.D 【解析】【分析】过O 作OM ∥BC 交CD 于M ,根据平行四边形的性质得到BO =DO ,CD =AB =4,AD =BC =6,根据三角形的中位线的性质得到CM =12CD =2,OM =12BC =3,通过△CFE ∽△MOE ,根据相似三角形的性质得到CF CE OM EM=,代入数据即可得到结论.【详解】解:过O作OM∥BC交CD于M,在▱ABCD中,BO=DO,CD=AB=4,AD=BC=6,∴CM=12CD=2,OM=12BC=3,∵OM∥CF,∴△CFE∽△MOE,∴CFOM=CEEM,即1 33 CF,∴CF=1.故选:D.【点睛】本题考查了平行四边形的性质、相似三角形的判定与性质等知识.解此题的关键是准确作出辅助线,合理应用数形结合思想解题.8.D【解析】【分析】由正方形的性质和相似三角形的判定与性质,即可得出结论.【详解】解:∵△BPC是等边三角形,∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,在正方形ABCD中,∵AB=BC=CD,∠A=∠ADC=∠BCD=90°,∴∠ABE=∠DCF=30°,∴BE=2AE,∵AD∥BC,∴∠FEP=∠PBC,∠EFP=∠PCB,∵∠EPF=∠BPC,∴∠FEP=∠EFP=∠EPF=60°,∴△EFP是等边三角形,∴BE=CF,∴CF=2AE,故①正确;∵PC=CD,∠PCD=30°,∴∠PDC=75°,∴∠FDP=15°,∵∠DBA=45°,∴∠PBD=15°,∴∠FDP=∠PBD,∵∠DFP=∠BPC=60°,∴△DFP∽△BPH,故②正确;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PH•PC,故③正确;∵∠ABE=30°,∠A=90°,∴AE,∵∠DCF=30°,∴DF,∴EF=AE+DF﹣BC﹣BC,∴FE:BC=(3):3,∵EF=PE,∴PE:BC=(3):3,故④正确,综上,四个选项都正确,故选:D.【点睛】本题考查了相似三角形的判定和性质,正方形的性质,等边三角形的性质,解答此题的关键是熟练掌握性质和定理.9.20【解析】【分析】先由频率=频数÷数据总数计算出频率,再由题意列出方程求解即可.【详解】解:摸了150次,其中有50次摸到黑球,则摸到黑球的频率是50150=13,设口袋中大约有x个白球,则1010x+=13,解得x=20,经检验x=20是原方程的解,估计口袋中白球的个数约为20个.故答案为:20.【点睛】本题考查了用频率估计概率.大量反复试验下频率稳定值即概率.关键是得到关于黑球的概率的等量关系.10.2##2-+【解析】【分析】根据黄金分割点的定义,知AC是较长线段;所以AC AB,代入数据即可得出AC 的长度.【详解】解:由于C为线段AB=4的黄金分割点,且AC >BC ,则AC =12AB =12-×4=2.故答案为:.【点睛】本题考查了黄金分割问题,理解黄金分割点的概念.要求熟记黄金比的值.11.74k ≥-且0k ≠【解析】【分析】先将方程化为一般形式2770--=ky y ,根据方程有实数根得到.【详解】∵24334ky y y --=+,∴2770--=ky y ∵一元二次方程有实根,∴∆0≥,且0k ≠,∴49+28k 0≥,解得74k ≥-,故答案为:74k ≥-且0k ≠.12.6+6+【解析】根据矩形性质得出AD =BC ,AB =CD ,∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,推出OA =OB =OC =OD ,得出等边三角形AOB ,求出BD ,根据勾股定理求出AD 即可.【详解】解:∵四边形ABCD 是矩形,∴∠BAD =90°,OA =OC =12AC ,BO =OD =12BD ,AC =BD ,∴OA =OB =OC =OD ,∵∠AOB=60°,OB=OA,∴△AOB是等边三角形,∵AB=3,∴OA=OB=AB=3,∴BD=2OB=6,在Rt△BAD中,AB=3,BD=6,由勾股定理得:AD=∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=∴矩形ABCD的周长是AB+BC+CD+AD=故答案为:13.【详解】试题分析:连接AC,∵菱形ABCD的周长为16cm,∴AB=4cm,AC⊥BD,∵BC的垂直平分线EF经过点A,∴AC=AB=4cm,∴OA=12AC=2cm,∴,∴.故答案为考点:菱形的性质;线段垂直平分线的性质.14.20%【解析】先设增长率为x,那么第四季度的营业额可表示为200(1+x)2,已知第四季度营业额为288万元,即可列出方程,从而求解.【详解】解:设每季度的平均增长率为x,根据题意得:200(1+x )2=288,解得:x =﹣2.2(不合题意舍去),x =0.2,则每季度的平均增长率是20%.故答案为:20%15.【解析】由正方形的对称性可知,PB =PD ,当B 、P 、E 共线时PD+PE 最小,求出BE 即可.【详解】解:∵正方形中B 与D 关于AC 对称,∴PB =PD ,∴PD+PE =PB+PE =BE ,此时PD+PE 最小,∵正方形ABCD 的面积为18,△ABE 是等边三角形,∴BE =,∴PD+PE 最小值是故答案为:.