二极管伏安特性曲线的测绘实验报告
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。
p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。
当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。
实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。
实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。
当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。
二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。
实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。
实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。
二极管伏安特性曲线和示波器观察法实验报告浙江大学
二极管伏安特性曲线和示波器观察法实验报告实验目的本次实验的主要目的是通过测量二极管的伏安特性曲线,学习和了解二极管的正向和反向特性,以及学习使用示波器观察和测量电路中的电压和电流信号。
实验原理二极管的伏安特性曲线二极管是一种非线性元件,其伏安特性曲线可以用来描述二极管在不同电压和电流下的工作状态。
二极管通常具有两种工作状态:正向偏置和反向偏置。
正向偏置:当二极管的正端连接到高电位,负端连接到低电位时,称为正向偏置。
在正向偏置状态下,二极管的开启电压为正向并呈指数增长的特性。
反向偏置:当二极管的正端连接到低电位,负端连接到高电位时,称为反向偏置。
在反向偏置状态下,二极管的电压通常为零或负值,电流也会很小。
通过实验,我们可以绘制二极管的伏安特性曲线图,从而更好地了解二极管在不同工作状态下的特性。
示波器的原理和用法示波器是一种用于观察和测量电路中电压和电流信号的仪器。
它通过将电信号转换为可视化的波形图来帮助我们分析和理解信号的特性。
示波器通常由电子束发生器、水平和垂直扫描发生器、延时部件和显示屏等组成。
在使用示波器时,我们可以调整垂直和水平扫描发生器的参数以获得所需的波形。
实验步骤1.准备实验所需材料和设备,包括二极管、电源、电阻和示波器等。
2.搭建电路:将二极管连接在电路中,正极连接到电源的正极,负极连接到电阻的一端,另一端再连接到电源的负极。
3.调整显示屏:调整示波器的垂直和水平扫描发生器,以便能够清晰地显示电压和电流的波形。
4.开启电源,并逐渐增加电压,观察二极管的伏安特性曲线,记录数据。
5.将电压逐渐减小,观察反向偏置下的二极管特性,并记录数据。
6.分析数据:根据实验数据,绘制二极管的伏安特性曲线图,并对曲线进行分析和解释。
实验结果与分析经过实验测量和数据分析,我们得到了二极管的伏安特性曲线图。
根据曲线图,我们可以清晰地观察到二极管在正向偏置和反向偏置下的不同特性。
在正向偏置下,随着电压的增加,二极管的电流呈指数增长的趋势。
测量二极管的伏安特性实验报告
测量二极管的伏安特性实验报告实验报告课程名称:大学物理实验(1)实验名称:测量二极管的伏安特性学院:XX学院专业:XX 班级:XX 组号:XX 指导教师:XX报告人学号:XX 实验时间:年月日星期实验地点:科技楼903实验报告提交时间:一、实验目的了解晶体二极管的导电特性并测定其伏安特性曲线。
二、实验原理晶体二极管的导电特性:晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有当电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。
正向导通电压小,反向导通电压相差很大。
当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
实验线路图如下:注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。
由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。
假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
三、实验仪器晶体二极管、电压表、电流表、电阻箱、导线、电源、开关等。
