中考数学试题永州市2008年中考数学

合集下载

2008河北中考数学真题答案

2008河北中考数学真题答案

2008年河北省初中毕业生升学文化课考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题. 本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共20分)注意事项:1.答卷Ⅰ前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上,考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.答在试卷上无效. 一、选择题(本大题共10个小题;每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.8-的倒数是( ) A .8B .8-C .18D .18-2.计算223a a +的结果是( ) A .23aB .24aC .43aD .44a3.把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( )A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,4.据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为() A .80.155110⨯ B .4155110⨯C .71.55110⨯D .615.5110⨯5.图2中的两个三角形是位似图形,它们的位似中心是( )A .点PB .点OC .点MD .点N6.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( ) A .23000(1)5000x += B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=7.如图3,已知O 的半径为5,点O 到弦AB 的距离为3,则O 上到弦AB 所在直线的距离为2的点有( )A .1个B .2个C .3个D .4个 8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下40 1- 图1OP MN图2 OBA图3列事件中是必然事件的是( ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数 D .两枚骰子朝上一面的点数均为奇数 9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右2008年河北省初中毕业生升学文化课考试数学试卷卷Ⅱ(非选择题,共100分)注意事项:1.答卷Ⅱ前,将密封线左侧的项目填写清楚.2.答卷Ⅱ时,将答案用蓝色、黑色钢笔或圆珠笔直接写在试卷上.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)11.如图6,直线a b ∥,直线c 与a b ,相交.若170∠=, 则2_____∠=.12.当x = 时,分式31x -无意义. xAD CB图4 yx 10 O 100A . yx 10 O 100B . yx 10 O 100C . 5 yx10O 100D . 众 志成 城图5-1 成 城众志图5-2 志 成城 众第1次变换 城 众志成图5-3 成 城众志第2次变换 …12 b a图6c13.若m n ,互为相反数,则555m n +-= .14.如图7,AB 与O 相切于点B ,AO 的延长线交O 于点C , 连结BC .若36A ∠=,则______C ∠= .15.某班学生理化生实验操作测试成绩的统计结果如下表:成绩/分 3 4 5 6 7 8 9 10 人数1122891512则这些学生成绩的众数为 .16.图8所示的两架天平保持平衡,且每块巧克力的质量相等, 每个果冻的质量也相等,则一块巧克力的质量是 g .17.点(231)P m -,在反比例函数1y x=的图象上,则m =.18.图9-1是我国古代著名的“赵爽弦图”的示意图,它是由四个 全等的直角三角形围成的.若6AC =,5BC =,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图9-2所示的“数学风车”,则这个风车的外围周长是 .三、解答题(本大题共8个小题;共76分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分7分)已知2x =-,求21211x x x x -+⎛⎫-÷ ⎪⎝⎭的值.ABC图9-1 图9-2COA B 图7巧克力 果冻50g 砝码图8某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图10-1和图10-2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图10-2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广;(4)若将所有已发芽的种子放到一起,从中随机取出一粒,求取到B 型号发芽种子的概率.21.(本小题满分8分)如图11,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标; (2)求直线2l 的解析表达式; (3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.A35% B20% C 20% D 各型号种子数的百分比 图10-1 图10-2A B C D型号 800 600 4002000 630 370 470 发芽数/粒 l 1l 2xyD O3B C A 32- (4,0) 图11气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B 点生成,测得1006km OB .台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?x /kmy /km 北东 AOBC6045图12在一平直河岸l 同侧有A B ,两个村庄,A B ,到l 的距离分别是3km 和2km ,km AB a =(1)a >.现计划在河岸l 上建一抽水站P ,用输水管向两个村庄供水.方案设计某班数学兴趣小组设计了两种铺设管道方案:图13-1是方案一的示意图,设该方案中管道长度为1d ,且1(km)d P B B A =+(其中BP l ⊥于点P );图13-2是方案二的示意图,设该方案中管道长度为2d ,且2(k m )d P A P B =+(其中点A '与点A 关于l 对称,A B '与l 交于点P ).观察计算(1)在方案一中,1d = km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算2d 的长,作了如图13-3所示的辅助线,请你按小宇同学的思路计算,2d = km (用含a 的式子表示).探索归纳(1)①当4a =时,比较大小:12_______d d (填“>”、“=”或“<”);②当6a =时,比较大小:12_______d d (填“>”、“=”或“<”);(2)请你参考右边方框中的方法指导,就a (当1a >时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?AB P llAB P A ' C图13-1 图13-2lA B P A 'C图13-3K 方法指导 当不易直接比较两个正数m 与n 的大小时,可以对它们的平方进行比较: 2()()m n m n m n 2-=+- ,0m n +>,22()m n ∴-与()m n -的符号相同.当220m n ->时,0m n ->,即m n >;当220m n -=时,0m n -=,即m n =; 当220m n -<时,0m n -<,即m n <;如图14-1,ABC △的边BC 在直线l 上,AC BC ⊥,且AC B C =;EFP △的边FP 也在直线l 上,边EF 与边AC 重合,且EF FP =.(1)在图14-1中,请你通过观察、测量,猜想并写出AB 与AP 所满足的数量关系和位置关系;(2)将EFP △沿直线l 向左平移到图14-2的位置时,EP 交AC 于点Q ,连结AP ,BQ .猜想并写出BQ 与AP 所满足的数量关系和位置关系,请证明你的猜想;(3)将EFP △沿直线l 向左平移到图14-3的位置时,EP 的延长线交AC 的延长线于点Q ,连结AP ,BQ .你认为(2)中所猜想的BQ 与AP 的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A (E ) BC (F ) P lllA AB BQPEFFC Q图14-1图14-2图14-3EPC研究所对某种新型产品的产销情况进行了研究,为投资商在甲、乙两地生产并销售该产品提供了如下成果:第一年的年产量为x (吨)时,所需的全部费用y (万元)与x 满足关系式2159010y x x =++,投入市场后当年能全部售出,且在甲、乙两地每吨的售价p 甲,p 乙(万元)均与x 满足一次函数关系.(注:年利润=年销售额-全部费用)(1)成果表明,在甲地生产并销售x 吨时,11420p x =-+甲,请你用含x 的代数式表示甲地当年的年销售额,并求年利润w 甲(万元)与x 之间的函数关系式; (2)成果表明,在乙地生产并销售x 吨时,110p x n =-+乙(n 为常数),且在乙地当年的最大年利润为35万元.试确定n 的值;(3)受资金、生产能力等多种因素的影响,某投资商计划第一年生产并销售该产品18吨,根据(1),(2)中的结果,请你通过计算帮他决策,选择在甲地还是乙地产销才能获得较大的年利润?参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.如图15,在Rt ABC △中,90C ∠=,50AB =,30AC =,D E F ,,分别是AC AB BC ,,的中点.点P 从点D 出发沿折线DE EF FC CD ---以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ⊥,交折线BC CA -于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t 秒(0t >). (1)D F ,两点间的距离是 ;(2)射线QK 能否把四边形CDEF 分成面积相等的两部分?若能,求出t 的值.若不能,说明理由;(3)当点P 运动到折线EF FC -上,且点P 又恰好落在射线QK 上时,求t 的值; (4)连结PG ,当PG AB ∥时,请直接..写出t 的值.AE C D FG B QK图15P参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案DBBCAAC BDC二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76. 三、解答题 19.解:原式21(1)x xx x -=⨯- 11x =-. 当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%. ∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-. 4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3AD = ,193322ADC S ∴=⨯⨯-=△. (4)(63)P ,. 22.解:(1)(10031003)B -,,(10032001003)C -,; (2)过点C 作CD OA ⊥于点D ,如图2,则1003CD =.图1A B C D型号800 600 4002000 630 370 470发芽数/粒 380在Rt ACD △中,30ACD ∠=,1003CD =,3cos302CD CA ∴==.200CA ∴=. 20020630-=,5611+=, ∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2)224a +. 探索归纳(1)①<;②>;(2)2222212(2)(24)420d d a a a -=+-+=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>; ②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=; ③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)AB AP =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=.又AC BC ⊥ ,45CQP CPQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交AP 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,x /kmy /kmAOBC6045图2D lAB FC Q 图3M12 34 EP241390∴∠+∠=∠+∠= .90QMA ∴∠= .BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠=,45CPQ ∴∠= . 又AC BC ⊥ ,45CQP CPQ ∴∠=∠= .CQ CP ∴=. 在Rt BCQ △和Rt ACP △中,BC AC =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交AP 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠= ,90APC PBN ∴∠+∠= .90PNB ∴∠= . QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲. (2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙, 将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲, lABQP EF 图4N C得23.4w =甲(万元).w w > 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结DF ,过点F 作FH AB ⊥于点H , 由四边形CDEF 为矩形,可知QK 过DF 的中点O 时,QK 把矩形CDEF 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20BF =,HBF CBA △∽△,得16HB =. 故12.5161748t +==. (3)①当点P 在EF 上6(25)7t ≤≤时,如图6.4QB t =,7DE EP t +=,由PQE BCA △∽△,得7202545030t t--=. 21441t ∴=. ②当点P 在FC 上6(57)7t ≤≤时,如图7. 已知4QB t =,从而5PB t =,由735PF t =-,20BF =,得573520t t =-+. 解得172t =. (4)如图8,213t =;如图9,39743t =. (注:判断PG AB ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在PG AB ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿EF 上行,发现点P 在EF 上运动时不存在PG AB ∥;当6577t ≤≤时,点P G ,均在FC 上,也不存在PG AB ∥;由于点P 比点G 先到达点C 并继续沿CD下行,所以在6787t <<中存在PG AB ∥的时刻,如图9;当810t ≤≤时,点P G ,均在CD 上,不存在PG AB ∥)AE C D FOBQ K 图5HP G AE C DFBQ K 图6 PG AE C DFBQ K图7 P (G ) AE C DFBQ K图8 PG H A E C DF B Q K 图9P G。

年湖南省永州市中考数学试卷及答案

年湖南省永州市中考数学试卷及答案

年湖南省永州市中考数学试卷及答案Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-199982008年湖南省永州市中考数学试卷第Ⅰ卷考生注意:1、本试卷共三道大题,25个小题,满分120分,时量120分钟.2、本试卷分Ⅰ卷和Ⅱ卷,Ⅰ卷为选择填空题1-2页;Ⅱ卷为解答题3-8页.3、考生务必将Ⅰ卷的答案写在Ⅱ卷卷首的答案栏内,交卷时只交Ⅱ卷.一、填空题(每小题3分,共8个小题,24分.请将答案填在Ⅱ卷卷首的答案栏内.) 1 若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 .2. 四川汶川地震发生以来,截至6月4日12时止,已接受国内外社会各界捐款亿元,用科学记数法(保留三个有效数字)记为 元. 3 如图,直线a 、b 被直线c 所截,若要a ∥b ,需增加条件 (填一个即可).4. 家家乐奥运福娃专卖店今年3月份售出福娃3600个,5月份售出4900个,设每月平均增长率为x ,根据题意,列出关于x 的方程为 .5. 一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为 米(答案可保留根号).6. 一个角的补角是这个角的余角的3倍,则这个角为度 .7. 右图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C点的坐标为 .8. 已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据 的极差为 .二、选择题(每小题3分,共8个小题,24分.每小题只有一个正确选项,请将正确选项的代号填入Ⅱ卷卷首的答案栏内.)9. 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b10.为悼念四川汶川地震中遇难同胞,在全国哀悼日第一天,某校升旗仪式中,先把国旗匀速升至旗杆顶部,停顿3秒钟后再把国旗匀速下落至旗杆中部.能正确反映这一过程中,国旗高度h (米)与升旗时间t (秒)的函数关系的大致图象是11.下列判断正确的是( )A .23<3<2 B . 2<2+3<3C . 1<5-3<2 D . 4<3·5<5 12.下图※是一种瑶族长鼓的轮廓图,其主视图正确的是( )13.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31C .21 D .32 14.下列命题是假命题...的是( ) A .两点之间,线段最短.B .过不在同一直线上的三点有且只有一个圆.C .一组对应边相等的两个等边三角形全等.D .对角线相等的四边形是矩形.15.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( )A .38cm B .316cm C .3cmD .34cm 16.形如d c b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( ) A .11B .-11C .5D .-22008年湖南省永州市中考数学试卷题号 一 二 三总分 合分人 核分人 17 18 19 20 21 22 23 24 25 得分请将Ⅰ卷的答案填入下面答案栏内.一、填空题1. 2. 3. 4. 5. 6. 7. 8.得 分 评卷人 复评人二、选择题9 10 11 12 13 14 15 16三、解答题:(本题9个小题,共72分,解答题要求写出证明步骤或解答过程)17.(6分)计算:cos45°·(-21)-2-(22-3)0+|-32|+121-18.(6分)解方程:xxx-2+2=12+xx19.(6分)如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.20.(8分)如图,一次函数的图象经过M点,与x轴交于A点,与y轴交于B点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.21.(8分)某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆22.(8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB (1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.23.(10分)为保护环境,节约资源,从今年6月1日起国家禁止超市、商场、药店为顾客提供免费塑料袋,为解决顾客购物包装问题,心连心超市提供了A.自带购物袋;B.租借购物篮;C.购买环保袋;D.徒手携带,四种方式供顾客选择.该超市把6月1日、2日两天的统计结果绘成如下的条形统计图和6月1日的扇形统计图,请你根据图形解答下列问题:(1)请将6月1日的扇形统计图补充完整.(2)根据统计图求6月1日在该超市购物总人次和6月1日自带购物袋的人次.(3)比较两日的条形图,你有什么发现请用一句话表述你的发现.24.(10分)如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形.25.(10分)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 .(1)求此二次函数的解析式.(2)写出顶点坐标和对称轴方程.(3)点M 、N 在y =ax 2+bx +c 的图像上(点N 在点M 的右边),且MN∥x 轴,求以MN 为直径且与x 轴相切的圆的半径.2008年湖南省永州市中考数学试卷答案及评分标准一、填空题(每小题3分,共24分)1.3%- 2.104.3710⨯ 3.14∠=∠或13∠=∠或12180∠+∠=4.23600(1)4900x += 5.4+ 6.45° 7.(3,1) 8.4三、解答题17.(6分)解:原式412=- ··············· 2分11=+ ················· 4分=························· 6分 18.(6分)解:12211x x x +=-+ ······················ 1分 方程两边同乘以(1)(1)x x +-,得12(1)(1)2(1)x x x x x +++-=- ······················· 3分解之,得13x =······························ 4分 检验:把13x =代入(1)(1)x x +-得1111033⎛⎫⎛⎫+-≠ ⎪⎪⎝⎭⎝⎭···························· 5分 13x ∴=是原方程的根. ·························· 6分 19.(6分)20.(8分)(1)设一次函数的解析式为y kx b =+(0k ≠) 将点(06)(14)B M -,,,代入,得604(1)k b k b=+⎧⎨=-+⎩,······························ 2分 解之,得26k b ==,∴解析式为26y x =+ ··························· 4分(2)令0y =,代入26y x =+,得3x =-可知点A 的坐标(30)-,··························· 6分 tan 2BAO ∴∠= ····························· 8分21.(8分)解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分 解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 22.(8分)(1)证明:ABC △与CDE △都是等边三角形 ED CD ∴=60A DCE BCA DCE ∴∠=∠=∠=∠= ··················· 1分AB CD DE CF ∴∥,∥ ·························· 2分 又EF AB ∥∴EF CD ∥ ······························· 3分 ∴四边形EFCD 是菱形 ··························· 4分 (2)解:连结DF ,与CE 相交于点G ···················· 5分 由4CD =,可知2CG = ·························· 6分∴DG =·························· 7分DF ∴=······························· 8分23.(10分)(1)在扇形统计图的空白处填上“D 22%” ··········· 3分 (2)6月1日在该超市购物的总人次为1250(人次) ·············· 6分 6月1日自带购物袋的有225人次 ······················ 8分 (3)答案不唯一,如“自带购物袋的人增多”“租借购物篮的人减少”等 ························· 10分 24.(10分)(1)∵PC 是⊙O 的直径,CD 是⊙O 的切线∠PAC =∠OCD =90°,显然△DOA ≌△DOC ··················· 1分 ∴∠DOA =∠DOC ······························ 2分 ∴∠APC =∠COD ······························ 3分 APC COD ∴△∽△ ···························· 4分 (2)由APC COD △∽△,得AP OCPC OD=·················· 6分 12x y ∴=,2y x∴= ···························· 7分 (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=, ······· 8分 于是2OD OC =,可得2y =,1x ∴= 故,当1x =时,ACD △是一个等边三角形 ·················· 10分 25.(1)依题意(10)(30)(03)A B C --,,,,,分别代入2y ax bx c =++······ 1分 解方程组得所求解析式为223y x x =-- ··················· 4分 (2)2223(1)4y x x x =--=-- ······················ 5分∴顶点坐标(14)-,,对称轴1x = ······················ 7分(3)设圆半径为r ,当MN 在x 轴下方时,N 点坐标为(1)r r +-, ········ 8分把N 点代入223y x x =--得r =·················· 9分同理可得另一种情形r =∴圆的半径为12-+或12+ 10分。