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.16.(14)n-1【解析】【详解】试题分析:已知第一个矩形的面积为1;第二个矩形的面积为原来的(14)2-1=14;第三个矩形的面积是(14)3-1=116;…故第n 个矩形的面积为:11()4n -.考点:1.矩形的性质;2.菱形的性质.17.(1)1x =2x =;(2)13y =,235y =【解析】【分析】(1)先移项,再方程两边都除以3,再根据完全平方公式配方,开方,即可得出两个一元一次方程,再求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,再求出方程的解即可.【详解】解:(1)3x 2+3=7x ,移项,得3x 2﹣7x =﹣3,除以3,得x 2﹣73x =﹣1,配方,得x 2﹣73x+(76)2=﹣1+(76)2,即(x ﹣76)2=1336,开方,得x ﹣76=,解得:x 1,x 2=76;(2)4y (3﹣y )=(y ﹣3)2,移项,得﹣4y (y ﹣3)﹣(y ﹣3)2=0,(y ﹣3)(﹣4y ﹣y+3)=0,y ﹣3=0或﹣4y ﹣y+3=0,解得:y 1=3,235y =.【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并根据方程的特征选用合适的方法是解题的关键.18.(1)见解析;(2)见解析;(3)(,)x y 【解析】【分析】(1)利用轴对称的性质分别作出A ,B ,C 的对应点A 1,B 1,C 1即可;(2)利用位似变换的性质分别作出A ,B ,C 的对应点A 2,B 2,C 2即可;(3)利用轴对称的性质求解即可.【详解】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)若M (x ,y )是线段AB 上一点,则点M 关于y 轴对称的对应点M 1的坐标为(﹣x ,y )..【点睛】本题考查作图-位似变换,作图-轴对称变换,作图-相似变换等知识,解题的关键是掌握轴对称变换,位似变换的性质,属于中考常考题型.19.(1)13;(2)23【解析】【分析】(1)由一共有3种等可能性的结果,其中恰好选中女生乙的有1种,即可求得答案;(2)先求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率.【详解】解:(1)∵已确定女生甲参加比赛,再从其余3名同学中随机选取1名有3种结果,其中恰好选中女生乙的只有1种,∴恰好选中乙的概率为13;故答案为:13;(2)分别用字母A ,B 表示女生,C ,D 表示男生画树状如下:4人任选2人共有12种等可能结果,其中1名女生和1名男生有8种,∴P (1女1男)82123==.答:所选代表恰好为1名女生和1名男生的概率是23.【点睛】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【解析】【分析】设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由销售问题的数量关系建立方程求出其解即可.【详解】解:设要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价x 元,由题意,得(360280)(560)7200x x --+=,解得:18x =,260x =.有利于减少库存,x∴=.60答:要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价60元.【点睛】本题考查了销售问题的数量关系利润=售价-进价的运用,列一元二次方程解实际问题的运用,解题的关键是根据销售问题的数量关系建立方程.21.(1)见解析;(2)∠BAC=90°,理由见解析【解析】【分析】(1)利用平行四边形的判定首先得出四边形AECD是平行四边形,进而理由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【详解】(1)证明:∵D、F分别为BC、AC的中点,使DF=FE,∴CF=FA,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)解:当∠BAC=90°时,四边形AECD是正方形,理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的中线,∴AD=BD=CD,∵四边形AECD是矩形,∴矩形AECD是正方形.【点睛】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.22.(1)见解析;(2)正方形ABCD的面积为2a【解析】【分析】(1)由等边三角形的性质得EO ⊥AC ,即BD ⊥AC ,再根据对角线互相垂直的平行四边形是菱形,即可得出结论;(2)证明菱形ABCD 是正方形,即可得出答案.