安徽省巢湖市2016-2017学年度下期期末统考试卷八年级数学试题
2016-2017学年安徽省合肥市八年级(下)期末数学试卷(解析版)
2016-2017学年安徽省合肥市八年级(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥42.(4分)若代数式有意义,则实数x的取值范围是()A.x≥1B.x≥2C.x>1D.x>23.(4分)如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是()A.2B.C.D.4.(4分)肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是()A.150,150B.150,155C.155,150D.150,152.5 5.(4分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.86.(4分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论正确个数的有()①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.A.1B.2C.3D.47.(4分)如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.38.(4分)已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3C.6D.99.(4分)如图,正方形ABCD的对角线上一动点P,作PM⊥AD于点M,PN⊥CD于点N,连接BP,BN,若AB=3,BP=,则BN的长为()A.B.或C.4D.510.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4C.4.8D.5二、填空题:本大题共4小题,每小题5分,共20分.11.(5分)计算:﹣+(﹣1)=.12.(5分)一张三角形纸片ABC中,∠C=90°,AC=8cm,BC=6cm,现将纸片折叠:使点A与点B重合,那么折痕长等于cm.13.(5分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,则道路宽x为m.14.(5分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E 作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是.三、解答题:每小题8分,共16分.15.(8分)先化简,再求值:,其中a=.16.(8分)若+y2﹣4y+4=0,求+的值.四、解答题:每小题8分,共16分.17.(8分)观察,猜想,证明.观察下列的等式①;②;③…(1)发现上述3个等式的规律,猜想第5个等式并进行验证;(2)写出含字母n(n为任意自然数,且n≥2)表示的等式,并写出证明过程.18.(8分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.五、解答题:每小题10分,共20分.19.(10分)如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△P AE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.20.(10分)解下列关于x的方程并化简到最简式:(1)x2﹣9x+20=0;(2)x2+bx+2c=0且c2﹣cb2﹣2b4=0(字母只保留b);(3)(m﹣1)x2+2mx+m+3=0(字母只保留m).六、解答题:12分.21.(12分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.七、解答题:12分.22.(12分)机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?八、解答题:14分.23.(14分)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC 于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,试猜想AG与EF的数量关系,不需证明.2016-2017学年安徽省合肥市八年级(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分,每小题都给出A、B、C、D四个选项,其中只有一个是正确的.1.(4分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是()A.q<16B.q>16C.q≤4D.q≥4【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选:A.2.(4分)若代数式有意义,则实数x的取值范围是()A.x≥1B.x≥2C.x>1D.x>2【解答】解:由题意可知:∴解得:x≥2故选:B.3.(4分)如图,在四边形ABCD中,AB=1,BC=1,CD=2,DA=,且∠ABC=90°,则四边形ABCD的面积是()A.2B.C.D.【解答】解:在Rt△ABC中,AB=1,BC=1,根据勾股定理得:AC==,在△ACD中,CD=2,AD=,∴AC2+CD2=AD2,∴△ACD为直角三角形,则S=S△ABC+S△ACD=×1×1+×2×=+.故选:B.4.(4分)肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM2.5指数的众数和中位数分别是()A.150,150B.150,155C.155,150D.150,152.5【解答】解:这组数据按照从小到大的顺序排列为:150,150,150,155,155,160,165,则众数为:150,中位数为:155.故选:B.5.(4分)某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A.10.8(1+x)=16.8B.16.8(1﹣x)=10.8C.10.8(1+x)2=16.8D.10.8[(1+x)+(1+x)2]=16.8【解答】解:设参观人次的平均年增长率为x,由题意得:10.8(1+x)2=16.8,故选:C.6.(4分)已知:如图,在菱形ABCD中,F为边AB的中点,DF与对角线AC交于点G,过G作GE⊥AD于点E,若AB=2,且∠1=∠2,则下列结论正确个数的有()①DF⊥AB;②CG=2GA;③CG=DF+GE;④S四边形BFGC=﹣1.A.1B.2C.3D.4【解答】解:∵四边形ABCD是菱形,∴∠F AG=∠EAG,∠1=∠GAD,AB=AD,∵∠1=∠2,∴∠GAD=∠2,∴AG=GD,∵GE⊥AD,∴GE垂直平分AD,∴AE=ED,∵F为边AB的中点,∴AF=AE,在△AFG和△AEG中,,∴△AFG≌△AEG(SAS),∴∠AFG=∠AEG=90°,∴DF⊥AB,∴①正确;∵DF⊥AB,F为边AB的中点,∴AF=AB=1,AD=BD,∵AB=AD,∴AD=BD=AB,∴△ABD为等边三角形,∴∠BAD=∠BCD=60°,∴∠BAC=∠1=∠2=30°,∴AC=2AB•cos∠BAC=2×2×=2,AG===,∴CG=AC﹣AG=2﹣=,∴CG=2GA,∴②正确;∵GE垂直平分AD,∴ED=AD=1,由勾股定理得:DF===,GE=tan∠2•ED=tan30°×1=,∴DF+GE=+==CG,∴③正确;∵∠BAC=∠1=30°,∴△ABC的边AC上的高等于AB的一半,即为1,FG=AG=,S四边形BFGC=S△ABC﹣S△AGF=×2×1﹣×1×=﹣=,∴④不正确;故选:C.7.(4分)如图,正方形ABCD的对角线上的两个动点M、N,满足AB=MN,点P是BC的中点,连接AN、PM,若AB=6,则当AN+PM的最小值时,线段AN的长度为()A.4B.2C.6D.3【解答】解:过P作PE∥BD交CD于E,连接AE交BD于N,过P作PM∥AE交BD于M,此时,AN+PM的值最小,∵P是BC的中点,∴E为CD的中点,∴PE=BD,∵AB=BD,AB=MN,∴MN=BD,∴PE=MN,∴四边形PENM是平行四边形,∴EN=PM,∵AE==3,∵AB∥CD,∴△ABN∽△EDN,∴==2,∴AN=2,故选:B.8.(4分)已知一个直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,则这个直角三角形的斜边长是()A.B.3C.6D.9【解答】解:设直角三角形的斜边为c,两直角边分别为a与b.∵直角三角形的两条直角边的长恰好是方程2x2﹣8x+7=0的两个根,∴a+b=4,ab=3.5;根据勾股定理可得:c2=a2+b2=(a+b)2﹣2ab=16﹣7=9,∴c=3,故选:B.9.(4分)如图,正方形ABCD的对角线上一动点P,作PM⊥AD于点M,PN⊥CD于点N,连接BP,BN,若AB=3,BP=,则BN的长为()A.B.或C.4D.5【解答】解:延长NP交AB于H.∵四边形ABCD是正方形,∴∠BAC=90°,AB∥CD,∵PN⊥CD,∴PN⊥AB,∴∠HAP=∠HP A=45°,∴AH=PH,设AH=PH=x,则BH=3﹣x,在Rt△PBH中,∵PB2=PH2+BH2,∴x2+(3﹣x)2=()2,∴x=1或2,当x=1时,BH=CN=2,在Rt△BCN中,BN===,当x=2时,BH=CN=1,在Rt△BCN中,BN==,=.综上所述,BN的长为或.故选:B.10.(4分)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.2.4B.4C.4.8D.5【解答】解:如图,过点C作CM⊥AB交AB于点M,交AD于点P,过点P作PQ⊥AC 于点Q,∵AD是∠BAC的平分线.∴PQ=PM,这时PC+PQ有最小值,即CM的长度,∵AC=6,BC=8,∠ACB=90°,∴AB===10.∵S△ABC=AB•CM=AC•BC,∴CM===,即PC+PQ的最小值为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.11.(5分)计算:﹣+(﹣1)=﹣﹣2.【解答】解:原式=﹣1﹣2+﹣1=﹣﹣2.故答案为:﹣﹣2.12.(5分)一张三角形纸片ABC中,∠C=90°,AC=8cm,BC=6cm,现将纸片折叠:使点A与点B重合,那么折痕长等于cm.【解答】解:如图,折痕为GH,由勾股定理得:AB==10cm,由折叠得:AG=BG=AB=×10=5cm,GH⊥AB,∴∠AGH=90°,∵∠A=∠A,∠AGH=∠C=90°,∴△ACB∽△AGH,∴=,∴=,∴GH=cm.故答案为:.13.(5分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2,则道路宽x为1m.【解答】解:设道路的宽为xm,根据题意得:32×20﹣32x﹣2×20x+2x2=570,整理得:x2﹣36x+35=0,解得:x=1或x=35(不合题意,舍去).故答案为:1.14.(5分)如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E 作EF⊥ED,交AB于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F是AB边的中点,则△EMN的周长是.【解答】解:解法一:如图1,过E作PQ⊥DC,交DC于P,交AB于Q,连接BE,∵DC∥AB,∴PQ⊥AB,∵四边形ABCD是正方形,∴∠ACD=45°,∴△PEC是等腰直角三角形,∴PE=PC,设PC=x,则PE=x,PD=4﹣x,EQ=4﹣x,∴PD=EQ,∵∠DPE=∠EQF=90°,∠PED=∠EFQ,∴△DPE≌△EQF,∴DE=EF,∵DE⊥EF,∴△DEF是等腰直角三角形,易证明△DEC≌△BEC,∴DE=BE,∴EF=BE,∵EQ⊥FB,∴FQ=BQ=BF,∵AB=4,F是AB的中点,∴BF=2,∴FQ=BQ=PE=1,∴CE=,PD=4﹣1=3,Rt△DAF中,DF==2,DE=EF=,如图2,∵DC∥AB,∴△DGC∽△FGA,∴==2,∴CG=2AG,DG=2FG,∴FG=×=,∵AC==4,∴CG=×=,∴EG=﹣=,连接GM、GN,交EF于H,∵∠GFE=45°,∴△GHF是等腰直角三角形,∴GH=FH==,∴EH=EF﹣FH=﹣=,由折叠得:GM⊥EF,MH=GH=,∴∠EHM=∠DEF=90°,∴DE∥HM,∴△DEN∽△MNH,∴,∴==3,∴EN=3NH,∵EN+NH═EH=,∴EN=,∴NH=EH﹣EN=﹣=,Rt△GNH中,GN===,由折叠得:MN=GN,EM=EG,∴△EMN的周长=EN+MN+EM=++=;解法二:如图3,过G作GK⊥AD于K,作GR⊥AB于R,∵AC平分∠DAB,∴GK=GR,∴====2,∵==2,∴,同理,==3,其它解法同解法一,可得:∴△EMN的周长=EN+MN+EM=++=;解法三:如图4,过E作EP⊥AP,EQ⊥AD,∵AC是对角线,∴EP=EQ,易证△DQE和△FPE全等,∴DE=EF,DQ=FP,且AP=EP,设EP=x,则DQ=4﹣x=FP=x﹣2,解得x=3,所以PF=1,∴AE==3,∵DC∥AB,∴△DGC∽△FGA,∴同解法一得:CG=×=,∴EG=﹣=,AG=AC=,过G作GH⊥AB,过M作MK⊥AB,过M作ML⊥AD,则易证△GHF≌△FKM全等,∴GH=FK=,HF=MK=,∵ML=AK=AF+FK=2+=,DL=AD﹣MK=4﹣=,即DL=LM,∴∠LDM=45°∴DM在正方形对角线DB上,过N作NI⊥AB,则NI=IB,设NI=y,∵NI∥EP∴∴,解得y=1.5,所以FI=2﹣y=0.5,∴I为FP的中点,∴N是EF的中点,∴EN=0.5EF=,∵△BIN是等腰直角三角形,且BI=NI=1.5,∴BN=,BK=AB﹣AK=4﹣=,BM=,MN=BN﹣BM=﹣=,∴△EMN的周长=EN+MN+EM=++=;故答案为:.三、解答题:每小题8分,共16分.15.(8分)先化简,再求值:,其中a=.【解答】解:原式=(﹣)÷a=×=,当a=+1时,原式===.16.(8分)若+y2﹣4y+4=0,求+的值.【解答】解:+y2﹣4y+4=0,∴+(y﹣2)2=0,∴,解得,,∴+=.四、解答题:每小题8分,共16分.17.(8分)观察,猜想,证明.观察下列的等式①;②;③…(1)发现上述3个等式的规律,猜想第5个等式并进行验证;(2)写出含字母n(n为任意自然数,且n≥2)表示的等式,并写出证明过程.【解答】解:(1)猜想:,验证:右边==左边;(2)第n﹣1个等式:;证明:右边==左边.18.(8分)为了了解某校九年级学生的跳高水平,随机抽取该年级50名学生进行跳高测试,并把测试成绩绘制成如图所示的频数表和未完成的频数直方图(每组含前一个边界值,不含后一个边界值).某校九年级50名学生跳高测试成绩的频数表(1)求a的值,并把频数直方图补充完整;(2)该年级共有500名学生,估计该年级学生跳高成绩在1.29m(含1.29m)以上的人数.【解答】解:(1)a=50﹣8﹣12﹣10=20,;(2)该年级学生跳高成绩在1.29m(含1.29m)以上的人数是:500×=300(人).五、解答题:每小题10分,共20分.19.(10分)如图,矩形ABCD中,AB=9,AD=4.E为CD边上一点,CE=6.点P从点B出发,以每秒1个单位的速度沿着边BA向终点A运动,连接PE.设点P运动的时间为t秒.(1)求AE的长;(2)当t为何值时,△P AE为直角三角形?(3)是否存在这样的t,使EA恰好平分∠PED,若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵矩形ABCD中,AB=9,AD=4,∴CD=AB=9,∠D=90°,∴DE=9﹣6=3,∴AE===5;(2)①若∠EP A=90°,t=6;②若∠PEA=90°,(6﹣t)2+42+52=(9﹣t)2,解得t=.综上所述,当t=6或t=时,△P AE为直角三角形;(3)假设存在.∵EA平分∠PED,∴∠PEA=∠DEA.∵CD∥AB,∴∠DEA=∠EAP,∴∠PEA=∠EAP,∴PE=P A,∴(6﹣t)2+42=(9﹣t)2,解得t=.∴满足条件的t存在,此时t=.20.(10分)解下列关于x的方程并化简到最简式:(1)x2﹣9x+20=0;(2)x2+bx+2c=0且c2﹣cb2﹣2b4=0(字母只保留b);(3)(m﹣1)x2+2mx+m+3=0(字母只保留m).【解答】解:(1)∵x2﹣9x+20=0,∴(x﹣4)(x﹣5)=0,则x﹣4=0或x﹣5=0,解得:x=4或x=5;(2)∵c2﹣cb2﹣2b4=0,∴(c+b2)(c﹣2b2)=0,则c=﹣b2或c=2b2,∵△=b2﹣8c,∴当c=﹣b2时,△=b2+8b2=9b2≥0,则x=,即x1=b、x2=﹣2b;当c=2b2时,△=b2﹣16b2=﹣15b2<0,则方程无解.(3)∵a=m﹣1、b=2m、c=m+3,∴△=(2m)2﹣4(m﹣1)(m+3)=﹣8m+12,当﹣8m+12<0,即m>时,方程无解;当﹣8m+12≥0,即m≤,且m≠1,x==;当m=1时,方程为2x+4=0,解得x=﹣2.六、解答题:12分.21.(12分)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为时,求正方形的边长.【解答】(1)证明:∵△ABE是等边三角形,∴BA=BE,∠ABE=60°.∵∠MBN=60°,∴∠MBN﹣∠ABN=∠ABE﹣∠ABN.即∠MBA=∠NBE.又∵MB=NB,∴△AMB≌△ENB(SAS).(2)解:①当M点落在BD的中点时,A、M、C三点共线,AM+CM的值最小.②如图,连接CE,当M点位于BD与CE的交点处时,AM+BM+CM的值最小.理由如下:连接MN,由(1)知,△AMB≌△ENB,∴AM=EN,∵∠MBN=60°,MB=NB,∴△BMN是等边三角形.∴BM=MN.∴AM+BM+CM=EN+MN+CM.根据“两点之间线段最短”可知,若E、N、M、C在同一条直线上时,EN+MN+CM取得最小值,最小值为EC.在△ABM和△CBM中,,∴△ABM≌△CBM,∴∠BAM=∠BCM,∴∠BCM=∠BEN,∵EB=CB,∴若连接EC,则∠BEC=∠BCE,∵∠BCM=∠BCE,∠BEN=∠BEC,∴M、N可以同时在直线EC上.∴当M点位于BD与CE的交点处时,AM+BM+CM的值最小,即等于EC的长.(3)解:过E点作EF⊥BC交CB的延长线于F,∴∠EBF=∠ABF﹣∠ABE=90°﹣60°=30°.设正方形的边长为x,则BF=x,EF=.在Rt△EFC中,∵EF2+FC2=EC2,∴()2+(x+x)2=.解得x1=,x2=﹣(舍去负值).∴正方形的边长为.七、解答题:12分.22.(12分)机械加工需用油进行润滑以减小摩擦,某企业加工一台大型机械设备润滑用油量为90千克,用油的重复利用率为60%,按此计算,加工一台大型机械设备的实际耗油量为36千克.为了建设节约型社会,减少油耗,该企业的甲乙两个车间都组织了人员为减少实际油耗量进行攻关.(1)甲车间通过技术革新后,加工一台大型机械设备润滑用油量下降到70千克,用油的重复利用率仍为60%,问甲车间技术革新后,加工一台大型机械设备的实际耗油量是多少千克?(2)乙车间通过技术革新后,不仅降低了润滑用油量,同时也提高了重复利用率,并且发现在技术革新前的基础上,润滑用油量每减少1千克,用油的重复利用率将增加1.6%,这样乙车间加工一台大型机械设备的实际耗油量下降到12千克.问乙车间技术革新后,加工一台大型机械设备的润滑用油量是多少千克?用油的重复利用率是多少?【解答】解:(1)由题意,得70×(1﹣60%)=70×40%=28(千克);(2)设乙车间加工一台大型机械设备润滑用油量为x千克,由题意,得x×[1﹣(90﹣x)×1.6%﹣60%]=12,整理,得x2﹣65x﹣750=0解得:x1=75,x2=﹣10(舍去),(90﹣75)×1.6%+60%=84%;答:(1)技术革新后,甲车间加工一台大型机械设备的实际耗油量是28千克.(2)技术革新后,乙车间加工一台大型机械设备润滑用油量是75千克,用油的重复利用率是84%.八、解答题:14分.23.(14分)已知,△ABC中,AB=AC,∠BAC=90°,E为边AC任意一点,连接BE.(1)如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;(2)如图2,F也为AC上一点,且满足AE=CF,过A作AD⊥BE交BE于点H,交BC 于点D,连接DF交BE于点G,连接AG;①若AG平分∠CAD,求证:AH=AC;②如图3,当G落在△ABC外时,若将△EFG沿EF边翻折,点G刚好落在AB边上点P,试猜想AG与EF的数量关系,不需证明.【解答】(1)解:如图1中,在AB上取一点M,使得BM=ME,连接ME.在Rt△ABE中,∵OB=OE,∴BE=2OA=2,∵MB=ME,∴∠MBE=∠MEB=15°,∴∠AME=∠MBE+∠MEB=30°,设AE=x,则ME=BM=2x,AM=x,∵AB2+AE2=BE2,∴(2x+x)2+x2=22,∴x=(负根已经舍弃),∴AB=AC=(2+)•,∴BC=AB=+1.(2)证明:如图2中,作CP⊥AC,交AD的延长线于P,GM⊥AC于M.∵BE⊥AP,∴∠AHB=90°,∴∠ABH+∠BAH=90°,∵∠BAH+∠P AC=90°,∴∠ABE=∠P AC,在△ABE和△CAP中,,∴△ABE≌△CAP,∴AE=CP=CF,∠AEB=∠P,在△DCF和△DCP中,,∴△DCF≌△DCP,∴∠DFC=∠P,∴∠GFE=∠GEF,∴GE=GF,∵GM⊥EF,∴FM=ME,∵AE=CF,∴AF=CE,∴AM=CM,在△GAH和△GAM中,,∴△AGH≌△AGM,∴AH=AM=CM=AC(3)解:结论:AG=EF.理由:如图3中,作CM⊥AC交AD的延长线于M,连接PG交AC于点O.由(2)可知△ACM≌△BAE,△CDF≌△CDM,∴∠AEB=∠M=∠GEF,∠M=∠CFD=∠GFE,AE=CM=CF,∴∠GEF=∠GFE,∴GE=GF,∵△EFP是由△EFG翻折得到,∴EG=EP=GF=PF,∴四边形EGFP是菱形,∴PG⊥AC,OE=OF,∵AE=CF,∴AO=OC,∵AB∥OP,∴BP=PC,∵PF∥BE,∴EF=CF=AE,∵PB=PC,AO=OC,∴PO=OG=AB,∴AB=PG,AB∥PG,∴四边形ABPG是平行四边形,∴AG∥BC,∴∠GAO=∠ACB=45°,设EO=OF=a,则OA=OG=3a,AG=3a,∴==,∴AG=EF.。