2008年安徽省中考数学试卷(含参考答案)

2008年安徽省中考数学试卷(含参考答案)

2008年安徽省初中毕业学业数学考试注意事项:本卷共八大题,计23小题,满分150分,考试时间120分钟一、选择题(本题共10 小题,每小题4 分,满分40分)1.-3的绝对值是()A.3B.-3C.13D.13-2. 下列多项式中,能用公式法分解因式的是()A.x2-xyB. x2+xyC. x2-y2D. x2+y23. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学计数法可表示为()A.0.135×106B.1.35×106C.0.135×107D.1.35×1074.如图,在⊙O中,∠ABC=50°,则∠AOC等于()A.50°B.80°C.90°D. 100°5. 分式方程112xx=+的解是()A. x=1B. x=-1C. x=2D. x=-26.如图是某几何体的三视图及相关数据,则判断正确的是()A. a>cB. b>cC. 4a2+b2=c2D. a2+b2=c27.函数kyx=的图象经过点(1,-2),则k的值为()A.12B.12- C. 2 D. -28. 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是()A.16B.15C.14D.139. 如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是()A.这5 年中,我国粮食产量先增后减 B.后4年中,我国粮食产量逐年增加C.这5 年中,我国粮食产量年增长率最大 D.这5 年中,我国粮食产量年增长率最小10.如图,在△ABC中,AB=AC=5,BC=6,点M为BC中点,MN⊥AC于点N,则MN等于()A.65B.95C.125D.165二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11. 化简()24-=_________12.如图,已知a∥b,∠1=70°,∠2=40°,则∠3= __________。

中考数学专题测试5:不等式(组)(含答案)

中考数学专题测试5:不等式(组)(含答案)

中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。

历年湖南省永州市中考数学试题(含答案)

历年湖南省永州市中考数学试题(含答案)

2016年湖南省永州市中考数学试卷一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣20162.不等式组的解集在数轴上表示正确的是()A.B.C.D.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣15.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣29.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm211.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数21=2 22=4 23=8 …31=3 32=9 33=27 …运算新运log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2=﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=.16.方程组的解是.17.化简:÷=.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=度.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=;(2)当m=2时,d的取值范围是.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了名学生,a=%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM <1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MO A=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)2016年湖南省永州市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分1.﹣的相反数的倒数是()A.1 B.﹣1 C.2016 D.﹣2016【考点】倒数;相反数.【分析】直接利用相反数的概念以及倒数的定义分析,进而得出答案.【解答】解:﹣的相反数是:,∵×2016=1,∴﹣的相反数的倒数是:2016.故选:C.2.不等式组的解集在数轴上表示正确的是()A.B.C.D.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】把各不等式的解集在数轴上表示出来即可.【解答】解:不等式组的解集在数轴上表示为:.故选A.3.下列图案中既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.也是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:A.4.下列运算正确的是()A.﹣a•a3=a3B.﹣(a2)2=a4C.x﹣x=D.(﹣2)(+2)=﹣1【考点】二次根式的混合运算;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】利用同底数的幂的乘法法则、幂的乘方、合并同类项法则,以及平方差公式即可判断.【解答】解:A、﹣a•a3=﹣a4,故选项错误;B、﹣(a2)2=﹣a4,选项错误;C、x﹣x=x,选项错误;D、(﹣2)(+2)=()2﹣22=3﹣4=﹣1,选项正确.故选D.5.如图,将两个形状和大小都相同的杯子叠放在一起,则该实物图的主视图为()A.B.C.D.【考点】简单组合体的三视图.【分析】根据图形的三视图的知识,即可求得答案.【解答】解:该实物图的主视图为.故选B.6.在“爱我永州”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8、7、9、8、8乙:7、9、6、9、9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小【考点】方差;算术平均数;中位数;众数.【分析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.【解答】解:A、==8,==8,故此选项正确;B、甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C、∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D、∵=×[(8﹣8)2+(7﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=×2=0.4,=×[(7﹣8)2+(9﹣8)2+(6﹣8)2+(9﹣8)2+(9﹣8)2]=×8=1.6,∴<,故D正确;故选:C.7.对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理【考点】圆的认识;线段的性质:两点之间线段最短;垂线段最短;三角形的稳定性.【分析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.【解答】解:A、把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理,正确;B、木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“两点确定一条直线”的原理,故错误;C、将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理,正确;D、将车轮设计为圆形是运用了“圆的旋转对称性”的原理,正确,故选B.8.抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是()A.m<2 B.m>2 C.0<m≤2 D.m<﹣2【考点】抛物线与x轴的交点.【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.9.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD【考点】全等三角形的判定.【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.【解答】解:∵AB=AC,∠A为公共角,A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.故选:D.10.圆桌面(桌面中间有一个直径为0.4m的圆洞)正上方的灯泡(看作一个点)发出的光线照射平行于地面的桌面后,在地面上形成如图所示的圆环形阴影.已知桌面直径为1.2m,桌面离地面1m,若灯泡离地面3m,则地面圆环形阴影的面积是()A.0.324πm2B.0.288πm2C.1.08πm2D.0.72πm2【考点】中心投影.【分析】先根据AC⊥OB,BD⊥OB可得出△AOC∽△BOD,由相似三角形的对应边成比例可求出BD的长,进而得出BD′=0.3m,再由圆环的面积公式即可得出结论.【解答】解:如图所示:∵AC⊥OB,BD⊥OB,∴△AOC∽△BOC,∴=,即=,解得:BD=0.9m,同理可得:AC′=0.2m,则BD′=0.3m,∴S=0.92π﹣0.32π=0.72π(m2).圆环形阴影故选:D.11.下列式子错误的是()A.cos40°=sin50° B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【考点】互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确;B、tan15°•tan75°=tan15°•cot15°=1,式子正确;C、sin225°+cos225°=1正确;D、sin60°=,sin30°=,则sin60°=2sin30°错误.故选D.12.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:指数21=2 22=4 23=8 …31=3 32=9 33=27 …运算新运log22=1 log24=2 log28=3 …log33=1 log39=2 log327=3 …算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log2 =﹣1.其中正确的是()A.①② B.①③ C.②③ D.①②③【考点】实数的运算.【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.二、填空题:本大题共8小题,每小题4分,共32分13.涔天河水库位于永州市江华瑶族自治县境内,其扩建工程是湖南省“十二五”期间水利建设的“一号工程”,也是国务院重点推进的重大工程,其中灌区工程总投资约39亿元.请将3900000000用科学记数法表示为 3.9×109.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:3900000000=3.9×109,故答案为:3.9×109.14.在1,π,,2,﹣3.2这五个数中随机取出一个数,则取出的这个数大于2的概率是.【考点】概率公式.【分析】首先找出大于2的数字个数,进而利用概率公式求出答案.【解答】解:∵在1,π,,2,﹣3.2这五个数中,只有π这个数大于2,∴随机取出一个数,这个数大于2的概率是:.故答案为:.15.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.16.方程组的解是.【考点】二元一次方程组的解.【分析】代入消元法求解即可.【解答】解:解方程组,由①得:x=2﹣2y ③,将③代入②,得:2(2﹣2y)+y=4,解得:y=0,将y=0代入①,得:x=2,故方程组的解为,故答案为:.17.化简:÷=.【考点】分式的乘除法.【分析】将分子、分母因式分解,除法转化为乘法,再约分即可.【解答】解:原式=•=,故答案为:.18.如图,在⊙O中,A,B是圆上的两点,已知∠AOB=40°,直径CD∥AB,连接AC,则∠BAC=35度.【考点】圆周角定理.【分析】先根据等腰三角形的性质求出∠ABO的度数,再由平行线的性质求出∠BOC的度数,根据圆周角定理即可得出结论.【解答】解:∵∠AOB=40°,OA=OB,∴∠ABO==70°.∵直径CD∥AB,∴∠BOC=∠ABO=70°,∴∠BAC=∠BOC=35°.故答案为:35.19.已知一次函数y=kx+2k+3的图象与y轴的交点在y轴的正半轴上,且函数值y随x的增大而减小,则k所有可能取得的整数值为﹣1.【考点】一次函数图象与系数的关系.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由已知得:,解得:﹣<k<0.∵k为整数,∴k=﹣1.故答案为:﹣1.20.如图,给定一个半径长为2的圆,圆心O到水平直线l的距离为d,即OM=d.我们把圆上到直线l的距离等于1的点的个数记为m.如d=0时,l 为经过圆心O的一条直线,此时圆上有四个到直线l的距离等于1的点,即m=4,由此可知:(1)当d=3时,m=1;(2)当m=2时,d的取值范围是0<d<3.【考点】直线与圆的位置关系.【分析】根据直线与圆的位置关系和直线与圆的交点个数以及命题中的数据分析即可得到答案.【解答】解:(1)当d=3时,∵3>2,即d>r,∴直线与圆相离,则m=1,故答案为:1;(2)当m=2时,则圆上到直线l的距离等于1的点的个数记为2,∴直线与圆相交或相切或相离,∴0<d<3,∴d的取值范围是0<d<3,故答案为:0<d<3.三、解答题:本大题共7小题,共79分21.计算:﹣(3﹣π)0﹣|﹣3+2|【考点】实数的运算;零指数幂.【分析】直接利用立方根的性质化简再结合零指数幂的性质以及绝对值的性质化简求出答案.【解答】解:﹣(3﹣π)0﹣|﹣3+2|=2﹣1﹣1=0.22.二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了50名学生,a=37.5%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为36度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由赞同的人数20,所占40%,即可求出样本容量,进而求出a 的值;(2)由(1)可知抽查的人数,即可求出无所谓态度的人数,即可将条形统计图补充完整;(3)求出不赞成人数的百分数,即可求出圆心角的度数;(4)求出“赞同”和“非常赞同”两种态度的人数所占的百分数,用样本估计总体的思想计算即可.【解答】解:(1)20÷40%=50(人),无所谓态度的人数为50﹣10﹣20﹣5=15,则a=×100%=37.5%;(2)补全条形统计图如图所示:(3)不赞成人数占总人数的百分数为×100%=10%,持“不赞同”态度的学生人数的百分比所占扇形的圆心角为10%×360°=36°,(4)“赞同”和“非常赞同”两种态度的人数所占的百分数为×100%=60%,则该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和为3000×60%=1800(人).故答案为(1)50;37.6;(3)36.23.如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质和角平分线得出∠BAE=∠BEA,即可得出AB=BE;(2)先证明△ABE是等边三角形,得出AE=AB=4,AF=EF=2,由勾股定理求出BF,由AAS证明△ADF≌△ECF,得出△ADF的面积=△ECF的面积,因此平行四边形ABCD的面积=△ABE的面积=AE•BF,即可得出结果.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠B+∠C=180°,∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2,∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.24.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1﹣降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论;(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,根据“总利润=第一次降价后的单件利润×销售数量+第二次降价后的单件利润×销售数量”,即可的出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:(1)设该种商品每次降价的百分率为x%,依题意得:400×(1﹣x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m件,则第二次降价后售出该种商品件,第一次降价后的单件利润为:400×(1﹣10%)﹣300=60(元/件);第二次降价后的单件利润为:324﹣300=24(元/件).依题意得:60m+24×=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元.第一次降价后至少要售出该种商品23件.25.如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.【考点】切线的判定与性质.【分析】(1)连接OC,由弦切角定理和切线的性质得出∠CBE=∠A,∠ABD=90°,由圆周角定理得出∠ACB=90°,得出∠ACO+∠BCO=90°,∠BCD=90°,由直角三角形斜边上的中线性质得出CE=BD=BE,得出∠BCE=∠CBE=∠A,证出∠ACO=∠BCE,得出∠BCE+∠BCO=90°,得出CE⊥OC,即可得出结论;(2)由勾股定理求出AB,再由三角函数得出tanA===,求出BD=AB=,即可得出CE的长.【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.26.已知抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,与y轴交于点C,直线y=kx与抛物线交于A,B两点.(1)写出点C的坐标并求出此抛物线的解析式;(2)当原点O为线段AB的中点时,求k的值及A,B两点的坐标;(3)是否存在实数k使得△ABC的面积为?若存在,求出k的值;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)令抛物线解析式中x=0求出y值即可得出C点的坐标,有点(﹣1,0)、(3,0)利用待定系数法即可求出抛物线的解析式;(2)将正比例函数解析式代入抛物线解析式中,找出关于x的一元二次方程,根据根与系数的关系即可得出“x A+x B=2+k,x A•x B=﹣3”,结合点O为线段AB的中点即可得出x A+x B=2+k=0,由此得出k的值,将k的值代入一元二次方程中求出x A、x B,在代入一次函数解析式中即可得出点A、B的坐标;(3)假设存在,利用三角形的面积公式以及(2)中得到的“x A+x B=2+k,x A•x B=﹣3”,即可得出关于k的一元二次方程,结合方程无解即可得出假设不成了,从而得出不存在满足题意的k值.【解答】解:(1)令抛物线y=ax2+bx﹣3中x=0,则y=﹣3,∴点C的坐标为(0,﹣3).∵抛物线y=ax2+bx﹣3经过(﹣1,0),(3,0)两点,∴有,解得:,∴此抛物线的解析式为y=x2﹣2x﹣3.(2)将y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,整理得:x2﹣(2+k)x﹣3=0,∴x A+x B=2+k,x A•x B=﹣3.∵原点O为线段AB的中点,∴x A+x B=2+k=0,解得:k=﹣2.当k=﹣2时,x2﹣(2+k)x﹣3=x2﹣3=0,解得:x A=﹣,x B=.∴y A=﹣2x A=2,y B=﹣2x B=2.故当原点O为线段AB的中点时,k的值为﹣2,点A的坐标为(﹣,2),点B的坐标为(,﹣2).(3)假设存在.由(2)可知:x A+x B=2+k,x A•x B=﹣3,S△AB C=OC•|x A﹣x B|=×3×=,∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.∵(2+k)2非负,无解.故假设不成了.所以不存在实数k使得△ABC的面积为.27.问题探究:1.新知学习若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).2.解决问题已知等边三角形ABC的边长为2.(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM <1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MO A=S△DOE.①求证:ME是△ABC的面径;②连接AE,求证:MD∥AE;(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)【考点】圆的综合题;等边三角形的性质.【分析】(1)根据等腰三角形三线合一即可证明,利用直角三角形30°性质,即可求出AD.(2)根据相似三角形性质面积比等于相似比的平方,即可解决问题.(3)如图三中,作MN⊥AE于N,DF⊥AE于F,先证明MN=DF,推出四边形MNFD是平行四边形即可.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,求出EM,利用不等式性质证明ME≥即可解决问题.【解答】解:(1)如图一中,∵AB=AC=BC=2,AD⊥BC,∴BD=DC,∴S△AB D=S△ADC,∴线段AD是△ABC的面径.∵∠B=60°,∴sin60°=,∴=,∴AD=.(2)如图二中,∵ME∥BC,且ME是△ABC的一条面径,∴△AME∽△ABC,=,∴=,∴ME=.(3)如图三中,作MN⊥AE于N,DF⊥AE于F.∵S△M OA=S△DOE,∴S△AEM=S△AED,∴•AE•MN=•AE•DF,∴MN=DF,∵MN∥DF,∴四边形MNFD是平行四边形,∴DM∥AE.(4)如图四中,作MF⊥BC于F,设BM=x,BE=y,∵DM∥AE,∴=,∴=,∴xy=2,在RT△MBF中,∵∠MFB=90°,∠B=60°,BM=x,∴BF=x,MF=x,∴ME===≥,∴ME≥,∵ME是等边三角形面径,AD也是等边三角形面积径,∴等边三角形ABC的面径长l的取值范围≤l≤.21。