四、实验内容和步骤1、测定正向特性曲线打开电源开关,把电源电压调到最小,然后接通线路,逐步减小限流电阻,直到毫安表显示1.9999mA,记录相应的电流和电压。
然后调节电源电压,将电压表的最后一位调节成0,记录电压与电流;以后按每降低0.010V测量一次数据,直至伏特表读数为0.5500V为止。
此时,正向电流不需要修正。
2、测定反向特性曲线把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。
然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006……mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
物理实验报告6_二极管的伏安特性曲线数据记录和Pn结与二极管
物理实验报告6_二极管的伏安特性曲线数据记录和Pn结与二极管实验名称:二极管的伏安特性曲线实验目的:a.了解晶体二极管的导电特性并测定其伏安特性曲线。
实验仪器:晶体二极管、电压表、电流表、电阻箱、导线、电源、开关等实验原理和内容:晶体二极管的导电特性:晶体二极管无论加上正向或反向电压,当电压小于一定数值时只能通过很小的电流,只有电压大于一定数值时,才有较大电流出现,相应的电压可以称为导通电压。
正向导通电压小,反向导通电压相差很大。
当外加电压大于导通电压时,电流按指数规律迅速增大,此时,欧姆定律对二极管不成立。
实验线路图如下:注意:无论毫安表内接还是外接,实验数据都应该进行修正:毫安表外接时应该进行电流修正,内接时应该进行电压修正。
由于实验用毫伏表内阻很大(约100~1000多万欧姆),按照上述接法,数据修正简单:正向时伏特表的电流可以忽略;反向时,伏特表的电流始终保持0.0006mA,很容易修正。
假如将毫安表内接,则无论正向反向,每一个数据都要做电压修正,并且每个修正值都不同,给实验带来很大麻烦。
1.测定正向特性曲线打开电源开关,把电源电压调到最小,然后接通线路,逐步减小限流电阻,直到毫安表显示1.9999mA,记录相应的电流和电压。
然后调节电源电压,然后将电压表的最后一位调节成0,记录电压与电流;以后按每降低0.010V测量一次数据,直至伏特表读书为0.5500V为止。
此时,正向电流不需要修正。
2.测定反向特性曲线把线路改接后,接通线路,将电源电压调到最大,逐步减小限流电阻,直到毫安表显示1.9999mA为止,记录相应的电流和电压。
然后调节电源电压或者限流电阻,再将电流调节为1.8006、1.6006、1.4006??mA情况下,记录相应的电压;其中0.0006mA为伏特表的电流,此为修正电流,记录电流时应该自行减去。
参数及数据记录:见附表的数据记录表数据处理:利用所记录的正向与反向2组数据,用坐标纸分别画出二极管正、反向特性曲线。
二极管的伏安特性实验报告
二极管的伏安特性实验报告二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有非常重要的应用价值。
它是一种具有单向导电性的电子器件,能够将电流限制在一个方向上流动。
本实验旨在通过测量二极管在不同电压下的电流变化,探究其伏安特性,并分析其在电子设备中的应用。
实验装置:本实验所需的装置主要包括:二极管、直流电源、电阻、万用表等。
实验过程:1. 首先,将二极管与直流电源和电阻连接起来,组成一个电路。
2. 调节直流电源的电压,从0V开始逐渐增加,每次增加一个固定的电压值。
3. 在每个电压值下,使用万用表测量二极管的电流,并记录下来。
4. 根据测得的电压和电流数据,绘制伏安特性曲线图。
实验结果:根据实验数据绘制的伏安特性曲线图显示,二极管的伏安特性呈现出明显的非线性特性。
在正向偏置时,电流随着电压的增加而迅速增大;而在反向偏置时,电流保持在一个极低的水平上。
讨论与分析:1. 正向偏置时,二极管的导通特性使得电流能够顺利通过。
当电压增加到二极管的正向压降(正向电压)时,电流急剧增加,呈指数增长。
这是由于二极管内部的PN结在正向偏置下形成了导电通道,电流能够自由地流动。
这种特性使得二极管在电子设备中广泛应用于整流、放大、开关等电路中。
2. 反向偏置时,二极管的导通特性被阻断,电流无法通过。
在反向电压下,二极管的电流仅仅是由于少量的载流子扩散而产生的,因此电流非常微弱。
这种反向电流被称为反向饱和电流。
反向偏置使得二极管具有了单向导电性,可以用于保护电路免受反向电压的损害。
3. 二极管的伏安特性曲线图中,还可以观察到一个重要的参数——二极管的截止电压。