安徽省2016_2017学年度第2学期期末十校联考八年级数学试题
安徽省2016~2017学年度第2学期期末十校联考八年级数学试题学校:___________姓名:___________班级:___________考号:___________1.下列计算正确的是( )A =B =C =D .3=-2.要使式子 有意义,a 的取值范围是( ) A .a≠2B .a≥0C .a >0且a≠2D .a ≥0且a≠23.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的( ) A .众数B .平均数C .方差D .中位数4.如图,在菱形ABCD 中,M 、N 分别在AD 、BC 上,且AM=CN ,连接MN 与AC 交于点O ,连接BO ,若∠DAC=28°,则∠OBC 的度数为( )A .28°B .56°C .62°D .72°5.如图,□ABCD 的对角线AC 与BD 相交于点O ,AB ⊥AC .若4AB =,6AC =,则BD 的长为( )A .11B .10C .9D .86.在平面直角坐标系中,点()2,A m 在第一象限,若点A 关于x 轴的对称点B 在直线1y x =-+上,则m 的值为( )A .3B .2C .1D .-17.某销售公司有营销人员15人,销售部为了制定某种商品的月销售量定额,统计了这15人某月的销售量,如下表所示:那么这15位销售人员该月销售量的平均数、众数、中位数分别是()A.320,210,230 B.320,210,210 C.206,210,210 D.206,210,230 8.如图,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,BD⊥AC于点D.则B D的长为()A B C D(k≠0)的图象如图所示,则在下列选项中k值可能是()9.已知正比例函数y kxA.1 B.2 C.3 D.410.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是__.11.定理“全等三角形的对应边相等”的逆命题是_____________,它是_______命题(填“真”或“假”).12.观察分析下列数据,寻找规律:0,√3,√6,3,2√3,…那么第10个数据应是_______.13.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.14.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=32S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)15.计算:)+16.点A、B、C、D的坐标如图所示,求直线AB与直线CD的交点坐标.17.如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=12BC,求证:四边形OCFE是平行四边形.18.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感.他惊喜地发现:当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明.下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:222+=a b c . 证明:连结DB ,过点D 作BC 边上的高DF , 则DF=EC=b a -,∵21122ACD ABC ADCB S S S b ab ∆∆=+=+四边形, 又∵211()22ADB DCB ADCB S S S c a b a ∆∆=+=+-四边形,∴221111()2222b abc a b a +=+-, ∴222+=a b c请参照上述证法,利用图2完成下面的证明:将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°. 求证:222+=a b c . 证明:连结 , ∵ACBED S =多边形 , 又∵ACBED S =多边形 , ∴ . ∴222+=a b c .19.为了弘扬“中国梦”,某校初三(1)班和(2)班各5名学生参加以“诚信友善”为主题的演讲比赛活动,根据他们的得分情况绘制如下的统计图:(1)求初三(1)班5名同学得分的平均数和初三(2)班5名同学得分的众数;(2)你认为哪个班5名同学参赛的整体成绩要好些?为什么?(3)如果在每班参加复赛的选手中分别选出2人参加决赛,你认为哪个班的实力更强一些,说明理由.20.在由m×n(m×n>1)个小正方形组成的矩形网格中,研究它的一条对角线所穿过的小正方形个数f,(1)当m、n互质(m、n除1外无其他公因数)时,观察下列图形并完成下表:猜想:当m、n互质时,在m×n的矩形网格中,一条对角线所穿过的小正方形的个数f 与m、n的关系式是(不需要证明);(2)当m、n不互质时,请画图验证你猜想的关系式是否依然成立.21.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成矩形的周长与面积相等,则这个点叫做和谐点.例如,图中过点P 分别作x 轴、y 轴的垂线,与坐标轴围成矩形OAPB 的周长与面积相等,则点P 是和谐点.(1)判断点M (1,2), N (4,4)是否为和谐点,并说明理由;(2)若和谐点P (a ,3)在直线y =-x +b (b 为常数)上,求a ,b 的值; (3)若直线y =2x +12上存在和谐点,写出此点的坐标:( ).22.如图,矩形ABCD 中,AD=2AB ,E 是AD 边上一点,DE=1nAD (n 为大于2的整数),连接BE ,作BE 的垂直平分线分别交AD ,BC 于点F ,G ,FG 与BE 的交点为O ,连接BF 和EG .(1)试判断四边形BFEG 的形状,并说明理由; (2)当AB=a(a 为常数),n=3时,求FG 的长;(3)记四边形BFEG 的面积为S 1,矩形ABCD 的面积为S 2,当12S 17S 30时,求n 的值.(直接写出结果,不必写出解答过程)参考答案1.C【解析】【分析】根据二次根式的乘法法则对A、C进行判断;根据二次根式的加减法对B进行判断;根据二次根式的性质对D进行判断.【详解】解:A、原式,所以A选项错误;B、原式,所以B选项错误;C、原式,所以C选项正确;D、原式=3,所以D选项错误.故选C.【点睛】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.D【解析】由已知得:a≥0且a-2≠0,所以a≥0且a≠2;故选 D.3.D【解析】【分析】9人成绩的中位数是第5名,参赛选手要想知道自己是否进入前五名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有9个人,且他们的成绩各不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自己的成绩和中位数.故选D【点睛】本题考查了统计量的选择,属于基础题,难度较低,熟练掌握中位数的特性为解答本题的关键. 4.C 【解析】 【分析】根据菱形的性质以及AM=CN ,利用ASA 可得△AMO ≌△CNO ,可得AO=CO ,然后可得BO ⊥AC ,继而可求得∠OBC 的度数. 【详解】解:∵四边形ABCD 为菱形, ∴AB ∥CD ,AB=BC ,∴∠MAO=∠NCO ,∠AMO=∠CNO , 在△AMO 和△CNO 中,MAO NCO AM CNAMO CNO ∠∠⎧⎪⎨⎪∠∠⎩=== ∴△AMO ≌△CNO (ASA ), ∴AO=CO , ∵AB=BC , ∴BO ⊥AC , ∴∠BOC=90°, ∵∠DAC=28°, ∴∠BCA=∠DAC=28°, ∴∠OBC=90°-28°=62°. 故选:C . 【点睛】本题考查了菱形的性质和全等三角形的判定和性质,注意掌握菱形对边平行以及对角线相互垂直的性质. 5.B 【解析】 【分析】根据勾股定理先求出BO的长,再根据平行四边形的性质即可求解.【详解】AC=,∵6∴AO=3,∵AB⊥AC,∴∴BD=2BO=10,故选B.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知勾股定理的应用.6.C【解析】【分析】根据关于x轴的对称点的坐标特点可得B(2,−m),然后再把B点坐标代入y=−x+1可得m的值.【详解】解:∵点A(2,m),∴点A关于x轴的对称点B(2,−m),∵B在直线y=−x+1上,∴−m=−2+1=−1,∴m=1,故选C.【点睛】此题主要考查了关于x轴对称的点的坐标特点,以及一次函数图象上点的坐标特点,关键是掌握凡是函数图象经过的点必能满足函数解析式.7.B【解析】试题分析:根据表格可得:这15位销售人员该月销售量的众数、中位数都是210,而平均数是,所以B正确,故选B.考点:1.众数;2.中位数;3.加权平均数. 8.A 【解析】 【分析】根据图形和三角形的面积公式求出△ABC 的面积,根据勾股定理求出AC ,根据三角形的面积公式计算即可. 【详解】 如图,△ABC 的面积=12×BC×AE=2,由勾股定理得,则12BD=2,解得, 故选A . 【点睛】本题考查的是勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键. 9.B 【解析】 由图象可得2535k k <⎧⎨>⎩ ,解得5532k << ,故符合的只有2;故选B.10.(-1, -2); 【解析】 【分析】根据点的坐标求出四边形ABCD 的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【详解】解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2),∴AB=1-(-1)=2,BC=1-(-2)=3,CD=1-(-1)=2,DA=1-(-2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(-1,-2).故答案为:(-1,-2).【点睛】本题利用点的坐标考查了数字变化规律,根据点的坐标求出四边形ABCD一周的长度,从而确定2015个单位长度的细线的另一端落在第几圈第几个单位长度的位置是解题的关键.11.三边分别对应相等的两个三角形全等真【解析】定理“全等三角形的对应边相等”的逆命题是三边分别对应相等的两个三角形全等,它是真命题.故答案是:三边分别对应相等的两个三角形全等;真.12.3√3【解析】观察可知规律:被开数依次是0,3,6,9,12,…,按规律可知,第10个数据应该是√3×9=3√3,填3√3.13.m>1【解析】试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,联立两直线解析式得:3? {24y x my x=-++=+,解得:13{2103mxmy-=+=,即交点坐标为(13m-,2103m+),∵交点在第一象限,∴13{2103mm-+>>,解得:m>1.考点:一次函数图象与几何变换.14.①②④.【解析】【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而ABAG=63=2,∴ABAG≠DEDF,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=12×6×3=9,S△GHF=12×3×4=6,∴S△ABG=32S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.15【解析】试题分析:先进行二次根式的化简,然后再去括号进行同类二次要式的合并即可.试题解析:原式=()+-2-4+2+416.解:由已知得,直线AB方程为26y x=+,直线CD方程为112y x=-+解方程组26{112y xy x=+=-+,得2{2xy=-=,所以直线AB,CD的交点坐标为(-2,2).【解析】解:由已知得,直线AB的解析式为y=2x+6,直线CD的解析式为112y x=-+.解方程组26,{112y xy x=+=-+得2,{2,xy=-=所以直线AB,CD的交点坐标为(-2,2).17.证明见解析.【解析】【分析】利用三角形中位线定理判定OE∥BC,且OE=12BC.结合已知条件CF=12BC,则OE//CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【详解】∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=12BC.又∵CF=12BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE 是平行四边形.【点睛】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.熟记相关定理并能应用是解题的关键.18.证明见解析.【解析】试题分析:连接BD ,过点B 作DE 边上的高BF ,则BF=b ﹣a ,表示出S 五边形ACBED ,进而得出答案.试题解析:证明:连接BD ,过点B 作DE 边上的高BF ,则BF=b ﹣a ,∵S 五边形ACBED =2111222ACB ABE ADE S S S ab b ab ∆∆∆++=++, 又∵S 五边形ACBED =()2111222ACB ABD BDE S S S ab c a b a ∆∆∆++=++-, ∴()22111111222222ab b ab ab c a b a ++=++-, ∴a 2+b 2=c 2.考点:1.勾股定理的证明;2.数形结合思想和转换思想的应用.19.(1)初三(1)班5名同学的平均分数是85分.初三(2)班5名同学的分数的众数为100分;(2)初三(1)班的整体成绩要好一些,理由见解析;(3)初三(2)班的实力更强一些,理由见解析.【解析】试题分析:(1)根据平均数和众数的定义分别求解即可;(2)分别求出两个班的平均数方差,再根据方差的意义求解即可;(3)先求出(1)班和(2)班的前两名选手的平均分,通过比较即可得.试题解析:(1)初三(1)班5名同学的分数分别为85,75,80,85,100分,所以平均分数是85758085100855++++=分. 初三(2)班5名同学的分数分别为70, 100, 100, 75, 80,众数为100分.(2)初三(1)班5名同学的总分为425分,初三(2)班5名同学的总分为425,平均分均为85分,计算得(1)班的方差为70,(2)班的方差为160,70<160,两个班的平均成绩一样,所以初三(1)班的整体成绩要好一些;.(3)∵初三(1)班、初三(2)班前两名选手的平均分分别为92.5分,100分, ∴在每班参加复赛的选手中分别选出2人参加决赛,初三(2)班的实力更强一些. 20.(1)f=m +n -1;(2)上述结论不成立,图形见解析.【解析】试题分析:(1)通过观察即可得出当m 、n 互质时,在m×n 的矩形网格中,一条对角线所穿过的小正方形的个数f 与m 、n 的关系式,(2)当m 、n 不互质时,画出图即可验证猜想的关系式不成立.试题解析:(1)f=m +n -1;(2)当m 、n 不互质时,上述结论不成立,如图2×4:21.(1)M 不是和谐点,N 是和谐点;(2)a=6,b=9或a=-6,b=-3;(3)92⎛⎫ ⎪⎪⎝⎭或(-3,6)或(-4,4).【解析】试题分析:(1)利用和谐点的定义直接判断得出即可; (2)利用和谐点的定义,得出3×|a|=2×(|a|+3),然后通过分类讨论即可得;(3)分三种情况:点在第一象限,点在第二象限,点在第三象限,按定义进行计算即可得. 试题解析:(1)M 不是和谐点,N 是和谐点.根据题意,对于M 而言,面积为1×2=2,周长为2×(1+2)=6,所以M 不是和谐点,对于N 而言,面积为4×4=16,周长为2×(4+4)=16,所以N 是和谐点.(2)因为P (a ,3)是和谐点,所以根据题意得3×|a|=2×(|a|+3).①当a >0时,3a=2(a +3),3a=2a +6,解得a=6,将(6,3)代入y=-x +b 得3=-6+b ,解得b=9.②当a <0时,-3a=2(-a +3),-3a=-2a +6,解得a=-6,将(-6,3)代入y=-x +b 得3=6+b ,解得b=-3.所以a=6,b=9或a=-6,b=-3.(3)92⎛⎫ ⎪ ⎪⎝⎭或(-3,6)或(-4,4). 【点睛】此题主要考查了新定义以及一次函数的综合应用以及一元二次方程的解法,根据定义得出正确信息是解题关键.22.(1)菱形,理由见解析;(2)54a ;(3)6. 【解析】【分析】(1)根据矩形和线段垂直平分线的性质,由AAS 证明ΔBOF ≌ΔBOG ,得到BG =GE =EF =FB ,从而得出四边形BFEG 是菱形的结论.(2)根据矩形和菱形的性质,反复应用勾股定理即可求得FG 的长.(3)同(2)的思路,应用特殊元素法,列出关于n 的方程求解即可.【详解】解:(1)(1)菱形,理由如下:∵FG 为BE 的垂直平分线,∴FE =FB ,GB =GE ,∠FEB =∠FBO.又∵FE ∥BG ,∴∠FEB =∠GBO.∴∠FBO =∠GBO ,BO =BO ,∠BOF =∠BOG.∴ΔBOF ≌ΔBOG (AAS ).∴BF =BG.∴BG =GE =EF =FB.∴BFEG 为菱形.(2)∵AB =a ,AD=2AB ,13DE AD =, ∴AD =2a ,24DE a,AE a 33== .∴根据勾股定理,得 BE5a 3=. ∴OE =56a . 设菱形BFEG 的边长为x ,∵AB 2+AF 2=BF 2, ∴2224a (a x)x 3+-=,解得:x =25a 24. ∴OF155248a a ==. ∴FG =54a . (3)设AB=x ,则2x DE n =S 1=BG•AB ,S 2=BC•AB 当121730s s =时,1730BG AB AB AD ⋅=⋅ 则1715BG x = 在Rt △ABF 中AB 2+AF 2=BF 2,计算可得815AF x = 51,33AE AF FE AF BG x DE AD AE x ∴=+=+==-= 123x x n∴= ∴n=6. 点睛:本题考查的是菱形的判定和性质、矩形的性质、线段垂直平分线的性质,掌握菱形的底乘高和对角线求面积的计算公式,熟练运用勾股定理是解本题的关键.。