永州市2008年初中毕业学业考试试卷

永州市2008年初中毕业学业考试试卷

永州市2008年初中毕业学业考试试卷物理考生注意:1、本学科试卷共五道大题.满分l00分,考试时间90分钟。

2、第五大题要求写自必要的文字说明、公式和重要的演算步骤.只写出最后答案的不能得分。

3、各题中要求解答的物理量,必须写出数值和单位,只写数值而无单位的,不能得单位分.一、选择题:本题共32分.每小题2分。

每小题给出的选项中,只有一个是正确的,考生必须把所选答案的序号填入下面答案拦表格中的指定位置,写在其它的地方均为无效答案,不给分;每小题进对得2分,错选或未选的记0分。

1、小军在永州市2008年少年小提琴演奏比赛中,不断用手指改变对小提琴琴弦的控制。

这样做目的是A、改变琴声的音色B、增大琴声的响度C、改变琴声的音调D、改变琴声的音色、音调和响度2、下列光路图能正确反映光线从空气斜射入玻璃中的是3、下列事例中防止惯性带来危害的是A、拍打衣服,除去灰尘B、将足球射入球门C、汽车限速行驶D、跳远时快速助跑4、下列现象中,利用大气压的是A、用力将钢笔中的墨水甩出B、用吸管吸出瓶中的饮料C、三峡大坝旁建大型船闸D、用注射器将药液注入人体肌肉里5、关于电磁波的下列说法,正确的是A、光导纤维中传播信息的光不是电磁波B、固定电话通过电磁波传递信息C、电磁波的传播需要介质D、移动电话(手机)既能接收电磁波,也能发射电磁波6、洒水车匀速行驶在水平街道上,并不停地对地面洒水。

在此过程中,洒水车的A、动能变小,重力势能变小B、动能不变,重力势能变大C、动能不变,重力势能变小D、动能不变、重力势能不变7、下列方法属于在传播过程中减弱噪声的是A、在道路的两旁种草植树B、打雷声时在耳孔中塞一小团棉花C、学校周围禁止鸣笛D、摩托车上安装消声器8、如图所示的符号分别代表冰雹、小雪、雾和霜冻四种天气现象,其中主要通过液化形成的是9、人们利用紫外线可以使荧光物质发荧光的现象制成A、验钞机B、遥控器C、微波炉D、电磁炉10、小王骑自行车的速度约为300m/min;“亚洲飞人”刘翔在男子110m跨栏比赛中以l0秒97的成绩打破世界纪录;一列普通火车的速度约为150Km/h,他们的速度大小关系是A、V自行>V刘翔>V火车B、V火车>V刘翔>V自行C、V刘翔>V火车>V 自行D、V自行>V火车>V刘翔11、右图是一个指甲剪刀的示意图;它由三个杠杆ABC、OEF和OBD组成,用指甲剪刀A、三个杠杆都是省力杠杆B、三个杠杆都是费力杠杆C、ABC是省力杠杆,OBD、OEF是费力杠杆D、ABC是费力杠杆,OBD,OEF是省力杠杆12、决定白炽电发光亮暗程度的物理量是A、灯泡两端的电压B、通过灯泡的电流C、灯泡的额定功率D、灯泡的实际功率13、电脑显示屏表面比它下面的电脑桌表面有更多的灰尖是因为A、显示屏是用具有吸附灰尘能力软强的材料制成的B、房间里灰尘的自然堆积C、显示屏工作时.显示屏表面温度较高D、显示屏工作时.显示屏表面带电,容易吸附灰尘14、如右图所示,甲、乙、丙是放在通电螺线管周围的铁片,当开关s闭合后A、甲的左端为s极B、乙的左端为s极C、丙的右端为s极D、甲和丙的右端都是s极15、右图是一种声光报警器的电路图,闭合开关s1和s2后会出现A、灯亮、铃响B、灯亮,铃不响C、灯不亮,铃响D、灯不亮,铃不响16、如右图所示,当开关s闭合后.发现灯L不亮,用试电笔分别测试a、b、c、d四点时,发现只有在测试d点时氖管不发光,测试a、b、c点时.氖管都发光,则故障可能是A、灯丝断了B、火线与零线短路C、a、b之闻某处断路D、c、d之问某处断路二、填空题:本题共30分,每小题2分。

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

初中数学九年级专项训练中考数学试题分类汇编(平均数,中位数,众数,方差)

平均数,中位数,众数,方差一、选择题1.(浙江省衢州市)为参加电脑汉字输入比赛,甲和乙两位同学进行了 6 次测试,成绩如下表:甲和乙两位同学 6 次测试成绩 ( 每分钟输入汉字个数 ) 及部分统计数据表有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是( )A、甲的方差大于乙的方差,所以甲的成绩比较稳定;B、甲的方差小于乙的方差,所以甲的成绩比较稳定;C、乙的方差小于甲的方差,所以乙的成绩比较稳定;D、乙的方差大于甲的方差,所以乙的成绩比较稳定;答案: C2.(淅江金华)金华火腿闻名遐迩。

某火腿公司有甲、乙、丙三台切割包装机,同时分别装质量为500 克的火腿心片。

现从它们分装的火腿心片中各随机抽取10盒,经称量并计算得到质量的方差如表所示,你认为包装质量最稳定的切割包装机是()A、甲B、乙C、丙 D 、不能确定答案: A3.(浙江义乌 )国家实行一系列惠农政策后,农村居民收入大幅度增加.下表是2003 年至 2007 年我市农村居民年人均收入情况(单位:元),则这几年我市农村居民年人均收入的中位数是()A.6969 元B.7735 元C.8810 元D.10255元答案: B4.(湖南益阳)某班第一小组 7 名同学的毕业升学体育测试成绩 (满分 30 分 )依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是A. 23,25B. 23,23C. 25,23D. 25,25答案: D5.(浙江省绍兴市 )在一次射击测试中,甲、乙、丙、丁的平均环数均相同,而方差分别为 8.7,6.5, 9.1, 7.7,则这四人中,射击成绩最稳定的是()A.甲B.乙C.丙D.丁答案: B6.(四川巴中市)下列命题是真命题的是()A.对于给定的一组数据,它的平均数一定只有一个B.对于给定的一组数据,它的中位数可以不只一个C.对于给定的一组数据,它的众数一定只有一个D.对于给定的一组数据,它的极差就等于方差答案: A7.(四川巴中市)用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17 的平均数约为 () A. 14.15B.14.16C.14.17D.14.20答案: B8.(陕西省)在“爱的奉献”抗震救灾大型募捐活动中,文艺工作者积极向灾区捐款.其中 8 位工作者的捐款分别是 5 万, 10 万, 10 万, 10 万, 20 万, 20 万,50 万, 100 万.这组数据的众数和中位数分别是()A.20 万, 15 万B.10 万,20 万C.10 万,15 万D.20万,10万答案: C9.(北京)众志成城,抗震救灾.某小组7 名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30, 50,25,135.这组数据的众数和中位数分别是()A.50,20B. 50,30C.50,50D.135,50答案: C10.(湖北鄂州)数据的众数为,则这组数据的方差是()A. 2B.C.D.答案: B11.(浙江省嘉兴市)已知甲、乙两组数据的平均数分别是,,方差分别是,,比较这两组数据,下列说法正确的是()A.甲组数据较好B.乙组数据较好C.甲组数据的极差较大D.乙组数据的波动较小答案:D12.(山东省枣庄市)小华五次跳远的成绩如下(单位:m): 3.9, 4.1, 3.9, 3.8, 4.2.关于这组数据,下列说法错误的是()A.极差是 0.4B.众数是 3.9C.中位数是 3.98D.平均数是 3.98答案: B13.(山东济南)“迎奥运,我为先” 联欢会上,班长准备了若干张相同的卡片,上面写的是联欢会上同学们要回答的问题 . 联欢会开始后,班长问小明:你能设计一个方案,估计联欢会共准备了多少张卡片?小明用20 张空白卡片(与写有问题的卡片相同),和全部写有问题的卡片洗匀,从中随机抽取10 张,发现有2 张空白卡片,马上正确估计出了写有问题卡片的数目,小明估计的数目是()A.60 张B.80 张C.90张D.110答案: B14.(湖北黄石)若一组数据2, 4,, 6,8 的平均数是 6,则这组数据的方差是()A.B.8C.D.40答案: B15.( 湖南益阳 )某班第一小组7名同学的毕业升学体育测试成绩(满分 30 分)依次为: 25,23,25,23,27,30,25,这组数据的中位数和众数分别是 ( )A. 23,25B. 23,23C. 25,23D. 25,25答案: D16.( 重庆 )数据2,1,0,3,4的平均数是()A、0B、1C、 2D、3答案: C17.( 08 厦门市)某鞋店试销一种新款女鞋,销售情况如下表所示:鞋店经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差答案: C18.(08 乌兰察布市)十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,中位数为,众数为,则有()A.B.C.D.答案: B19.(08 绵阳市)某校初三·一班 6 名女生的体重(单位:kg)为:353638 404242 则这组数据的中位数等于().A.38B.39C.40D.42答案: B20.(浙江金华)金华火腿闻名遐迩。

湖南省永州市中考数学试卷及答案

湖南省永州市中考数学试卷及答案
(2)如图②所示是一个底面半径为 ,母线长为4的圆锥和它的侧面展开图, 是它的一条母线,一只蚂蚁从 点出发沿圆锥的侧面爬行一周后回到 点,求蚂蚁爬行的最短路程.
(3)如图③所示,在②的条件下,一只蚂蚁从 点出发沿圆锥的侧面爬行一周到达母线 上的一点,求蚂蚁爬行的最短路程.
25.(本小题10分)如图,在平面直角坐标系中,点 的坐标分别为 点 在 轴上.已知某二次函数的图象经过 、 、 三点,且它的对称轴为直线 点 为直线 下方的二次函数图象上的一个动点(点 与 、 不重合),过点 作 轴的平行线交 于点
A. B. C. D.
13.下列命题是真命题的是( )
A.对角线相等且互相垂直的四边形是菱形
B.平移不改变图形的形状和大小
C.对角线互相垂直的梯形是等腰梯形
D.相等的弦所对的弧相等
14.为了了解某校初三学生体育测试成绩,从中随机抽取了50名学生的体育测试成绩如下表:
成绩
(分)
15
18
19
20
21
22
7.若实数 满足 则 的值为.
8.某校初三(一)班课外活动小组为了测得学校旗杆的高度,他们在离旗杆6米的 处,用高为1.5米的仪器测得旗杆顶部 处的仰角为60°,如图所示,则旗杆的高度为米.(已知 结果精确到0.1米)
二、选择题(本大题共8个小题,每小题3分,共24分.每小题只有一个正确选项,请将正确选项的代号填涂在答题卡的答案栏内.)
9.C 10.D 11.C 12.A 13.B 14.A 15.D 16.B
三、解答题
17. 解:
= 3分
= 5分
= 6分
18.解:
= 1分
= 3分
= 4分
当 时,原式= 6分

中考2008年安徽省中考数学试题及答案

中考2008年安徽省中考数学试题及答案

2008年安徽省中考数学一、选择题(本题共10 小题,每小题4 分,满分40分)1.-3的绝对值是…………………………………………………………………………………………【】A.3B.-3C.13D.13-2. 下列多项式中,能用公式法分解因式的是…………………………………………………………【】A.x2-xyB. x2+xyC. x2-y2D. x2+y23. 2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学计数法可表示为………………………………………………【】A.0.135×106B.1.35×106C.0.135×107D.1.35×1074.如图,在⊙O中,∠ABC=50°,则∠AOC等于……………………………………………………【】A.50°B.80°C.90°D. 100°5. 分式方程112xx=+的解是…………………………………………………………………………【】A. x=1B. x=-1C. x=2D. x=-26.如图是某几何体的三视图及相关数据,则判断正确的是…………………………………………【】A. a>cB. b>cC. 4a2+b2=c2D. a2+b2=c27.函数kyx=的图象经过点(1,-2),则k的值为…………………………………………………【】A. 12B.12- C. 2 D. -28. 某火车站的显示屏,每隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏上正好显示火车班次信息的概率是……………………………………………………………【】A.16B.15C.14D.13第4题图OACB第6题图9. 如图是我国2003~2007年粮食产量及其增长速度的统计图,下列说法不正确...的是…………【 】 A .这5 年中,我国粮食产量先增后减B .后4年中,我国粮食产量逐年增加C .这5 年中,我国粮食产量年增长率最大D .这5 年中,我国粮食产量年增长率最小10.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于…………………【 】 A.65 B. 95 C. 125 D. 165二、填空题(本题共 4 小题,每小题 5 分,满分 20 分) 11.=_________12.如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。