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AO =OC ,∵△ACE 是等边三角形,∴EO ⊥AC (三线合一),即BD ⊥AC ,∴▱ABCD 是菱形;(2)解:∵△ACE 是等边三角形,∴∠EAC =60°由(1)知,EO ⊥AC ,AO =OC∴∠AEO =∠OEC =30°,△AOE 是直角三角形,∵∠AED =2∠EAD ,∴∠EAD =15°,∴∠DAO =∠EAO ﹣∠EAD =45°,∵▱ABCD 是菱形,∴∠BAD =2∠DAO =90°,∴菱形ABCD 是正方形,∴正方形ABCD 的面积=AB 2=a 2.【点睛】本题考查了菱形的判定与性质、正方形的判定与性质、平行四边形的性质、等边三角形的性质等知识,证明四边形ABCD 为菱形是解题的关键.23.(1)14t =,22t =;(2)t =3或245【解析】【分析】(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,根据三角形的面积公式列出方程可求出答案;(2)分两种情况,由相似三角形的判定列出方程可求出t的值.【详解】解:(1)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,∴△AMN的面积=12AN•AM=12×(12﹣2t)×t=6t﹣t2,∵∠A=90°,AB=6cm,AD=12cm∴△ABD的面积为12AB•AD=12×6×12=36,∵△AMN的面积是△ABD面积的2 9,∴6t﹣t2=236 9⨯,∴t2﹣6t+8=0,解得t1=4,t2=2,答:经过4秒或2秒,△AMN的面积是△ABD面积的2 9;(2)由题意得DN=2t(cm),AN=(12﹣2t)cm,AM=tcm,若△AMN∽△ABD,则有AM ANAB AD=,即122612t t-=,解得t=3,若△AMN∽△ADB,则有AM ANAD AB=,即122126t t-=,解得t=24 5,答:当t=3或245时,以A、M、N为顶点的三角形与△ABD相似.【点睛】本题考查了相似三角形的判定,直角三角形的性质和一元二次方程的应用,正确进行分类讨论是解题的关键.24.(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD (AD >AB )的对角线AC 的中点O 作AC 的垂直平分线EF ,易证得△AOE ≌△COF ,即可得EO =FO ,则可证得四边形AFCE 是平行四边形,又由EF ⊥AC ,可得四边形AFCE 是菱形;(2)由∠AEP =∠AOE =90°,∠EAP =∠OAE ,可证得△AOE ∽△AEP ,又由相似三角形的对应边成比例,即可证得2AE 2=AC•AP .【详解】证明:(1)四边形AFCE 是菱形.理由:由已知可知:AO =CO ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,在△AOE 和△COF 中,EAO FCO AEO CFO AO CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△COF (AAS ),∴EO =FO ,∴四边形AFCE 是平行四边形,∵AC ⊥EF ,∴四边形AFCE 是菱形;(2)∵∠AEP =∠AOE =90°,∠EAP =∠OAE ,∴△AOE ∽△AEP ,∴AO AE =AE AP,∴AE 2=AO•AP ,又AC =2AO ,∴2AE 2=AC•AP .【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形的判定与性质以及全等三角形的判定与性质.注意掌握数形结合思想的应用.25.(1)①见解析;②AC 1⊥BD 1;(2)AC 1⊥BD 1,见解析,35k =;(3)12k =,2211()36AC kDD +=【解析】【分析】(1)①由“SAS”可证△AOC 1≌△BOD 1;②由全等三角形的性质可得∠OBD 1=∠OAC 1,可证点A ,点B ,点O ,点P 四点共圆,可得结论;(2)由菱形的性质可得OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,由旋转的性质可得OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,通过证明△AOC 1∽△BOD 1,可得∠OAC 1=∠OBD 1,由余角的性质可证AC 1⊥BD 1,由比例式可求k 的值;(3)与(2)一样可证明△AOC 1∽△BOD 1,可得11112122AC AC OA AC BD OB BD BD ====,可求k 的值,由旋转的性质可得OD 1=OD =OB ,可证△BDD 1为直角三角形,由勾股定理可求解.