截止电压是指当二极管的电压低于一定值时,电流基本上为零。
截止电压是二极管的重要参数之一,它决定了二极管在电路中的工作状态和特性。
结论:通过本次实验,我们深入了解了二极管的伏安特性及其在电子设备中的应用。
二极管具有单向导电性,能够将电流限制在一个方向上流动。
它在正向偏置下具有导通特性,在反向偏置下具有阻断特性。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告一、实验目的1、深入理解二极管的单向导电性。
2、掌握测量二极管伏安特性曲线的方法。
3、了解二极管伏安特性曲线的特点及其影响因素。
二、实验原理二极管是一种由 P 型半导体和 N 型半导体组成的电子元件,具有单向导电性。
当二极管正向偏置时(P 区接高电位,N 区接低电位),电流容易通过;反向偏置时(P 区接低电位,N 区接高电位),电流极小。
二极管的伏安特性方程为:\I = I_S (e^{\frac{U}{nV_T}} 1)\其中,\(I\)是通过二极管的电流,\(I_S\)是反向饱和电流,\(U\)是二极管两端的电压,\(n\)是发射系数,\(V_T\)是温度的电压当量(约为 26 mV,在室温下)。
在正向偏置时,随着电压的增加,电流迅速增大;在反向偏置时,只有很小的反向饱和电流,当反向电压达到一定值(反向击穿电压)时,二极管被击穿,电流急剧增加。
三、实验仪器1、直流电源2、电压表(量程:0 20 V)3、电流表(量程:0 100 mA)4、电阻箱5、二极管6、导线若干四、实验步骤1、按照实验电路图连接好电路。
将二极管、电阻箱、电流表和直流电源串联,电压表并联在二极管两端。
2、调节直流电源,使输出电压为 0 V。
然后逐渐增加电压,每次增加 01 V,记录相应的电流值,直到电压达到 10 V 左右(正向偏置)。
3、接着,将电源极性反转,使二极管反向偏置。
从 0 V 开始逐渐增加反向电压,每次增加 1 V,记录对应的电流值,直到反向电压达到20 V 左右。
4、在实验过程中,要注意电流表和电压表的量程选择,避免超过量程损坏仪器。
五、实验数据记录与处理1、正向特性数据|电压(V)| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |08 | 09 | 10 ||::|::|::|::|::|::|::|::|::|::|::|::||电流(mA)| 000 | 015 | 050 | 120 | 250 | 500 | 850 |1500 | 2200 | 3000 | 4000 |2、反向特性数据|电压(V)| 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |170 | 180 | 190 | 200 ||::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::||电流(μA)| 000 | 010 | 020 | 030 | 050 | 080 | 120 |180 | 250 | 350 | 500 | 700 | 1000 | 1500 | 2000 | 2500 |3000 | 3500 | 4000 | 4500 | 5000 |3、绘制伏安特性曲线以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向和反向伏安特性曲线。
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告二极管的伏安特性曲线实验报告引言:二极管是一种广泛应用于电子电路中的元件。
在电子学中,了解二极管的伏安特性曲线对于设计和分析电路至关重要。
本实验旨在通过测量二极管在不同电压下的电流,绘制出其伏安特性曲线,并对实验结果进行分析和讨论。
实验原理:二极管是一种半导体器件,由正负两种掺杂的半导体材料构成。
在正向偏置下,二极管的导通电流迅速增加;而在反向偏置下,二极管的导通电流非常小。
通过测量二极管在不同电压下的电流,可以得到其伏安特性曲线。
实验步骤:1. 准备实验仪器和材料:二极管、直流电源、电流表、电压表、电阻、导线等。
2. 搭建实验电路:将二极管连接到直流电源的正负极上,通过电阻限制电流大小,同时连接电流表和电压表以测量电流和电压。
3. 设置直流电源输出电压:从0V开始,逐渐增加直流电源的输出电压,记录下每个电压下的电流值。
4. 绘制伏安特性曲线:将实验得到的电流和电压数据绘制在坐标系上,横轴表示电压,纵轴表示电流,通过连接各个数据点,即可得到二极管的伏安特性曲线。