2008中考数学试题汇编

2008中考数学试题汇编

2008年中考数学试题汇编(解直角三角形)5.(庆阳市试题)正方形网格中,AOB ∠如图2放置,则sin AOB ∠=( B )(A )5 (B )5(C )12(D )216.(2008年山西省)王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知水平距离BD =10m ,楼高AB =24 m ,则树高CD 为( )A(A )()31024-m (B )⎪⎪⎭⎫ ⎝⎛-331024m (C )()3524-m(D )9m7.(2008年浙江温州)如图,在Rt △ABC 中,CD 是斜边AB 上的中线,已知CD =2,AC =3,则sinB 的值是( )C(A ) 23(B ) 3 2(C ) 3 4(D ) 4 35.(内江市2008年)如图,在Rt ABC △中,90C =∠,三边分别为a b c ,,,则cos A 等于( )D (A )a c (B )a b (C )b a(D b c 4、(2008年烟台市)如图,小明从A 处出发沿北偏东60°向行走至B 处,又沿北偏西20°方向行走至 C 处,此时需把方向调整到与出发时一致,则方向的调整应是( )A(A )右转80° (B )左传80° (C )右转100° (D )左传100° 8.(2008年湖南省益阳市)如图2,AC 是电杆AB 的一根拉线,测得BC =6米,∠ACB =52°,则拉线AC 的长为( )D(A )︒526sin 米 (B )︒526tan 米 (C )6·cos 52°米 (D )︒526cos 米ABO图2CABD (第7题图) A C B acb(5题图)A┐8. ( 2008年武汉市) 如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A 处)在她家北偏东60度500m 处,那么水塔所在的位置到公路的距离AB 是( ).A (A )250m(B)(Cm (D )8.(威海市2008年)在△ABC 中,∠C =90°,tanA =31,则sinB =( (A )1010 (B )32 (C )43 (D )1010317.(庆阳市试题)如图5,一架梯子斜靠在墙上,若梯子底端到墙的距离AC =3米,3cos 4BAC ∠=,则梯子长AB =________米.10.(浙江省湖州市2008年)如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是( B ) (A )sin 40m(B )cos 40m(C )tan 40m(D )tan 40m1、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )350m (B )100 m(C )150m(D )3100m解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos 30°=ADAB,所以,AD =ABC 图5CD =200-50=150,在Rt △ADC 中, AC===(D ).2、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )AA .82米B .163米C .52米(D )70米3、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B (A )30海里 (B )40海里 (C )50海里 (D )60海里 4、(2007江苏盐城)利用计算器求sin 30°时,依次按键则计算器上显示的结果是( )A(A )0.5 (B )0.707(C )0.866(D )15、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )150m(B )350m(C )100 m(D )3100m6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) (A )68米 (B )70米 (C )121米 (D )123米1.732≈1.414≈供计算时选用)图1B 5.(永州市2008年)一棵树因雪灾于A 处折断,如图所示,测得树梢触地点B 到树根C 处的距离为4米,∠ABC 约45°,树干AC 垂直于地面,那么此树在未折断之前的高度约为__________米(答案可保留根号). 12.(江西省2008年)计算:1sin 60cos302-= _________41__________.11.(2008年江苏省连云港市)在Rt ABC △中,90C ∠=,5AC =,4BC =,则tan A =___________.14.(2008年江苏省连云港市)如图,一落地晾衣架两撑杆的公共点为O ,75OA =cm ,50OD =cm .若撑杆下端点A B ,所在直线平行于上端点C D ,所在直线,且90AB =cm ,则CD =_____60_____cm .15.(2008年江苏省连云港市)如图,扇形彩色纸的半径为45cm ,圆心角为40,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为____44.7______cm.(结果精确到0.1cm1.414≈1.732≈2.236≈,π3.142≈)16.分别以梯形ABCD 的上底AD 、下底BC 的长为直径作⊙1O、⊙2O ,若两圆的圆心距等于(第14题图)40(第15题图)SBA45cm这个梯形的中位线长,则这两个圆的位置关系是_____相外切(如写相切不给分). 15.(2008年湖北省襄樊市)如图8,张华同学在学校某建筑物的C 点处测得旗杆顶部A 点的仰角为30,旗杆底部B 点的俯角为45.若旗杆底部B 点到建筑物的水平距离9BE =米,旗杆台阶高1米,则旗杆顶点A 离地面的高度为__10+米(结果保留根号).16.(2008年怀化市)已知△ABC 中,90=∠C ,3cosB =2,AC =52,则AB =____6_____.19.(2008年怀化市)某厂接到为汶川地震灾区赶制无底帐篷的任务,帐篷表面由防水隔热的环保面料制成.样式如图7所示,则赶制这样的帐篷3000顶,大约需要用防水隔热的环保面料(拼接处面料不计)_____203670_______m 2.2.2π3.1≈≈,)20.(7分)(湖北省十堰市2008年)海中有一个小岛P ,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A 测得小岛P 在北偏东60°方向上,航行12海里到达B 点,这时测得小岛P 在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.20.解:有触礁危险.………………………………1分 理由: 过点P 作PD ⊥AC 于D .…………………2分设PD 为x ,在Rt △PBD 中,∠PBD =90°-45°=45°. ∴BD =PD =x . ………………………………3分西 东 第20题图在Rt △P AD 中,∵∠P AD =90°-60°=30°,∴x .xAD 330tan =︒= ………………………………4分 ∵BD ,AB AD +=∴x .x +=123 ∴)13(61312+=-=x .………6分∵,<18)13(6+∴渔船不改变航线继续向东航行,有触礁危险. ………………7分 说明:开头“有触礁危险”没写,但最后解答正确不扣分.22.(鄂州市2008年)如图9,教室窗户的高度AF 为2.5,遮阳蓬外端一点D 到窗户上椽的距离为AD ,某一时刻太阳光从教室窗户射入室内,与地面的夹角BPC ∠为30,PE 为窗户AD 的长度.(结果带根号)22.解:过点E 作EG AC ∥交于PD 于G 点 ········ 1分tan 3031EG EP ==⨯= ······················· 3分 1BF EG ∴== ·························································· 4分 即 2.51 1.5AB AF BF =-=-= ·························································································· 5分在Rt ABD △中,tan 303AB AD === ······················································· 7分 AD ∴ ············································································································· 8分 20.(9分)(2008年河南省)如图所示,A 、B 两地之间有一条河,原来从A 地到B 地需要经过DC ,沿折线A →D →C →B 到达,现在新建了桥EF ,可直接沿直线AB 从A 地到达B 地.一图9二楼 一楼4mA 4m4mB28°C图9直BC =11km ,∠A =45°,∠B =37°.桥DC 和AB 平行,则现在从A 地到达B 地可比原来少走多少路程?(结果精确到0.1km .参考数据: 1.412 ,sin 37°≈0.60,cos 37°≈0.80)22.(庆阳市试题7分)如图9,某超市(大型商场)在一楼至二楼之间安装有电梯,天花板(一楼的楼顶墙壁)与地面平行,请你根据图中数据计算回答:小敏身高1.85米,他乘电梯会有碰头危险吗?(sin 28o ≈0.47,tan 28o ≈0.53)21. (本题满分10分) (山东省2008年)如图,AC 是某市环城路的一段,AE ,BF ,CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A ,B ,C .经测量花卉世界D 位于点A 的北偏东45°方向、点B 的北偏东30°方向上,AB =2km ,∠DAC =15°.(1)求B ,D 之间的距离;(2)求C ,D 之间的距离.ABC 中山路文化路D和平路45° 15°30°EF21.(本题满分10分) 解:(1)如图,由题意得,∠EAD =45°,∠FBD =∴ ∠EAC =∠EAD +∠DAC =45°+15°=60°. ∵ AE ∥BF ∥CD ,∴ ∠FBC =∠EAC =60°. ∴ ∠DBC =30°. …………………………2分 又∵ ∠DBC =∠DAB +∠ADB ,∴ ∠ADB =15°. ∴ ∠DAB =∠ADB . ∴ BD =AB =2.即B ,D 之间的距离为2km .… ………………………5分 (2)过B 作BO ⊥DC ,交其延长线于点O , 在Rt △DBO 中,BD =2,∠DBO =60°.∴ DO =2×sin 60°=2×323=,BO =2×cos 60°=1.………………8分 在Rt △CBO 中,∠CBO =30°,CO =BOtan 30°=33, ∴ CD =DO -CO =332333=-(km ). 即C ,D 之间的距离为332k m . ………………………10分 23.(本题满分8分)(盐城市2008年)某工厂接受一批支援四川省汶川灾区抗震救灾帐蓬的生产任务.根据要求,帐篷的一个横截面框架由等腰三角形和矩形组成(如图所示).已知等腰△ABE 的底角∠AEB =θ,且tan θ=34,矩形BCDE 的边CD =2BC ,这个横截面框架(包括BE )所用的钢管总长为15m .求帐篷的篷顶A 到底部CD 的距离.(结果精确到0.1m )18.(浙江省2008年义乌市) 如图,小明用一块有一个锐角为30的直角三角板测量树高,已知小明离树的距离为4米,DE 为1.68米,那么这棵树大约有多高?(精确到0.1米)和θABCDE第23题图19.(本题满分10分)(贵阳市2008年)如图7,某拦河坝截面的原设计方案为:AH BC ∥,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).21、(本题8分) (金华市2008年) 跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB 为6米,到地 面的距离AO 和BD 均为O . 9米,身高为1.4米的小丽站在距点O 的水平距离为1米的点F 处,绳子甩到最高处时刚好通过她的头顶点E .以点O 为原点建立如图所示的平面直角坐标系,设此抛物线的解析式为y =ax 2+bx +0.9. (1)求该抛物线的解析式;(2)如果小华站在OD 之间,且离点O 的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;(3)如果身高为1.4米的小丽站在OD 之间,且离点O 的距离为t 米,绳子甩到最高处时超过她的头顶,请结合图像,写 出t 自由取值范围_____.21.(广安市2008年)如图8,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB 的长为5米,点D 、B 、C 在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01)(图7)ABCDH55(2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由2.449=== )23.(2008年永春县8分)小王站在D仰角∠AEC=33°,小王与旗杆的水平距离 BD =10m ,眼睛与地面的高度ED =1.6m , 求旗杆AB 的高度(精确到0.1米).23. 正确利用三角函数写出关系式 3分 AC ≈6.5米 6分AB = 8.1米 8分(没按要求得精确值扣1分)20、(本题满分7分)(2008年陕西省中考)阳光明媚的一天,数学兴趣小组的同学们去测量一棵树的高度(这棵树底部可以到达,顶部不易到达),他们带了以下测量工具:皮尺、标杆、一副三角尺、小平面镜.请你在他们提供的测量工具中选出所需工具,设计一种测量方案.(1)所需的测量工具是: ; (2)请在下图中画出测量示意图;(3)设树高AB 的长度为x ,请用所测数据(用小写字母表示)求出x .20、解:(1)皮尺、标杆. ………………………………(1分) (2)测量示意图如图所示.………………………………(3分)ACDC(第20题(3)如图,测得标杆DE=a,树和标杆的影长分别为AC=b,EF=c……………………(5分)∵△DEF∽△BAC∴DE FE BA CA=∴a c x b =∴abxc=……………………………………(7分)25、(本题满分12分)(2008年陕西省中考)某县社会主义新农村建设办公室,为了解决该县甲、乙两村和一所中学长期存在的饮水困难问题,想在这三个地方的其中一处建一所供水站,由供水站直接铺设管道到另外两处.如图,甲、乙两村坐落在夹角为30°的两条公路的AB段和CD段(村子和公路的宽均不计),点M表示这所中学.点B在点M的北偏西30°的3km处,点A在点M的正西方向,点D在点M的南偏西60°的处.为使供水站铺设到另两处的管道长度之和最短,现有如下三种方案:方案一:供水站建在点M处,请你求出铺设到甲村某处和乙村某处的管道长度之和的最小值;方案二:供水站建在乙村(线段CD某处),甲村要求管道铺设到A处,请你在图①中,画出铺设到点A 和点M 处的管道长度之和最小的线路图,并求其最小值;方案三:供水站建在甲村(线段AB 某处),请你在图②中,画出铺设到乙村某处和点M 处的管道长度之和最小的线路图,并求其最小值.综上,你认为把供水站建在何处,所需铺设的管道最短?25、解:方案一:由题意可得:MB ⊥OB ,∴点M 到甲村的最短距离为MB .…………………(1分)∵点M 到乙村的最短距离为MD ,∴将供水站建在点M 处时,管道沿MD 、MB 线路铺设的长度之和最小, 即最小值为MB +MD =3+(km )…………………(3分)方案二:如图①,作点M 关于射线OE 的对称点M ′,则MM ′=2ME ,图①图②连接AM ′交OE 于点P ,PE ∥AM ,PE =1AM2.∵AM =2BM =6,∴PE =3 …………………(4分) 在Rt △DME 中,∵DE =DM ·sin 60°==3,ME =1DM2=12×=,∴PE =DE ,∴ P 点与E 点重合,即AM ′过D 点.…………(6分) 在线段CD 上任取一点P ′,连接P ′A ,P ′M ,P ′M ′, 则P ′M =P ′M ′. ∵A P ′+P ′M ′>AM ′,∴把供水站建在乙村的D 点处,管道沿DA 、DM 线路铺设的长度之和最小,即最小值为AD +DM =AM7分)方案三:作点M 关于射线OF 的对称点M ′,作M ′N ⊥OE 于N 点,交OF 于点G ,交AM 于点H ,连接GM ,则GM =GM ′∴M ′N 为点M ′到OE 的最短距离,即M ′N =GM +GN 在Rt △M ′HM 中,∠MM ′N =30°,MM ′=6, ∴MH =3,∴NE =MH =3∵DE =3,∴N 、D 两点重合,即M ′N 过D 点.北东在Rt△M′DM中,DM=M′D=在线段AB上任取一点G′,过G′作G′N′⊥OE于N连接G′M′,G′M,显然G′M+G′N′=G′M′+G′N′>M′D∴把供水站建在甲村的G处,管道沿GM、GD线路铺设的长度之和最小,即最小值为GM+GD=M′D=…………(11分)综上,∵3+∴供水站建在M处,所需铺设的管道长度最短.…………(12分)17. (成都市二00八年)如图,某中学九年级一班数学课外活动小组利用周末开展课外实践活动,他们要在某公园人工湖旁的小山AB上,测量湖中两个小岛C、D间的距离.从山顶A处测得湖中小岛C的俯角为60°,测得湖中小岛D的俯角为45°.已知小山AB的高为180米,求小岛C、D间的距离.(计算过程和结果均不取近似值)22.(2008年辽宁省大连市)为了测得学校旗杆的高度,小明先站在地面的A点测得旗杆最高点C的仰角为27°(点A距旗杆的距离大于50m),然后他向旗杆的方向向前进了50m,此时测得点C的仰角为40度.又已知小明的眼睛离地面1.6m,请你画出小明测量的示意图,并帮小明计算学校旗杆的高度.(精确到0.1m).22、(滨州市2008年)如图,AC是某市坏城路的一段,AE、BF、CD都是南北方向的街道,其与环城路AC的交叉路口分别是A、B、C经测量花卉世界D位于点A的北偏东45°方向,点B的北偏东30°方向上,AB=2km,∠DAC=15°.(1)求∠ADB的大小;(2)求B、D之间的距离;(3)求C、D之间的距离.图②300150450环城路和平路文化路中山路FBEDCA22.解(1)如图,由题得,0045,30EAD FBD ∠=∠=000451560EAC EAD DAC ∴∠=∠+∠=+=00603015.AE BF CD FBC EAC DBC DBC DAB ADB ADB ∴∠=∠=∴∠=∠=∠+∠∴∠=又 (2)由(1)知,2DAB ADB BD AB ∠=∠∴== 即B 、D 之间的距离为2km .(3)过B 作BO DC ⊥,交其延长线于点O , 在Rt DBO 中,02,60.BD DBO =∠=002sin 6022cos60 1.2DO BO ∴=⨯=⨯==⨯=00,30,tan 30)..3Rt CBO CBO CO BO CD DO CO km C D ∠===∴=-==在中即、之间的距离为20、(本题满分8分)(2008年烟台市)某地震救援队探测出某建筑物废墟下方点 C 处有生命迹象,已知废墟一侧地面上两探测点A、B相距3 米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深≈≈)度.(结果精确到0.1 1.41 1.7324.(本小题满分8分)(湖北省荆门市2008年)如图,山脚下有一棵树AB,小华从点B沿山坡向上走50米到达点D,用高为1.5米的测角仪CD测得树顶的仰角为10°,已知山坡的坡角为15°,求树AB的高.(精确到0.1米)(已知sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,sin15°≈0.26,cos15°≈0.97,tan15°≈0.27.)24.解:延长CD交PB于F,则DF⊥PB.∴DF =BD ·sin 15°≈50×0.26=13.0. …………2分 (写13不扣分)∴CE =BF =BD ·cos 15°≈50×0.97=48.5. …………4分 ∴AE =CE ·tan 10°≈48.5×0.18=8.73. …………6分∴AB =AE +CD +DF =8.73+1.5+13 =23.2.答:树高约为23.2米. ………………………8分20. ( 徐州巿2008年)如图,一座堤坝的横截面是梯形,根据图中给出的数据,求坝高和坝底宽(精确到0.1m1.4141.73224.如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米.现为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD 加宽1米,形成新的背水坡EF ,其坡度为1︰1.4.已知堤坝总长度为4000米. (1)求完成该工程需要多少土方?(4分)(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率.甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?(5分) 24、(1)作DG ⊥AB 于G ,作EH ⊥AB 于H . ∵CD ∥AB ,∴EH =DG =5米,∵2.11=AG DG ,∴AG =6米,……………………………………………………1分 ∵4.11=FH EH ,∴FH =7米,............................................................2分 ∴F A =FH +GH -AG =7+1-6=2(米) (3)分FB(第20题图)∴S ADEF =21(ED +AF )·EH =21(1+2)×5=7.5(平方米) V =7.5×4000=30000 (立方米)……………………………………………………4分(2)设甲队原计划每天完成x 立方米土方,乙队原计划每天完成y 立方米土方. 根据题意,得⎩⎨⎧=+++=+.30000]%)401(%)301[15,3000)(20y x y x ………………………6分 化简,得⎩⎨⎧=+=+.20004.13.1,1500y x y x ………………………………………………7分解之,得⎩⎨⎧==.5001000y x ………………………………………………………………8分答:甲队原计划每天完成1000立方米土方,乙队原计划每天完成500立方米土方. ……………………………………9分26.(本小题满分8分)(常州市2008年) 如图,港口B 位于港口O 正西方向120海里外,小岛C 位于港口O 北偏西60°的方向.一艘科学考察船从港口O 出发,沿北偏东30°的OA 方向以20海里/小时的速度驶离港口O .同时一艘快艇从港口B 出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C ,在小岛C 用1小时装补给物资后,立即按原来的速度给考察船送去.(1) 快艇从港口B 到小岛C 需要多少时间?(2) 快艇从小岛C24、(12伍在B 处接到报告:有受灾群众被困于一座遭水淹的楼顶A 处,情况危急!救援队伍在B 处测得A 在B 的北偏东600的方向上(如图所示),队伍决定分成两组:第一组马上下水游向A 处就人,同时第二组从陆地往正东方向奔跑120米到达C 处,再从C 处下水游向A 处救人,已知A 在C 的北偏东300的方向上,且救援人员在水中游进的速度均为1米/秒.在陆地上奔北跑的速度为4米/秒,试问哪组救援队先到A 1.732) 24解:过A 作AD ⊥BC 交BC 的延长线于点D , A 在B 北偏东600方向上,∴ ∠ABD =300,又A 在C 北偏东300方向上,所以∠ACD =600又因为∠ABC =300所以∠BAC =300,所以∠ABD = ∠BAC 所以AC =BC 因为BC =120所以AC =120在Rt △ACD 中,∠ACD =600,AC =120,所以CD = 60 ,AD =在Rt △ABD 中因为∠ABD =300,所以AB =第一组时间:207.841≈ 第二组时间:12012015041+= 因为207.84 〉150所以第二组先到达A 处,答(略)23.(本题 6分)(哈尔滨市2008 年)如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处.求此时轮船所在的B 处与灯塔P 的距离(结果保留根号).16. (2008年安徽省)小明站在A 处放风筝,风筝飞到C 处时的线长为20米,这时测得∠CBD =60°,若牵引底端B 离地面1.5米,求此时风筝离地面高度.(计算结果精确到0.1 1.732≈)【解】16、解:在Rt △BCD 中,CD =BC ×sin 60=20×26分 又DE =AB =1.5∴CE =CD +DE =CD +AB=(米) 答:此时风筝离地面的高度约是18.8米.………8分21.(本题满分9分)(2008年广东省汕头市)如图5,梯形ABCD 是拦水坝的横断面图,(图中i =DE 与水平宽度CE 的比),60B ∠=,6AB =,4AD =,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字,参考数据: 1.732=,1.414=)22.(本小题满分7分)(黄石市2008年)如图,甲船在港口P 的北偏西60方向,距港口80海里的A 处,沿AP 方向以12海里/时的速度驶向港口P .乙船从港口P 出发,沿北偏东45方向匀速驶离港口P ,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(精确到0.1海里/时,1.41,1.73)22.依题意,设乙船速度为x 海里/时,2小时后甲船在点B 处,乙船在点C 处,作PQ BC ⊥于Q ,则8021256BP =-⨯=海里,2PC x =海里.在Rt PQB △中,60BPQ ∠=,图5AP东北45 60东第 21 页 共 23 页1cos 6056282PQ BP ∴==⨯=. ············································································ (2分) 在Rt PQC △中,45QPC ∠=,2cos 4522PQ PC x x ∴===. ······································································ (4分)28=, x =19.7x ∴≈.答:乙船的航行速度约为19.7海里/时. ······································································ (7分)22.(郴州市2008年)汶川地震后,抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B村的俯角为60︒(.如图7).求A 、B 两个村庄间的距离. 1.414 1.732==)22.解:根据题意得: 30A ∠=︒ , 60PBC ∠=︒ 所以6030APB ∠=︒-︒,所以APB A ∠=∠ , 所以AB =PB ···························································································································· 3分 在Rt BCP ∆中,90,60C PBC ∠=︒∠=︒,PC =450,所以PB =450sin 60==︒·················································································· 5分所以520AB PB ==≈(米) 答:略.6分26. (本题满分7分) (2008年怀化市)QB CP A45060︒30︒图7第 22 页某校教学楼后面紧邻一个土坡,坡上面是一块平地,如图12所示,AD BC //,斜坡AB 长m 10625,坡度5:9=i .为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,地质人员勘测,当坡角不超过45时,可确保山体不滑坡.(1)求改造前坡B 到地面的垂直距离BE 的长;(2)为确保安全,学校计划改造时保持坡脚A 不动,坡顶B 沿BC 削进到F 处,问BF 至少是多少米?23.(荆州市2008年本题8分)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,参考数据:1.7≈≈)()()()()()222222926.:195590.....................................25595922.5.2222.5....................BE i BE k AE k k AE Rt ABE BEA AB AB BE AE k k k BE m BE ==∴==∆∠===+=+=∴=⨯=解,设,为正数,则在中,,,分即,解得,故改造前坡顶与地面的距离的长为米()()................................................42112.5,,,tan ,22.5tan 45,10.12.510,...........................................................FH AE BF xm FH AD H FAH AH x x B BC m ==⊥=∠≤≥+∴分由得设作于则由题意得即坡顶沿至少削进才能确保安全..............7分第 23 页 共 23 页19.(泸州市2008年)如图6,在气象站台A 的正西方向240km 的B 处有一台风中心,该台风中心以每小时20km 的速度沿北偏东o60的BD 方向移动,在距离台风中心130km 内的地方都要受到其影响.⑴台风中心在移动过程中,与气象台A长?23.(南京市2008年6塔底C 的仰角为20,塔顶D 的仰角为23,求此人距CD 的水平距离AB .(参考数据:sin 200.342≈,cos 200.940≈,tan 200.364≈,sin 230.391≈,cos 230.921≈,tan 230.424≈)(第23题)ABCD 2023。