2016-学年八年级下期末数学试卷
2016-2017学年八年级下期末数学试卷(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2016-2017学年第一学期期末质量调研八年级数学试卷(满分120分,考试时间120分钟) 一、选择题(本题共12道小题,每小题3分,共36分。
)1.二次根式有意义的条件是( )A .x >-3B .x <-3C .x≥-3D .x≤-32.下列计算正确的是( ) A .2=B .=C .4﹣3=1D .3+2=53.下列命题中正确的是( )A . 有一组邻边相等的四边形是菱形B . 有一个角是直角的平行四边形是矩形C . 对角线垂直的平行四边形是正方形D . 一组对边平行的四边形是平行四边形 4.一次函数y=﹣2x+1的图象不经过下列哪个象限( ) A .第一象限 B .第二象限C .第三象限D .第四象限5.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为( ) A .89 B .90 C .92 D .936.菱形的两条对角线长分别为9cm 与4cm ,则此菱形的面积为( )cm 2. A .12 B .18 C .20 D .367.关于一次函数y=﹣2x+3,下列结论正确的是( ) A . 图象过点(1,﹣1) B . 图象经过一、二、三象限 C . y 随x 的增大而增大D . 当x >时,y <08.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长为( ) A .4 B .16 C .D .4或9.如图,点 E 在正方形 ABCD 的对角线 AC 上,且 EC=2 AE ,Rt△ FEG 的两直角边 EF 、 EG 分别交 BC 、 DC 于点 M 、 N .若正方形 ABCD 的边长为3,则重叠部分四边形 EMCN 的面积为( )3y x =+A. 84 cm 2B. 90 cm 2C. 126 cm 2D. 168 cm 210如图,矩形 ABCD 的对角线 AC 与 BD 相交于点 O,CE ∥BD, DE ∥AC , AD = , DE =2,则四边形 OCED 的面积为()11、如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于 A .524B .512 C .5 D .412、.如图,直线233+-=x y 与x 轴,y 轴分别交于A 、B 两点,把△AOB 沿着直线AB 翻折后得到△AO´B,则点O´的坐标是( ) A .(3,3) B .(3,3) C .(2,32) D .(32,4)二、填空题(共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分)ABOxy A B O O ´x y12题图第9题B CDH11.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是__________.12.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是________.13.已知一次函数y=ax+b的图象如图,根据图中信息请写出不等式ax+b≥2的解集为.11. 13. 15 1614.若函数是一次函数,则函数解析式为.15.如图,在矩形ABCD中,AB=3,对角线AC,BD相交于点O,AE垂直平分OB于点E,则AD的长为.16、如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.17. 如图,直线42+=xy与x、y轴分别交于点A、B两点,以OB为边在y轴右侧作等边△OBC,将点C向左平移,使其对应点C´恰好落在直线AB上,则点C´的坐标为 .18、.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为 .19、如图,在矩形ABCD中,AD=4,点P是直线AD上一动点,若满足△PBC是等腰三角形的点P有且只有3个,则AB的长为.()3242+-=-m xmy20、如图,在菱形ABCD 中,∠A=60°,E 、F 分别是AB 、AD 的中点,DE 、BF 相交于点G ,连接BD 、C 以下G .给出结论:①∠BGD=120°;②△BDF≌△CGB;③BG+DG=CG;④S△ADE=43AB2.其中正确的有 .三、解答题(共计62分)21.计算:(本题共3道小题,每小题3分,共9分。
2017安徽合肥八年级下数学期末试题
2016-2017学年度第二学期八年级期末考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷...”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的。
1.关于x 的一元二次方程280x x q ++=有两个不相等的实数根,则q 的取值范围是A .16q <B .16q >C .4q ≤D .4q ≥2.若代数式12--x x 有意义,则实数x 的取值范围是A.1≥x B .2≥x C .1>x D .2>x 3.如图,在四边形ABCD 中,AB =1,BC =1,CD =2,DA =6,且∠ABC =90°,则四边形ABCD 的面积是A .2B .221+C .21+D .221+4.某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表,则该周PM 2.5指数的众数和中位数分别是PM2.5指数150155160165天数3211A .150,150B .150,155C .155,150D .150,152.55.某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次,设参观人次的平均年增长率为x ,则A .10.8(1+x )=16.8B .16.8(1-x )2=10.8C .10.8(1+x )2=16.8D .()()[]8.16118.10=+++W x x 6.已知:如图,在菱形ABCD 中,F 为边AB 的中点,DF 与对角线AC 交于点G ,过G 作GE ⊥AD 于点E ,若AB =2,且∠1=∠2,则下列结论正确个数的有①DF ⊥AB ;②CG =2GA ;③CG =DF +GE ;④S 四边形BFGC =13-A .1B .2C .3D .47.如图,正方形ABCD 的对角线上的两个动点M 、N ,满足AB =MN ,点P 是BC 的中点,连接AN 、PM .若AB =6,则当AN +PM 的最小值时,线段AN 的长度为A .4B .52C .6D .538.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三2角形的斜边长是A .3B .3C .6D .99.如图,正方形ABCD的对角线上一动点P ,作PM ⊥AD 于点M ,PN ⊥CD 于点N ,连接BP 、BN .若AB =3,BP =,则BN 的长为A .15B .13C .4D .510.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC +PQ 的最小值是A .2.4B .4C .4.8D .5第6题第7题第9题第10题二、填空题(本大题共4小题,每小题5分,满分20分)11.计算:=.12.一张三角形纸片ABC 中,∠C =90°,AC =8cm ,BC =6cm .现将纸片折叠:使点A 与点B 重合,那么折痕长等于cm .13.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为2570m ,则道路宽x 为m .14.如图,正方形ABCD 中,AD =4,点E 是对角线AC 上一点,连接DE ,过点E 作EF ED ⊥,交AB 于点F ,连接DF ,交AC 于点G ,将△EFG沿EF 翻折,得到△EFM ,连接DM ,交EF 于点N ,若点F 是AB 的中点,则△EMN 的周长是.三、(本大题共2小题,每小题8分,满分16分)15.先化简,再求值:211a a a a a ⎛⎫+÷ ⎪--⎝⎭,其中21a =+.第14题16.若2440x y y y -+-+=,求yx 11+的值。
2016-2017学年八年级下册数学期末考试试卷(解析版)
2016-2017学年八年级下册数学期末考试试卷〔解析版〕一、选择题1.以下式子没有意义的是〔〕A. B. C. D.2.以下计算中,正确的选项是〔〕A. ÷ =B. 〔4 〕2=8C. =2D. 2 ×2 =23.刻画一组数据波动大小的统计量是〔〕A. 平均数B. 方差C. 众数D. 中位数4.在暑假到来之前,某机构向八年级学生推荐了A,B,C三条游学线路,现对全级学生喜欢哪一条游学线路作调查,以决定最终的游学线路,下面的统计量中最值得关注的是〔〕A. 方差B. 平均数C. 中位数D. 众数5.关于正比例函数y=﹣2x,以下结论中正确的选项是〔〕A. 函数图象经过点〔﹣2,1〕B. y随x的增大而减小C. 函数图象经过第一、三象限D. 不管x取何值,总有y<06.以以下各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是〔〕A. 2,3,4B. ,,C. 1,,2D. 7,8,97.假设一个直角三角形的一条直角边长是5cm,另一条直角边比斜边短1cm,则斜边长为〔〕cm.A. 10B. 11C. 12D. 138.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=5,AC=6,则菱形ABCD的面积是〔〕A. 24B. 26C. 30D. 489.在以下命题中,是假命题的是〔〕A. 有一个角是直角的平行四边形是矩形B. 一组邻边相等的矩形是正方形C. 一组对边平行且相等的四边形是平行四边形D. 有两组邻边相等的四边形是菱形10.已知平面上四点A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,直线y=mx﹣3m+6将四边形ABCD 分成面积相等的两部分,则m的值为〔〕A. B. ﹣1 C. 2 D.二、填空题11.已知a= +2,b= ﹣2,则ab=________.12.一次函数y=kx+b〔k≠0〕中,x与y的部分对应值如下表:x ﹣2 ﹣1 0 1 2y ﹣6 ﹣4 ﹣2 0 2那么,一元一次方程kx+b=0的解是x=________.13.如图是一次函数y=mx+n的图象,则关于x的不等式mx+n>2的解集是________.14.一组数据:2017、2017、2017、2017、2017,它的方差是________.15.考古学家们发现了几块大约完成于公元前2000年左右的古巴比伦的泥版书,据专家们考证,其中一块上面刻有如下问题:“一根长度为30个单位的棍子直立在墙上,当其上端垂直滑下6个单位时,请问其下端离开墙角有多远?”,这个问题的答案是:其下端离开墙角________个单位.16.如下图,在Rt△ABC中,∠A=90°,DE∥BC,F,G,H,I分别是DE,BE,BC,CD的中点,连接FG,GH,HI,IF,FH,GI.对于以下结论:①∠GFI=90°;②GH=GI;③GI= 〔BC﹣DE〕;④四边形FGHI 是正方形.其中正确的选项是________〔请写出所有正确结论的序号〕.三、解答题17.计算:〔+ ﹣〕× .18.如图,在△ABC中,AD⊥BC,AB=5,BD=4,CD= .〔1〕求AD的长.〔2〕求△ABC的周长.19.如图在平行四边形ABCD中,AC交BD于点O,AE⊥BD,CF⊥BD,垂足分别为E、F,求证:四边形AECF 为平行四边形.20.下表是某校八年级〔1〕班43名学生右眼视力的检查结果.视力人数 1 2 5 4 3 5 1 1 5 10 6〔1〕该班学生右眼视力的平均数是________〔结果保留1位小数〕.〔2〕该班学生右眼视力的中位数是________.〔3〕该班小鸣同学右眼视力是,能不能说小鸣同学的右眼视力处于全班同学的中上水平?试说明理由.21.如图,正方形ABCD的对角线相交于点O,BC=6,延长BC至点E,使得CE=8,点F是DE的中点,连接CF、OF.〔1〕求OF的长.〔2〕求CF的长.22.如图,在平面直角坐标系中,直线y=kx+b经过点A〔﹣30,0〕和点B〔0,15〕,直线y=x+5与直线y=kx+b 相交于点P,与y轴交于点C.〔1〕求直线y=kx+b的解析式.〔2〕求△PBC的面积.年下半年开始,不同品牌的共享单车出现在城市的大街小巷.现已知A品牌共享单车计费方式为:初始骑行单价为1元/半小时,不足半小时按半小时计算.内设邀请机制,每邀请一位好友注册认证并充值押金成功,双方骑行单价均降价元/半小时,骑行单价最低可降至元/半小时〔比方,某用户邀请了3位好友,则骑行单价为元/半小时〕.B品牌共享单车计费方式为:元/半小时,不足半小时按半小时计算.〔1〕某用户准备选择A品牌共享单车使用,设该用户邀请好友x名〔x为整数,x≥0〕,该用户的骑行单价为y元/半小时.请写出y关于x的函数解析式.〔2〕假设有A,B两种品牌的共享单车各一辆供某用户一人选择使用,请你根据该用户已邀请好友的人数,给出经济实惠的选择建议.24.下面我们做一次折叠活动:第一步,在一张宽为2的矩形纸片的一端,利用图〔1〕的方法折出一个正方形,然后把纸片展平,折痕为MC;第二步,如图〔2〕,把这个正方形折成两个相等的矩形,再把纸片展平,折痕为FA;第三步,折出内侧矩形FACB的对角线AB,并将AB折到图〔3〕中所示的AD处,折痕为AQ.根据以上的操作过程,完成以下问题:〔1〕求CD的长.〔2〕请判断四边形ABQD的形状,并说明你的理由.25.如图,正方形ABCD中,AB=4,P是CD边上的动点〔P点不与C、D重合〕,过点P作直线与BC的延长线交于点E,与AD交于点F,且CP=CE,连接DE、BP、BF,设CP═x,△PBF的面积为S1,△PDE 的面积为S2.〔1〕求证:BP⊥DE.〔2〕求S1﹣S2关于x的函数解析式,并写出x的取值范围.〔3〕分别求当∠PBF=30°和∠PBF=45°时,S1﹣S2的值.答案解析部分一、<b >选择题</b>1.【答案】B【考点】二次根式有意义的条件【解析】【解答】A、有意义,A不合题意;B、没有意义,B符合题意;C、有意义,C不合题意;D、有意义,D不合题意;故答案为:B.【分析】依据二次根式被开放数为非负数求解即可.2.【答案】C【考点】二次根式的性质与化简,二次根式的乘除法【解析】【解答】解:A、原式= = =3,A不符合题意;B、原式=32,B不符合题意;C、原式=|﹣2|=2,C符合题意;D、原式=4 ,D不符合题意;故答案为:C.【分析】依据二次根式的除法法则可对A作出判断;依据二次根式的性质可对B、C作出判断,依据二次根式的乘法法则可对D作出判断.3.【答案】B【考点】统计量的选择【解析】【解答】由于方差反映数据的波动情况,衡量一组数据波动大小的统计量是方差.故答案为:B.【分析】方差是反应一组数据波动大小的量.4.【答案】D【考点】统计量的选择【解析】【解答】由于众数是数据中出现次数最多的数,故全级学生喜欢的游学线路最值得关注的应该是统计调查数据的众数.故答案为:D.【分析】决定最终的线路应改由多数人员的意见决定,故此可得到问题的答案.5.【答案】B【考点】正比例函数的图象和性质【解析】【解答】解:A、当x=﹣2时,y=﹣2×〔﹣2〕=4,即图象经过点〔﹣2,4〕,不经过点〔﹣2,1〕,故本选项错误;B、由于k=﹣2<0,所以y随x的增大而减小,故本选项正确;C、由于k=﹣2<0,所以图象经过二、四象限,故本选项错误;D、∵x>0时,y<0,x<0时,y>0,∴不管x为何值,总有y<0错误,故本选项错误.故答案为:B.【分析】依据正比例函数的图像和性质可对B、C、D作出判断,将x=-2代入函数解析式可求得y的值,从而可对A作出判断.6.【答案】C【考点】勾股定理的逆定理【解析】【解答】A、22+32≠42,故不是直角三角形,A不符合题意;B、〔〕2+〔〕2≠〔〕2,故不是直角三角形,B不符合题意;C、12+〔〕2=22,故是直角三角形,C符合题意;D、72+82≠92,故不是直角三角形,D不符合题意;故答案为:C.【分析】依据勾股定理的逆定理进行判断即可.7.【答案】D【考点】勾股定理【解析】【解答】设斜边长为xcm,则另一条直角边为〔x﹣1〕cm,由勾股定理得,x2=52+〔x﹣1〕2,解得,x=13,则斜边长为13cm,故答案为:D.【分析】设斜边长为xcm,则另一条直角边为〔x-1〕cm,然后依据勾股定理列方程求解即可.8.【答案】A【考点】菱形的性质【解析】【解答】∵四边形ABCD是菱形,∴OA=OC=3,OB=OD,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:OB= ,= ,=4,∴BD=2OB=8,∴S菱形ABCD= ×AC×BD= ×6×8=24.故答案为:A.【分析】根据菱形的对角线互相垂直且互相平分可得到AC⊥BD,且AO=OC=3,然后依据勾股定理可求得BO的长,从而可得到BD的长,最后依据菱形的面积等于对角线乘积的一半求解即可.9.【答案】D【考点】命题与定理【解析】【解答】A、有一个角是直角的平行四边形是矩形,正确,A不符合题意;B、一组邻边相等的矩形是正方形,正确,B不符合题意;;C、一组对边平行且相等的四边形是平行四边形,正确,C不符合题意;D、有两组邻边相等且平行的四边形是菱形,错误,D不符合题意.故答案为:D.【分析】首先依据矩形的定义、正方形的判定定理、平行四边形的判定定理、菱形的判定定理判定命题的对错,从而可做出判断.10.【答案】B【考点】待定系数法求一次函数解析式【解析】【解答】解:如图,∵A〔0,0〕,B〔10,0〕,C〔12,6〕,D〔2,6〕,∴AB=10﹣0=10,CD=12﹣2=10,又点C、D的纵坐标相同,∴AB∥CD且AB=CD,∴四边形ABCD是平行四边形,∵12÷2=6,6÷2=3,∴对角线交点P的坐标是〔6,3〕,∵直线y=mx﹣3m+6将四边形ABCD分成面积相等的两部分,∴直线y=mx﹣3m+6经过点P,∴6m﹣3m+6=3,解得m=﹣1.故答案为:B.【分析】首先依据各点的坐标可确定出四边形ABCD为平行四边形,然后可求得两对角线交点的坐标,然后由直线平分线四边形的面积可知直线经过点〔6,3〕,最后将点〔6,3〕代入直线解析式求解即可.二、<b >填空题</b>11.【答案】1【考点】分母有理化【解析】【解答】解:∵a= +2,b= ﹣2,∴ab=〔+2〕〔﹣2〕=5﹣4=1,故答案为:1【分析】依据平方差公式和二次根式的性质进行计算即可.12.【答案】1【考点】一次函数与一元一次方程【解析】【解答】解:根据上表中的数据值,当y=0时,x=1,即一元一次方程kx+b=0的解是x=1.