实验结果与讨论:根据实验所得数据,我们绘制出了二极管的伏安特性曲线。
曲线的形状呈现出两个不同的区域:正向偏置区和反向偏置区。
在正向偏置区,随着电压的增加,二极管的导通电流迅速增加。
这是因为在正向偏置下,二极管的p-n结被正向电压击穿,电子和空穴得以结合,形成电流。
而随着电压继续增加,导通电流增加的速度逐渐减缓,直至达到饱和状态。
这是因为在饱和状态下,所有的电子和空穴都被结合,无法再增加导通电流。
在反向偏置区,二极管的导通电流非常小。
这是因为在反向偏置下,二极管的p-n结被反向电压击穿,电子和空穴被阻止结合,形成很小的反向漏电流。
这种反向漏电流也被称为反向饱和电流。
通过实验数据和曲线分析,我们可以得到二极管的一些重要参数。
例如,正向偏置下的导通电流(正向饱和电流)和反向偏置下的反向漏电流(反向饱和电流)。
这些参数对于电路设计和分析非常重要。
电路元件伏安特性的测绘实验报告
电路元件伏安特性的测绘实验报告实验目的,通过测绘电路元件的伏安特性,了解电路元件的电流与电压之间的关系,掌握电路元件的基本特性。
实验仪器与设备,电流电压测量仪、电阻箱、直流电源、导线、电路元件(如电阻、二极管等)。
实验原理,在电路中,电流与电压之间存在一定的关系,这种关系被称为伏安特性。
在直流电路中,电流和电压之间的关系可以用欧姆定律来描述,I=U/R,其中I为电流,U为电压,R为电阻。
而对于非线性元件(如二极管),其伏安特性则不满足欧姆定律,需要通过实验测绘其伏安特性曲线。
实验步骤:1. 将实验仪器接线连接好,保证电路连接正确无误。
2. 依次测绘电路中各个元件的伏安特性曲线。
3. 根据测绘得到的数据,绘制伏安特性曲线图。
4. 分析曲线图,得出电路元件的特性参数。
实验数据与结果:以电阻为例,测绘得到的伏安特性曲线呈现为一条直线,通过测绘数据计算得到电阻的阻值为100Ω。
而对于二极管,测绘得到的伏安特性曲线为非线性曲线,符合二极管的特性。
从曲线图中可以得出二极管的导通电压约为0.7V。
实验结论:通过本次实验,我们成功测绘了电路元件的伏安特性曲线,并得出了电路元件的特性参数。
实验结果表明,不同的电路元件具有不同的伏安特性,对于线性元件来说,其伏安特性曲线为一条直线,而对于非线性元件(如二极管),其伏安特性曲线为非线性曲线。
实验总结:本次实验通过测绘电路元件的伏安特性曲线,加深了对电路元件特性的理解,掌握了测绘伏安特性曲线的方法。
同时,也对实验仪器的使用和实验操作技能有了进一步的提高。
通过这次实验,我们不仅仅是简单地获取了一些数据,更重要的是加深了对电路元件伏安特性的理解,为今后的电路设计与分析打下了坚实的基础。
实验中遇到的问题与解决方法:在实验过程中,我们遇到了一些电路连接错误导致的数据异常,通过仔细检查电路连接,及时发现并排除了问题,保证了实验数据的准确性。
在今后的学习与工作中,我们将继续深入学习电路理论知识,不断提高实验操作技能,为今后的科研与工程实践打下坚实的基础。
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验是衡量并分析二极管运放特性的一种重要方式,本实验
旨在观察和测量二极管运放原理工作性质,探究一极管伏安特性曲线,测量有源阻抗及输
出特性,并不断改进电路设计,达到理想的电路特性。
实验过程:
1、准备实验设备:万用表、恒流源、可调电阻、电容、Power控制仪、二极管。
2、根据实验报告要求使用万用表调节可调电阻的电阻值,并使用恒流源将合适的电
流流入二极管。
3、进行实验,将二极管的输入和输出特性记录下来,并绘制出二极管伏安特性曲线,分析其特性。
4、修改电路,将实验结果与理论值对比,进行性能指标的比较,确定电路的优劣,
并不断改进电路设计,最终达到理想的电路特性。
本次实验测量了二极管伏安特性曲线,从实验结果可以看出,随着施加偏压的增加,
二极管控制区渐渐变大,放大系数逐渐增大,电路稳定性和可靠性也提高,功耗较低,噪
声低无失真,符合要求,可实现正常工作、放大及信号处理等功能。
实验可视化表明,原
理性能良好,各指标符合设计要求,将有助于更好更准确地测量电路特性,改进电路的设计,提高电路性能。
测量二极管的伏安特性实验报告
V
+
-
I
反向截止区
正向导通
正向连接 V
+
-
I
反向连接
反向击穿区 PN结的伏安特性曲线
2、电表的连接和接 入误差 要同时测得二极管的电流和二极管两端的电压,无论用安培表内 接还是安培表外接 总会产生接入误差,所以要尽量减小误差,并给予修正。
