降压PFC

合集下载

pfc控制原理

pfc控制原理

pfc控制原理
PFC(功率因数修正电路)控制原理是一种用于改善电力系统
中的功率因数的技术。

它通过自动调整输入电流与电压之间的相位差来提高功率因数,从而减少系统中的无功功率或谐波失真。

PFC控制器通常采用闭环控制的方式,其中的关键部件是比较器和补偿器。

比较器用于比较输入电压与输出电压的差值,并将差值的信号传递给补偿器。

补偿器根据差值信号的大小和方向来调整开关频率和占空比,从而控制输入电流的相位和振幅,以使输出电压与输入电压保持在一个稳定的范围内。

PFC的控制原理可以分为两种主要的类型:电流型PFC和电
压型PFC。

电流型PFC通过控制输入电流的相位和振幅来实
现功率因数修正,它通常采用开环控制,并且具有简单的电路结构和较低的成本。

然而,电流型PFC对于负载的变化和电
网扰动比较敏感,并且在低负载时可能存在控制精度不高的问题。

电压型PFC通过控制开关开关频率和占空比来实现功率因数
修正,它通常采用闭环控制,并具有较高的控制精度和稳定性。

然而,电压型PFC在设计和实施过程中需要更多的复杂性,
并且成本相对较高。

除了以上两种类型的PFC控制原理,还存在其他一些改进的
技术,如半桥PFC、LLC谐振PFC等,它们在不同的应用场
景中具有各自的优势和适用性。

总之,PFC控制原理通过改善电力系统中的功率因数,提高能源利用效率,减少能源损耗和污染。

在实际应用中,根据具体的需求和条件选择合适的PFC控制方式,并进行合理的设计和实施,可以有效地改善电力系统的性能和可靠性。

降压PFC

降压PFC

UCC29910AZHCS258A –MAY 2011–REVISED JUNE 2011降压PFC 控制器查询样品:UCC29910A特性说明•降压功率因数校正用于在整个线路输入电压范围内对于需要高功率因数(>0.9)并希望满足IEC实现高效率61000-3-2规范要求的设计人员,UCC29910A 降压功•低离线启动电流,并采用了旨在实现快速启动及软率因数校正(PFC)控制器在通用线路输入电压范围内起动的SmartStart 算法。

提供了相对平坦的高效性能。

固有的浪涌电流限制功•可兼容依靠AC 线路的阻性或传输晶体管馈电型启能基于一种降压拓扑,可免除增设额外组件的需要。

动方式凭借84V 的典型总线电压,该拓扑非常适用于低电压•针对待机和轻负载条件的低功耗SmartBurst 模式应力下游稳压/隔离功率链路,例如:受控于•用于PFC 控制及过流保护的电流检测输入UCC29900的半桥段,(德州仪器文献编•线路检测欠压闭锁(UVLO)号:SLUS923).这种组合所产生的共模噪声很低,从•用于外部启动耗尽型FET 的检测及驱动控制而降低了滤波要求并实现了异常高的转换效率。

•闭锁故障输入引脚UCC29910A 拥有AC 线路欠压闭锁(UVLO)及旨在实现快速启动的受控软起动功能。

通过运用旨在实现同应用类最佳之无负载及轻负载性能的高级电源管理算法,提•高效率AC-DC 适配器升了轻负载效率。

•扁平和高密度适配器简化的应用示意图Please be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.UCC29910AZHCS258A–MAY2011–REVISED 这些装置包含有限的内置ESD保护。