历年湖南省永州市中考数学试卷(含答案)

历年湖南省永州市中考数学试卷(含答案)

2017年湖南省永州市中考数学试卷一、选择题(每小题4分,共10小题,合计40分)1.(4分)﹣8的绝对值是()A.8 B.﹣8 C .D .﹣2.(4分)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.13.(4分)江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A .B .C .D .4.(4分)下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=D .5.(4分)下面是某一天永州市11个旅游景区最高气温(单位:℃)的统计表:景区潇水湖东山景区浯溪碑林舜皇山阳明山鬼崽岭九嶷山上甘棠涔天河湘江源南武当气温3130312528272628282529则下列说法正确的是()A.该组数据的方差为0 B.该组数据的平均数为25C.该组数据的中位数为27 D.该组数据的众数为286.(4分)湖南省第二次文物普查时,省考古研究所在冷水滩钱家州征集到一个宋代“青釉瓜棱形瓷执壶”的主视图,该壶为盛酒器,瓷质,侈口,喇叭形长颈,长立把,则该“青釉瓜棱形瓷执壶”的主视图是()A. B.C.D.7.(4分)小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点8.(4分)如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.49.(4分)在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.10.(4分)已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种 B.20种C.24种D.120种二、填空题:(每小题4分,共8小题,合计32分)11.(4分)2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为.12.(4分)满足不等式组的整数解是.13.(4分)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为.14.(4分)把分别写有数字1,2,3,4,5的5张同样的小卡片放进不透明的盒子里,搅拌均匀后随机取出一张小卡片,则取出的卡片上的数字大于3的概率是.15.(4分)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=.16.(4分)如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E 是上的一点,若∠CED=40°,则∠ADC=度.17.(4分)如图,这是某同学用纸板做成的一个底面直径为10cm,高为12cm 的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是cm2(结果保留π).18.(4分)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程为m;(2)小球第n次着地时,经过的总路程为m.三、解答题:本大题共8个小题,满分78分.19.(8分)计算:cos45°+(π﹣2017)0﹣.20.(8分)先化简,再求值:(+)÷.其中x是0,1,2这三个数中合适的数.21.(8分)某校组织了一次防溺水、防交通事故、防食物中毒、防校园欺凌及其他各种安全意识的调查活动,了解同学们在哪些方面的安全意识薄弱,便于今后更好地开展安全教育活动.根据调查结果,绘制出图1,图2两幅不完整的统计图.请结合图中的信息解答下列问题:(1)本次调查的人数为,其中防校园欺凌意识薄弱的人数占%;(2)补全条形统计图;(3)若该校共有1500名学生,请估计该校学生中防溺水意识薄弱的人数;(4)请你根据题中的信息,给该校的安全教育提一个合理的建议.22.(10分)如图,已知四边形ABCD是菱形,DF⊥AB于点F,BE⊥CD于点E.(1)求证:AF=CE;(2)若DE=2,BE=4,求sin∠DAF的值.23.(10分)永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:日期x1234水位y(米)20.0020.5021.0021.50(1)请建立该水库水位y与日期x之间的函数模型;(2)请用求出的函数表达式预测该水库今年4月6日的水位;(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?24.(10分)如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC.(1)求证:PC是⊙O的切线;(2)若∠P=60°,PC=2,求PE的长.25.(12分)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.26.(12分)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).2017年湖南省永州市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共10小题,合计40分)1.(4分)(2017•永州)﹣8的绝对值是()A.8 B.﹣8 C.D.﹣【分析】根据一个负数的绝对值是它的相反数即可求解.【解答】解:﹣8的绝对值是8.故选A.【点评】本题考查了绝对值的意义,如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.(4分)(2017•永州)x=1是关于x的方程2x﹣a=0的解,则a的值是()A.﹣2 B.2 C.﹣1 D.1【分析】根据方程的解的概念即可求出a的值.【解答】解:将x=1代入2x﹣a=0中,∴2﹣a=0,∴a=2故选(B)【点评】本题考查一元一次方程的解,解题的关键是正确理解方程的解的概念,本题属于基础题型.3.(4分)(2017•永州)江永女书诞生于宋朝,是世界上唯一一种女性文字,主要书写在精制布面、扇面、布帕等物品上,是一种独特而神奇的文化现象.下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是()A .B .C .D .【分析】利用轴对称图形定义判断即可.【解答】解:下列四个文字依次为某女书传人书写的“女书文化”四个字,基本是轴对称图形的是,故选A【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.(4分)(2017•永州)下列运算正确的是()A.a•a2=a2B.(ab)2=ab C.3﹣1=D .【分析】根据同底数幂的乘法法则对A进行判断;根据积的乘方对B进行判断;根据负整数指数幂的意义对C进行判断;根据二次根式的加减法对D进行判断.【解答】解:A、原式=a3,所以A选项错误;B、原式=a2b2,所以B选项错误;C、原式=,所以C选项正确;D、原式=2,所以D选项错误.故选C.【点评】本题考查了二次根式的加减法:二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变.也考查了整式的运算.5.(4分)(2017•永州)下面是某一天永州市11个旅游景区最高气温(单位:℃)的统计表:景区潇水东山景区浯溪碑林舜皇阳明鬼崽九嶷上甘涔天湘江南武湖山山岭山棠河源当3130312528272628282529气温则下列说法正确的是()A.该组数据的方差为0 B.该组数据的平均数为25C.该组数据的中位数为27 D.该组数据的众数为28【分析】根据众数是一组数据中出现次数最多的数据即可得到结论.【解答】解:∵在这组数据中28出现的次数最多是3次,∴该组数据的众数为28,故选D.【点评】本题考查了一组数据的方差、平均数,中位数和众数.一些学生往往对这些概念掌握不清楚而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.6.(4分)(2017•永州)湖南省第二次文物普查时,省考古研究所在冷水滩钱家州征集到一个宋代“青釉瓜棱形瓷执壶”的主视图,该壶为盛酒器,瓷质,侈口,喇叭形长颈,长立把,则该“青釉瓜棱形瓷执壶”的主视图是()A .B .C .D .【分析】根据从前面看的到的视图是主视图.【解答】解:该“青釉瓜棱形瓷执壶”的主视图是.故选:D.【点评】本题考查了简单几何体的三视图,确定俯视图、左视图、主视图是解题关键.7.(4分)(2017•永州)小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A.AB,AC边上的中线的交点B.AB,AC边上的垂直平分线的交点C.AB,AC边上的高所在直线的交点D.∠BAC与∠ABC的角平分线的交点【分析】根据题意可知所求的圆形玻璃是△ABC的外接圆,从而可以解答本题.【解答】解:由题意可得,所求的圆形玻璃是△ABC的外接圆,∴这块玻璃镜的圆心是△ABC三边垂直平分线的交点,故选B.【点评】本题考查垂径定理的应用,解答本题的关键是明确三角形外接圆的圆心是三边垂直平分线的交点.8.(4分)(2017•永州)如图,在△ABC中,点D是AB边上的一点,若∠ACD=∠B,AD=1,AC=2,△ADC的面积为1,则△BCD的面积为()A.1 B.2 C.3 D.4【分析】由∠ACD=∠B结合公共角∠A=∠A,即可证出△ACD∽△ABC,根据相似三角形的性质可得出=()2=,结合△ADC的面积为1,即可求出△BCD的面积.【解答】解:∵∠ACD=∠B,∠A=∠A,∴△ACD∽△ABC,∴=()2=.∵S△ACD=1,∴S△ABC =4,S△BCD=S△ABC﹣S△ACD=3.故选C.【点评】本题考查相似三角形的判定与性质,牢记“相似三角形的面积比等于相似比的平方”是解题的关键.9.(4分)(2017•永州)在同一平面直角坐标系中,函数y=x+k与y=(k为常数,k≠0)的图象大致是()A.B.C.D.【分析】方法1、根据已知解析式和函数的图象和性质逐个判断即可.方法2、先根据一次函数的图象排除掉C,D,再判断出A错误,即可得出结论.【解答】解:方法1、A、从正比例函数图象看出k<0,而从反比例函数图象看出k>0,故本选项不符合题意;B、从正比例函数图象看出k>0,而从反比例函数图象看出k>0,故本选项符合题意;C、从正比例函数图象看出k>0,而从反比例函数图象看出k<0,故本选项不符合题意;D、从正比例函数图象看出k<0,而从反比例函数图象看出k<0,但解析式y=x+k 的图象和图象不符,故本选项不符合题意;故选B.方法2、∵函数解析式为y=x+k,这里比例系数为1,∴图象经过一三象限.排除C,D选项.又∵A、正比例函数k<0,反比例函数k>0,错误.故选B【点评】本题考查了反比例函数和一次函数的图象和性质,能灵活运用图象和性质进行判断是解此题的关键.10.(4分)(2017•永州)已知从n个人中,选出m个人按照一定的顺序排成一行,所有不同的站位方法有n×(n﹣1)×…×(n﹣m+1)种.现某校九年级甲、乙、丙、丁4名同学和1位老师共5人在毕业前合影留念(站成一行).若老师站在中间,则不同的站位方法有()A.6种 B.20种C.24种D.120种【分析】分为四步,第一步甲有4种选法,第二步:乙同学3种选法,第三步:并同学2种选法,第四步:丁同学1种选法.【解答】解:老师在中间,故第一位同学有4种选择方法,第二名同学有3种选法,第三名同学有2种选法,第四名同学有1中选法,故共有4×3×2×1=24种.故选:C.【点评】本题主要考查的是排列组合的应用,优先分析受限制元素是解题的关键.二、填空题:(每小题4分,共8小题,合计32分)11.(4分)(2017•永州)2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为 2.75×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将275 000用科学记数法表示为2.75×105,故答案为:2.75×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(4分)(2017•永州)满足不等式组的整数解是0.【分析】先求出不等式的解集,再求出不等式组的解集,找出不等式组的整数解即可.【解答】解:∵解不等式2x﹣1≤0得:x≤,解不等式x+1>0得:x>﹣1,∴不等式组的解集是﹣1<x≤,∴整数解为0,故答案为0.【点评】本题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.13.(4分)(2017•永州)某水果店搞促销活动,对某种水果打8折出售,若用60元钱买这种水果,可以比打折前多买3斤.设该种水果打折前的单价为x元,根据题意可列方程为=﹣3.【分析】本题可根据:60元打折前买的斤数比打折后买的斤数少3斤,然后即可列出方程.【解答】解:依题意得:=﹣3,故答案为:=﹣3.【点评】本题考查降分式方程,由:60元打折前买的斤数比打折后买的斤数少3斤可以列出方程.14.(4分)(2017•永州)把分别写有数字1,2,3,4,5的5张同样的小卡片放进不透明的盒子里,搅拌均匀后随机取出一张小卡片,则取出的卡片上的数字大于3的概率是.【分析】找出大于3的卡片的个数,根据概率公式即可得出结论.