【详解】证明:(1)①如图1,∵四边形ABCD 是正方形,∴OC =OA =OD =OB ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OD 1,∠AOC 1=∠BOD 1=90°+∠AOD 1,在△AOC 1和△BOD 1中,1111OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩,∴△AOC 1≌△BOD 1(SAS );②AC 1⊥BD 1;理由如下:∵△AOC 1≌△BOD 1,∴∠OBD 1=∠OAC 1,∴点A ,点B ,点O ,点P 四点共圆,∴∠APB =∠AOB =90°,∴AC 1⊥BD 1;(2)AC 1⊥BD 1,理由如下:如图2,∵四边形ABCD 是菱形,∴OC =OA =12AC ,OD =OB =12BD ,AC ⊥BD ,∴∠AOB =∠COD =90°,∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OC 1=OC ,OD 1=OD ,∠COC 1=∠DOD 1,∴OC 1=OA ,OD 1=OB ,∠AOC 1=∠BOD 1,∴11OCOA OD OB=,∴△AOC 1∽△BOD 1,∴∠OAC 1=∠OBD 1,又∵∠AOB =90°,∴∠OAB+∠ABP+∠OBD 1=90°,∴∠OAB+∠ABP+∠OAC1=90°,∴∠APB =90°∴AC 1⊥BD 1;∵△AOC 1∽△BOD 1,∴11132152AC AC OA AC BD OB BD BD ====,∴k =35;(3)如图3,与(2)一样可证明△AOC 1∽△BOD 1,∴11112122AC AC OA AC BD OB BD BD ====,∴k =12;∵△COD 绕点O 按逆时针方向旋转得到△C 1OD 1,∴OD 1=OD ,而OD =OB ,∴OD 1=OB =OD ,1111,BD O OBD DD O ODD ∠=∠∠=∠,∴1111BD O DD O OBD ODD ∠+∠=∠+∠,∴190BD D ∠=︒,∴△BDD 1为直角三角形,在Rt △BDD 1中,BD 12+DD 12=BD 2=144,∴(2AC 1)2+DD 12=144,∴AC 12+(kDD 1)2=36.【点睛】本题主要考查了菱形的性质,相似三角形的判定和性质,图形的旋转,圆周角定理等知识,熟练掌握相关知识点是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师版九年级数学上册中段考试卷1
一、选择题:(每小题3分,共24分)
1、一元二次方程092
=-x 的根是 ( )
A 、x=3
B 、x=4
C 、x 1=3,x 2=-3
D 、x 1=3x 2=-3
2、如图所示,将矩形ABCD 纸对折,设折痕为MN ,再把B 点叠在折痕线MN 上,(如图点B’), 若AB =
3,则折痕AE 的长为( )
A.
323 B. 3
4
3 C. 2 D. 23 3、若菱形的边长为1cm ,其中一内角为60°,则它的面积为( )
A.
32
2
cm B.
32cm C. 22cm
D. 2
32cm
4、如下左图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF=3,则AB 的长为( ) A .3 B .4 C .5 D .6
5、菱形具有而平行四边形不具有的性质是 ( )
A 、内角和是360°
B 、对角相等
C 、对边平行且相等
D 、对角线互相垂直
6、如果一元二次方程3x 2-2x =0的两根为x 1,x 2,则x 1·x 2的值等于 ( ) A 、0 B 、2 C 、
32 D 、3
2- 7、如上右图所示,在正方形ABCD 中,E 为CD 上一点,延长BC 至F ,使CF=CE ,连接DF ,BE 与DF 相交于点G ,则下面结论错误的是( ) A. BE=DF
B. BG ⊥DF
C.∠F +∠CEB=90°
D.∠FDC +∠ABG=90°
二、填空题:(每小题3分,共30分)
10、已知1x =-是方程2
60x ax -+=的一个根,则a=_____ _,另一个根为___ ___; 12、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的是_______________ 14、如果方程0982
=-+x x 有两个根是x 1,x 2,则代数式(x 1+x 2)·(x 1-x 2)的
值是 。
15、某商品原价为a 元,节日间削降价百分之x 搞促销,则现价是 元。
17、某种冰箱进价为x 元,按进价增加20%销售,后来因产品更新,又以售价的90%削降处理,现在每台冰箱还有 元利润。
18、如图,正方形ABCD 的面积为16,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线BD 上有一点P ,使PC+PE 的和最小,则这个最小值为
E
P
D
C
B
A
三、解答题:(19—21每题6分,22—24每题7分,25题8分,26题9分,27题10分) 19、(1)12)1)(8(-=++x x . (2)2(x -3)²=x ²-9
(3)12)3)(1(=-+x x (4)2(2)3(2)20x x ---+=
阅读下面的例题:解方程:.
解:(1)当x ≥0时,原方程化为
,
解得,(不合题意,舍去). (2)当x <0时,原方程化为, 解得,(不合题意,舍去). 所以原方程的根是,. 请你参照例题解方程.