安培表内接电压表测得的电压是二极管和安培表的电压之和,所 以安培表的内阻越 小,测量结果越准确。
六、数据记录:
1、 二极管的正向特性
端电压 U/V 0.6778 I/mA(外接) 1.9999 端电压 U/V 0.6270 I/mA(外接) 0.3160 端电压 U/V 0.5670 I/mA(外接) 0.0443
mA 表外接时二极管的正向特性 0.6770 0.6670 0.6570 1.9355 1.3378 0.9276 0.6170 0.6070 0.5970 0.2230 0.1584 0.1135
备注:
指导教师签字: 年月日
注:1、报告内的项目或内容设置,可根据实际情况加以调整和补充。 2、教师批改学生实验报告时间应在学生提交实验报告时间后 10 日内。
反向特性: 当二极管的正极接在低电位端,负极接在高电位端,此时二极管 中几乎没有电流流 过,此时二极管处于截止状态,这种连接方式,称为反向偏置。二极管处于反向偏置时, 仍然会有微弱的反向电流流过二极管,称为漏电流。当二极管两端 的反向电压增大到某 一数值,反向电流会急剧增大,二极管将失去单方向导电特性,这 种状态称为二极管的 击穿。
四、实验仪器:
电阻元件 V—A 特性实验仪 DH6102(安培表、电压表、变阻器、直流电源、二极 管等。)
二极管伏安特性的测定
二极管伏安特性曲线的测定【一】实验目的电路中有各种电学元件,如碳膜电阻、线绕电阻、晶体二极管和三极管、光敏和热敏元件等。
人们常需要了解它们的伏安特性,以便正确的选用它们。
通常以电压为横坐标,电流为纵坐标作出元件的电压—电流关系曲线,叫做该元件的伏安特性曲线。
如果元件的伏安特性曲线是一条直线,说明通过元件的电流与元件两端的电压成正比,则称该元件为线性元件(例如碳膜电阻);如果元件的伏安特性曲线不是直线,则称其为非线性元件(例如晶体二极管、三极管)。
本实验通过测量二极管的伏安特性曲线,了解二极管的单向导电性的实质。
【二】实验原理晶体二极管是常见的非线性元件,其伏安特性曲线如图1所示。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压(锗二极管为0.2左右,硅二极管为0.7左右时),电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
二极管一般工作在正向导通或反向截止状态。
当正向导通时,注意不要超过其规定的额定电流;当反向截止时,更要注意加在该管的反向偏置电压应小于其反向击穿电压。
但是,稳压二极管却利用二极管的反向击穿特性而恰恰工作于反向击穿状态。
本实验用伏安法测定二极管的伏安特性,测量电路如图2所示。
测定二极管的电压与电流时,电压表与电流表有两种不同的接法。
如图2,电压表接A 、D 两端叫做电流表外接;电压表接A 、D ′端叫做电流表内接。
电流表外接时,其读数为流过二极管的电流I D 与流过电压表电流I V 之和,即测得的电流偏大;电流表内接时,电压表读数为二极管电压V D 与电流表电压V A 之和,即测得的电压偏大。
二极管伏安特性测量实验报告
二极管伏安特性测量实验报告二极管伏安特性曲线的测绘实验报告一、名称:二极管伏安特性曲线的测绘二、目的:依据二极管非线性电阻元件的特点,选择实验方案,设计合适的检测电路,选择配套的仪器,测绘出二极管元件的伏安特性曲线。
三、仪器:直流稳压电源、直流电流表、直流微安表(500?A)、万用表、电阻箱、滑线电阻、单刀开关、导线、待测二极管等。
四、原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串联接(转载于: 写论文网:二极管伏安特性测量实验报告)入限流电阻,以防因电流过大而损坏二极管。
二极管伏安特性示意图如图:五、步骤:(1) 反向特性测试电路。
二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。
测试电路见图,变阻器设置700?。
(2) 正向特性测试电路。
二极管在正向导通时,呈现的电阻值较小,拟采用电流表外接测试电路,电源电压在0~10V内调节,变阻器开始设置700?,调节电源电压,以得到所需电流值。
?图?,??二极管反向特性测试电路???????????????????????图?,???二极管正向特性测试电路??六、数据:反向伏安曲线测试数据表正向伏安曲线测试数据表七、数据处理:电阻修正值电流表外接修正公式:UR?(RV?106?)UI?RV反向伏安曲线正向伏安曲线篇二:二极管伏安特性曲线测量实验报告二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。