pfc工作原理

pfc工作原理

pfc工作原理
PFC(功率因素校正)是一种电力电子技术,旨在提高交流电
源的功率因素,也即提高电气设备的能量利用率。

PFC的工作原理基于改善交流电源的电流波形,使其接近理想的正弦波形,并与电压保持同步。

PFC通常使用的方法是采用整流器将交流电源转换成直流电压,并通过电容器储存电能。

然后,在直流电源输出之前,使用一个控制电路来监测电流和电压波形,并相应地控制开关管的导通和截止。

通过调整导通角和截止角,使电流波形与电压波形同步,并尽可能与理想的正弦波一致。

主要的PFC控制技术有三种:电压型控制、电流型控制和混
合型控制。

电压型控制根据电压波形的变化来控制电流,适用于电源稳定的情况。

电流型控制则根据电流波形的变化来控制电流,适用于大功率负载。

混合型控制结合了电压型和电流型控制的优点,以适应不同的负载变化。

通过PFC技术,可以显著提高交流电源的功率因素,减少传
输过程中的功率损耗,提高电力系统的能量利用率。

同时,PFC还能减少电网的谐波污染和电磁干扰,提高电气设备的工作稳定性和可靠性。

因此,PFC技术在各种电力电子产品和系统中得到广泛应用。

PFC原理与种类特点

PFC原理与种类特点

PFC原理与种类特点PFC,即Power Factor Correction,是一种用于提高电源设备功率因数的技术。

它的原理是通过控制电流和电压之间的相位关系,减少电流谐波成分,降低系统的失真程度,从而提高功率因数。

在传统的电源设备中,通常使用整流器来将交流电转换为直流电。

然而,这种转换会导致电流与电压之间的相位差,使得功率因数较低。

功率因数是指电源输出的有效功率和视在功率之间的比值,是衡量电能利用效率的重要指标。

PFC技术有助于提高功率因数,减少无功功率的损耗,提高电源的效率。

PFC的基本原理是通过加入电容器或电感器来改变电流和电压之间的相位差。

它可以在整流器前或后添加PFC电路,将非线性电流转换为线性电流,减小系统的谐波失真,提高功率因数。

PFC可以分为主动PFC和被动PFC两种类型:1.主动PFC:主动PFC是通过电子器件来控制电流和电压的相位差,以实现功率因数的修正。

主动PFC通常采用传感器来检测电流和电压的波形,并通过控制电压的幅值和相位,使电流和电压之间保持同相位,从而提高功率因数。

主动PFC适用于大功率的设备,如电源、电动机等。

主动PFC有很多种实现方式,其中比较流行的是Boost变换器。

这种变换器可以通过控制开关管的开关频率和占空比来调整电压和电流的相位差,从而实现功率因数的修正。

主动PFC还可以采用其他的拓扑结构,如LLC变换器、电荷泵变换器等。

2.被动PFC:被动PFC是利用电容器或电感器来修正电流和电压的相位差,以提高功率因数。

被动PFC通常没有控制电路,只是通过加入适当的电容器或电感器来改变电流和电压的相位,从而实现功率因数的修正。

被动PFC适用于低功率的设备,如电子设备、小型电源等。

被动PFC的常见实现方式包括沟槽、折流电容器和谐振电感等。

沟槽是一种串联电容器和电感器的结构,通过调整电容器和电感器的数值来修正功率因数。

折流电容器是将电容器与整流电路并联,通过改变电容器的电压波形来修正功率因数。

BP2338

BP2338


Bright Power Semiconductor Co. Confidential – Customer Use Only
1
BP2338
非隔离降压型有源 PFC LED 驱动芯片 定购信息
定购型号 BP2338 封装 SOP-8 温度范围 -40 ℃ 到 105 ℃ 2,500 颗/盘 包装形式 编带 打印 BP2338 XXXXXY WWXYY
特点
高压 JFET 快速启动与供电 超快 LED 启动时间(<100mS @85Vac) 内置 600V 功率 MOSFET 有源功率因数校正,高 PF 值,低 THD 高达 95%的系统效率 ± 3% LED 输出电流精度 优异的线电压调整率和负载调整率 电感电流临界连续模式 超低 (300uA) 工作电流 LED 短路/开路保护 电流采样电阻开路保护 逐周期电流限流 芯片供电欠压保护 自动重启功能 过热调节功能
RFBL 1.6V RFBL RFBH VOVP
其中, RFBL 是反馈网络的下分压电阻 RFBH 是反馈网络的上分压电阻 VOVP 是输出电压过压保护设定点 推荐 FB 下分压电阻设置在 5.1KΩ 或更小的值。 为了加强 FB 节点抗噪声能力,可以在 FB 下分压 电阻上并联一个约 100pF 左右的电容。 4 过温调节功能 BP2338 具有过热调节功能,在驱动电源过热时逐 渐减小输出电流,从而控制输出功率和温升,使 电源温度保持在设定值,以提高系统的可靠性。 芯片内部设定过热调节温度点为 140℃。 5 保护功能 BP2338 内置多重保护功能,保证了系统可靠性。 当 LED 开路时,输出电压逐渐上升,FB 引脚可以 在功率管关断时检测到输出电压。 当 FB 升高到 OVP 保护阈值时,会触发保护逻辑并停止开关工作。 系统进入保护状态后,内部高压电路停止对 VCC 充 电, VCC 电压开始下降, 当 VCC 到达欠压保护阈值时, 系统将重启。同时系统不断的检测系统状态,如 果故障解除,系统会重新开始正常工作。 当 LED 短路时,系统工作在 7kHz 低频,以减小短 路功耗。 当变压器饱和时,CS 峰值电压将会比较高。当 CS 电压上升到内部限制值(1.5V)时,该开关周期 马上停止。此逐周期限流功能可以保护功率 MOS 管、功率电感和输出续流二极管。 6 PCB 设计 在设计 BP2338 PCB 板时,需要注意以下事项: 旁路电容

pfc电路工作原理

pfc电路工作原理

pfc电路工作原理
PFC(Power Factor Correction)电路是用于改善交流电源输入功率因数的电路。

在传统的非纹波交流电源中,输入电流与输入电压之间可能存在较大的相位差,导致功率因数低,容易引起电网污染和能量浪费。

因此,需要使用PFC电路来纠正这个问题。

PFC电路有两种类型:主动型和被动型。

其中,主动型PFC电路利用开关管或MOS管作为控制元件,根据输入电压大小和形状实现对输出电流的控制,从而实现功率因数校正。

被动型PFC电路则利用电感、电容等元器件,通过电路组合来达到功率因数的修正目的。

以主动型PFC电路为例,其工作原理如下:
1.输入滤波和整流:将输入电源经过变压器降压后,通过L-C滤波电路进行滤波处理,去除输入信号中的高频噪声和杂波,然后进入整流桥,将交流信号转换为半波或全波直流信号。

2.功率因数纠正:通过控制开关管或MOS管的通断状态,调整输出电流的大小和相位,使其与输入电压相位同步,从而实现功率因数的校正。

3.输出滤波:在输出端加入LC滤波电路,对纹波进行滤除,得到直流稳压输出信号。

4.输出调节:为了保证输出电压的稳定性和精度,常常需要在输出端加入反馈控制电路,通过调节开关管或MOS管的占空比来实现输出电压的精确调节。

PFC电路的作用是改善交流电源输入功率因数,降低谐波污染和能量浪费,提高电源效率和稳定性。

它广泛应用于各种电子设备中,如计算机、电视、音响等,并且也逐渐成为工业、航空、船舶等领域的重要技术。

《基于Buck-PFC的大功率白光LED电源研究》范文

《基于Buck-PFC的大功率白光LED电源研究》范文

《基于Buck-PFC的大功率白光LED电源研究》篇一一、引言随着LED技术的不断发展,大功率白光LED已成为照明领域的主要光源之一。

为了满足大功率白光LED的高效、稳定、安全的使用需求,设计一款高效的电源成为了迫切需要解决的问题。

本文以Buck-PFC(降压-功率因数校正)技术为基础,对大功率白光LED电源进行了深入研究。

二、Buck-PFC技术概述Buck-PFC技术是一种将降压(Buck)和功率因数校正(PFC)相结合的电源技术。

该技术具有高效率、高功率因数、低谐波失真等优点,广泛应用于大功率LED照明电源中。

Buck电路通过降低输出电压来提高电源的效率,而PFC电路则通过校正输入电流的波形,提高功率因数,降低谐波失真。

三、大功率白光LED电源设计在大功率白光LED电源设计中,我们采用了Buck-PFC技术。

首先,通过对输入电压进行整流滤波,得到稳定的直流电压。

然后,通过Buck电路将电压降低到合适的水平。

接着,采用PFC 电路对输入电流进行校正,提高功率因数,降低谐波失真。

最后,通过PWM(脉冲宽度调制)控制技术,实现对LED的恒流驱动。

四、关键技术与实现在实现过程中,我们采用了以下关键技术:1. 高效Buck电路设计:通过优化电路参数,降低开关损耗和导通损耗,提高电源的效率。

2. 精确PFC控制算法:采用先进的数字控制技术,实现对输入电流的精确控制,提高功率因数,降低谐波失真。

3. 恒流驱动技术:通过PWM控制技术,实现对LED的恒流驱动,保证LED的稳定性和寿命。

4. 保护功能设计:包括过流保护、过压保护、过热保护等功能,保证电源的安全性和可靠性。

五、实验结果与分析我们通过实验验证了基于Buck-PFC的大功率白光LED电源的可行性和性能。

实验结果表明,该电源具有高效率、高功率因数、低谐波失真等优点,同时具有较好的稳定性和可靠性。

在满载条件下,电源的效率达到了90%。

基础课堂 几种常用的PFC电路技术知识总结

基础课堂 几种常用的PFC电路技术知识总结

基础课堂几种常用的PFC电路技术知识总结PFC电路作为一种目前比较常见的电路设计方案,已经被广泛的应用在了工控自动化、通讯等领域,可以有效的提升整个电路系统的稳定性。

今天我们将会为大家总结一下平时常用到的PFC电路技术类型,以及这些功率因数校正电路在设计和应用过程中的特点,帮助各位新人工程师们更加快速的掌握其设计技巧。

 就目前的应用情况来看,在国内的PFC电路应用过程中,比较常见的方式有有升压Boost、Buck降压、升降压Buck-Boost和回扫共四种类型。

升压型PFC电路,也被称为Boost电路,在多数情况下,开关电源中以该类型最为流行。

它主要优点是能够有效地抑制输入电源电流的谐波失真,完全可以达到甚至低于谐波电流畸变指标要求。

而Boost电路的另一个优点,是能将系统功率因数提高到几乎等于1的水平,完全能够满足世界各国对功率因数和总谐波含量的技术标准要求。

除此之外,升压型PFC电路具有输出低纹波含量的直流电压,能确保开关电源的电流波峰系数低于1.5。

当输入交流电压在较大的范围内波动时,实现电压宽带输入,而输出电压可得到稳定的直流电压,同时可以消除浪涌电压及尖峰电压对电路元件的冲击,提高开关电源的可靠性和安全性。