【解答】解:∵在1、2、3、4、5中大于3的只有4、5,∴取出的卡片上的数字大于3的概率是.故答案为:.【点评】本题考查了概率公式,牢记“随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数”是解题的关键.15.(4分)(2017•永州)如图,已知反比例函数y=(k为常数,k≠0)的图象经过点A,过A点作AB⊥x轴,垂足为B.若△AOB的面积为1,则k=﹣2.【分析】根据反比例函数的性质可以得到△AOB的面积等于|k|的一半,由此可以得到它们的关系.【解答】解:依据比例系数k的几何意义可得两个三角形的面积都等于|k|=1,解得k=﹣2,故答案为:﹣2.【点评】本题考查反比例系数k的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.该知识点是中考的重要考点,同学们应高度关注.16.(4分)(2017•永州)如图,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点,若∠CED=40°,则∠ADC=100度.【分析】先求出∠AEC,再用圆内接四边形的性质即可得出结论.【解答】解:如图,连接AE,∵点D是的中点,∴∠AED=∠CED,∵∠CED=40°,∴∠AEC=2∠CED=80°,∵四边形ADCE是圆内接四边形,∴∠ADC+∠AEC=180°,∴∠ADC=180°﹣∠AEC=100°,故答案为:100.【点评】此题主要考查了圆内接四边形的性质,同圆中,等弧所对的圆周角相等,解本题的关键是作出辅助线.17.(4分)(2017•永州)如图,这是某同学用纸板做成的一个底面直径为10cm,高为12cm的无底圆锥形玩具(接缝忽略不计),则做这个玩具所需纸板的面积是65πcm2(结果保留π).【分析】作PO⊥AB于O.利用勾股定理求出PA,求出圆锥的表面积即可解决问题.【解答】解:作PO⊥AB于O.在Rt△PAO中,PA===13.=π•5•13=65π.∴S表面积∴做这个玩具所需纸板的面积是65πcm2.故答案为65π.【点评】本题考查圆锥的表面积、解题的关键是记住圆锥的侧面积公式、底面积公式.18.(4分)(2017•永州)一小球从距地面1m高处自由落下,每次着地后又跳回到原高度的一半再落下.(1)小球第3次着地时,经过的总路程为 2.5m;(2)小球第n次着地时,经过的总路程为3﹣()n﹣2m.【分析】(1)根据题意可以求得小球第3次着地时,经过的总路程;(2)根据题意可以求得小球第n次着地时,经过的总路程.【解答】解:(1)由题意可得,小球第3次着地时,经过的总路程为:1+=2.5(m),故答案为:2.5;(2)由题意可得,小球第n次着地时,经过的总路程为:1+2[]=3﹣()n﹣2,故答案为:3﹣()n﹣2.【点评】本题考查二次函数的应用,解答本题的关键是明确题意,找出题目中数的变化规律,注意每次着地后又跳回到原高度的一半再落下.三、解答题:本大题共8个小题,满分78分.19.(8分)(2017•永州)计算:cos45°+(π﹣2017)0﹣.【分析】根据特殊角的三角函数值、零指数幂,算术平方根的定义化简即可.【解答】解:原式=×+1﹣3=1+1﹣3=﹣1【点评】本题考查特殊角的三角函数值、零指数幂,算术平方根的定义等知识,解题的关键是熟练掌握基本概念,属于基础题.20.(8分)(2017•永州)先化简,再求值:(+)÷.其中x是0,1,2这三个数中合适的数.【分析】这是个分式除法与加法混合运算题,运算顺序是先做括号内的减法,此时要注意把各分母先因式分解,确定最简公分母进行通分;做除法时要注意先把除法运算转化为乘法运算,而做乘法运算时要注意先把分子、分母能因式分解的先分解,然后约分.x取不0和2的任何数.【解答】解:(+)÷=÷=(x+2)•=当x=1时,原式==.【点评】本题考查了分式的化简求值.注意:取喜爱的数代入求值时,要特注意原式及化简过程中的每一步都有意义.如果取x=0和2,则原式没有意义,21.(8分)(2017•永州)某校组织了一次防溺水、防交通事故、防食物中毒、防校园欺凌及其他各种安全意识的调查活动,了解同学们在哪些方面的安全意识薄弱,便于今后更好地开展安全教育活动.根据调查结果,绘制出图1,图2两幅不完整的统计图.请结合图中的信息解答下列问题:(1)本次调查的人数为50,其中防校园欺凌意识薄弱的人数占40%;(2)补全条形统计图;(3)若该校共有1500名学生,请估计该校学生中防溺水意识薄弱的人数;(4)请你根据题中的信息,给该校的安全教育提一个合理的建议.【分析】(1)用其它选项的人数除以它占的百分率,求出本次调查的人数为多少;然后用防校园欺凌意识薄弱的人数除以总人数,求出其中防校园欺凌意识薄弱的人数占百分之几即可.(2)用本次调查的人数乘防交通事故意识薄弱的占的百分率,求出防交通事故意识薄弱的有多少人,并补全条形统计图即可.(3)用该校的学生人数乘该校学生中防溺水意识薄弱的人数占的百分率,求出估计该校学生中防溺水意识薄弱的人数即可.(4)根据题中的信息,给该校的安全教育提一个合理的建议:加强学生的防校园欺凌意识.【解答】解:(1)本次调查的人数为:8÷16%=50(人)其中防校园欺凌意识薄弱的人数占:20÷50=40%(2)50×24%=12(人)补全条形统计图如下:(3)1500×(4÷50)=1500×8%=120(人)答:估计该校学生中防溺水意识薄弱的人数是120人.(4)根据题中的信息,给该校的安全教育提一个合理的建议:加强学生的防校园欺凌意识.故答案为:50、40.【点评】此题主要考查了条形统计图、扇形统计图的应用,以及用样本估计总体的方法和应用,要熟练掌握.22.(10分)(2017•永州)如图,已知四边形ABCD是菱形,DF⊥AB于点F,BE ⊥CD于点E.(1)求证:AF=CE;(2)若DE=2,BE=4,求sin∠DAF的值.【分析】(1)根据平行四边形的判定可得四边形BEDF是平行四边形,根据平行四边形的性质可得BF=DE,根据线段的和差关系可得AF=CE;(2)根据勾股定理可得AF,AD的长,根据三角函数可得sin∠DAF的值.【解答】解:(1)证明:∵四边形ABCD是菱形,∴AB∥CD,AB=CD,∵DF⊥AB,BE⊥CD,∴DF∥BE,∴四边形BEDF是平行四边形,∴BF=DE,∴AF=CE;(2)∵DE=2,BE=4,∴设AD=x,则AF=x﹣2,AD=BE=4,在Rt△DAF中,x2=42+(x﹣2)2,解得x=5,∴sin∠DAF==.【点评】考查了菱形的性质,解直角三角形,涉及的知识点有:平行四边形的判定和性质,勾股定理,三角函数,综合性较强,有一定的难度.23.(10分)(2017•永州)永州市是一个降水丰富的地区,今年4月初,某地连续降雨导致该地某水库水位持续上涨,下表是该水库4月1日~4月4日的水位变化情况:日期x1234水位y(米)20.0020.5021.0021.50(1)请建立该水库水位y与日期x之间的函数模型;(2)请用求出的函数表达式预测该水库今年4月6日的水位;(3)你能用求出的函数表达式预测该水库今年12月1日的水位吗?【分析】(1)由给出的图表可知水库水位y与日期x之间的函数关系一次函数,设y=kx+b,把(1,20)和(2.20.5)代入求出k、b的值即可;(2)把x=6代入(1)中的函数关系式即可得到今年4月6日的水位;(3)不能,因为所建立的函数模型远离已知数据作预测是不可靠的.【解答】解:(1)水库的水位y随日期x的变化是均匀的,所以y与日期x之间的函数为一次函数,设y=kx+b,把(1,20)和(2.20.5)代入得,解得:,∴y=0.5x+19.5;(2)当x=6时,y=3+19.5=22.5;(3)不能,理由如下:∵12月远远大于4月,∴所建立的函数模型远离已知数据作预测是不可靠的.【点评】本题考查了一次函数的应用,能够求出一次函数的解析式是解题的关键.24.(10分)(2017•永州)如图,已知AB是⊙O的直径,过O点作OP⊥AB,交弦AC于点D,交⊙O于点E,且使∠PCA=∠ABC.(1)求证:PC是⊙O的切线;(2)若∠P=60°,PC=2,求PE的长.【分析】(1)连接OC,由AB是⊙O的直径,得到∠ACB=90°,求得∠BCO+∠ACO=90°,根据等腰三角形的性质得到∠B=∠BCO,等量代换得到∠BCO=∠ACP,求得∠OCP=90°,于是得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠BCO+∠ACO=90°,∵OC=OB,∴∠B=∠BCO,∵∠PCA=∠ABC,∴∠BCO=∠ACP,∴∠ACP+∠OCA=90°,∴∠OCP=90°,∴PC是⊙O的切线;(2)∵∠P=60°,PC=2,∠PCO=90°,∴OC=2,OP=2PC=4,∴PE=OP﹣OE=OP﹣OC=4﹣2.【点评】本题考查了切线的判定,等腰三角形的性质,解直角三角形,正确作出辅助线是解题的关键.25.(12分)(2017•永州)如图,已知抛物线y=ax2+bx+1经过A(﹣1,0),B(1,1)两点.(1)求该抛物线的解析式;(2)阅读理解:在同一平面直角坐标系中,直线l1:y=k1x+b1(k1,b1为常数,且k1≠0),直线l2:y=k2x+b2(k2,b2为常数,且k2≠0),若l1⊥l2,则k1•k2=﹣1.解决问题:①若直线y=3x﹣1与直线y=mx+2互相垂直,求m的值;②抛物线上是否存在点P,使得△PAB是以AB为直角边的直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由;(3)M是抛物线上一动点,且在直线AB的上方(不与A,B重合),求点M到直线AB的距离的最大值.【分析】(1)根据待定系数法,可得函数解析式;(2)根据垂线间的关系,可得PA,PB的解析式,根据解方程组,可得P点坐标;(3)根据垂直于x的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得MQ,根据三角形的面积,可得二次函数,根据二次函数的性质,可得面积的最大值,根据三角形的底一定时面积与高成正比,可得三角形高的最大值.【解答】解:(1)将A,B点坐标代入,得,解得,抛物线的解析式为y=﹣x2+x+1;(2)①由直线y=3x﹣1与直线y=mx+2互相垂直,得3m=﹣1,即m=﹣;②AB的解析式为y=x+,当PA⊥AB时,PA的解析式为y=﹣2x﹣2,联立PA与抛物线,得,解得(舍),,即P(6,﹣14);当PB⊥AB时,PB的解析式为y=﹣2x+3,联立PB与抛物线,得,解得(舍)即P(4,﹣5),综上所述:△PAB是以AB为直角边的直角三角形,点P的坐标(6,﹣14)(4,﹣5);(3)如图,∵M(t,﹣t2+t+1),Q(t,t+),∴MQ=﹣t2+S△MAB=MQ|x B﹣x A=(﹣t2+)×2=﹣t2+,当t=0时,S取最大值,即M(0,1).由勾股定理,得AB==,设M到AB的距离为h,由三角形的面积,得h==.点M到直线AB的距离的最大值是.【点评】本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用垂线间的关系得出直线PA,或PB的解析式,又利用解方程组;解(3)的关键是利用三角形的底一定时面积与高成正比得出最大面积时高最大.26.(12分)(2017•永州)已知点O是正方形ABCD对角线BD的中点.(1)如图1,若点E是OD的中点,点F是AB上一点,且使得∠CEF=90°,过点E作ME∥AD,交AB于点M,交CD于点N.①∠AEM=∠FEM;②点F是AB的中点;(2)如图2,若点E是OD上一点,点F是AB上一点,且使==,请判断△EFC的形状,并说明理由;(3)如图3,若E是OD上的动点(不与O,D重合),连接CE,过E点作EF⊥CE,交AB于点F,当=时,请猜想的值(请直接写出结论).【分析】(1)①由正方形的性质得出∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,由HL证明Rt△AME≌Rt△ENC,得出∠AEM=∠ECN,再由角的互余关系即可得出结论;②由三角形内角和定理得出∠EAF=∠EFA,证出AE=FE,由等腰三角形的性质得出AM=FM,AF=2AM,求出=,由平行线分线段成比例定理得出=,得出=,即可得出结论;(2)过点E作ME∥AD,交AB于点M,交CD于点N.同(1)得:AE=CE,Rt △AME≌Rt△ENC,得出∠AEM=∠ECN,∵=,O是DB的中点,证出=,得出AF=2AM,即M是AF的中点,由线段垂直平分线的性质得出AE=FE,证出∠AEM=∠FEM,FE=CE,由角的互余关系证出∠CEF=90°,即可得出结论;(3)同(1)即可得出答案.【解答】(1)证明:①∵四边形ABCD是正方形,∴∠ABD=45°,∠BAD=∠ABC=∠BCD=∠ADC=90°,AE=CE,∵ME∥AD,∴ME⊥AB,∠AME=∠BME=∠BAD=90°,∠ENC=∠ADC=90°,∴△BME是等腰直角三角形,四边形BCNM是矩形,∴BM=EM,BM=CN,∴EM=CN,在Rt△AME和Rt△ENC中,,∴Rt△AME≌Rt△ENC(HL),∴∠AEM=∠ECN,∵∠CEF=90°,∴∠FEM+∠CEN=90°,∵∠ECN+∠CEN=90°,∴∠FEM=∠ECN,∴∠AEM=∠FEM;②在△AME和△FME中,∠AME=∠FME=90°,∠AEM=∠FEM,∴∠EAF=∠EFA,∴AE=FE,∵ME⊥AF,∴AM=FM,。