二极管伏安特性曲线的测试
二极管伏安特性曲线的测试
(一)原理图:
(二)原理分析:
二极管伏安特性是指二极管两端电压与通过二极管电流之间的关系,测试电
路如图所示。
利用遂点测量法,调节电位器R
P,改变输入电压u
1
,分别测出二
极管V两端电压u
D 和通过二极管的电流i
P
,即可在坐标纸上描绘出它的伏安特
性曲线i
D =f(u
D
)
(三)各元件作用分析:
电阻:分压作用
电位器R
P
:调节电压,使输入的电压由0变为5V
电压源:提供输入电压
(四)实验过程:在面包板上连接电路,经检查无误后,接通5V直流电源。
调
节电位器R
P,使输入电压u
1
按表所示从零逐渐增大至5V。
用万用表分
别测出电阻R两端电压uR和二极管两端电压u
D , 并根据iD=u
R
/R算出通
过二极管的电流i
D
,记于表中。
用同样方法进行两次测量,然后取其平均值,即可得到二极管的正向特性。
二极管的正向特性
二极管的反向特性
总结:1、二极管的功能单向导电性、稳压2、正向导通,反向截止
特性曲线图:。
伏安特性测量实验报告
伏安特性测量实验报告伏安特性测量实验报告引言伏安特性测量是电工学中一项基础实验,用于研究电流与电压之间的关系。
通过测量电阻器、二极管和电源等元件的伏安特性曲线,可以了解元件的电性能以及其在电路中的应用。
实验目的本实验旨在通过测量不同元件的伏安特性曲线,掌握伏安特性测量的方法和技巧,并通过实验结果对元件的特性进行分析和讨论。
实验装置与方法实验所用的装置包括电源、电阻箱、电流表、电压表、二极管等。
首先,将电源正负极分别接入电阻箱和二极管的正负极,将电流表和电压表分别与电阻箱和二极管相连。
然后,通过改变电阻箱的阻值和电源的电压,测量不同条件下电流和电压的数值。
最后,根据测量结果绘制伏安特性曲线。
实验结果与讨论在实验过程中,我们先测量了电阻器的伏安特性曲线。
通过改变电阻箱的阻值和电源的电压,我们得到了不同条件下的电流和电压数值,并绘制了伏安特性曲线。
实验结果表明,电阻器的伏安特性曲线呈线性关系,即电流随电压的变化而线性增加。
接下来,我们测量了二极管的伏安特性曲线。
通过改变电源的电压,我们得到了不同条件下的电流和电压数值,并绘制了伏安特性曲线。
实验结果表明,二极管的伏安特性曲线呈非线性关系,即当电压超过二极管的正向压降时,电流急剧增加;而当电压低于二极管的正向压降时,电流几乎为零。
根据实验结果,我们可以得出以下结论:电阻器是一种线性元件,其电流与电压成正比;而二极管是一种非线性元件,其电流与电压之间存在正向压降。
实验误差与改进在实验过程中,由于仪器的精度限制和操作的不准确性,可能会引入一定的误差。
例如,电流表和电压表的示数误差、电源的稳定性等因素都会对实验结果产生影响。
为了减小误差,我们可以采取以下改进措施:首先,使用更精确的仪器,如数字电流表和数字电压表,来提高测量的准确性。
其次,保证电源的稳定性,可以使用稳压电源或者电池组来提供稳定的电压。
最后,进行多次测量并取平均值,以减小随机误差的影响。
结论通过本实验,我们掌握了伏安特性测量的方法和技巧,并通过测量电阻器和二极管的伏安特性曲线,了解了不同元件的电性能以及其在电路中的应用。
伏安法测二极管的伏安特性(精)
3.R0为限流器(即电阻箱),改变电阻箱的阻值可改变正向电 流值。R1为限流器,R2为分压器。改变R1和R2可输出不 同的电压值,并由电压表指示,目的是与二极管两端的电 压进行比较。
4. 通常R1值越大,可测量的UD越小,R1值很小甚至为零, 可测量较大的UD值。
实验步骤和要求
1、根据图8-2连接线路,并预置R0为最大值,R1为最大 值,R2的输出为零,注意电表的极性!
2、接通电源,注意观察有无异常情况发生,否则马上 切断电源,根据现象检查故障。
3、选择各种值UD (0.1~0.6 V),对于每种UD值,调节 R0,使检流计指示为零,记下电流表的电流值. 4.根据测量数据,绘出二极管正向伏—安特性曲线
实验8 伏安法测二极管的伏—安特性
伏安法是测绘电阻元件伏安特性曲线的最简单的实验 方法。为了使测量更为精确,还可以利用电位差计、示波 器或电桥等检测仪器测量电阻的伏安特性曲线。 非线性电阻的伏安特性所反映的规律,总是与特定的一些 物理过程相联系的,对于非线性电阻特性和规律的深入分 析,有利于对有关物理过程的理解和认识。 实验目的 1、掌握分压器和限流器的使用方法。 2、熟悉测量伏安特性的方法。 3、了解二极管的正向伏安特性。
实验仪器和用具 器、 可变电阻箱、检流计、开关、待测二极管
.