 在目前国内的新产品设计研发方面,有源PFC设计占据了新产品类型中的多数。

想要实现有源功率因数校正(APFC),工程师可以使用不同的方法来完成电路系统的设计。

从变换电路的工作频率方面,我们可以将常用到的设计技术分为固定频率和可变频率两种。

从电流控制方法上分有峰值电流控制、平均电流控制和滞环电流控制三种,在开关控制模式上又分为零电流开关(ZCS)和零电压开关(ZCS)两种类型。

按电感扼流圈有无存储电流来分。

FM2309(非隔离降压型有源PFC LED驱动IC)

FM2309(非隔离降压型有源PFC LED驱动IC)

概述FM2309 是一款带有源功率因数校正的高精度降压型LED 恒流控制芯片,适用于85Vac-265Vac 全范围输入电压的非隔离LED 恒流电源。

这款控制器集成有源功率因数校正电路,可以实现很高的功率因数和很低的总谐波失真。

由于工作在电感电流临界连续模式,功率MOS 管处于零电流开通状态,开关损耗得以减小,同时变压器的利用率也较高。

FM2309 采用专有的电流采样机制,可实现高精度输出恒流控制。

芯片采用了专利的源极驱动技术和内部快速充电电路,可以实现较低的原边驱动损耗,超快速的系统上电和LED 启动。

FM2309 采用专利的线电压补偿技术和负载电压补偿技术,可以达到优异的线电压调整率和负载调整率。

线电压补偿系数还可以通过外部元件灵活调整。

FM2309 具有多重保护功能以加强系统可靠性,包括LED 开路保护、LED 短路保护、芯片供电过压保护、欠压保护、电流采样电阻开路和短路保护和逐周期限流等。

所有的保护状态都具有自动重启功能。

特点有源功率因数校正,高PF值,低THD高达95%的系统效率超快LED 启动( <300ms @85Vac)±3% LED 输出电流精度优异的线电压调整率和负载调整率电感电流临界连续模式源极驱动方式超低(20uA) 启动电流超低(600uA) 工作电流FB 反馈电阻值高,功耗低LED 短路/开路保护电流采样电阻短路/开路保护变压器饱和保护逐周期电流限流芯片供电过压/欠压保护自动重启功能封装形式:SOP-8产品应用GU10/E27 LED 球泡灯、射灯LED PAR30、PAR38 灯LED 日光灯其它LED 照明内部结构框图注1:最大极限值是指超出该工作范围,芯片有可能损坏。

推荐工作范围是指在该范围内,器件功能正常,但并不完全保证满足个别性能指标。

电气参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数规范。

对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。

恒导通时间控制的降压型高效率PFC研究

恒导通时间控制的降压型高效率PFC研究

igt t rpsd d s n c t aso sta teip tcr n hr nc metteI C 10 — — ( l sD) s n n o h pooe ei re h w h t h n u ur t a e g ir i e mois e h E 6 00 3 2 Ca s t — a
( 江 大学 , 浙 电气 工 程 学 院 ,浙 江 杭 州 3 0 2 ) 10 7 摘 要 : 宽 范 围 输 入 的 A / C适 配 器 应 用 场 合 , 传 统 B ot F 在 CD 与 os P C相 比 , u k型 功 率 因 数 校 正 ( F ) Bc P C 电路 能 够
中图 分 类号 :M743 T 1. 文 献标 识 码 : A 文 章编 号 :00 lO 2 1 ) 10 3 — 3 10 一 O X(0 0 l- 0 3 0
A g f ce c e do Hi h Ef i n y St p- wn PFC t Co sa n Ti e Co t o i wih n t nt o m n r l
d r n h f c e c s hg e h n 9 . % d rn h n v r a n u a g . a d a d t e e i n y i ih rt a 6 5 i u g t e u i e li p tr n e i s
Ke ywor ds: o rf co or c in; c iia o e; c n tn — n tme e nto p we a tr c re to rtc lm d o sa to i o r 1
在整 个输入 电压 范 围内保持 一个较 高 的效率 。提 出 了一种工 作在 临界 导通模 式 的恒 导通 时 间型 B c F u kP C电

一种降压式PFC控制电路[实用新型专利]

一种降压式PFC控制电路[实用新型专利]

专利名称:一种降压式PFC控制电路专利类型:实用新型专利
发明人:尹向阳,翁斌,申志鹏
申请号:CN201920517631.9
申请日:20190416
公开号:CN209805670U
公开日:
20191217
专利内容由知识产权出版社提供
摘要:本实用新型提供了一种降压式PFC控制电路,包括:整流电路、电压检测控制电路、反激电路;电压检测控制电路中内置的基准电压可以自适应输入电压而变化,使得输出电压与加在变压器原边两端的电压跟随输入电压变化而自适应调整,解决了现有方案不适用高压、宽范围输入的问题;本实用新型可靠性高,占空比不随输入电压变化而变化,大大提高效率;并且电路简单,设计更灵活。

申请人:广州金升阳科技有限公司
地址:510663 广东省广州市广州开发区科学城科学大道科汇发展中心科汇一街5号
国籍:CN
更多信息请下载全文后查看。

一种降低无桥pfc安规峰值漏电流的方法

一种降低无桥pfc安规峰值漏电流的方法

一种降低无桥pfc安规峰值漏电流的方法
降低无桥PFC(功率因数校正)安规峰值漏电流的方法有以下几种:
1. 使用高质量的元器件:选择低漏电电流的电容和电感元件,以降低峰值漏电流。