已知a 、b 是两个互不相等的实数,且满足020122011
2
=--a a ,020*******=--b b , 求11
a b
+的值
21、如图,长方形ABCD ,AB=20m ,BC=15m ,四周外围环绕着宽度相等的小路,已知小路的面积为
246m 2,求小路的宽度。
14、矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点, PO 的延长线交BC 于Q. (1)求证: OP=OQ ;
(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.
23、某商店进了一批服装,进货单价为50元,如果按每件60元出售,可销售800件,
如果每件提价1元出售,其销售量就减少20件。
现在要获利12000元,且销售成本不超过24000元,问这种服装销售单价确定多少为宜?这时应进多少服装?
24、有一面积为
150m 2的长方形鸡场,鸡场的一边靠墙(墙长18 m ),另三边用竹篱笆围成,如果竹
篱笆的长为35 m ,求鸡场的长与宽各为多少。
27、已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E,连接DE交AC于F
(1)求证:四边形ADCE为矩形
(2)求证:DF∥AB,DF=1
2
AB
(3)当△ABC满足什么条件时,四边形ADCE是一个正方形?简述你的理由。
一、选择题:1、C ,2、B ,,3、C , 4、B ,5、D ,6、A ,7、B 。
二、填空题:9、4、-31、-14;10、―7、 ―6;11、∠C =1050、
∠D =750;12、24;13、5;
14、72;15、)1(x %a -;16、13或119; 17、8%;18、15cm 。
三、解答题:19、解:
4
50450
20912882122-=-=∴=++=++-=+++x x x x x x x x x ,))((
20、证明:∵ ABCD 是平行四边形 ∴ AB=CD ,∠ABC=∠CDA
∵ AM = 23 AB, CN = 2
3 CD
∴ AM=CN 又∵ AB ∥CD ∴ AM ∥CN
∴四边形AMCN 是平行四边形。
21、解:设小路的宽为xm ,依题意,得 2(20x+2x )+2×15x=246 40x+4x 2+30x=246 4x 2=70x -246=0 解得x 1=3,
x 2=-
5.204
82
-≈(不合题意,舍去)。
答:小路的宽为3m 。
22、解:∵ AB 的垂直平分线交AC 于点E
∴ AE=BE
∵ △BCE 的周长为8cm ∴ BE+EC+BC=8 ∵ AE+EC=AC ∴ AC+BC=8 ∵ AC -BC=2 ∴ 2AC=10 ∴ AC=5 ∴ BC=AC -2=3。
23、解:设每件服装涨价x 元,依题意,得 (800+20x )(60-50+x )=12000
∴ x 1=20,x 2=10
∵ x 2=10时 售价60+10=70(元) 进货800-20×10=600(件)
成本600×50=30000(元)故不合题意,舍去。
∵ x 1=20时 售价60+20=80(元)
进货800-20×20=400(件) 成本400×50=20000(元)
答:售价确定为80元为宜,这时应进400件。
24、解:设长为xm ,则宽为(
2
35x
-)m ,依题意,得:(
2
35x
-)x =150 x 2-35x +300=0 ∴ x 1=15, x 2=20,因20+2(35-20)=50>35(不合题意,舍去) 宽为:(
2
35x
-)=10m. 答:鸡场的长和宽各为15m 和10m 。
25、正方形: 先证四方形是平行四边形;再证
明其邻边相等。
26、60、4、2002、
∵设平均增长率为x, 则60(1+x )2=72.6 ∴ x 1=0.1, x 2=-2.1(不合题意,舍去) 答:今明两年绿地面积的年增长率为10%。
27、证明:⑴∵AN 是∠CAM 的平分线、∠CAM 是△ABC 外角
∠CAM =∠B +∠ACB =∠MAN +∠NAC ∵AB=AC ∴∠B +∠ACB 、∠MAN +∠NAC ∴ ∠ACB=∠NAC ∵ AN ∥BC ∴ AD ⊥BC ,CE ⊥AN ∵ AD ∥ CE
∴ 四边形ADCE 为矩形
⑵∵ 四边形ADCE 为矩形
∴ AD=CE ∵ BD=CD ∠ADB =∠ECB ∴ △ABD ≌△ECD ∴ ∠B =∠ECD ∴DF ∥BA DE=AB
∵AC 与DE 互相平分 ∴DF=DE ∴DF=
2
1
AB 。
(3)当∠BAC =900时(叩△ABC 是Rt △) ∴ AD =BD =DC ∴ 四边形ADCE 是矩形。