故答案是:1.【分析】依据表格找出当y=0时,对应的x的取值即可.13.【答案】x>0【考点】一次函数与一元一次不等式【解析】【解答】解:由题意,可知一次函数y=mx+n的图象经过点〔0,2〕,且y随x的增大而增大,所以关于x的不等式mx+n>2的解集是x>0.故答案为:x>0.【分析】不等式的解集为当y>2时,函数自变量的取值范围.14.【答案】0【考点】方差【解析】【解答】解:该组数据一样,没有波动,方差为0,故答案为:0.【分析】方差的意义或利用方差公式进行解答即可.15.【答案】18【考点】勾股定理的应用【解析】【解答】解:∵PC=AB=30,PA=6,∴AC=24,∴BC= = =18,∴下端离开墙角18个单位.故答案为:18.【分析】根据题意可得到PC=AB=30,AC=24,然后在Rt△ABC中利用勾股定理求出CB的长即可.16.【答案】①③【考点】中点四边形【解析】【解答】解:延长IF交AB于K,∵DF=EF,BG=GE,∴FG= BD,GF∥AB,同理IF∥AC,HI= BD,HI∥BD,∴∠BKI=∠A=90°,∴∠GFI=∠BKI=90°,∴GF⊥FI,故①正确,∴FG=HI,FG∥HI,∴四边形FGHI是平行四边形,∵∠GFI=90°,∴四边形FGHI是矩形,故②④错误,延长EI交BC于N,则△DEI≌△CNI,∴DE=CN,EJ=JN,∵EG=GB,EI=IN,∴GI= BHN= 〔BC﹣DE〕,故③正确,故答案为①③.【分析】对于①,延长IF交AB于K,然后根据两直线平行同位角相等进行解答即可;对于②和④.只要证明四边形FGHI是矩形即可判断;对于③,先延长EI交BC于N,然后再证明△DEI≌△CNI,依据全等三角形的性质可得到DE=CN,EJ=JN,然后再结合中点的定义可推出GI=HN=〔BC-DE〕.三、<b >解答题</b>17.【答案】解:原式=〔6 + ﹣3 〕×= ×=7.【考点】二次根式的混合运算【解析】【分析】先将各二次根式化简为最简二次根式,然后再合并同类二次根式,最后,在依据二次根式的乘法法则进行计算即可.18.【答案】〔1〕解:在Rt△ABD中,AD= =3〔2〕解:在Rt△ACD中,AC= =2 ,则△ABC的周长=AB+AC+BC=5+4+ +2 =9+3【考点】勾股定理【解析】【分析】〔1〕在Rt△ABD中,依据勾股定理可求得AD的长;〔2〕在Rt△ACD中,依据勾股定理可求得AC的长,然后再依据三角形的周长等于三边长度之和求解即可.19.【答案】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∠AEB=∠CFD=90°,在△AEB和△CFD中,∵,∴△AEB≌△CFD〔AAS〕,∴AE=CF,∴四边形AECF是平行四边形.【考点】平行四边形的判定与性质【解析】【分析】首先依据四边形的性质可得AB=CD,AB∥CD,然后再证明AE∥CF,接下来,利用AAS 证得△AEB≌△CFD,依据全等三角形的性质可得到AE=CF,最后依据一组对边相等且平行的四边形是平行四边形进行证明即可.20.【答案】〔1〕〔2〕〔3〕解:不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.【考点】中位数、众数【解析】【解答】解:〔1〕该班学生右眼视力的平均数是×〔4.0+4.1×2+4.2×5+4.3×4+4.4×3+4.5×5+4.6+4.7+4.8×5+4.9×10+5.0×6〕,故答案为:;〔2〕由于共有43个数据,其中位数为第22个数据,即中位数为,〔3〕不能,∵小鸣同学右眼视力是,小于中位数,∴不能说小鸣同学的右眼视力处于全班同学的中上水平.故答案为:〔1〕;〔2〕;〔3〕不能.【分析】〔1〕根据加权平均数公式求解即可;〔2〕首先将这组数据按照从小到大的顺序排列,中位数为第22个数据;〔3〕根据小鸣同学右眼视力是,小于中位数,故此可得到问题的答案.21.【答案】〔1〕解:∵四边形ABCD是正方形,∴BC=CD=6,∠BCD=∠ECD=90°,OB=OD,∵CE=8,∴BE=14,∵OB=OD,DF=FE,∴OF= BE=7.〔2〕解:在Rt△DCE中,DE= = =10,∵DF=FE,∴CF= DE=5.【考点】正方形的性质【解析】【分析】〔1〕由正方形的性质可知O为BD的中点,故此OF是△DBE的中位线,然后依据三角形中位线的性质解答即可;〔2〕在Rt△DCE中,利用勾股定理求出DE,再利用直角三角形斜边上中线等于斜边的一半求解即可. 22.【答案】〔1〕解:将点A〔﹣30,0〕、B〔0,15〕代入y=kx+b,,解得:,∴直线y=kx+b的解析式为y= x+15.〔2〕解:联立两直线解析式成方程组,,解得:,∴点P的坐标为〔20,25〕.当x=0时,y=x+5=5,∴点C的坐标为〔0,5〕,∴BC=15﹣5=10,∴S△PBC= BC•x P= ×10×20=100.【考点】两条直线相交或平行问题【解析】【分析】〔1〕将点A和点B的坐标代入直线的解析式得到关于k、b的方程组,从而可求得k、b 的值,于是可得到直线AB的解析式;〔2〕联立两直线解析式成方程组,通过解方程组可得出点P的坐标,由一次函数图象上点的坐标特征可求出点C的坐标,进而可得出线段BC的长度,最后利用三角形的面积公式求解即可.23.【答案】〔1〕解:由题意可得,当0≤x≤9且x为正整数时,y=1﹣,当x≥10且x为正整数时,,即y关于x的函数解析式是y=〔2〕解:由题意可得,当0≤x≤9时,1﹣>,可得,x<5,则当x≤x<5且x为正整数时,选择B品牌的共享单车;当0≤x≤9时,1﹣,得x=5,则x=5时,选择A或B品牌的共享单车消费一样;当0≤x≤9时,1﹣<,得x>5,则x>5且x为正整数,选择A品牌的共享单车;当x≥10且x为正整数时,<,故答案为:项A品牌的共享单车.【考点】二元一次方程组的应用,一次函数的应用【解析】【分析】〔1〕可分为0≤x≤9且x为正整数或x≥10且x为正整数两种情况列出y与x的函数关系式;〔2〕分为0≤x≤9;0≤x≤9;0≤x≤9;当x≥10四种情况列出关于x的方程或不等式,然后再进行求解即可.24.【答案】〔1〕解:∵∠M=∠N=∠MBC=90°,∴四边形MNCB是矩形,∵MB=MN=2,∴矩形MNCB是正方形,∴NC=CB=2,由折叠得:AN=AC= NC=1,Rt△ACB中,由勾股定理得:AB= = ,∴AD=AB= ,∴CD=AD﹣AC= ﹣1;〔2〕解:四边形ABQD是菱形,理由是:由折叠得:AB=AD,∠BAQ=∠QAD,∵BQ∥AD,∴∠BQA=∠QAD,∴∠BAQ=∠BQA,∴AB=BQ,∴BQ=AD,BQ∥AD,∴四边形ABQD是平行四边形,∵AB=AD,∴四边形ABQD是菱形.【考点】正方形的判定与性质【解析】【分析】〔1〕首先证明四边形MNCB为正方形,然后再依据折叠的性质得到:CA=1,AB=AD,最后再依据CD=AD-AC求解即可;〔2〕根据平行线的性质和折叠的性质可得到∠BAQ=∠BQA,然后依据等角对等边的性质得到AB=BQ,接下来,依据一组对边平行且相等的四边形为平行四边形可证明四边形ABQD是平行四边形,再由AB=AD,可得四边形ABQD是菱形.25.【答案】〔1〕解:如图1中,延长BP交DE于M.∵四边形ABCD是正方形,∴CB=CD,∠BCP=∠DCE=90°,∵CP=CE,∴△BCP≌△DCE,∴∠BCP=∠CDE,∵∠CBP+∠CPB=90°,∠CPB=∠DPM,∴∠CDE+∠DPM=90°,∴∠DMP=90°,∴BP⊥DE.〔2〕解:由题意S1﹣S2= 〔4+x〕•x﹣•〔4﹣x〕•x=x2〔0<x<4〕.〔3〕解:①如图2中,当∠PBF=30°时,∵∠CPE=∠CEP=∠DPF=45°,∠FDP=90°,∴∠PFD=∠DPF=45°,∴DF=DP,∵AD=CD,∴AF=PC,∵AB=BC,∠A=∠BCP=90°,∴△BAF≌△BCP,∴∠ABF=∠CBP=30°,∴x=PC=BC•tan30°= ,∴S1﹣S2=x2= .②如图3中,当∠PBF=45°时,在CB上截取CN=CP,理解PN.由①可知△ABF≌△BCP,∴∠ABF=∠CBP,∵∠PBF=45°,∴∠CBP=22.5°,∵∠CNP=∠NBP+∠NPB=45°,∴∠NBP=∠NPB=22.5°,∴BN=PN= x,∴x+x=4,∴x=4 ﹣4,∴S1﹣S2=〔4 ﹣4〕2=48﹣32 .【考点】正方形的性质【解析】【分析】〔1〕首先延长BP交DE于M.然后依据SAS可证明△BCP≌△DCE,依据全等三角形的性质可得到∠BCP=∠CDE,由∠CBP+∠CPB=90°,∠CPB=∠DPM,即可推出∠CDE+∠DPM=90°;〔2〕根据题意可得到S1-S2=S△PBE-S△PDE,然后依据三角形的面积公式列出函数关系式即可;〔3〕分当∠PBF=30°和∠PBF=45°两种情形分别求出PC的长,最后再利用〔2〕中结论进行计算即可.。
2016-2017学年第二学期期末考试-八年级数学试题
2016-2017学年度第二学期期末测试八年级数学试题一、选择题(每小题3分,共36分)1A.m=0B. m=1C.m=2D. m=32、下列各组数中,以它们为边长的线段不能构成直角三角形的是()3、下列二次根式是最简二次根式的是()4、函数y=2x-5的图像经过()A.第一、三、四象限B. 第一、二、四象限C.第二、三、四象限D.第一、二、三象限5、如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为( )第5题图第6题图6、如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是( )A.16B.18C.19D.217、某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.288、已知P1(-3,y1),P2(2,y2)是一次函数1--=xy的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2D.不能确定9、2022年将在北京举-张家口举行冬季奥运会,很多学校开始了相关课程,如表记录了某校4名同根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应该选择()A.队员1B.队员2C.队员3D.队员410、如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.16第10题图第11题图第12题图11、如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为( )A.5cmB.10cmC.20cmD.40cm12、一次函数y1=kx+b与y2=x+a的图象如图所示,则下列结论:①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3二、填空题(每小题4分,共20分)13、已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,16、矩形纸片ABCD 的边长AB=8,AD=4,将矩形纸片沿EF 折叠, 使点A 与点C 重合,折叠后在某一面着色(如图),17、如图,直线y=kx+b (k ≠0)与x 轴交于点(-4,0),三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18、(6分)当x=1-21时,求x 2-x+1的值。
2016至2017学年度八年级数学下学期期末测试卷
2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。
2016-2017年八年级下数学期末检测试卷及答案
1FED CB A(-1,1)1y(2,2)2yxyO 405060708090某班学生1~8月课外阅读数量705858427583本数2016-2017学年八年级数学(下)期末检测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题4分,共40分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子23xx--有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222 C.3,4, 5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()A. n是样本的容量B.nx是样本个体 C. x是样本平均数 D. S是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42 (C)中位数是58 (D)每月阅读数量超过40的有4个月MFEA第6题图第5题图第7题图BCADO15题图10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,每小题4分,共40分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2016--2017学年八年级(下)期末数学试卷新人教版及解析
2016--2017学年八年级(下)期末数学试卷一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.(3分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(3分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y24.(3分)如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差6.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)二、填空题(每题3分,共24分)7.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.8.(3分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是.9.(3分)计算:﹣=.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.11.(3分)如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为.12.(3分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.13.(3分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P 是对角线AC上的一个动点,则PE+PB的最小值是.三、解答题(本大题共2小题,每题5分,共10分)15.(5分)计算:﹣+.16.(5分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.四、解答题(本大题共2小题,每题6分,共12分)17.(6分)已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标.18.(6分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?五、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.20.(8分)在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线L与正方形有两个交点时,直接写出k的取值范围.六、解答题(本大题共2小题,每小题10分,共20分)21.(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF 和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.22.(10分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?参考答案与试题解析1.解:由题意得,x﹣2≥0,解得x≥2.故选C.2.解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.解:把A(﹣,y1)、B(1,y2)分别代入y=x+4得y1=﹣+4=,y2=1+4=5,所以y1<y2.故选C.4.解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.5.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.6.解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.7.解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.8.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故答案为:x>2.9.解:=2﹣=.故答案为:.10.解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.11.解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故答案为:2.12.解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.13.解:由题意,得k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案为y=x+314.解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.解:﹣+=3﹣4+=0.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:(1)由题意可得2k﹣4=﹣3,解得k=,∴一次函数解析式为y=x﹣4;(2)把该函数图象向上平移6个单位可得y=x﹣4+6=x+2,令y=0可得x+2=0,解得x=﹣4,∴平移后图象与x轴的交点坐标为(﹣4,0).17.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50 个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).18.解:(1)证明:如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.19.解:(1)如图,过D点作DE⊥y轴,则∠AE D=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,∴∠2=∠3.又∵∠AOB=∠AED=90°,在△AED和△BOA中,,∴△AED≌△BOA,∴DE=AO=4,AE=OB=3,∴OE=7,∴D点坐标为(4,7),把D(4,7)代入y=kx+3,得k=1;(2)当直线y=kx+3过B点时,把(3,0)代入得:0=3k+3,解得:k=﹣1.所以当直线l与正方形有两个交点时,k的取值范围是k>﹣1.21.(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.22.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
2016-2017学年八年级下学期期末考试数学试题
25.( 本题满分 12 分 )如图,在△ ABC 中,⊙ O 经过 A、B 两点,圆心 O在 BC 边上,且⊙ O 与 BC
边交于点
E,在 BC 上截取
CF =AC,连接 AF 交⊙ O
于点 D ,若点
D
恰好是
⌒ BE
的中点.