图8-1 二极管的伏安特性
图8-2 伏安法测量二极管的特性电路
1. 当检流计指零时,电压表指示着二极管两端的正向电压值,
电流表A指示着流过二极管的正向电流 2. 如果将稳压电源的极性反向连接,按上述相同方法测量, 也可得到UD与ID的许多组数据,但这些数据表征着二极管 的反向特性。
2021年二极管伏安特性曲线的测绘实验报告
一、名称: 二极管伏安特征曲线测绘二、目:依据二极管非线性电阻元件特点, 选择试验方案, 设计适宜检测电路, 选择配套仪器, 测绘出二极管元件伏安特征曲线。
三、仪器:μ)、万用表、电阻箱、直流稳压电源、直流电流表、直流微安表(500A滑线电阻、单刀开关、导线、待测二极管等。
四、原理:对二极管施加正向偏置电压时, 则二极管中就有正向电流经过(多数载流子导电), 伴随正向偏置电压增加, 开始时, 电流随电压改变很缓慢, 而当正向偏置电压增至靠近二极管导通电压时(锗管为0.2V左右, 硅管为0.7V左右), 电流急剧增加, 二极管导通后, 电压少许改变, 电流改变都很大。
对上述二种器件施加反向偏置电压时, 二极管处于截止状态, 其反向电压增加至该二极管击穿电压时, 电流猛增, 二极管被击穿, 在二极管使用中应尽力避免出现击穿观察, 这很轻易造成二极管永久性损坏。
所以在做二极管反向特征时, 应串联接入限流电阻, 以防因电流过大而损坏二极管。
二极管伏安特征示意图如图:五、步骤:(1)反向特征测试电路。
二极管反向电阻值很大, 采取电流表内接测试电路能够降低测量误差。
测试电路见图, 变阻器设置700Ω。
(2)正向特征测试电路。
二极管在正向导通时, 展现电阻值较小, 拟采取电流表外接测试电路, 电源电压在0~10V内调整, 变阻器开始设置700Ω, 调整电源电压, 以得到所需电流值。
图2-3 二极管反向特征测试电路 图2-4 二极管正向特征测试电路六、数据:反向伏安曲线测试数据表U V()μI A()电阻计算值()KΩ正向伏安曲线测试数据表正向伏安曲线测试数据 ()I mA ()U V 电阻计算值()KΩ 电阻修正值()Ω 注意: 试验时二极管正向电流不得超出20mA七、数据处理:电阻修正值电流表外接修正公式:6(10)V VU R R U I R ==Ω-反向伏安曲线正向伏安曲线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、名称:二极管伏安特性曲线的测绘
二、目的:
依据二极管非线性电阻元件的特点,选择实验方案,设计合适的检测电路,选择配套的仪器,测绘出二极管元件的伏安特性曲线。
三、仪器:
μ)、万用表、电阻箱、滑直流稳压电源、直流电流表、直流微安表(500A
线电阻、单刀开关、导线、待测二极管等。
四、原理:
对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为0.2V左右,硅管为0.7V左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串联接入限流电阻,以防因电流过大而损坏二极管。
二极管伏安特性示意图如图:
五、步骤:
(1)反向特性测试电路。
二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。
测试电路见图,变阻器设置700Ω。
(2)正向特性测试电路。
二极管在正向导通时,呈现的电阻值较小,拟采用电流表外接测试电路,电源电压在0~10V内调节,变阻器开始设置700Ω,
调节电源电压,以得到所需电流值。
图-二极管反向特性测试电路
图-二极管正向特性测试电路
六、数据:
反向伏安曲线测试数据表
U V
()
μ
()
I A
电阻计算值()
KΩ
正向伏安曲线测试数据表
正向伏安曲线测试数据()
I mA U V ()
电阻计算值()
KΩ
电阻修正值()
Ω
七、数据处理:
电阻修正值电流表外接修正公式:
6(10)V V
U
R R U I R =
=Ω-
反向伏安曲线
正向伏安曲线。