2. 采用差模输入滤波器:差模输入滤波器能够有效地抑制共模干扰,从而降低漏电流。

3. 添加额外的滤波电感:通过增加滤波电感的数量或增加滤波电感的值来降低漏电流。

4. 使用降压电容器:在输入滤波电容器之前添加一个降压电容器,降低其电容值,从而减少漏电流。

5. 使用谐振电路:通过添加谐振电路,可以调整无桥PFC的工作频率,从而有效地减少漏电流。

6. 应用优化的拓扑结构:选择合适的拓扑结构,如LLC或LLCC型拓扑,能够降低漏电流并提高效率。

以上是一些降低无桥PFC安规峰值漏电流的常见方法,具体应根据实际情况选择合适的方法进行优化。

降压PFC——精选推荐

降压PFC——精选推荐

降压PFCUsing the UCC29910A-730 User's GuideLiterature Number:SLUU505AMay2011–Revised October2011User's GuideSLUU505A–May2011–Revised October2011 Buck PFC Pre-Regulator in Power Factor Correction Applications1IntroductionThis EVM is to help evaluating UCC29910A buck PFC pre-regulator controller device in Power Factor Correction(PFC)applications especially targeting notebook computer charger area with universal AC input voltages.2DescriptionThe EVM is a100-W buck PFC pre-regulator with universal AC input between90VAC and264VAC,inputfrequency between47Hz and63Hz,and output voltage nominal84VDCand maximum load current1.2A.2.1Typical ApplicationsHigh Efficiency AC-DC AdaptersLow Profile and High Density Adapters2.2FeaturesUniversal Line Input AC Voltage(between90VAC and264VAC,with frequency range47Hz and63Hz)Regulated Output DC Voltage(84VDCwith maximum1.2-A load current)Output Voltage Regulation From no Load to Full Load,and From Low Line to High LineHigh Efficiency96%Peak and95%at Full LoadHigh Power Factor Over0.9Double Sided PCB LayoutBuck PFC TechnologyNon-Latching Input Under Voltage ProtectionOver Current ProtectionTest Points to Facilitate Device and Topology Evaluation2Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlElectrical Performance Specifications 3Electrical Performance SpecificationsTable1.UCC29910AEVM-730Electrical Performance SpecificationsPARAMETER CONDITION MIN TYP MAX UNITS Input CharactersticsV IN Input voltage90115264V ACf AC Input frequency4763HzI IN Input current V IN=nom,I OUT=max 1.5A RMSV IN_UVLO Input UVLO I OUT=min to max80V AC V IN_OV Input OV I OUT=min to max265P F Power factor V IN=nom,50%load0.9Output CharacteristicsV OUT Output voltage(1)V IN=nom,I OUT=nom82.38485.7V Reg_LN Line regulation(2)V IN=min to max,I OUT=nom 5.0% Reg_LD Load regulation(2)V IN=nom,I OUT=min to max 5.0%V OUT_ripple Output voltage ripple V IN=nom,I OUT=max6V PPI OUT Output current V IN=min to max0 1.20AIOCP Output over current V IN=nom,I OUT=I OUT-5% 1.30Systems Characteristicsf SW Switching frequency100kHzEff_Peak Peak efficiency V IN=nom,I OUT=min to max96%Eff_FL Full load efficiency V IN=nom,I OUT=max95%Top Operating temperature range V IN=min to max,I OUT=min to max25°C(1)Start up is normally with load current not greater than0.2A.Start up with no load,or less than0.2-A load,may make output voltage higher and can be as high as88V.Start up with load current greater than0.2A may trigger over current protection and may make output voltage in hiccup operation.(2)Load step down to zero may make output voltage higher and can be as high as90V.3 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright?2011,Texas Instruments IncorporatedSchematic /doc/0e18265811.html4SchematicFigure1.Schematic4Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlTest Setup5Test Setup 5.1Test EquipmentVoltage Source (Main):90V AC to 265V AC ,2.0A AC ,such as Agilent 6813B AC Power Source/Analyzer,or equivalent. Voltage Source (Bias):10V DC /0.2A.Multimeters:100V DC /1.5A DC four-digit display meters,such as Fluke 45Dual Display Multimeter,or equivalent. Output Load:100V DC /1.5A DC load such as TDI RBL488Electronic Load 100-120-800,or equivalent.Fan:200LFM minimum.Recommended Wire Gauge:AWG #18for input voltage connection and output load connection.5.2Recommended Test SetupFigure 2.UCC29910AEVM-730Recommended Test Set Up5SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright ?2011,Texas Instruments IncorporatedTest Setup /doc/0e18265811.html5.3List of Test PointsTable2.Test Point FunctionTEST POINTS NAME DESCRIPTIONTP1LINE input AC Input voltage LINE connectionTP2NEUTRAL input AC input voltage NEUTRAL connectionTP3GND Reference ground for signalTP4Rectifier Input Input after common mode chokeTP5FET Drive U3(UCC29910A)Pin13TP6GND Reference ground for powerTP73V3B 3.3-V bias and U3(UCC29910A)Pin1TP8Current Monitor Q5drain current monitoringTP9Current Monitor Q5drain current monitoringTP10Drive Q5gateTP11Drain Q5drainTP12VO-Output voltage negative terminalTP13VO+Output voltage positive terminalJ1Bias External10-V biasJ2Fault Manual Fault Input to trigger fault protection from external circuitJ3Vout Output power terminal6Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlTest Procedure 6Test ProcedureSet up the EVM per Figure2.CAUTIONHigh voltage and high temperature present when the EVM is in operation!High voltage present for some time after power down of the EVM.Check outputterminals with a voltmeter before handling the EVM!6.1Power Factor and Efficiency Measurement Procedure1.Check the switch S1at ON position.If S1is not at ON position,switch S1to the position ON.2.Turn on the ventilation fan and keep the fan in operation during the time of test.3.Set the AC source voltage to115VACand frequency to60Hz.But keep the AC source powered off4.Prior to connecting the AC source,set the current to2.5-A peak and2.5-A limit.Connecting AC sourceto LINE and NEUTRAL terminals as shown in Figure2.5.Connect voltmeter V1across the J3as shown in Figure2.6.Connect ammeter A1to J3positive terminal and connect ammeter A1to Load-1.Then connect Load-1 negative terminal to J3negative terminal.7.Connect10-V Bias to J1,turn on10-V Bias.8.Set Load-1to constant current mode to sink0.2ADC and set Load-1at100VDCinput range beforeturning on the AC source.9.Turn on the AC source.10.Varying the load current from0.2A to1.2A,along with the load current variation:(a)Read input voltage,input real power,and power factor from the AC source.