( 1)求证: AC 是⊙ O 的切线;
( 2)若 BF =17, DF =13,求⊙ O 的半径 r ;
x2 18.( 本题满分 8 分 )解方程:(1) x 3 x(x 3) 0 . (2)
x2
x2 x2
16 x2
4
.
19.( 本题满分 8 分 )先化简,再求值:
a2
b2
(a
2ab
b2 ) ,其中
a
2
3, b 2
3.
a
a
20.( 本题满分 8 分 )小明用 12 元买软面笔记本,小丽用 21 元买硬面笔记本, 已知每 本硬面笔记本
2015 年约为 20 万人次, 2017 年约为
28.8 万人次,设观赏人数年均增长率为 x,则下列方程中正确的是(
▲)
A . 20(1 2x) 28.8
B. 28.(8 1 x)2 20
C. 20(1 x) 2 28.8
D. 20 2(0 1 x) 2(0 1 x) 2 28.8
6.有下列五个命题:① 半圆是弧,弧是半圆 ;② 周长相等的两个圆是等圆 ;③半径相等的两个半圆
O
P
A
B
( 第 14 题图 )
10.以 3、- 5 为根且二次项系数为 1 的一元二次方程是
▲ .
11.当 1< P<2 时,代数式 (1 p) 2 ( 2 p )2 的值为 ▲ .
2016—2017学年八年级第二学期期末检测数学试题.(1)doc
2016—2017学年八年级第二学期期末检测数学试题班级:姓名:等级:(满分:120分;考试时间:120分钟)一、选择题。
(本题共10小题,每小题3分,共30分)1.若式子2在实数范围内有意义,则x的取值范围是().A.x>1 B.x<1 C.x≥1D.x≤12.一组数据:0,1,2,3,3,5,5,10的中位数是().A.2.5 B.3 C.3.5 D.53.在平面中,下列命题为真命题的是()A.根据四边形的内角和得出,四个角相等的四边形即四个内角是直角B.只有对角线互相平分且垂直的四边形是菱形C.对角线互相平分且相等的四边形是矩形D.四边相等的四边形是菱形4.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是()A.365 B. .1225C.94D.5.某特警队为了选拔”神枪手”,举行了1 000米射击比赛,最后由甲、乙两名战士进入决赛,两人各射靶10次,经过统计计算,甲、乙两名战士的总成绩都是99.68环,甲的方差是0.28,乙的方差是0.21.则下列说法中,正确的是( )A .甲的成绩比乙的成绩稳定B .乙的成绩比甲的成绩稳定[中国教育&%出版C .甲、乙两人成绩的稳定性相同D .无法确定谁的成绩更稳定 6.如图,在菱形ABCD 中,∠BAD=80°,AB 的垂直平分线交对角线AC 于点F ,垂足为E ,连接DF ,则∠CDF 等于( ).A .50°B .60°C .70°D .80°7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158.甲、乙两人在一次百米赛跑中,路程s (米)与赛跑时间t (秒)的关系如图所示,则下列说法正确的是( ) A .甲、乙两人的速度相同 B .甲先到达终点 C .乙用的时间短D .乙比甲跑的路程多9.童童从家出发前往奥体中心观看某演出,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图能反映y 与x的函数(第7题)关系式的大致图象是( )10.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE =CF ②∠AEB =750③BE+DF =EF ④S 正方形ABCD =2+3,其中正确的序号是 。
2016-2017八年级下数学试题及答案
八年级数学试题 第 1 页 (共 8 页)2016-2017学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.下列二次根式中,是最简二次根式的是( ) A .15B .9C .8D .51 2.某校初三已经进行了五次月考测试,若想了解某学生的数学成绩是否稳定,老师需要知道 他5次数学成绩的( ) A.平均数B .方差C .中位数D .众数3.若一个三角形的三边长分别为x ,8,6,则使此三角形是直角三角形的x 的值是( ) A. 8B. 10C.72D.7210或4.下列判断正确的是( )A.对角线互相垂直且相等的四边形是正方形 B .对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D .对角线相等的四边形是矩形 5.下列运算正确的是( ) A.363332=⋅B.332255=-C.532=+D.3)3(2=-6.若一次函数1)2(-+=x k y 中y 随x 的增大而减小,则k 的取值范围是( ) A . 2->kB . 2-≤kC. 2-<kD. 2-≥k7.潼南区在一次空气污染指数抽查中,收集到10天的数据如下:60,80,69,55,80,85, 80, 90,76,69.该组数据的中位数和众数分别是( )A.76和80B.80和80C.78和80D.78和69 8.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E , ο90=∠CBD ,4=BC ,3==ED BE ,10=AC ,则四边形 ABCD 的面积为( ) A .24B .20C .12D .69.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2米,当他把绳子的下端拉题图)(8八年级数学试题 第 2 页 (共 8 页)开6米后,发现下端刚好接触地面,则旗杆的高度是( ) A.6米B .8米C .10米D .12米10.如图,在菱形ABCD 中,ο70=∠BCD ,BC 的垂直平分线交对角线 AC 于点F ,垂足为E ,连接DF ,则ADF ∠的大小为( )A .ο75B .ο70C .ο65D .ο6011.如图:下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积 为1的正方形有2个,第(2)个图形中面积为1的正方形有4个,第(3)个图形中面积为1 的正方形有7个,Λ,按此规律,则第(10)个图形中面积为1的正方形的个数为( ) A.54 B .55C .56D .57 ……12.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达 乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行 驶的时间为)(h t ,两车之间的距离为)(km s ,图中的折线表示s 与t 之间的函数关系.根据图 象提供的信息下列说法错误的是( )A. 甲、乙两地之间的距离为km 900B. 行驶h 4两车相遇C.快车共行驶了h 6D.行驶h 8两车相距km 560二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.若代数式x 27-有意义,则x 的取值范围是 .14.若直线a x y +-=和直线b x y +=的交点坐标为(m ,7),则a b += .15.某单位欲招聘职工一名,对A 、B 两名候选人进行了面试和笔试两项素质测试.其中A 的面试成绩为90,笔试成绩为85;B 的面试成绩为95,笔试成绩为78.根据实际需要,该单位将面试、笔试测试的得分按23:的比例计算两人的总成绩,则______将被录用(填“A ”或“B ”).16.木工师傅做了一张桌面,要求为长方形,现量得桌面的长为60cm ,宽为32cm ,对角线为 68cm ,这个桌面 (填“合格”或“不合格”). 17.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.题图)(170 )(h t 412900)(km s ABCD题图)(12(2)(1)(3)ABEDF)题图10(八年级数学试题 第 3 页 (共 8 页)若9=AB ,12=AD ,则四边形ABPE 的周长为 .18.已知整数a ,使得关于x 的分式方程xxx ax -=+--3333有整数解,且关于x 的一次函数 10)1(-+-=a x a y 的图象不经过第二象限,则满足条件的整数a 的值有 ________个.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:213721122+÷--)(20.如图,四边形ABCD 是平行四边形,对角线BD AC ,相交 于点O ,且21∠=∠.求证:四边形ABCD 是矩形.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再计算:,244412222+-÷++--+-a a a a a a a a )(其中13-=a .22.如图,直线:l 221+=x y 与y 轴交于点A ,与x 轴于点B .(1)求AOB ∆的面积;(2)若直线1l 经过点A ,且与x 轴相交于点C ,并将ABO ∆ 的面积分成相等的两部分,求直线1l 的解析式.23.某中学开展“唱红歌”比赛活动,八年级(1)班、(2)班根据初赛成绩,各选出5名 选手参加决赛,两个班各选出的5名选手的决赛成绩如图所示.(1)根据统计图中信息完成表格;(2)结合两班决赛成绩的平均数和中位数,分析哪个班级的决赛成绩较好; (3)计算两个班决赛成绩的方差并判断哪一个班选手成绩较为稳定.班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 八(2) 85 100A OBxyl题图)(220708090100分数选手编号)八(1)八(212345题图)(20八年级数学试题 第 4 页 (共 8 页)(参考资料:()[]222212)()(1x x x x x x ns n -++-+-=Λ) 24.为绿化校园,某学校计划购进A 、B 两种树苗,若购买A 树苗10棵,B 树苗20棵,需要 2300元,若购买A 树苗20棵,B 树苗10棵,需要2500元, (1)求A 、B 两种树苗单价各是多少?(2)学校计划购买A 、B 两种树苗共21棵,且购买B 种树苗的数量不超过A 种树苗的一半, 设购买B 种树苗x 棵,购买两种树苗所需费用为y 元,请给出一种费用最省的方案,并求出该方案所需费用.25.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整 数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才 能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到 了周长为24的“整数三角形”. 丙同学受到甲、乙两同学的启发找到了两个不同的等腰 “整数三角形”.请完成:(1)以点A 为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每 边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长; (3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26.如图,在菱形ABCD 中,AC AB =,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且AE CF =,连接EF BE ,.(1)如图1,当点E 是线段AC 的中点,且4=AB 时,求BE 的长; (2)如图2,当点E 不是线段AC 的中点时,求证:EF BE =; (3)如图3,当点E 是线段AC 延长线上的任意一点时,(2)中的结论是否成立?若成立, 请给予证明;若不成立,请说明理由.图1图2 图3八年级数学试题 第 5 页 (共 8 页)2016-2017学年度第二学期期末测试八年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.27≤x 14. 42-=x y 15. B 16 . 合格 17. 27 18. 6 三、解答题:(本大题共2个小题,每小题7分,共14分)19.解:2262262+--=原式……………………………6分 22-=………………………8分 20.证明:在▱ABCD 中,AO=CO ,BO=DO , …………………………2分∵∠1=∠2,∴BO=CO ,…………………………4分 ∴AO=BO=CO=DO , ∴AC=BD ,………………6分∴▱ABCD 为矩形 (对角线相等的平行四边形是矩形) …………8分四、解答题:(本大题共4个小题,每小题10分,共40分) 21.解:原式=24)2(1)2(22+-÷⎥⎦⎤⎢⎣⎡+--+-a a a a a a a =42)2()1()2()2)(2(22-+⨯⎥⎦⎤⎢⎣⎡+--++-a a a a a a a a a a 42)2(4222-+⨯++--=a a a a a a a八年级数学试题 第 6 页 (共 8 页))2(1+=a a …………………………………7分13-=a Θ,原式=21)213)(13(1=+-- …………………………………10分 22.解:(1)两点与坐标轴交于直线B A l ,Θ)0,4(),2,0(-∴B A …………………………………2分 44221=⨯⨯=∴∆AOB S …………………………………4分 (2)分,的面积分成相等的两部并将经过点ABO A l ∆,1Θ )的中点(经过0,21-∴BO l ………………………6分 设直线b kx y l +=:1,…………………………………7分 将)(0,2-与点A 代入直线方程,得 ∴⎩⎨⎧==+-202b b k 解得⎩⎨⎧==21b k …………………………………9分∴直线1l 的解析式为2+=x y …………………………………10分23.(1) ………………3分(2)八(1)班成绩好些.因为八(1)班的中位数高,所以八(1)班成绩好些.(回答合理即可给分 ………………6分(3)八(1)班成绩的方差八(2)班成绩的方差2221s s <Θ,所以八年级(1)班的成绩更稳定.………………10分24.解:(1)设A,B 两种树苗的单价分别为元元b a ,,由题意得:⎩⎨⎧=+=+2500102023002010b a b a ………………2分班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 85 85 八(2)8580100八年级数学试题 第 7 页 (共 8 页)解得⎩⎨⎧==7090b a ………………4分∴A,B 的单价分别为90元,70元.(2)18902070)21(90+-=+-=x x x y ………………6分由题意221xx -≤,70≤<∴x ………………8分 020<-Θ∴.的增大而减小随x y有最小值时,当y x 7=∴,1750=最小y 元,所以当购买A 种14棵,B 种7棵时,费用最少,为1750元.………………10分25.解:(1)如下图所示:……………2分 (2)如下图所示:…………………6分(3)不能.设一个等边三角形的边长为a ,则该三角形高为3a ,则其面积为23a ,若a 为整数,则23a 一定不为整数,所以不能.…………10分 26.解:(1)∵四边形ABCD 是菱形,AC AB =,∴△ABC 是等边三角形,∴4=AC ,又E 是线段AC 的中点,221,==⊥∴AC AE AC BE3222=-=∴AE AB BE ……………………………4分 (2)作EG ∥BC 交AB 于G , ∵△ABC 是等边三角形,∴△AGE 是等边三角形, ∴BG CE =,∵EG ∥BC ,ABC 60BGE 120∠=︒∴∠=︒,,图3图2八年级数学试题 第 8 页 (共 8 页)∵ACB 60ECF 120BGE ECF ∠=︒∴∠=︒∴∠=∠,,, ∴△BGE ≌△ECF EB EF ∴=,;………………………………8分 (3)成立.作EH ∥BC 交AB 的延长线于H ,∵△ABC 是等边三角形, ∴△AHE 是等边三角形, ∴BH CE =,HE AE = 又∵CF AE =, ∴CF HE = 在△BHE 和△ECF 中,CF HE ECF BHC CE BH ==∠=∠=,60,ο,∴△BHE ≌△ECF ,∴EB EF =.………………………………………………12分。
2016-2017学年八年级(下)期末数学试卷(新人教版)
八年级(下)期末数学试卷(三)一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.935.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.17.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.28.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4 10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4 11.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.812.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=.15.(3分)数据﹣2,﹣1,0,3,5的方差是.16.(3分)如果最简二次根式与是同类二次根式,则a=.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=,b=;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.2015-2016学年人教版八年级(下)期末数学试卷三参考答案与试题解析一、选择题(本大题12个小题,每小题3分,共36分)1.(3分)下列二次根式中,是最简二次根式的是()A.B.C.D.【分析】化简得到结果,即可作出判断.【解答】解:A、,本选项不合题意;B、,本选项不合题意;C、,本选项符合题意;D、,本选项不合题意;故选C.【点评】此题考查了最简二次根式,熟练掌握二次根式的化简公式是解本题的关键.2.(3分)Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为()A.8 B.4 C.6 D.无法计算【分析】利用勾股定理将AB2+AC2转化为BC2,再求值.【解答】解:∵Rt△ABC中,BC为斜边,∴AB2+AC2=BC2,∴AB2+AC2+BC2=2BC2=2×22=8.故选A.【点评】本题考查了勾股定理.正确判断直角三角形的直角边、斜边,利用勾股定理得出等式是解题的关键.3.(3分)已知直线y=kx+b,若k+b=﹣5,kb=6,那么该直线不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先根据k+b=﹣5、kb=6得到k、b的符号,再根据图象与系数的关系确定直线经过的象限,进而求解即可.【解答】解:∵k+b=﹣5,kb=6,∴k<0,b<0,∴直线y=kx+b经过二、三、四象限,即不经过第一象限.故选:A.【点评】本题考查了一次函数图象与系数的关系,解题的关键是根据k、b之间的关系确定其符号.4.