中考数学专题训练及答案——解答题

中考数学专题训练及答案——解答题

中考数学专题训练及答案——解答题1. (2008永州市) (8分)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆? 2、 (2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.3、(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x φ并把解集在已画好的数轴上表示出来。

4、(2008山西太原)解不等式组:()2532213x x x x+≤+⎧⎪⎨-⎪⎩p 5、(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套? 6、(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x7.(2008浙江金华))解不等式:5x- 3 < 1- 3x8、(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.9、(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:比赛项目 票价(元/场)男 篮 1000足 球 800乒乓球500(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(2)若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?10、(2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.11. (2008江苏镇江)解不等式组921102x x ->⎧⎪⎨-⎪⎩≥,.12. (2008湖北仙桃等) 解不等式组⎪⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.13、(2008安徽芜湖)解不等式组36;445(2)82.x x x x -⎧+⎪⎨⎪--<-⎩≥①② 14、(2008年宁波市)解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,15.(2008徐州)解不等式组12215(1)xx x ⎧>-⎪⎨⎪+≥-⎩,并写出它的所有整数解.16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断x =不等式组.54-5-4-3-2-1321017.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.20、(2008山东济南)解不等式组⎩⎨⎧<+>+63042x x ,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A 型利润B 型利润甲店 200 170 乙店160150(1)设分配给甲店A 型产品件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;0x -2>3121215-≥++x x(3)为了促销,公司决定仅对甲店A 型产品让利销售,每件让利a 元,但让利后A 型产品的每件利润仍高于甲店B 型产品的每件利润.甲店的B 型产品以及乙店的A B ,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A ,B 两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本。

(整理)中考数学试题目按知识点分类整理汇编选择题目精选

(整理)中考数学试题目按知识点分类整理汇编选择题目精选

一、选择题1.(2008年贵阳市)对任意实数,点一定不在..()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B.2. (2008年双柏县)如图,小明从点O出发,先向西走40米,再向南走30米到达点M,如果点M的位置用(-40,-30)表示,那么(10,20)表示的位置是()A.点A B.点BC.点C D.点D【答案】B3. ( 2008年杭州市)在直角坐标系中, 点在第一象限内, 且与轴正半轴的夹角为, 则的值是( )A. B. C.8 D.2【答案】B5.(2008襄樊市)下列说法正确的是()A.的平方根是B.将点向右平移5个单位长度到点C.是无理数D.点关于轴的对称点是【答案】D6.(2008年宁德).如图,点A的坐标是(1,1),若点B在x轴上,且△ABO是等腰三角形,则点B的坐标不可能...是().A.(2,0)B.(,0)C.(,0)D.(1,0)【答案】B7.(2008年大连市)如图,下列各点在阴影区域内的是 ( )A.(3,2) B.(-3,2) C.(3,-2) D.(-3,-2)【答案】A8.(2008年山东省青岛市)如图,把图①中的△ABC经过一定的变换得到图②中的△A′B′C′,如果图①中△ABC上点P的坐标为(a,b),那么这个点在图②中的对应点P′的坐标为()A.(a-2,b-3) B.(a-3,b-2)C.(a+3,b+2) D.(a+2,b+3)【答案】C.9.(2008年山东省济南市)已知△ABC在平面直角坐标系中的位置如图所示,将△ABC向右平移6个单位,则平移后A点的坐标是()A.(-2,1)B.(2,1)C.(2,-1)D.(-2,-1)【答案】B.10. (2008年山西省太原市)在平面直角坐标系中,点的坐标为,则点在( B )A.第一象限B.第二象限C.第三象限D.第四象限【答案】B.11.(2008年湖北省宜昌市)如图,已知△ABC的顶点B的坐标是(2,1),将△ABC向左平移两个单位后,点B平移到B1,则点B1的坐标是()A.(4,1)B.(0,1)C.(-1,1)D.(1,0)【答案】A12.(2008山东烟台)正方形ABCD在坐标系中的位置如图所示,将正方形ABCD绕D点顺时针方向旋转后,B点的坐标为()A. B. C. D.【答案】D13. (2008年扬州市)在平面直角坐标系中,点P(-1,2)的位置在A、第一象限B、第二象限C、第三象限D、第四象限【答案】B14. (2008年扬州市)在平面直角坐标系中,将点A(1,2)的横坐标乘以-1,纵坐标不变,得到点A´,则点A与点A´的关系是()A、关于x轴对称B、关于y轴对称C、关于原点对称D、将点A向x轴负方向平移一个单位得点A´【答案】B15. (2008年宁波市)在平面直角坐标系中,点关于原点对称的点是()A.B.C.D.【答案】D16.(2008肇庆市)在直角坐标系中,将点P(3,6)向左平移4个单位长度,再向下平移8个单位长度后,得到的点位于()A.第一象限 B.第二象限 C.第三象限D.第四象限【答案】C17.(2008山东滨州)在平面直角坐标系中,若点在第四象限,则m的取值范围为()A、-3<m<1B、m>1C、m<-3D、m>-3【答案】A18.(2008年巴中市)点在第二象限,则的取值范围是()A.B. C.D.【答案】C19. (2008年金华市)2008年5月12日,在四川省汶川县发生8.0级特大地震,能够准确表示汶川这个地点位置的是()A.北纬31oB.东经103.5oC.金华的西北方向上D.北纬31o,东经103.5o【答案】D20. (2008年金华市)三军受命,我解放军各部奋力抗战在救灾一线.现有甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到该小镇只有唯一通道,且路程为24km.如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是()A.1B.2C.3D.4【答案】D21.(2008湖南长沙)若点P(,)是第二象限的点,则必须满足()A、<4B、>4C、<0D、0<<4【答案】C22. (2008·东营市)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为()A.-1<m<3 B.m>3 C.m<-1 D.m>-1【答案】A23. (2008年丽水)如图,在已建立直角坐标系的4×4正方形方格纸中,△是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点、、为顶点的三角形与△相似(全等除外),则格点的坐标是.【答案】(1,4)、(3,4).24. (2008四川绵阳)均匀地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为一折线),则这个容器的形状为().【答案】B25.(2008山东莱芜)在平面直角坐标系中,若点P(m-3,m+1)在第二象限,则m的取值范围为A.-1<m<3B.m>3C.m<-1D.m>-1【答案】A二、填空题1.(2008年甘肃省白银市)点P(-2,3)关于x轴的对称点的坐标是________.【答案】(-2,-3)2.(2008黄冈市)若点P(2,k-1)在第一象限,则k的取值范围是_______.【答案】k>13.(2008恩施自治州)将杨辉三角中的每一个数都换成分数,得到一个如图所示的分数三角形,称莱布尼茨三角形.若用有序实数对(m,n)表示第m行,从左到右第n个数,如(4,3)表示分数.那么(9,2)表示的分数是 .【答案】4.(2008年遵义市)如图,如果与关于轴对称,那么点的对应点的坐标为.【答案】(-1,3)5.(2008陕西)如图,菱形的边长为2,,则点的坐标为.【答案】6.(2008年泰安市)如图,将边长为1的正三角形沿轴正方向连续翻转2008次,点依次落在点的位置,则点的横坐标为.【答案】20087.(2008年沈阳市)在平面直角坐标系中,点的坐标为,点的坐标为,点到直线的距离为,且是直角三角形,则满足条件的点有个.【答案】88.(2008 青海)已知点,将它先向左平移4个单位,再向上平移3个单位后得到点,则点的坐标是.【答案】9. (2008年山西省)在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90 o,得△A’B’O,则点A的对应点A’的坐标为 .【答案】(2,3)10.(2008湖南邵阳)2008年奥运火炬于6月3日至5日在我省传递(传递路线为:岳阳—汩罗—长沙—湘潭—韶山).如图,学生小华在地图上设定汩罗市位置点的坐标为,长沙市位置点的坐标为,请帮助小华确定韶山市位置点的坐标为.【答案】11.(2008常州市)点A(-2,1)关于y轴对称的点的坐标为___________,关于原点对称的点的坐标为________.【答案】答案:(2,1),(2,-1)12.(2008年潍坊市)如图,在平面直角坐标系中,的顶点的坐标为,若将绕点逆时针旋转后,点到达点,则点的坐标是.【答案】13.(2008乌鲁木齐)将点向左平移1个单位,再向下平移2个单位后得到对应点的坐标是.【答案】14.(2008年湖北省鞥仙桃市潜江市江汉油田)中,点的坐标为(0,1),点的坐标为(4,3),如果要使与全等,那么点的坐标是 .【答案】15.(2008年新疆建设兵团)如图,在平面直角坐标系中,线段是由线段平移得到的,已知两点的坐标分别为,,若的坐标为,则的坐标为.【答案】(2,2)16. (2008年永州) 右图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C点的坐标为.【答案】(3,1)17. (2008年益阳)是益阳市行政区域图,图中益阳市区所在地用坐标表示为(1,0),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为 .【答案】(2,4)18. (2008年达州市)已知点关于轴的对称点是第三象限内的整点(横、纵坐标都为整数的点,称为整点),则点的坐标是.【答案】(-1,1)19.(2008年贵州省安顺市)在平面直角坐标系中,点关于轴对称的点的坐标是。

2008年全国各地中考数学试卷及详细答案

2008年全国各地中考数学试卷及详细答案

常州市二00六年初中毕业、升学统一考试数 学注意事项:1、全卷共8页,满分120分,考试时间120分钟。

2、答卷前将密封线内的项目填写清楚,并将座位号填写在试卷规定的位置上。

3、用蓝色或黑色钢笔、圆珠笔将答案直接填写在试卷上。

4、考生在答题过程中,可以使用CZ1206、HY82型函数计算器,若试题计算结果没有要求取近似值,则计算结果取精确值(保留根号和π)。

一、填空题(本大题每个空格1分,共18分,把答案填写在题中横线上) 1.3的相反数是 ,5-的绝对值是 ,9的平方根是 。

2.在函数1-=xy 中,自变量x 的取值范围是 ;若分式12--x x 的值为零,则=x 。

3.若α∠的补角是120°,则α∠= °,=αcos 。

4.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环)如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,方差是 环2。

5.已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是 cm ,扇形的面积是 2cm 。

6.已知反比例函数()0≠=k xky 的图像经过点(1,2-),则这个函数的表达式是 。

当0 x 时,y 的值随自变量x 值的增大而 (填“增大”或“减小”)7、如图,在△ABC 中,D 、E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,DF 平分CE 于点G ,1=CF ,则 =BC ,△ADE 与△ABC 的周长之比为 ,△CFG 与△BFD 的面积之比为 。

8.如图,小亮从A 点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,……照这样走下去,他第一次回到出发地A 点时,一共走了 米。

二、选择题(下列各题都给出代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的,把正确答案的代号填在题后【 】内,每小题2分,共18分) 9.下列计算正确的是 【 】 A .123=-x x B .2x x x =∙ C .2222x x x =+ D .()423a a -=-第7题B第8题10.如图,已知⊙O 的半径为5mm ,弦mm AB 8=,则圆心O 到AB 的距离是 【 】A .1 mmB .2 mmC .3 mmD .4 mm 11.小刘同学用10元钱买两种不同的贺卡共8张,单价分别是1元与2元,设1元的贺卡为x 张,2元的贺卡为y 张,那么x 、y 所适合的一个方程组是 【 】A .⎪⎩⎪⎨⎧=+=+8102y x y xB .⎪⎩⎪⎨⎧=+=+1028102y x y x C .⎩⎨⎧=+=+8210y x y x D .⎩⎨⎧=+=+1028y x y x 12.刘翔为了备战2008年奥运会,刻苦进行110米跨栏训练,为判断他的成绩是否稳定,教练对他10次训练的成绩进行统计分析,则教练需了解刘翔这10次成绩的【 】 A .众数 B .方差 C .平均数 D .频数 13、图1表示正六棱柱形状的高大建筑物,图2中的阴影部分表示该建筑物的俯视图,P 、Q 、M 、N 表示小明在地面上的活动区域,小明想同时看到该建筑物的三个侧面,他应在【 】A .P 区域B .Q 区域C .M 区域D .N 区域14、下列左图表示一个由相同小立方块搭成的几何体的俯视图,小正方形中的数字表示该位置上小立方块的个数,则该几何体的主视图为 【 】224113第14题ABCD15.锐角三角形的三个内角是∠A 、∠B 、∠C ,如果B A ∠+∠=∠α,C B ∠+∠=∠β,A C ∠+∠=∠γ,那么α∠、β∠、γ∠这三个角中 【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角 16、如果0,0,0 b a b a +,那么下列关系式中正确的是 【 】 A .a b b a -- B .b b a a -- C .a b a b -- D .a b b a --17.已知:如图1,点G 是BC 的中点,点H 在AF 上,动点P 以每秒2cm 的速度沿图1的边线运动,运动路径为:H F E D C G →→→→→,相应的△ABP 的面积)(2cm y 关于运动时间)(s t 的函数图像如图2,若cm AB 6=,则下列四个结论中正确的个数有第10题第13题图2图1【 】图1F C①图1中的BC 长是8cm ②图2中的M 点表示第4秒时y 的值为242cm ③图1中的CD 长是4cm ④图2中的N 点表示第12秒时y 的值为182cm A .1个 B .2个 C .3个 D .4个三、解答题(本大题共2小题,共20分,解答应写出演算步骤) 18.(本小题满分10分)计算或化简:(1)03260tan 33⎪⎭⎫⎝⎛-+︒+ (2)2422---m m m19.(本小题满分10分)解方程或解不等式组: (1)x x 211=- (2)⎩⎨⎧-≥+≤-1)1(212x x x四、解答题(本大题共2小题,共12分,解答应写出证明过程) 20.(本小题满分5分)已知:如图,在四边形ABCD 中,AC 与BD 相交与点O ,AB ∥CD ,CO AO =, 求证:四边形ABCD 是平行四边形。