(b)Read output voltage and output current from V1and A1.11.Turn off the AC source.12.Set the AC source voltage to230VACand frequency to50Hz.13.Repeat step8and10.NOTE:Start up is normally with load current not greater than0.2A.Start up with no load,or less than0.2-A load,may make output voltage higher and can be ashigh as88V.Start up with load current greater than0.2A may trigger over current protection and maymake output voltage in hiccup operation.Load step down to zero may make output voltage higher and can be as high as90V.6.2Equipment Shutdown1.Shut down the AC source2.Shut down the10-V Bias3.Shut down the load4.Shut down the FANCAUTIONHigh voltage may present after power down of the EVM for some time.Checkoutput terminals with a voltmeter before handling the EVM!7 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated7Performance Data and Typical Characteristic Curves 7.1Efficiency at 115V AC and 230V ACFigure 3.Efficiency with 115V AC and 230V AC (Test Points:TP1,TP2,TP12and TP13)7.2Efficiency at Full Load with Respect to Input VoltageFigure 4.Efficiency at Full Load (Test Points:TP1,TP2,TP12and TP13)8Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSLUU505A –May 2011–Revised October 2011Submit Documentation FeedbackCopyright ?2011,Texas Instruments Incorporated7.3Power Factor at 115V AC and 230V ACFigure 5.PF with 115V AC and 230V AC (Test Points:TP1,TP2,TP12and TP13)7.4Power Factor at Full Load with Respect to Input VoltageFigure 6.PF at Full Load (Test Points:TP1,TP2,TP12and TP13)9SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright ?2011,Texas Instruments Incorporated7.5Input Current Harmonic Content (IEC EN61000-3-2Limits for Class D Equipment)Figure 7.Harmonic Content with 230Vac Input (Vin =230Vac at 50Hz,Io =1.2A Test Points:TP1,TP2,TP12and TP13)7.6Input Current Harmonic Content (JIS61000-3-2Limits for Class D Equipment)Figure 8.Harmonic Content with 100V AC Input (V IN =100V AC at 50Hz,I O =1.2A Test Points:TP1,TP2,TP12and TP13)10Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSLUU505A –May 2011–Revised October 2011Submit Documentation FeedbackCopyright ?2011,Texas Instruments Incorporated7.7No-Load Output Turn OnFigure9.No-Load Turn On(VIN =230VACat50Hz,IO=0A Test Points:TP12and TP13)11SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated7.8Output Voltage RippleFigure10.Output Voltage Ripple(VIN =230VACat50Hz,IO=1.2A Test Points:TP12and TP13)12Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated7.9Input Voltage and CurrentFigure 11.Input Waveforms (V IN =230V AC at 50Hz,I O =1.2A Test Points:TP1and TP2)7.10EMI Performance Achievable on a Full 90-W Adapter Design (reference to SEM1900topic 4)NOTE:This EVM is not designed to meet the EMI standard.A reference design shown in SEM1900does.13SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright ?2011,Texas Instruments IncorporatedFigure12.EMI Conducted Emission Test(Vin=230Vac at50Hz,Io=1.2A)14Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlEVM Assembly Drawing and PCB layout8EVM Assembly Drawing and PCB layoutThe following figures (Figure 13through Figure 18)show the design of the UCC29910AEVM-730printed circuit board.PCB dimensions:L x W =6.1inch x 3.0inch,four layers and 2-oz copper on outer layers and 1-oz copper on inner layers.Figure 13.UCC29910AEVM-730Top Layer Assembly Drawing (top view)Figure 14.UCC29910AEVM-730Bottom Assembly Drawing (bottom view)15SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright ?2011,Texas Instruments IncorporatedEVM Assembly Drawing and PCB layout /doc/0e18265811.htmlFigure15.UCC29910AEVM-730Top Copper(top view)Figure16.UCC29910AEVM-730Internal Layer1(top view)16Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlEVM Assembly Drawing and PCB layoutFigure17.UCC29910AEVM-730Internal Layer2(top view)Figure18.UCC29910AEVM-730Bottom Copper(top view)17 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright?2011,Texas Instruments IncorporatedList of Materials /doc/0e18265811.html9List of MaterialsTable3.The EVM Components List(according to the schematic shown in) REF DES QTY DESCRIPTION PART NUMBER MFRC11Capacitor,metallized polyester film,275V AC,20%,330nF ECQ-U2A334ML PanasonicC101Capacitor,ceramic,630V,20%,1206,220pF std stdC111Capacitor,ceramic,16V,X7R,±10%,0805,100nF std stdC12,C15,3Capacitor,ceramic,16V,X7R,±10%,0805,10nF std stdC22C14,C172Capacitor,ceramic,100V,±10%,1206,1µF std stdC181Capacitor,ceramic,16V,X7R,±10%,0805,2.2nF std stdC19,C202Capacitor,aluminum,100V,20%,470µF EEU-FC2A471PanasonicC21Capacitor,ceramic,25V,X7R,20%,47µF CKG57NX5R1E476M TDKC211Capacitor,aluminum,16V,20%,100µF ECA1CM101PanasonicC231Capacitor,ceramic,50V,X7R,±10%,0805,100nF std stdC3,3Capacitor,ceramic,16V,X7R,±10%,0805,1µF std stdC4,C13C51Capacitor,metallized polyproplene film,450V DC,20%,ECW-F2W274JAQ Panasonic0.27µFC61Capacitor,metallized polyester film,450V DC,20%,1.2µF ECW-F2W125JA PanasonicC71Capacitor,ceramic,16V,X7R,±10%,0805,0.47µF std stdC8,C9,3Capacitor,ceramic,630V,20%,1206,10nF std stdC16D1,D72Diode,switching,150mA,75V,350mW BAS16OnsemiD21Diode,super fast rectifier,200V,1.0A ES1D FairchildD31Diode,Zener,10V,20mA,225mW,5%,10V BZX84C10LT1G OnsemiD41Diode,Zener,12V,20mA,225mW,5%,12V BZX84C12LT1G OnsemiD51Diode,bridge,6A,600V,GBU6J VishayD61DIODE,hyperfast6A,600V RHRD660S FairchildD81Adjustable precision shunt regulator,0.5%TLV431BQDBZT TID91Diode,Zener,10V,20mA,225mW,5%,15V BZX84C15LT1G OnsemiF11Fuse,3.15A,250V,Slo-Blo,cartridge,3.15A0213002.LittlefuseJ1,J32Terminal block,2pin,15A,5.1mm,ED500/2DS OSTJ21Header,male2-pin,100mil spacing,PEC02SAAN SullinsL11Inductor,±3%at100kHz,5mH750311982WEL2,L32Inductor,±10%at100kHz,103µH750311983WEL41Transformer,±15%,88µH750311885WEQ11MOSFET,N-channel,600V,7mA BSS126InfineonQ2,Q3,4MOSFET,N-channel,100V,0.17A BSS123FairchildQ4,Q8Q51MOSFET,N-channel,650V,16A,0.199ΩIPB60R199CP InfineonQ61Bipolar,NPN,40V CEO,600mA,350mW MMBT2222AK FairchildQ71Transistor,PNP,-500V CEO,-5V EBO,50mA FMMT560Zetex18Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011 Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated/doc/0e18265811.htmlList of MaterialsTable3.The EVM Components List(according to the schematic shown in)(continued) REF DES QTY DESCRIPTION PART NUMBER MFRR1,R132Resistor,chip,1/8W,1%,0805,0Ωstd stdR11,R17,5Resistor,chip,1/8W,1%,0805,10kΩstd std R18,R35,R36R121Resistor,chip,1/8W,1%,0805,680kΩstd stdR141Resistor,chip,1/8W,1%,0805,3.3kΩstd stdR151Resistor,chip,1/8W,1%,0805,56kΩstd stdR161Resistor,chip,1/8W,1%,0805,0Ωstd stdR321Resistor,chip,1/4W,1%,1206,0.05Ωstd stdR191Resistor,chip,1/2W,1%,1210,0.15Ωstd stdR2,R102Resistor,chip,1/8W,1%,0805,300kΩstd std R201Resistor,chip,1/8W,1%,0805,100kΩstd stdR211Resistor,chip,1/8W,1%,0805,10Ωstd stdR221Resistor,chip,1/8W,1%,0805,47kΩstd stdR24,R252Resistor,chip,1/4W,1%,1206,2.2MΩstd std R261Resistor,chip,1/8W,1%,0805,13.7kΩstd stdR271Resistor,chip,1/8W,1%,0805,270kΩstd stdR28,R302Resistor,chip,1/4W,1%,1206,1MΩstd std R291Resistor,chip,1/8W,1%,0805,18kΩstd stdR31Resistor,chip,1/8W,1%,0805,390Ωstd stdR311Resistor,chip,1/4W,1%,1206,330kΩstd stdR331Resistor,chip,1/8W,1%,0805,143kΩstd stdR341Resistor,chip,1/8W,1%,0805,30kΩstd stdR41Resistor,chip,1/8W,1%,0805,1MΩstd stdR5,R62Resistor,chip,1/4W,1%,1206,1.5MΩstd std R7,R92Resistor,chip,1/4W,1%,1206,51.1kΩstd std R81Resistor,chip,1/8W,1%,0805,std stdR371Resistor,chip,1/2W,1%,1210,1kΩstd stdR231Resistor,chip,1/8W,1%,0805,100Ωstd stdU1150-mA LDO,3.0V O TPS71533DCKR TIU21MOSFET driver,inverting TPS2828DBV TIU31Buck PFC UCC29910APW TIVR1,VR22Varistor,95V AC V150CH8LittelfuseVR31Varistor,369V DC V430CH8LittelfuseZR11Sidactor,160V S,2.2A P1300SCLRP LittelfuseZR21Sidactor,130V S,2.2A P1100SCLRP Littelfuse19 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright?2011,Texas Instruments Incorporated。