(3分)某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89 B.90 C.92 D.93【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.5.(3分)在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=()A.110°B.30°C.50°D.70°【分析】要求∠E+∠F,只需求∠ADE,而∠ADE=∠A与∠B互补,所以可以求出∠A,进而求解问题.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠ADE=180°﹣∠B=70°∵∠E+∠F=∠ADE∴∠E+∠F=70°故选D.【点评】主要考查了平行四边形的基本性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.6.(3分)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5 B.4 C.3 D.1【分析】把点的坐标代入函数解析式计算即可得解.【解答】解:∵点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,∴3k﹣2=1,解得k=1.故选:D.【点评】本题考查了一次函数图象上点的坐标特征,准确计算是解题的关键.7.(3分)如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4 B.3 C.D.2【分析】根据平行四边形性质得出AB=DC,AD∥BC,推出∠DEC=∠BCE,求出∠DEC=∠DCE,推出DE=DC=AB,得出AD=2DE即可.【解答】解:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3,故选B.【点评】本题考查了平行四边形性质,平行线性质,角平分线定义,等腰三角形的性质和判定的应用,关键是求出DE=AE=DC.8.(3分)小明一家自驾去永川“乐和乐都”主题公园游玩,汽车匀速行驶一段路程,进入服务区加油.休息了一段时间后,他们为了尽快赶到目的地,便提高了行车速度,很快到达了公园.下面能反映小明一家离公园的距离y(千米)与时间x(小时)之间的函数关系的大致图象是()A.B.C.D.【分析】根据匀速行驶,到终点的距离在减少,休息时路程不变,休息后的速度变快,路程变化快,可得答案.【解答】解:A.路程应该在减少,故A不符合题意;B.路程先减少得快,后减少的慢,不符合题意,故B错误;C.休息前路程减少的慢,休息后提速在匀速行驶,路程减少得快,故C符合题意;D.休息时路程应不变,不符合题意,故D错误;故选:C.【点评】本题考查了函数图象,路程先减少得慢,休息后减少得快是解题关键.9.(3分)下列计算中,正确的是()A.B.=2 C.=6D.﹣=4【分析】根据二次根式的乘法法则对A进行判断;根据二次根式的除法法则对B 进行判断;根据二次根式的加减法对C、D进行判断.【解答】解:A、原式=3×2=6,所以A选项错误;B、原式==2,所以B选项正确;C、原式=2+3,所以C选项错误;D、原式=2﹣=,所以D选项错误.故选B.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.10.(3分)如图,直线l:y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,则a可能在()A.1<a<2 B.﹣2<a<0 C.﹣3≤a≤﹣2 D.﹣10<a<﹣4【分析】先求出直线y=﹣x﹣3与y轴的交点,则根据题意得到a<﹣3时,直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,而四个选项中,只有﹣10<a<﹣4满足条件,故选D.【解答】解:∵直线y=﹣x﹣3与y轴的交点为(0,﹣3),而直线y=﹣x﹣3与直线y=a(a为常数)的交点在第四象限,∴a<﹣3.故选D.【点评】本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k值相同.11.(3分)已知+4+m=30,则m的值为()A.3 B.5 C.6 D.8【分析】先进行二次根式的化简,再进行二次根式加减法运算法则进行求解即可.【解答】解:∵+4+m=30,∴++=30,∴5=30,∴=6,∴m=6.故选C.【点评】本题考查了二次根式的加减法,解答本题的关键在于熟练掌握二次根式的化简及二次根式加减法运算法则.12.(3分)如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9 B.9 C.27 D.27【分析】先求出第一个菱形和第二个菱形的边长,得出规律,根据规律即可得出结论.【解答】解:连接BD交AC于O,连接CD1交AC1于E,如图所示:∵四边形ABCD是菱形,∠DAB=60°,∴ACD⊥BD,∠BAO=∠DAB=30°,OA=AC,∴OA=AB•cos30°=1×=,∴AC=2OA=,同理AE=AC•cos30°=•=,AC1=3=()2,…,第n个菱形的边长为()n﹣1,∴第六个菱形的边长为()5=9;故选:B.【点评】本题考查了菱形的性质、含30°角的直角三角形以及锐角三角函数的运用;根据第一个和第二个菱形的边长得出规律是解决问题的关键.二、填空题(本大题8个小题,每小题3分,共24分)13.(3分)计算:的结果是.【分析】先进行二次根式的化简,然后合并同类二次根式即可.【解答】解:原式=﹣=.故答案为:.【点评】本题考查了二次根式的加减运算,属于基础题,关键是掌握二次根式的化简及同类二次根式的合并.14.(3分)若直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),则a+b=16.【分析】把点(m,8)分别代入y=﹣x+a和y=x+b,得到关于m、a、b的两个方程,将这两个方程消去m,即可得出a+b的值.【解答】解:∵直线y=﹣x+a和直线y=x+b的交点坐标为(m,8),∴8=﹣m+a①,8=m+b②,①+②,得16=a+b,即a+b=16.【点评】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.15.(3分)数据﹣2,﹣1,0,3,5的方差是.【分析】先根据平均数的计算公式要计算出这组数据的平均数,再根据方差公式进行计算即可.【解答】解:这组数据﹣2,﹣1,0,3,5的平均数是(﹣2﹣1+0+3+5)÷5=1,则这组数据的方差是:[(﹣2﹣1)2+(﹣1﹣1)2+(0﹣1)2+(3﹣1)2+(5﹣1)2]=;故答案为:.【点评】本题考查方差,掌握方差公式和平均数的计算公式是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x﹣)2].n16.(3分)如果最简二次根式与是同类二次根式,则a=5.【分析】根据最简二次根式和同类二次根式的定义,列方程求解.【解答】解:∵最简二次根式与是同类二次根式,∴3a﹣8=17﹣2a,解得:a=5.【点评】此题主要考查最简二次根式和同类二次根式的定义.17.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为.【分析】利用直角三角形斜边上的中线等于斜边的一半,可求出DF的长,再利用三角形的中位线平行于第三边,并且等于第三边的一半,可求出DE的长,进而求出EF的长【解答】解:∵∠AFB=90°,D为AB的中点,∴DF=AB=2.5,∵DE为△ABC的中位线,∴DE=BC=4,∴EF=DE﹣DF=1.5,故答案为:1.5.【点评】本题考查了直角三角形斜边上的中线性质:在直角三角形中,斜边上的中线等于斜边的一半和三角形的中位线性质:三角形的中位线平行于第三边,并且等于第三边的一半.18.(3分)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为﹣2.【分析】根据正比例函数的意义,可得答案.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=m,∴m2﹣3=1,∴m=﹣2,故答案为:﹣2.【点评】本题考查了正比例函数的定义,形如y=kx,(k是不等于0的常数)是正比例函数.19.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是 2.4.【分析】连接CP,利用勾股定理列式求出AB,判断出四边形CFPE是矩形,根据矩形的对角线相等可得EF=CP,再根据垂线段最短可得CP⊥AB时,线段EF的值最小,然后根据三角形的面积公式列出方程求解即可.【解答】解:如图,连接CP.∵∠C=90°,AC=3,BC=4,∴AB===5,∵PE⊥AC,PF⊥BC,∠C=90°,∴四边形CFPE是矩形,∴EF=CP,由垂线段最短可得CP⊥AB时,线段EF的值最小,=BC•AC=AB•CP,此时,S△ABC即×4×3=×5•CP,解得CP=2.4.故答案为:2.4.【点评】本题考查了矩形的判定与性质,垂线段最短的性质,勾股定理,判断出CP⊥AB时,线段EF的值最小是解题的关键,难点在于利用三角形的面积列出方程.20.(3分)如图,矩形纸片ABCD的长AD=9cm,宽AB=3cm,沿EF将其折叠,使点D与点B重合,则折痕EF的长为cm.【分析】作FM⊥AD于M,则∠FME=90°,FM=AB=3cm,由折叠的性质得出BE=DE,∠BEF=∠DEF,再求出BF=BE,设AE=x,则BE=DE=9﹣x,根据勾股定理得出方程,解方程求出AE,得出DE、BF、EM,根据勾股定理求出EF即可.【解答】解:作FM⊥AD于M,如图所示:则∠FME=90°,FM=AB=3cm,根据题意得:BE=DE,∠BEF=∠DEF,∵四边形ABCD是矩形,∴∠A=90°,AD∥BC,∴∠BFE=∠DEF,∴∠BEF=∠BFE,∴BF=BE,设AE=x,则BE=DE=BF=9﹣x,根据勾股定理得:AB2+AE2=BE2,即32+x2=(9﹣x)2,解得:x=4,∴AE=4,∴DE=BF=5,∴CF=DM=4,∴EM=1,根据勾股定理得:EF==(cm);故答案为:.【点评】本题考查了翻折变换的性质、矩形的性质、勾股定理、等腰三角形的判定;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大题共7个小题,共60分)21.(6分)计算与化简:(1)计算:;(2)先化简,再求值:,其中,.【分析】(1)根据负整数指数幂的意义和绝对值的意义得到原式=3﹣2﹣4+3,然后合并即可;(2)先把括号内通分,再把分子分母因式分解,然后把除法运算化为乘法运算后约分得到原式=,再把a和b的值代入计算即可.【解答】解:(1)原式=3﹣2﹣4+3=﹣1;(2)原式=÷=•=,当,,原式==.【点评】本题考查了分式的化简求值:先把分式的分子或分母因式分解,再进行通分或约分,得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值.也考查了负整数指数幂.22.(6分)如图,已知四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.【分析】连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.【解答】解:连接AC,如图所示:∵∠B=90°,∴△ABC为直角三角形,又∵AB=3,BC=4,∴根据勾股定理得:AC==5,又∵CD=12,AD=13,∴AD2=132=169,CD2+AC2=122+52=144+25=169,∴CD2+AC2=AD2,∴△ACD为直角三角形,∠ACD=90°,=S△ABC+S△ACD=AB•BC+AC•CD=×3×4+×5×12=36.则S四边形ABCD故四边形ABCD的面积是36.【点评】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理及勾股定理的逆定理是解本题的关键.23.(8分)某中学对“希望工程捐款活动”进行抽样调查,得到一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形高度之比为3:4:5:8,又知此次调查中捐15元和20元的人数共39人.(1)他们一共抽查了多少人?(2)这组数据的众数、中位数各是多少?(3)若该校共有1500名学生,请你估算全校学生共捐款多少元?【分析】(1)利用从左到右各长方形高度之比为3:4:5:8,可设捐5元、10元、15元和20元的人数分别为3x、4x、5x、8x,则根据题意得5x+8x=39,解得x=3,然后计算3x+4x+5x+8x即可;(2)先确定各组的人数,然后根据中位数和众数的定义求解;(3)先计算出样本的加权平均数,然后利用样本平均数估计总体,用1500乘以样本平均数即可.【解答】解:(1)设捐5元、10元、15元和20元的人数分别为3x、4x、5x、8x,5x+8x=39,解得x=3,∴3x+4x+5x+8x=20x=20×3=60(人);(2)捐5元、10元、15元和20元的人数分别为9、12、15、24,∵20出现次数最多,∴众数为20元;∵共有60个数据,第30个和第31个数据落在第三组内,∴中位数为15元;(3)×1500=21750(元),∴估算全校学生共捐款21750元.【点评】本题考查了条形统计图:条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.也考查了样本估计总体、中位数与众数.24.(8分)已知平行四边形ABCD中,G为BC中点,点E在AD边上,且∠1=∠2(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,且满足∠3=∠2.求证:CD=BF+DF.【分析】(1)利用平行四边形的性质,得到AD=BC,AB=CD,∠A=∠C,证明△AEB≌△CDG,得到AE=CG,利用G为BC中点,即可解答;(2)作辅助线,延长DF,BE,相交于点H,证明四边形EBDG为平行四边形,得到BE∥DG,得到∠G=∠2,因为∠3=∠2,得到∠G=∠3,利用等角对等边,得到GF=BF,再证△AEB≌△EDG,得到AB=EG,即可解答.【解答】解:∵四边形ABCD为平行四边形,∴AD=BC,AB=CD,∠A=∠C,在△AEB和△CDG中,,∴△AEB≌△CDG,∴AE=CG,∵G为BC中点,∴,∴,∵AD=BC,∴,∴E是AD的中点;(2)如图,延长DF,BE,相交于点H,∵E为AD的中点,G为BC的中点,∴,:∵四边形ABCD为平行四边形,∴AD=BC,AD∥BC,∴DE=BG,DE∥BG,∴四边形EBGD为平行四边形,∴BE∥DG,∴∠H=∠2,∵∠3=∠2,∴∠H=∠3,∴BF=HF,∵∠1=∠2,∴∠H=∠1,∵E为AD的中点,∴AE=DE,在△AEB和△DEH中,,∴△AEB≌△DEH,∴AB=DH,∵AB=CD,∴CD=DH,∵DH=HF+FD,HF=BF,∴DH=BF+FD,∴CD=BF+FD.【点评】本题考查了平行四边形的性质以及全等三角形的判定,解决本题的关键是利用全等三角形的性质,全等三角形的对应边相等,再利用等量代换即可解答.25.(10分)某学校计划在总费用2300元的限额内,租用汽车送234名学生和6名教师集体外出活动,每辆汽车上至少要有1名教师.现有甲、乙两种大客车,它们的载客量和租金如表所示.(1)共需租多少辆汽车?(2)请给出最节省费用的租车方案.【分析】(1)由师生总数为240人,根据“所需租车数=人数÷载客量”算出租载客量最大的客车所需辆数,再结合每辆车上至少要有1名教师,即可得出结论;(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,根据师生总数为240人以及租车总费用不超过2300元,即可得出关于x的一元一次不等式,解不等式即可得出x的值,再设租车的总费用为y元,根据“总费用=租A种客车所需费用+租B种客车所需费用”即可得出y关于x的函数关系式,根据一次函数的性质结合x 的值即可解决最值问题.【解答】解:(1)∵(234+6)÷45=5(辆)…15(人),∴保证240名师生都有车坐,汽车总数不能小于6;∵只有6名教师,∴要使每辆汽车上至少要有1名教师,汽车总数不能大于6;综上可知:共需租6辆汽车.(2)设租乙种客车x辆,则甲种客车(6﹣x)辆,由已知得:,解得:≤x≤2,∵x为整数,∴x=1,或x=2.设租车的总费用为y元,则y=280x+400×(6﹣x)=﹣120x+2400,∵﹣120<0,∴当x=2时,y取最小值,最小值为2160元.故租甲种客车4辆、乙种客车2辆时,所需费用最低,最低费用为2160元.【点评】本题考查了一次函数的应用、解一元一次不等式组已经一次函数的性质,解题的关键是:(1)根据数量关系确定租车数;(2)找出y关于x的函数关系式.本题属于中档题,难度不大,解决该题型题目时,根据数量关系找出函数关系式(不等式或不等式组)是关键.26.(10分)在平面直角坐标系中,已知点A(a,0),C(0,b),且a、b满足(a+1)2+=0.(1)直接写出:a=﹣1,b=﹣3;(2)如图,点B为x轴正半轴上一点,过点B作BE⊥AC于点E,交y轴于点D,连接OE,若OE平分∠AEB,此时,OB与OC有怎样的大小关系?证明你的结论.(3)在(2)的条件下,求直线BE的解析式.【分析】(1)利用非负数的性质可求得a、b的值;(2)过O作OF⊥OE,可得△OEF为等腰直角三角形,可证明△EOC≌△FOB,可证明OB=OC;(3)可证明△AOC≌△DOB,可求得D点坐标,由(2)可求得B点坐标,从而可求得直线BE的解析.【解答】解:(1)∵(a+1)2+=0,∴a+1=0,b+3=0,∴a=﹣1,b=﹣3,故答案为:﹣1;﹣3;(2)OB=OC,证明如下:如图,过O作OF⊥OE,交BE于F,∵BE⊥AC,OE平分∠AEB,∴△EOF为等腰直角三角形,∴∠EOC+∠DOF=∠DOF+∠FOB=90°,∴∠EOC=∠FOB,且∠OEC=∠OFB=135°,在△EOC和△FOB中,,∴△EOC≌△FOB(ASA),∴OB=OC;(3)∵△EOC≌△FOB,∴∠OCE=∠OBE,OB=OC,在△AOC和△DOB中,,∴△AOC≌△DOB(ASA),∴OD=OA,∵A(﹣1,0),C(0,﹣3),∴OD=1,OC=3,∴D(0,﹣1),B(3,0),设直线BE解析式为y=kx+b,把B、D两点坐标代入可得,解得.∴直线BE的解析式为y=x﹣1.【点评】本题主要考查一次函数的综合应用,涉及非负数的性质、全等三角形的判定和性质、等腰直角三角形的性质、待定系数法等知识点.在(1)中注意非负数的性质的应用,在(2)中构造三角形全等是解题的关键,在(3)中证明三角形全等求得D点坐标是解题的关键.本题考查知识点较为基础,综合性强,但难度不大.27.(12分)在矩形ABCD中,AB=6,AD=8,点E在AB上,且BE=2,P是BC 上的动点(BP>2),连接EP,将线段EP绕点E逆时针旋转一定角度后,点P 落在AD上的点F处,以EP,EF为邻边作平行四边形EPGF.(1)如图1,当BP=4时,求证:四边形EPGF是正方形;(2)如图2,当BP=6时,过点G作GH⊥AD,交AD的延长线于点H,连接DG,FP.①求四边形EPGF的周长;②请直接写出∠EFP,∠BPF,∠HFG之间的数量关系;③求△DFG的面积.【分析】(1)先证明四边形EFGP是菱形,再证明∠FEP=90°即可.(2)①在Rt△PBE中,求出PE即可解决问题.②结论:∠EFP=∠BPF﹣∠HFG.利用平行线的性质以及菱形的性质即可证明.=•FD•GH计算即可.③求出DF、GH,根据S△DFG【解答】(1)证明:如图1中,∵四边形EPGF是平行四边形,又∵EF=EP,∴EPGF是菱形,∵四边形ABCD是矩形,∴∠A=∠B=90°,∵AB=6,EB=2,∴AE=PB=4,在Rt△AEF和Rt△BPE中,∴Rt△AEF≌Rt△BPE∠AEF=∠BPE,∵∠BPE+∠BEP=90,∴∠AEF+∠BEP=90,∴∠FEP=90,∴EPGF是正方形.(2)如图2中,①解:在Rt△PBE中,∵BE=2 BP=6,∴EP==2,∵EPGF是菱形,∴四边形EPGF的周长为8;②结论:∠EFP=∠BPF﹣∠HFG.理由:∵AD∥BC,∴∠HFP=∠BPF,∵四边形EFGP是菱形,∴∠EFP=∠GFP=∠FPE=∠FPG,∴∠BPE=∠HFG,∴∠BPF﹣∠BPE=∠EPF,∴∠BPF﹣∠HFG=∠EFP.③解:在△HFG和△PBE中,∴△HFG≌△BPE,∴HG=BE=2,∵EF=EP=2,AE=4,∴AF==2,∴FD=8﹣2,=•FD•GH=×(8﹣2)×2=8﹣2.∴S△DFG【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.。