2008年湖南省各市州初中毕业学业考试

2008年湖南省各市州初中毕业学业考试

2008年湖南省各市州初中毕业学业考试试卷及学生答卷评析总报告湖南省初中毕业学业考试试卷及学生答卷评析组为进一步贯彻落实教育部《关于积极推进中小学评价与考试制度改革的通知》(教基[2002]26号)、《关于基础教育课程改革试验区初中毕业考试与普通高中招生制度改革的指导意见》(教基[2005]2号)和省教育厅《关于基础教育课程改革实验区初中毕业考试与普通高中招生制度改革的实施意见》(湘教发[2005]35号)文件精神,加强对全省初中教学质量的评价与监控,促进各市州不断提高初中毕业学业考试命题水平和教学质量,发挥学业考试对基础教育课程改革的推动作用,湖南省初中毕业学业考试各学科评析组对全省各市州报送的思想品德、语文、数学、英语、物理、化学、生物、历史、地理9个学科的试卷(包括参考答案、评分标准)和学生答卷进行了认真评析。

现将评析结果报告如下。

一、主要成绩2008年,各市州认真总结和发扬以往命题工作的成绩,克服命题工作中的不足,较好坚持了“以学生发展为本”的课程理念,力求使初中毕业学业考试有利于贯彻国家教育方针,全面推进素质教育;有利于体现九年义务教育的性质,143全面提高教育质量;有利于推动基础教育课程改革,培养学生的创新精神和实践能力;有利于减轻学生过重的课业负担,促进学生生动活泼主动地发展,并在以下几个方面取得了较好的成绩。

1.依据《课程标准》《考试标准》和教材,精心命制试题各市州初中毕业学业考试命题能依据学科课程标准和2008年湖南省初中毕业学业考试标准,并充分考虑当地教学实际,突出了初中毕业学业考试的特点。

命题较好地兼顾了初中毕业学业水平考试和高中招生选拔两项功能,一方面注重了对初中学生掌握基础知识、基本技能和基本思想方法的考查,突出了基础性,另一方面又能联系实际,考查学生运用知识分析问题和解决问题的能力,如各市州语文学科的命题能从“识字写字”“阅读”“写作”“口语交际”“综合性学习”五个方面设计试题,注重对语文基本知识与技能以及联系生活综合运用语文能力的考查,注重语言积累和语文实际运用能力的考查,引导学生在实际生活中学语文、用语文,充分体现了语文学科特点。

2008年湖南省永州市初中毕业学业考试(含答案)

2008年湖南省永州市初中毕业学业考试(含答案)

2008年湖南省永州市初中毕业学业考试(含答案)温馨提示:亲爱的同学们,本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ卷1—3页,第Ⅱ卷4—8页。

满分100分,考试时量90分钟。

答题前务必将自己的姓名、准考证号、考室编号、考生座号、县(区)、学校填写在装订线内的相应位置。

第Ⅰ卷(选择题,共40分)一、选择题(每小题四个选项中,只有一项最符合题意,请将各题的英文字母添在答题栏内。

本大题共20题,每小题2分,共40分)1.寒假期间,王军实地参观了陕西西安一处原始人类遗址,下图是他拍下的照片,据此推断这个遗址是A.元谋人遗址B.北京人遗址C.半坡遗址D.河姆渡遗址2.今年(2008年)5月12日四川汶川大地震殃及都江堰,历史上李冰主持修建都江堰防洪灌溉工程是在A.春秋时期B.战国时期C.三国时期D.南北朝时期“惟楚有材,于斯为盛”,湖湘大地,人才辈出。

结合所学知识回答3—5题。

3.出生于现永州市道县的北宋时期理学创始人是A.周敦颐B.屈原C.王船山D.柳宗元4.清朝时期湘军的创建者是A.李鸿章B.曾国藩C.袁世凯D.宋教仁5.领导平江起义、指挥百团大战的湘籍共和国元帅是A.贺龙B.罗荣桓C.彭德怀D.林彪6.很多同学平常爱吃米饭,“吃饭靠两平,一是邓小平,一是袁隆平。

” 袁隆平的突出贡献是A.提出并参与863计划B.艰苦创业建设大庆油田C.以毕生精力投入核试验的研究D.培育籼型杂交水稻7.女书是目前世界上发现的唯一女性文字,其传承使用于中国湖南A.江永妇女之间B.江华妇女之间C.新田妇女之间D.双牌妇女之间8.2008年3月14日,“藏独”分子在西藏自治区首府拉萨策划了打砸抢烧暴力事件,企图分裂祖国。

西藏自古以来就是中国的领土,它正式成为中央政府管辖下的行政区是在A.汉朝B.唐朝C.宋朝D.元朝9.某同学准备撰写关于我国古代工场手工业发展情况的小论文。

下列文献资料中,他可以查阅的是10.以下属于沈从文文学作品的是A.《边城》B.《暴风骤雨》C.《山乡巨变》D.《青春之歌》11.在红军长征途中召开的成为我党历史上生死攸关转折点的重要会议是A.中共一大B.八七会议C.遵义会议D.中共七大12.今年(2008年)是我国政府首次提出和平共处五项原则五十五周年。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

永州市2008年初中毕业学业考试试卷数学第Ⅰ卷考生注意:1、本试卷共三道大题,25个小题,满分120分,时量120分钟.2、本试卷分Ⅰ卷和Ⅱ卷,Ⅰ卷为选择填空题1-2页;Ⅱ卷为解答题3-8页.3、考生务必将Ⅰ卷的答案写在Ⅱ卷卷首的答案栏内,交卷时只交Ⅱ卷.一、填空题(每小题3分,共8个小题,24分.请将答案填在Ⅱ卷卷首的答案栏内.)1.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作.2.四川汶川地震发生以来,截至6月4日12时止,已接受国内外社会各界捐款436.81亿元,用科学记数法(保留三个有效数字)记为元.3.如图,直线a、b被直线c所截,若要a∥b,需增加条件(填一个即可).4.家家乐奥运福娃专卖店今年3月份售出福娃3600个,5月份售出4900个,设每月平均增长率为x,根据题意,列出关于x的方程为.5.一棵树因雪灾于A处折断,如图所示,测得树梢触地点B到树根C处的距离为4米,∠ABC约45°,树干AC垂直于地面,那么此树在未折断之前的高度约为米(答案可保留根号).6.一个角的补角是这个角的余角的3倍,则这个角为度.7.右图是永州市几个主要景点示意图,根据图中信息可确定九疑山的中心位置C点的坐标为.8.已知一组数据1,2,0,-1,x,1的平均数是1,则这组数据的极差为.二、选择题(每小题3分,共8个小题,24分.每小题只有一个正确选项,请将正确选项的代号填入Ⅱ卷卷首的答案栏内.)9.如图,a、b、c分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是()A.a>c>b B.b>a>c C.a>b>c D.c>a>b 10.为悼念四川汶川地震中遇难同胞,在全国哀悼日第一天,某校升旗仪式中,先把国旗匀速升至旗杆顶部,停顿3秒钟后再把国旗匀速下落至旗杆中部.能正确反映这一过程中,国旗高度h(米)与升旗时间t(秒)的函数关系的大致图象是11.下列判断正确的是( )A .23<3<2 B . 2<2+3<3C . 1<5-3<2D . 4<3·5<5 12.下图※是一种瑶族长鼓的轮廓图,其主视图正确的是( )13.6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、直角梯形、正方形、正五边形、圆. 在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是( )A .61 B .31C .21 D .32 14.下列命题是假命题...的是( ) A .两点之间,线段最短.B .过不在同一直线上的三点有且只有一个圆.C .一组对应边相等的两个等边三角形全等.D .对角线相等的四边形是矩形.15.一个圆锥的侧面展开图形是半径为8cm ,圆心角为120°的扇形,则此圆锥的底面半径为 ( )A .38cm B .316cm C .3cm D .34cm 16.形如dc b a 的式子叫做二阶行列式,它的运算法则用公式表示为dc b a =ad -bc ,依此法则计算4132 的结果为( ) A .11B .-11C .5D .-2永州市2008年初中毕业学业考试试卷数 学第II 卷题号 一 二 三总分 合分人 核分人 17 18 19 20 21 22 23 24 25 得分一、填空题1. 2. 3. 4. 5. 6. 7. 8.二、选择题9 10 11 12 13 14 15 16三、解答题:(本题9个小题,共72分,解答题要求写出证明步骤或解答过程)17.(6分)计算:cos45°·(-21)-2-(22-3)0+|-32|+121-18.(6分)解方程:xx x -2+2=12+x x得 分 评卷人 复评人19.(6分)如图所示,左边方格纸中每个正方形的边长均为a,右边方格纸中每个正方形的边长均为b,将左边方格纸中的图形顺时针旋转90°,并按b:a的比例画在右边方格纸中.20.(8分)如图,一次函数的图象经过M点,与x轴交于A点,与y轴交于B点,根据图中信息求:(1)这个函数的解析式;(2)tan∠BAO.21.(8分)某物流公司,要将300吨物资运往某地,现有A、B两种型号的车可供调用,已知A型车每辆可装20吨,B型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A型车的前提下至少还需调用B型车多少辆?22.(8分)如图△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB(1)求证:四边形EFCD是菱形;(2)设CD=4,求D、F两点间的距离.23.(10分)为保护环境,节约资源,从今年6月1日起国家禁止超市、商场、药店为顾客提供免费塑料袋,为解决顾客购物包装问题,心连心超市提供了A.自带购物袋;B.租借购物篮;C.购买环保袋;D.徒手携带,四种方式供顾客选择.该超市把6月1日、2日两天的统计结果绘成如下的条形统计图和6月1日的扇形统计图,请你根据图形解答下列问题:(1)请将6月1日的扇形统计图补充完整.(2)根据统计图求6月1日在该超市购物总人次和6月1日自带购物袋的人次.(3)比较两日的条形图,你有什么发现?请用一句话表述你的发现.24.(10分)如图,已知⊙O的直径AB=2,直线m与⊙O相切于点A,P为⊙O上一动点(与点A、点B不重合),PO的延长线与⊙O相交于点C,过点C的切线与直线m相交于点D.(1)求证:△APC∽△COD.(2)设AP=x,OD=y,试用含x的代数式表示y.(3)试探索x为何值时,△ACD是一个等边三角形.25.(10分)如图,二次函数y=ax2+bx+c(a>0)与坐标轴交于点A、B、C且OA=1,OB=OC=3 .(1)求此二次函数的解析式.(2)写出顶点坐标和对称轴方程.(3)点M、N在y=ax2+bx+c的图像上(点N在点M的右边),且MN∥x轴,求以MN为直径且与x轴相切的圆的半径.永州市2008年初中毕业学业考试试卷数学参考答案及评分标准一、填空题(每小题3分,共24分)1.3%- 2.104.3710⨯ 3.14∠=∠或13∠=∠或12180∠+∠= 4.23600(1)4900x += 5.442+ 6.45° 7.(3,1) 8.4 二、选择题(每小题3分,共24分) 题号 9 10 11 12 13 14 15 16 答案 CBADCDAA三、解答题17.(6分)解:原式24132221=⨯-++- ················································· 2分 2214221=-+++ ····················································· 4分 72= ·············································································· 6分 18.(6分)解:12211xx x +=-+ ······································································· 1分 方程两边同乘以(1)(1)x x +-,得12(1)(1)2(1)x x x x x +++-=- ······································································· 3分 解之,得13x =······························································································ 4分 检验:把13x =代入(1)(1)x x +-得1111033⎛⎫⎛⎫+-≠ ⎪⎪⎝⎭⎝⎭························································································· 5分 13x ∴=是原方程的根. ·················································································· 6分 19.(6分)20.(8分)(1)设一次函数的解析式为y kx b =+(0k ≠) 将点(06)(14)B M -,,,代入,得604(1)k b k b =+⎧⎨=-+⎩,····························································································· 2分 解之,得26k b ==,∴解析式为26y x =+ ···················································································· 4分(2)令0y =,代入26y x =+,得3x =-可知点A 的坐标(30)-, ···················································································· 6分 tan 2BAO ∴∠= ··························································································· 8分 21.(8分)解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ························································································· 3分 解得:1133x ≥ ····························································································· 5分由于x 是车的数量,应为整数,所以x 的最小值为14. ·········································· 7分 答:至少需要14台B 型车. ············································································ 8分 22.(8分) (1)证明:ABC △与CDE △都是等边三角形 ED CD ∴=60A DCE BCA DCE ∴∠=∠=∠=∠= ···························································· 1分AB CD DE CF ∴∥,∥ ················································································· 2分又EF AB ∥ ∴EF CD ∥ ································································································· 3分 ∴四边形EFCD 是菱形 ··················································································· 4分 (2)解:连结DF ,与CE 相交于点G ······························································ 5分 由4CD =,可知2CG = ················································································ 6分∴DG ==··············································································· 7分DF ∴=································································································ 8分23.(10分)(1)在扇形统计图的空白处填上“D 22%” ······································ 3分 (2)6月1日在该超市购物的总人次为1250(人次) ············································ 6分 6月1日自带购物袋的有225人次 ······································································ 8分 (3)答案不唯一,如“自带购物袋的人增多” “租借购物篮的人减少”等 ············································································ 10分 24.(10分)(1)∵PC 是⊙O 的直径,CD 是⊙O 的切线 ∠P AC =∠OCD =90°,显然△DOA ≌△DOC ························································ 1分∴∠DOA =∠DOC ·························································································· 2分 ∴∠APC =∠COD ··························································································· 3分APC COD ∴△∽△ ······················································································· 4分 (2)由APC COD △∽△,得AP OCPC OD=························································· 6分 12x y ∴=,2y x∴= ························································································ 7分 (3)若ACD △是一个等边三角形,则6030ADC ODC ∠=∠=, ······················· 8分 于是2OD OC =,可得2y =,1x ∴=故,当1x =时,ACD △是一个等边三角形 ······················································ 10分 25.(1)依题意(10)(30)(03)A B C --,,,,,分别代入2y ax bx c =++ ····················· 1分 解方程组得所求解析式为223y x x =--····························································· 4分 (2)2223(1)4y x x x =--=-- ···································································· 5分∴顶点坐标(14)-,,对称轴1x =······································································ 7分 (3)设圆半径为r ,当MN 在x 轴下方时,N 点坐标为(1)r r +-, ························· 8分把N 点代入223y x x =--得12r -+= ························································ 9分同理可得另一种情形r =∴。

相关文档
最新文档