降压PFC——精选推荐

降压PFC——精选推荐

降压PFCUCC29910A/doc/3f7d6a1569dc5022abea0029.html ZHCS258A–MAY2011–REVISED JUNE2011降压PFC控制器查询样品:UCC29910A特性说明降压功率因数校正⽤于在整个线路输⼊电压范围内对于需要⾼功率因数(>0.9)并希望满⾜IEC 实现⾼效率61000-3-2规范要求的设计⼈员,UCC29910A降压功?低离线启动电流,并采⽤了旨在实现快速启动及软率因数校正(PFC)控制器在通⽤线路输⼊电压范围内起动的SmartStart算法。

提供了相对平坦的⾼效性能。

固有的浪涌电流限制功?可兼容依靠AC线路的阻性或传输晶体管馈电型启能基于⼀种降压拓扑,可免除增设额外组件的需要。

动⽅式凭借84V的典型总线电压,该拓扑⾮常适⽤于低电压?针对待机和轻负载条件的低功耗SmartBurst模式应⼒下游稳压/隔离功率链路,例如:受控于⽤于PFC控制及过流保护的电流检测输⼊UCC29900的半桥段,(德州仪器⽂献编线路检测⽋压闭锁(UVLO)号:SLUS923).这种组合所产⽣的共模噪声很低,从?⽤于外部启动耗尽型FET的检测及驱动控制⽽降低了滤波要求并实现了异常⾼的转换效率。