2017八下期末数学试卷(6稿)
2016~2017学年度第二学期期末考试八年级数学试题时间 120分钟 满分 150分第Ⅰ卷(满分100分)一、 选择题(共10小题,每小题3分,共30分)下面每小题给出的四个选项中,有且只有一个是正确的,请在答题卡上把正确答案的代号涂黑.1.计算16的结果为( )A .2B .-4C .4D .82.下列各式中,最简二次根式是( ) ABC .2D .2aA.中位数B.众数C.方差D. 平均数 4,则其斜边的长为( ) A .4 B .8C .D 5.一次函数y =kx +b 的图象(其中k <0,b >0)可能是( )6.下列说法正确的是( )A .对角线互相垂直的平行四边形是正方形B .一组对边平行且另一组对边相等的四边形是平行四边形C .一组对边平行且一组对角相等的四边形是平行四边形D .对角线互相垂直的四边形是菱形7.对于一次函数y = –2x +4,当 –2≤x ≤4时,函数y 的取值范围是( )A.–4≤y≤16B.4≤y≤8C.–8≤y≤4D.–4 ≤y≤88.菱形ABCD的周长为36,其相邻两内角的度数比1:5,则此菱形的面积为()A.40.5 B.20.25 C.45 D.22.59.如图,正方形ABCD的边长为4,G是边BC上的一点,且BG=3,连AG,过D作DE⊥AG 于点E,BF∥DE交AG于点F,则EF的长为()A.25B.65C.45D.8510.如图所示图象(折线ABCDE离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个过程中的平均速度为3160千米/时;④汽车自出发后3小时至 4.5小时之间行驶的速度在逐渐减少.其中正确的说法共有()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,共18分)下列各题不需要写出解答过程,请将结果直接填写在答卷指定的位置.11在实数范围内有意义,则实数a的取值范围是_____ .12.命题“同位角相等,两直线平行”的逆命题是:____________ _____ _____ .13.如图,一次函数y=kx+b的图象经过A、B两点,则方程kx b+=0的解为x=_______.14.如图,在矩形ABCD中,E为边AB的中点,将△CBE沿CE翻折得到△CFE,连接AF.若∠EAF=70°,那么∠BCF=___________度.15.如图,直线1l:1y x=+与直线2l:y mx n=+相交于P点,由图中信息可知,满足不等式1+>+xnmx的x的取值范围是________.16.已知□ABCD两条对角线AC=8,BD=10,则AB2+BC2+CD2+DA2= .FEGDCBA三、解答题(共5题,共52分)下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤.17.(本题满分10分)(1).((2).——18.(本题10分)已知直线1:32l y x=-与直线2:1l y kx=+交于点P(m,4),(1)求m的值;(2)求k的值.19.(本题10分)如图,在□ABCD中,点E、点F分别在AD、CB的延长线上,且DE=BF,连结EF分别交AB、CD于点H、点G.(1)求证:EG=FH;(2)若AH2+CF2=EH2,求证:□ABCD 是矩形.20.(本题10分)近段时间,“共享单车”非常流行,小凯想了解学校八年级学生每周平均骑车时间的情况,随机抽查了学校八年级x名同学,对其每周平均骑车时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①x=________.②求扇形统计图中骑车时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)直接写出这组数据的众数、中位数、平均数.第19题图21.(本题满分12分)一次越野赛跑中,当小明跑了1600m 时,小刚跑了1450m .此后两人分别以am /s 和bm /s 匀速跑.又过100 s 时小刚追上小明,200 s 时小刚到达终点,300 s 时小明到达终点.设跑步的路程为ym ,匀速跑步的时间为t s ,(1)分别画出小明、小刚跑步时y 随t(2)求出a、b 的值;(3)直接写出这次越野赛跑中小明、小刚 匀速跑步的路程y 与时间t 之间的函数关系式:小明:____________________; 小刚:____________________.第Ⅱ卷(满分50分)四、填空题(共4小题,每小题4分,共16分)下面每小题给出的四个选项中,有且只有一个是正确的,请把正确选项前的代号填在答卷指定位置.22.如图,在四边形ABCD 中,CD ∥AB ,∠A =90°,BC =2AB , E 为BC 的中点,连接DE ,如果∠B =74°,则∠CDE = °.23.如果常数k 取任何实数时,直线kx +3ky +2x -5y -6k -1=0总是经过一个定点,则这个定点的坐标为 .24.若直线22x y m +=与直线223x y m +=+(m 为常数)的交点在第四象限,则整数m 的值有 个.25.如图,线段AB=10,点M 、N 是线段AB 上的两点,且AM=BN=2.点O 是MN 上一动点,分别以AO 、 OB 为边作两个正三角形,连接DC .点O 从M 运动到N 时,CD 的中点T 所经过的路径的长为 .D AHG F E D CBA N MG F EDC BA 六、解答题(共3题,共34分) 下列各题需要在答题卷指定位置写出文字说明、证明过程或计算步骤. 26.(本题满分10分) 有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5 t ,5辆大货车与6辆小货车一次可以运货35 t .(1)每辆大货车和每辆小货车一次各可以运货多少t ?(2)现在租用这两种货车共10辆,要求一次运输货物不低于30 t ,一辆大货车一次运货的费用为620元,一辆小货车一次运货的费用为400元,请设计一种运货方案........,使总运费最低,最低总运费是多少?27.(本题满分12分) 已知:正方形ABCD ,点E 在边DA 的延长线上,连BE ,过点B 作BF ⊥BE 交边CD 于点F ,连EF ,作∠DFE 的角平分线交BD 于点G , (1)如图1,求证:BF =BG ;(2)如图2,过G 作GH ⊥EF 于点H ,试探究BC 、GH 与EF 的数量关系,并说明理由. (3)过D 作DM ⊥FG ,交其延长线于点M ,作DN ⊥EG ,交其延长线于点N ,连MN ,若DF =6,FC =2,请直接写出MN 的长为 .28.(本题满分12分)G F E DCBA已知:直线1:l y x n=+与x,y轴分别交于点A,B,直线2:3l y mx n=+(m≠0,m≠1) 与x,y轴分别交于点C,D,l1、l2交于点F.(1)点F的坐标为_____________________(用含m,n的式子表示);(2)当n>0时,连接AD,BC,若△OBC≌△OAD,请画出图形并求m的值;(3)对于m的某一个确定的值,当n的值发生变化时,点F到直线334y x=-的距离d总是一个定值,请你求出m的值并直接写出d的值.3 4x-3。
2016-2017学年度八年级数学考试题及答案
2016-2017学年度第二学期期末质量检测试卷八年级 数学一、选择题:(每小题3分,共30分) 1.下列根式中,最简二次根式是( )A.31B.56C.96 D .222y x +2.下列各式,正确的是( )A.55±=B.5-5-2=C.5-5-2=)( D.3)3(2±=± 3.若1-y x +23x )(++=0,则x-y 的值为( )A.1B.-1C.7D.-74.下列长度的各线段中,能组成直角三角形的是( )A.5、6、7B.5、12、13C.1、4、9D.5、11、125.若一个直角三角形的两边长分别为3、4,则第三边的长是( ) A .4 B .5 C .5或7 D .76. 若正比例函数的图像经过点(-1,2)则这个图像必经过点 ( ) A.(1,2) B.(-1,-2) C.(2,-1) D.(1,-2)7.已知三角形的3条中位线分别为3cm 、4cm 、6cm ,则这个三角形的周长是( ) A.3cm B.26cm C. 24cm D. 65cm 8.下列关系中,y 不是x 函数的是( )A. x 21y = B. 2x 2y = C.x y 2= D.)0x x y ≥=(9.人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:85x x ==乙甲,1002s =甲,802s =乙,则成绩较为稳定的是( )A.甲班B.乙班C.两班成绩一样稳定D.无法确定10. 函数y=ax+b 与y=bx+a 的图象在同一坐标系内的大致位置正确的是( )A B C D二、填空题(每小题3分,共30分) 11.比较大小:23_____3212.直线y=2x-1与x 轴的交点坐标是 .13.已知方程组{3y -x 2-y -x 2==的解为{5-x 8-y ==,则直线y=x-3与直线y=2x+2的交点坐标为__________ .14.在□ABCD 中,∠A:∠B=2:7,则∠C 的度数为__________ .15.已知一个样本-1,0,2,x ,3的平均数为2,则这个样本的方差S 2= .16.函数y=2x 1+中自变量x 的取值范围是 . 17.如图,在△ABC 中,AB=AC=10,BC=12,M 为BC 的中点,AC MN ⊥于点N ,则MN=_______.18.菱形的两条对角线的长分别是6cm 、8cm ,则菱形的面积为________2cm . 19.平行四边形ABCD 中,AB=6cm ,BC=12cm ,对边AD 和BC 之间的距离是4cm ,则对边AB 和CD 间的距离是________.20.三角形三边满足ab 2c -b a 22=+)(,则此三角形为______. 三、解答题(共60分,解答应写出文字说明、证明过程或演算步骤)21.(8分)计算(1) (548-627+415)÷3 (2) (3+22)(3-22)22.(6分)化简求值22222ba b ab a -+-÷(a 1-b 1),其中,a=2+1,b=2-1.学校: 班级: 姓名: 考号: .--------------------------------------------------密--------------------------封----------------------------------线---------------------------------------23.(8分)为了倡导“节约用水,从我做起”,市政府决定对市直机关500户家庭的用水情况做一次调查,市政府调查小组随机抽查了其中的100户家庭一年的月平均用水量(单位:吨),并将调查结果制成了如图所示的条形统计图.(不完整) (1)请将条形统计图补充完整;(2)求这100个样本数据的平均数,众数和中位数;(3)跟据样本数据,估计市直机关500户家庭中月平均用水量不超过12吨的约有多少户?24.(8分)如图,矩形ABCD 中,AC 与BD 相交于点O,若AO=3,∠OBC=30°,求矩形的周长和面积.25.(8分) 如图,∠D=90°,DC=3,AD=4,AB=13,BC=12,求:四边形ABCD 的面积.26.(10分)十一期间,王老师一家自驾游去了离家170km 的某地,下面他们离家的距离y (km )与汽车行驶是时间x (h)之间的函数图象. (1)求他们出发0.5小时,离家多少千米? (2)求线段AB 的函数解析式;(3)他们出发2小时,离目的地还有多少千米?27. (12分)某校计划购买甲、乙两种树苗共1000株用以绿化校园.甲种树苗每株25元,乙种树苗每株30元,通过调查了解,甲、乙两种树苗的成活率分别是90%和95%.(1)若购买这两种树苗共用去28000元,则甲、乙两种树苗各购买多少株? (2)要使这批树苗的成活率不低于92%,则甲种树苗最多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.2016-2017学年度第二学期期末质量检测试卷八年级 数学答 案二、选择题:(每小题3分,共30分)1.D2.B3.D4.B5.C6.D7.B8.C9.B 10.D 二、填空题(每小题3分,共30分)11.< 12.(21,0) 13.(-5,-8) 14.40 15.616.X>-2 17.4.8 18. 24 19. 8cm 20. 直角三角形 三、解答题(共60分,解答应写出文字说明、证明过程或演算步骤) 21. (1) 2+54 ( 2 ) 1 22. b a +-ab , 22- 23. (1)月均用水量11吨的有40户 (2分)25. 2426.(1)30 (2分) (2)Y=80X-30 (5 分) (3)40 (3分)27.(1)400 ,600 (4分) (2)600 (4分)(3)购买600棵树苗时最低费用为27000元。
2016-2017学年度第二学期期末质量检测八年级数学试卷(含答案)
2016——2017学年度第二学期八年数学试题答案一、选择题:(每题2分,共16分)1、D2、B3、A4、D5、C6、B7、C8、A9、C 10、D 二、填空题:(每题2分,共16分) 11、3 12、4 13、96 14、2.3 15、y =-2x-2 16、 17、25 18、①②④ 三、解答题:(本题50分) 19、 原式= (6分)20、解:(1)∵四边形ABCD 是矩形,∴∠ABC=90°又∠ACB=30°, ∴AC=2AB ,设AB=x ,则在Rt △ABC 中, 有 ,解得,∴AB=,AC= (4分)(2)四边形BOCE 是菱形,理由是:∵BE ∥AC ,CE ∥BD ,∴四边形BOCE 是平行四边形, 又∵四边形ABCD 是矩形,AO=CO ,BO=DO ,AC=BD , ∴BO=CO ,∴平行四边形BOCE 是菱形 (8分) 21、解:(1)过点P 作PA ⊥x 轴于点A ,在Rt △PAM 中,PA=12,AM=14-9=5,则PM= (4分)(2)作图正确 (6分) 点N 坐标(23,12) (8分) 22、(1)a=5;m=6;p=8;q=7.5 (每个2分,共8分)(2)答案不唯一,正确即可;例如,八年级平均分高;中位数高; 方差小,成绩比较稳定等等 (10分)23、(1) (2分) (4分) (2)当时,有解得 (6分)当时,有 (8分)∵x 为正整数,∴当贡献奖奖状的个数小于等于25个时,选B 公司比较合算;当贡献奖奖状的个数多于25个时,选A 公司比较合算 (10分)四、解答题:(本题18分)24、解:(1) (1分)(2)①填表正确, (3分) 图像正确 (5分)② (1,2);1;2;减小;增大 (8分)(错一空扣一分)③ 设长方形的长为x ,周长为y ,由长方形面积为1,则它的宽为, 根据题意,,由②得,当x=1时,周长最小,最小值为4, ∴长方形的长和宽都为1时,周长为最小 (10分)3323210-222)2(3x x =+3=x 3321351222=+986.13504)102(8.41+=+++=x x x y 543.155.4)102(4.52+=++=x x x y 21y y >543.15986.13+>+x x 171525<x 21y y <171525>x 0≠x x 1)1(2xx y +=25、解:(1)证出 (3分) ∴∠EAF=45° (4分)(2)写出结论 (5分) 证出 (7分) (9分)(3)画出图形 (10分) 直接代入(2)式求值:MN=9 (12分)ADF AGF AGE ABE ∆≅∆∆≅∆,AHN AMN ∆≡∆222MN BM DN =+。
安徽省巢湖市度下期期末统考试卷八年级数学试题2
巢湖市2016~2017第2学期八年级数学期末统考试卷一、选择题(每题3分,共30分)1. 下列二次根式中,是最简二次根式的是()A. B. C. D.【答案】B【解析】A、==,不是最简二次根式;B、,不含有未开尽方的因数或因式,是最简二次根式;C、=,被开方数中含有分母,故不是最简二次根式;D、=2,不是最简二次根式.只有选项B中的是最简二次根式,故选B.2. 若数据m,2,5,7,1,4,n的平均数为4,则m,n的平均数为()A. 7.5B. 5.5C. 2.5D. 4.5【答案】D【解析】∵m,2,5,7,1,4,n的平均数为4,∴m+2+5+7+1+4+n=4×7∴m+n=9∴m,n的平均数为4.5,故答案为D.3. 如果数据1、2、2、x的平均数与众数相同,那么x等于()A. 1B. 2C. 3D. 4【答案】C【解析】根据题意得:=2,解得x=3.故选C.4. 以下二次根式:①;②;③;④中,与是同类二次根式的是()A. ①和②B. ②和③C. ①和④D. ③和④【解析】∵,,,,∴与是同类二次根式的是①和④,故选:C.5. 分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤3,4,5.其中能构成直角三角形的有()组A. 2B. 3C. 4D. 5【答案】B【解析】因为①6²+8²=10²,②13²=5²+12²,④9²+40²=41²,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.6. 如图,分别以直角△ABC的三边AB,BC,CA为直径向外作半圆,面积记为S1、S2、S3,则()A. S1>S2+S3B. S1=S2+S3C. S1<S2+S3D. 无法确定【答案】B【解析】∵△ABC为直角三角形,∴AB²=AC²+BC²又∵S=πR²∴S₁=π(AB2)2=π•,S ₂=π() ²+π()²=π()=π•=S₁∴S₁=S₂,故选A.7. 如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A. 1B.C.D. 2【答案】D【解析】试题分析:根据勾股定理进行逐一计算即可.解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,AD===;AE===2.故选D.8. 若直线y=kx+b中,k<0,b>0,则直线不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选C.9. 为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。