闭锁故障输⼊引脚UCC29910A拥有AC线路⽋压闭锁(UVLO)及旨在实应⽤现快速启动的受控软起动功能。

通过运⽤旨在实现同类最佳之⽆负载及轻负载性能的⾼级电源管理算法,提?⾼效率AC-DC适配器升了轻负载效率。

扁平和⾼密度适配器简化的应⽤⽰意图ArrayPlease be aware that an important notice concerning availability,standard warranty,and use in critical applications of Texas UCC29910AZHCS258A–MAY2011–REVISED /doc/3f7d6a1569dc5022abea0029.html 这些装置包含有限的内置ESD保护。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Using the UCC29910A-730 User's GuideLiterature Number:SLUU505AMay2011–Revised October2011User's GuideSLUU505A–May2011–Revised October2011 Buck PFC Pre-Regulator in Power Factor CorrectionApplications1IntroductionThis EVM is to help evaluating UCC29910A buck PFC pre-regulator controller device in Power FactorCorrection(PFC)applications especially targeting notebook computer charger area with universal ACinput voltages.2DescriptionThe EVM is a100-W buck PFC pre-regulator with universal AC input between90VAC and264VAC,inputfrequency between47Hz and63Hz,and output voltage nominal84VDCand maximum load current1.2A.2.1Typical Applications•High Efficiency AC-DC Adapters•Low Profile and High Density Adapters2.2Features•Universal Line Input AC Voltage(between90VAC and264VAC,with frequency range47Hz and63Hz)•Regulated Output DC Voltage(84VDCwith maximum1.2-A load current)•Output Voltage Regulation From no Load to Full Load,and From Low Line to High Line•High Efficiency96%Peak and95%at Full Load•High Power Factor Over0.9•Double Sided PCB Layout•Buck PFC Technology•Non-Latching Input Under Voltage Protection•Over Current Protection•Test Points to Facilitate Device and Topology Evaluation2Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated Electrical Performance Specifications 3Electrical Performance SpecificationsTable1.UCC29910AEVM-730Electrical Performance SpecificationsPARAMETER CONDITION MIN TYP MAX UNITS Input CharactersticsV IN Input voltage90115264V ACf AC Input frequency4763HzI IN Input current V IN=nom,I OUT=max 1.5A RMSV IN_UVLO Input UVLO I OUT=min to max80V AC V IN_OV Input OV I OUT=min to max265P F Power factor V IN=nom,50%load0.9Output CharacteristicsV OUT Output voltage(1)V IN=nom,I OUT=nom82.38485.7V Reg_LN Line regulation(2)V IN=min to max,I OUT=nom 5.0%Reg_LD Load regulation(2)V IN=nom,I OUT=min to max 5.0%V OUT_ripple Output voltage ripple V IN=nom,I OUT=max6V PPI OUT Output current V IN=min to max0 1.20AIOCP Output over current V IN=nom,I OUT=I OUT-5% 1.30Systems Characteristicsf SW Switching frequency100kHzEff_Peak Peak efficiency V IN=nom,I OUT=min to max96%Eff_FL Full load efficiency V IN=nom,I OUT=max95%Top Operating temperature range V IN=min to max,I OUT=min to max25°C(1)Start up is normally with load current not greater than0.2A.Start up with no load,or less than0.2-A load,may make outputvoltage higher and can be as high as88V.Start up with load current greater than0.2A may trigger over current protection andmay make output voltage in hiccup operation.(2)Load step down to zero may make output voltage higher and can be as high as90V.3 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright©2011,Texas Instruments IncorporatedSchematic 4SchematicFigure1.Schematic4Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated Test Setup5Test Setup 5.1Test EquipmentVoltage Source (Main):90V AC to 265V AC ,2.0A AC ,such as Agilent 6813B AC Power Source/Analyzer,or equivalent.Voltage Source (Bias):10V DC /0.2A.Multimeters:100V DC /1.5A DC four-digit display meters,such as Fluke 45Dual Display Multimeter,or equivalent.Output Load:100V DC /1.5A DC load such as TDI RBL488Electronic Load 100-120-800,or equivalent.Fan:200LFM minimum.Recommended Wire Gauge:AWG #18for input voltage connection and output load connection.5.2Recommended Test SetupFigure 2.UCC29910AEVM-730Recommended Test Set Up5SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSubmit Documentation FeedbackCopyright ©2011,Texas Instruments IncorporatedTest Setup 5.3List of Test PointsTable2.Test Point FunctionTEST POINTS NAME DESCRIPTIONTP1LINE input AC Input voltage LINE connectionTP2NEUTRAL input AC input voltage NEUTRAL connectionTP3GND Reference ground for signalTP4Rectifier Input Input after common mode chokeTP5FET Drive U3(UCC29910A)Pin13TP6GND Reference ground for powerTP73V3B 3.3-V bias and U3(UCC29910A)Pin1TP8Current Monitor Q5drain current monitoringTP9Current Monitor Q5drain current monitoringTP10Drive Q5gateTP11Drain Q5drainTP12VO-Output voltage negative terminalTP13VO+Output voltage positive terminalJ1Bias External10-V biasJ2Fault Manual Fault Input to trigger fault protection from external circuitJ3Vout Output power terminal6Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated Test Procedure 6Test ProcedureSet up the EVM per Figure2.CAUTIONHigh voltage and high temperature present when the EVM is in operation!High voltage present for some time after power down of the EVM.Check outputterminals with a voltmeter before handling the EVM!6.1Power Factor and Efficiency Measurement Procedure1.Check the switch S1at ON position.If S1is not at ON position,switch S1to the position ON.2.Turn on the ventilation fan and keep the fan in operation during the time of test.3.Set the AC source voltage to115VACand frequency to60Hz.But keep the AC source powered off4.Prior to connecting the AC source,set the current to2.5-A peak and2.5-A limit.Connecting AC sourceto LINE and NEUTRAL terminals as shown in Figure2.5.Connect voltmeter V1across the J3as shown in Figure2.6.Connect ammeter A1to J3positive terminal and connect ammeter A1to Load-1.Then connect Load-1negative terminal to J3negative terminal.7.Connect10-V Bias to J1,turn on10-V Bias.8.Set Load-1to constant current mode to sink0.2ADC and set Load-1at100VDCinput range beforeturning on the AC source.9.Turn on the AC source.10.Varying the load current from0.2A to1.2A,along with the load current variation:(a)Read input voltage,input real power,and power factor from the AC source.(b)Read output voltage and output current from V1and A1.11.Turn off the AC source.12.Set the AC source voltage to230VACand frequency to50Hz.13.Repeat step8and10.NOTE:Start up is normally with load current not greater than0.2A.Start up with no load,or less than0.2-A load,may make output voltage higher and can be ashigh as88V.Start up with load current greater than0.2A may trigger over current protection and maymake output voltage in hiccup operation.Load step down to zero may make output voltage higher and can be as high as90V.6.2Equipment Shutdown1.Shut down the AC source2.Shut down the10-V Bias3.Shut down the load4.Shut down the FANCAUTIONHigh voltage may present after power down of the EVM for some time.Checkoutput terminals with a voltmeter before handling the EVM!7 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated7Performance Data and Typical Characteristic Curves 7.1Efficiency at 115V AC and 230V ACFigure 3.Efficiency with 115V AC and 230V AC (Test Points:TP1,TP2,TP12and TP13)7.2Efficiency at Full Load with Respect to Input VoltageFigure 4.Efficiency at Full Load (Test Points:TP1,TP2,TP12and TP13)8Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSLUU505A –May 2011–Revised October 2011Submit Documentation FeedbackCopyright ©2011,Texas Instruments Incorporated7.3Power Factor at 115V AC and 230V ACFigure 5.PF with 115V AC and 230V AC (Test Points:TP1,TP2,TP12and TP13)7.4Power Factor at Full Load with Respect to Input VoltageFigure 6.PF at Full Load (Test Points:TP1,TP2,TP12and TP13)9SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSubmit Documentation FeedbackCopyright ©2011,Texas Instruments Incorporated7.5Input Current Harmonic Content (IEC EN61000-3-2Limits for Class D Equipment)Figure 7.Harmonic Content with 230Vac Input (Vin =230Vac at 50Hz,Io =1.2A Test Points:TP1,TP2,TP12and TP13)7.6Input Current Harmonic Content (JIS61000-3-2Limits for Class D Equipment)Figure 8.Harmonic Content with 100V AC Input (V IN =100V AC at 50Hz,I O =1.2A Test Points:TP1,TP2,TP12and TP13)10Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSLUU505A –May 2011–Revised October 2011Submit Documentation FeedbackCopyright ©2011,Texas Instruments Incorporated7.7No-Load Output Turn OnFigure9.No-Load Turn On(VIN =230VACat50Hz,IO=0A Test Points:TP12and TP13)11SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated7.8Output Voltage RippleFigure10.Output Voltage Ripple(VIN =230VACat50Hz,IO=1.2A Test Points:TP12and TP13)12Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated7.9Input Voltage and CurrentFigure 11.Input Waveforms (V IN =230V AC at 50Hz,I O =1.2A Test Points:TP1and TP2)7.10EMI Performance Achievable on a Full 90-W Adapter Design (reference to SEM1900topic 4)NOTE:This EVM is not designed to meet the EMI standard.A reference design shown in SEM1900does.13SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSubmit Documentation FeedbackCopyright ©2011,Texas Instruments IncorporatedFigure12.EMI Conducted Emission Test(Vin=230Vac at50Hz,Io=1.2A)14Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated EVM Assembly Drawing and PCB layout8EVM Assembly Drawing and PCB layoutThe following figures (Figure 13through Figure 18)show the design of the UCC29910AEVM-730printed circuit board.PCB dimensions:L x W =6.1inch x 3.0inch,four layers and 2-oz copper on outer layers and 1-oz copper on inner layers.Figure 13.UCC29910AEVM-730Top Layer Assembly Drawing (top view)Figure 14.UCC29910AEVM-730Bottom Assembly Drawing (bottom view)15SLUU505A –May 2011–Revised October 2011Buck PFC Pre-Regulator in Power Factor Correction ApplicationsSubmit Documentation FeedbackCopyright ©2011,Texas Instruments IncorporatedEVM Assembly Drawing and PCB layout Figure15.UCC29910AEVM-730Top Copper(top view)Figure16.UCC29910AEVM-730Internal Layer1(top view)16Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated EVM Assembly Drawing and PCB layoutFigure17.UCC29910AEVM-730Internal Layer2(top view)Figure18.UCC29910AEVM-730Bottom Copper(top view)17 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright©2011,Texas Instruments IncorporatedList of Materials 9List of MaterialsTable3.The EVM Components List(according to the schematic shown in) REF DES QTY DESCRIPTION PART NUMBER MFRC11Capacitor,metallized polyester film,275V AC,20%,330nF ECQ-U2A334ML PanasonicC101Capacitor,ceramic,630V,20%,1206,220pF std stdC111Capacitor,ceramic,16V,X7R,±10%,0805,100nF std stdC12,C15,3Capacitor,ceramic,16V,X7R,±10%,0805,10nF std stdC22C14,C172Capacitor,ceramic,100V,±10%,1206,1µF std stdC181Capacitor,ceramic,16V,X7R,±10%,0805,2.2nF std stdC19,C202Capacitor,aluminum,100V,20%,470µF EEU-FC2A471PanasonicC21Capacitor,ceramic,25V,X7R,20%,47µF CKG57NX5R1E476M TDKC211Capacitor,aluminum,16V,20%,100µF ECA1CM101PanasonicC231Capacitor,ceramic,50V,X7R,±10%,0805,100nF std stdC3,3Capacitor,ceramic,16V,X7R,±10%,0805,1µF std stdC4,C13C51Capacitor,metallized polyproplene film,450V DC,20%,ECW-F2W274JAQ Panasonic0.27µFC61Capacitor,metallized polyester film,450V DC,20%,1.2µF ECW-F2W125JA PanasonicC71Capacitor,ceramic,16V,X7R,±10%,0805,0.47µF std stdC8,C9,3Capacitor,ceramic,630V,20%,1206,10nF std stdC16D1,D72Diode,switching,150mA,75V,350mW BAS16OnsemiD21Diode,super fast rectifier,200V,1.0A ES1D FairchildD31Diode,Zener,10V,20mA,225mW,5%,10V BZX84C10LT1G OnsemiD41Diode,Zener,12V,20mA,225mW,5%,12V BZX84C12LT1G OnsemiD51Diode,bridge,6A,600V,GBU6J VishayD61DIODE,hyperfast6A,600V RHRD660S FairchildD81Adjustable precision shunt regulator,0.5%TLV431BQDBZT TID91Diode,Zener,10V,20mA,225mW,5%,15V BZX84C15LT1G OnsemiF11Fuse,3.15A,250V,Slo-Blo,cartridge,3.15A0213002.LittlefuseJ1,J32Terminal block,2pin,15A,5.1mm,ED500/2DS OSTJ21Header,male2-pin,100mil spacing,PEC02SAAN SullinsL11Inductor,±3%at100kHz,5mH750311982WEL2,L32Inductor,±10%at100kHz,103µH750311983WEL41Transformer,±15%,88µH750311885WEQ11MOSFET,N-channel,600V,7mA BSS126InfineonQ2,Q3,4MOSFET,N-channel,100V,0.17A BSS123FairchildQ4,Q8Q51MOSFET,N-channel,650V,16A,0.199ΩIPB60R199CP InfineonQ61Bipolar,NPN,40V CEO,600mA,350mW MMBT2222AK FairchildQ71Transistor,PNP,-500V CEO,-5V EBO,50mA FMMT560Zetex18Buck PFC Pre-Regulator in Power Factor Correction Applications SLUU505A–May2011–Revised October2011Submit Documentation FeedbackCopyright©2011,Texas Instruments Incorporated List of MaterialsTable3.The EVM Components List(according to the schematic shown in)(continued) REF DES QTY DESCRIPTION PART NUMBER MFRR1,R132Resistor,chip,1/8W,1%,0805,0Ωstd stdR11,R17,5Resistor,chip,1/8W,1%,0805,10kΩstd stdR18,R35,R36R121Resistor,chip,1/8W,1%,0805,680kΩstd stdR141Resistor,chip,1/8W,1%,0805,3.3kΩstd stdR151Resistor,chip,1/8W,1%,0805,56kΩstd stdR161Resistor,chip,1/8W,1%,0805,0Ωstd stdR321Resistor,chip,1/4W,1%,1206,0.05Ωstd stdR191Resistor,chip,1/2W,1%,1210,0.15Ωstd stdR2,R102Resistor,chip,1/8W,1%,0805,300kΩstd stdR201Resistor,chip,1/8W,1%,0805,100kΩstd stdR211Resistor,chip,1/8W,1%,0805,10Ωstd stdR221Resistor,chip,1/8W,1%,0805,47kΩstd stdR24,R252Resistor,chip,1/4W,1%,1206,2.2MΩstd stdR261Resistor,chip,1/8W,1%,0805,13.7kΩstd stdR271Resistor,chip,1/8W,1%,0805,270kΩstd stdR28,R302Resistor,chip,1/4W,1%,1206,1MΩstd stdR291Resistor,chip,1/8W,1%,0805,18kΩstd stdR31Resistor,chip,1/8W,1%,0805,390Ωstd stdR311Resistor,chip,1/4W,1%,1206,330kΩstd stdR331Resistor,chip,1/8W,1%,0805,143kΩstd stdR341Resistor,chip,1/8W,1%,0805,30kΩstd stdR41Resistor,chip,1/8W,1%,0805,1MΩstd stdR5,R62Resistor,chip,1/4W,1%,1206,1.5MΩstd stdR7,R92Resistor,chip,1/4W,1%,1206,51.1kΩstd stdR81Resistor,chip,1/8W,1%,0805,std stdR371Resistor,chip,1/2W,1%,1210,1kΩstd stdR231Resistor,chip,1/8W,1%,0805,100Ωstd stdU1150-mA LDO,3.0V O TPS71533DCKR TIU21MOSFET driver,inverting TPS2828DBV TIU31Buck PFC UCC29910APW TIVR1,VR22Varistor,95V AC V150CH8LittelfuseVR31Varistor,369V DC V430CH8LittelfuseZR11Sidactor,160V S,2.2A P1300SCLRP LittelfuseZR21Sidactor,130V S,2.2A P1100SCLRP Littelfuse19 SLUU505A–May2011–Revised October2011Buck PFC Pre-Regulator in Power Factor Correction Applications Submit Documentation FeedbackCopyright©2011,Texas Instruments IncorporatedEvaluation Board/Kit Important NoticeTexas Instruments(TI)provides the enclosed product(s)under the following conditions:This evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,DEMONSTRATION,OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use.Persons handling the product(s)must have electronics training and observe good engineering practice standards.As such,the goods being provided are not intended to be complete in terms of required design-,marketing-,and/or manufacturing-related protective considerations, including product safety and environmental measures typically found in end products that incorporate such semiconductor components or circuit boards.This evaluation board/kit does not fall within the scope of the European Union directives regarding electromagnetic compatibility,restricted substances(RoHS),recycling(WEEE),FCC,CE or UL,and therefore may not meet the technical requirements of these directives or other related directives.Should this evaluation board/kit not meet the specifications indicated in the User’s Guide,the board/kit may be returned within30 days from the date of delivery for a full refund.THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY MADE BY SELLER TO BUYER AND IS IN LIEU OF ALL OTHER WARRANTIES,EXPRESSED,IMPLIED,OR STATUTORY,INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE.The user assumes all responsibility and liability for proper and safe handling of the goods.Further,the user indemnifies TI from all claims arising from the handling or use of the goods.Due to the open construction of the product,it is the user’s responsibility to take any and all appropriate precautions with regard to electrostatic discharge.EXCEPT TO THE EXTENT OF THE INDEMNITY SET FORTH ABOVE,NEITHER PARTY SHALL BE LIABLE TO THE OTHER FOR ANY INDIRECT,SPECIAL,INCIDENTAL,OR CONSEQUENTIAL DAMAGES.TI currently deals with a variety of customers for products,and therefore our arrangement with the user is not exclusive.TI assumes no liability for applications assistance,customer product design,software performance,or infringement of patents or services described herein.Please read the User’s Guide and,specifically,the Warnings and Restrictions notice in the User’s Guide prior to handling the product.This notice contains important safety information about temperatures and voltages.For additional information on TI’s environmental and/or safety programs,please contact the TI application engineer or visit /esh.No license is granted under any patent right or other intellectual property right of TI covering or relating to any machine,process,or combination in which such TI products or services might be or are used.FCC WarningThis evaluation board/kit is intended for use for ENGINEERING DEVELOPMENT,DEMONSTRATION,OR EVALUATION PURPOSES ONLY and is not considered by TI to be a finished end-product fit for general consumer use.It generates,uses,and can radiate radio frequency energy and has not been tested for compliance with the limits of computing devices pursuant to part15 of FCC rules,which are designed to provide reasonable protection against radio frequency interference.Operation of this equipment in other environments may cause interference with radio communications,in which case the user at his own expense will be required to take whatever measures may be required to correct this interference.EVM Warnings and RestrictionsIt is important to operate this EVM within the input voltage range of90VAC to264VAC and the output voltage range of83VDC to 87V DC.Exceeding the specified input range may cause unexpected operation and/or irreversible damage to the EVM.If there are questions concerning the input range,please contact a TI field representative prior to connecting the input power.Applying loads outside of the specified output range may result in unintended operation and/or possible permanent damage to the EVM.Please consult the EVM User's Guide prior to connecting any load to the EVM output.If there is uncertainty as to the load specification,please contact a TI field representative.During normal operation,some circuit components may have case temperatures greater than50°C.The EVM is designed to operate properly with certain components above50°C as long as the input and output ranges are maintained.These components include but are not limited to linear regulators,switching transistors,pass transistors,and current sense resistors.These types of devices can be identified using the EVM schematic located in the EVM User's Guide.When placing measurement probes near these devices during operation,please be aware that these devices may be very warm to the touch.Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments IncorporatedIMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and Automotive /automotiveMicrocontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omapWireless Connectivity /wirelessconnectivityTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated。

相关文档
最新文档