巢湖市20162017学年度第二学期期末教学质量检测
巢湖市2016/2017学年度第二学期期末教学质量检测八年级数学参考答案及评分标准二、填空题(每小题5分,共20分)11.三条边对应相等的三角形全等,真命题(第一个空格3分,第二个空格2分) 12.33 13.m >1 14.①③④三、(本大题共2小题,每小题8分,满分16分)15.5262-; …………………………………………8分16.设直线AB 和CD 的解析式分别为b ax y +=1和d cx y +=2.由图可知,点A(-3,0),点B(0,6),点C(0,1),点D(2,0),把它们代入解析式,容易得到621+=x y 和1212+-=x y . …………………………………………4分解方程组⎪⎩⎪⎨⎧+-=+=12162x y x y ,得⎩⎨⎧=-=22y x ,则直线AB 与直线CD 的交点坐标为(-2,2). …………………………………………8分四、(本大题共2小题,每小题8分,满分16分)17.如图,∵四边形ABCD 是平行四边形,∴点O 是BD 的中点. ………2分又∵点E 是边CD 的中点,∴OE 是△BCD 的中位线,∴OE ∥BC ,OE=21BC . ……4分 又∵CF=BC ,∴OE=CF . …………………………………………6分 又∵点F 在BC 的延长线上,∴OE ∥CF ,∴四边形OCFE 是平行四边形. ……8分18.连接DB ,过点B 作DE 边上的高BF ,则BF=b -a . ……………………………2分∵ab b ab ABE 212121S S S S 2AED △△ACB △ACBED 五边形++=++=, ………4分 又∵)-(212121S S S S 2BED △△ACB △ACBED 五边形a b a c ab ABD ++=++=,…6分 ∴)(21212121212122a b a c ab ab b ab -++=++, …………………8分 ∴222a b c +=.五、(本大题共2小题,每小题10分,满分20分)19.⑴九⑴班5名同学的成绩是75、80、85、85、100,所以平均数是75808585100855++++=,九⑵班5名同学的成绩的众数是100. ……………………4分⑵两个班成绩的平均数都是85,九⑴班成绩的方差是70,九⑵班成绩的方差是160,所以九⑴的整体成绩要好些. …………………………………………7分⑶九⑴班成绩的最好的两名同学分数分别是100、85,平均数是92.5,九⑵班成绩的最好的两名同学分数分别是100、100,平均数是100,所以九⑵班的实力强. ………10分20.⑴6,6,f =m +n -1; ………………………………5分 ⑵当m 、n 不互质时,上述结论不成立,如图2×4.………………………10分六、(本题满分12分)21.(1)点M 不是和谐点,点N 是和谐点. ………………………………4分(2)当0>a 时,a a 3)3(2=+,解得a =6,点P (a ,3)在直线b x y +-=上,b =9;当0<a 时,a a 3)3(2-=+-,解得a =-6,点P (a ,3)在直线b x y +-=上,b =-3.所以,a =6,b =9或a =-6,b =-3; ………………………………8分 (3)(-4,4),(-3,6). ………………………………12分七、(本题满分12分)22.(1)四边形BFEG 是菱形;理由如下:∵FG 垂直平分BE ,∴BO=EO ,∠BOG=∠EOF=90°; 在矩形ABCD 中,AD ∥BC ,∴∠GBO=∠FEO.∴△BOG ≌△EOF(ASA). ∴BG=EF.∴四边形BFEG 是平行四边形.又∵FG ⊥BE ,∴平行四边形BFEG 是菱形. ………4分(2)当AB=a ,n =3时,AD=2a ,AE=a 34,根据勾股定理可以计算BE=a 35, ∵AF=AE ﹣EF=AE ﹣BF ,在Rt △ABF 中AB 2+AF 2=BF 2,计算可得AF=a 247,EF=a 2425, ∵菱形BGEF 面积=BE•FG=EF•AB,计算可得FG=a 45. …………………………8分(3)设AB=x ,则DE=x n 2,当=时,=,可得BG=x 1517, 在Rt △ABF 中AB 2+AF 2=BF 2,计算可得AF=x 158.∴AE=AF+FE=AF+BG=x 35,DE=AD ﹣AE=x 31,∴n =6. ………………………12分八、(本题满分14分)23.(1)设每台A 型电脑的销售利润为a 元,每台B 型电脑的销售利润为b 元,则有10a 20b 400020a 10b=3500+=⎧⎨+⎩,解得a=100b=150⎧⎨⎩;即每台A 型电脑的销售利润为100元 ,每台B 型电脑的销售利润为150元. ……3分 (2)①根据题意得y =100x +150(100-x )=-50x +15000 ……………………6分 ②根据题意得100-x ≤2x ,解得x ≥3133, ∵y =-50x +15000,-50<0,∴y 随x 的增大而减小.∵x 为正整数,∴当x =34最小时,y 取最大值,此时100-x =66.即商店购进A 型电脑34台,B 型电脑66台,才能使销售总利润最大 …………8分 (3)根据题意得y =(100+m )x +150(100-x )=(m -50)x +15000.3133≤x ≤70. ①当0<m <50时,m -50<0,y 随x 的增大而减小.∴当x =34时,y 取得最大值. 即商店购进34台A 型电脑和66台B 型电脑才能获得最大利润; …………10分 ②当m =50时,m -50=0,y =15000. 即商店购进A 型电脑数满足3133≤x ≤70的整数时,均获得最大利润; ………12分 ③当 50<m <100时,m -50>0,y 随x 的增大而增大. ∴x =70时,y 取得最大值.即商店购进70台A 型电脑和30台B 型电脑才能获得最大利润. ………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前安徽省巢湖市2016-2017学年度下期期末统考试卷八年级数学试题学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(题型注释)1、下列二次根式中,是最简二次根式的是( )A .B .C .D .2、若数据m ,2,5,7,1,4,n 的平均数为4,则m ,n 的平均数为( ) A .7.5 B .5.5 C .2.5 D .4.53、如果数据1、2、2、x 的平均数与众数相同,那么x 等于( ) A .1 B .2 C .3 D .44、以下二次根式:①;②;③;④中,与是同类二次根式的是( )A .①和②B .②和③C .①和④D .③和④5、分别以下列五组数为一个三角形的边长:①6,8,10;②13,5,12 ③1,2,3;④9,40,41;⑤3,4,5.其中能构成直角三角形的有( )组A .2B .3C .4D .56、如图,分别以直角△ABC 的三边AB ,BC ,CA 为直径向外作半圆,面积记为S 1、S 2、S 3,则( )A .S 1>S 2+S 3B .S 1=S 2+S 3C .S 1<S 2+S 3D .无法确定7、如图所示,AB =BC =CD =DE =1,AB ⊥BC ,AC ⊥CD ,AD ⊥DE ,则AE =( )A .1B .C .D .28、若直线y=kx+b 中,k <0,b >0,则直线不经过( )A .第一象限B .第二象限C .第三象限D .第四象限9、为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米。
设改变后耕地面积x 平方千米,林地地面积y 平方千米,根据题意,列出如下四个方程组,其中正确的是( )A .B .C .D .10、若方程组的解满足,则m 的取值范围是( )A.m>-6 B.m<6 C.m<-6 D.m>6第II卷(非选择题)二、填空题(题型注释)11、若一组数据6,7,5,6,x,1的平均数是5,则这组数据的众数是___________.12、如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有________米。
13、某小组某次英语听写的平均成绩为80分,5名同学中有4名同学的成绩分别为:82,85,90,75,则另一名同学的成绩为________分。
14、实数在数轴上的位置如图所示:化简:=________。
15、若点P(a,b)在第二象限内,则直线y=ax+b不经过第______象限.16、当m__________时,一次函数y=(m+1)x+6的函数值随x的增大而减小。
17、若方程组的解满足方程,则a的值为_____.18、如图,AC是正方形ABCD的对角线,AE平分∠BAC,EF⊥AC交AC于点F,若BE=2,则CF长为_________。
19、设表示大于的最小整数,如,,则下列结论中正确的是_________。
(填写所有正确结论的序号)①;②的最小值是0;③的最大值是0;④存在实数,使成立。
三、解答题(题型注释)20、如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若,,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是___________.21、化简下列各式。
(1)(2);22、先化简、再求值。
(6x +)-(4x+),其中x=,y=27.23、下图反映了八年级(2)班40名学生在一次数学测验的成绩。
① 从图中观察这个班这次数学测验成绩的中位数和众数。
② 根据图形估计这个班这次数学测验成绩的平均成绩。
24、已知y -2与x 成正比,且当x=1时,y= -6 (1)求y 与x 之间的函数关系式; (2)若点(a ,2)在这个函数图象上,求a 的值。
25、如图,在直角坐标系中,直线y=kx+4与x 轴正半轴交于一点A ,与y 轴交于点B ,已知△OAB 的面积为10,求这条直线的解析式。
26、已知一次函数y=kx+b 的图象经过点(-1, -5),且与正比例函数y= x 的图象相交于点(2,a),求:(1)a 的值 (2)k ,b 的值(3)这两个函数图象与y 轴所围成的三角形的面积。
27、先阅读下列的解答过程,然后作答: 形如的化简,只要我们找到两个数a 、b 使a+b=m,ab=n ,这样()2+()2=m·=n,那么便有==± (a>b) .例如:化简解:首先把化为,这里m=7,n=12;由于4+3=7,4×3=12,即()2+()2=7·=,∴===2+.由上述例题的方法化简:(1) (2) (3)28、清朝康熙皇帝是我国历史上对数学很有兴趣的帝王近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步:=m;第二步:=k;三步:分别用3、4、5乘以k,得三边长”.(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.参考答案1、B2、D3、C4、C5、B6、B7、D8、C9、B10、A11、5和612、2413、7514、115、三.16、m<-117、518、219、④20、解:∵AE=AC=6,∴EC=12.………………………………………………………2分∴在Rt△EBC中,BE===13.……………………4分21、(1);(2).22、-,-23、(1)75(2)71.2524、(1)y=-8x+2(2)a=025、26、(1)1;(2);(3).27、(1)(2)(3)28、(1)直角三角形的三边长分别为15,20,25(2)3,4,5【解析】1、A、==,不是最简二次根式;B、,不含有未开尽方的因数或因式,是最简二次根式;C、=,被开方数中含有分母,故不是最简二次根式;D、=2,不是最简二次根式.只有选项B中的是最简二次根式,故选B.2、∵m,2,5,7,1,4,n的平均数为4,∴m+2+5+7+1+4+n=4×7,∴m+n=9,∴m,n的平均数为4.5,故答案为D.3、根据题意得:=2,解得x=3.故选C.4、∵,,,,∴与是同类二次根式的是①和④,故选:C.5、因为①6²+8²=10²,②13²=5²+12²,④9²+40²=41²,符合勾股定理的逆定理,所以能构成直角三角形的有三组.故选B.6、∵△ABC为直角三角形,∴AB²=AC²+BC²,又∵S=πR²,∴S₁=π()²=π•,S2+S3=π() ²+π()²=π()=π•=S₁,∴S₁=S2+S3,故选B.7、试题分析:根据勾股定理进行逐一计算即可.解:∵AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,∴AC===;AD===;AE===2.故选D.8、∵直线y=kx+b中,k<0,b>0,∴直线y=ax+b经过一、二、四象限,∴不经过第三象限.故选C.9、设改变后耕地面积x平方千米,林地地面积y平方千米,等量关系为林地面积+耕地面积=180;耕地面积=林地面积×25%.根据这两个等量关系,可列方程组为故选.B点睛:本题主要考查了列二元一次方程组实际问题,解决时要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.10、,①×3得,9x+6y=3m+3③,②×2得,8x+6y=2m−2④,③−④得,x=m+5,把x=m+5代入①得,3(m+5)+2y=m+1,解得y=−m−7,所以,方程组的解是,∵x>y,∴m+5>−m−7,解得m>−6.故选A.点睛: 本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.11、根据平均数的定义可以先求出x的值,再根据众数的定义求出这组数的众数即可.解:由平均数的计算公式,得6+7+5+6+1+x=6×5,25+x=30,x=5,这组数据中的5和6各出现了2次,故这组数据的众数是5和6,故答案为:5和6.12、因为AB=9米,AC=12米,根据勾股定理得BC==15米,于是折断前树的高度是15+9=24米.13、设另一名同学的成绩为x分,则82+85+90+75+x=80×5解得x=75.故答案为:75.14、根据图示,可得1<a<2,∴a-1>0,a-2<0,∴=(a-1)+(-a+2)=a-1-a+2=1故答案为:1.15、试题解析:∵点P(a,b)在第二象限内,∴a<0,b>0,∴直线y=ax+b经过第一二四象限.∴不经过第三象限.考点:1.一次函数图象与系数的关系;2.点的坐标.16、∵一次函数y=(m+1)x+6的函数值随x的增大而减小,∴m+1<0,解得:m<−1.故答案为:m<−1.17、首先解方程组求得x、y的值,然后代入方程中即可求出a的值.18、∵四边形ABCD是正方形,∴∠B=90°,∠ACB=∠DCB=45°,∵AE平分∠BAC,EF⊥AC,∴BE=EF,∵EF⊥AC,∴∠EFC=90°,∵∠ACB=45°,∴∠FEC=45°=∠FCE,∴EF=FC=BE=2.故答案为:2.19、①[0)=1,故本项错误;②[x)−x>0,但是取不到0,故本项错误;③[x)−x≤1,即最大值为1,故本项错误;④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.故答案是:④.点睛:此题考查了一元一次不等式组的应用,实数的运算,仔细审题,理解[x)表示大于x的最小整数是解答本题的关键,难度一般.20、在题图乙的四个大直角三角形中,两直角边长分别为5,12,所以斜边长为13,所以这个风车的外围周长为4×13+4×6=76.21、试题分析:(1)把二次根式化成最简二次根式,再合并同类二次根式即可;(2)把二次根式化成最简二次根式,再把括号去掉,最后合并同类二次根式即可.试题解析:(1):;(2):.考点:二次根式的化简求值.22、试题分析:根据二次根式的运算法则先化简,再代入求值.试题解析:原式当x=,y=27时,原式.23、试题分析: ①根据众数和中位数的概念进行求解:众数即一组数据中出现次数最多的数据;偶数个数据的中位数即中间两个数据的平均数;奇数个数据的中位数即正中间的数据;②根据加权平均数进行计算.试题解析:(1)出现最多的是75分,有8个人,故众数为75(分);总共有40人的数学成绩,第20、21位都是75分,则中位数为75(分)(2)平均数=估计这个班这次数学测验成绩的平均成绩为71.25.24、试题分析: (1)设y−2=kx,将x=1、y=−6代入y−2=kx可得k的值;(2)将点(a,2)的坐标代入函数的解析式求a的值.试题解析:(1)∵y−2与x成正比,∴设y−2=kx,将x=1、y=−6代入y−2=kx得−6−2=k×1,∴k=−8,∴y=−8x+2(2)∵点(a,2)在函数y=−8x+2图象上,∴2=−8a+2,∴a=0点睛: 本题主要考查函数解析式的求法.如果事先知道函数的形式,可先设函数的解析式,再采用待定系数法求解.25、试题分析: 先根据坐标轴上点的坐标特征得到A(−4k,0),B(0,4),再根据三角形面积公式得到•(−)•4=10,然后解方程求出k的值即可得到直线解析式.试题解析:当y=0时,kx+4=0,解得x=−,则A(−,0),当x=0时,y=kx+4=4,则B(0,4),因为△OAB的面积为10,所以•(−)•4=10,解得k=−,所以直线解析式为y=−x+4.点睛: 本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.26、试题分析:(1)把(2,a)代入正比例函数解析式求得a值.(2)把(-1,-5)(2,a)代入一次函数解析式求得k,b值.(3)用一次函数与y轴交点纵坐标的绝对值乘以两图像交点的横坐标再除以2就是此三角形的面积.试题解析:(1)由题知,把(2,a)代入y=,解得a=1;(2)由题意知,把点(-1,-5)及点(2,a)代入一次函数解析式得:-k+b=-5,2k+b=a,又由(1)知a=1,解方程组得到:k=2,b=-3;(3)由(2)知一次函数解析式为:y=2x-3,y=2x-3与y轴交点坐标为(),且与正比例函数y= x的图象相交于点(2,1)∴所求三角形面积S==3.考点:一次函数与图形面积综合题.27、试题分析: 先把各题中的无理式变成的形式,再根据范例分别求出各题中的a、b,即可求解.试题解析:(1)= = - ;(2)= = = - ;(3)= =点睛:主要考查二次根式根号内含有根号的式子化简.根据二次根式的乘除法法则进行二次根式根号内含有根号的式子化简.二次根式根号内含有根号的式子化简主要利用了完全平方公式,所以一般二次根式根号内含有根号的式子化简是符合完全平方公式的特点的式子.28、试题分析: 先由题中所给的条件找出字母所代表的关系,然后套用公式解题.试题解析:(1)当s=150时,m==25,k==5.∴3×5=15,4×5=20,5×5=25,∴直角三角形的三边长分别为15,20,25。