2019届高三数学10月月考试题理(1)

合集下载

四川省成都市第七中学2025届高三上学期10月月考数学试题

四川省成都市第七中学2025届高三上学期10月月考数学试题

四川省成都市第七中学2025届高三上学期10月月考数学试题一、单选题1.已知集合{A x y ==,{}21x B y y ==+,则A B =I ( )A .(]1,2B .(]0,1C .[]1,2D .[]0,2 2.已知复数z 满足23i z z +=+,则3iz +=( )A .12i +B .12i -C .2i +D .2i -3.已知向量a r ,b r 满足222a b a b -=-=rr r r ,且1b =r ,则a b ⋅=r r ( )A .14 B .14- C .12 D .12-4.如图为函数y =f x 在[]6,6-上的图象,则()f x 的解析式只可能是( )A .())ln cos f x x x =B .())ln sin f x x x =C .())ln cos f x x x =D .())ln sin f x x x =5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为( ) A .ππ0x y +-= B .ππ0x y -+= C .π0x y -+= D .0x y += 6.在体积为12的三棱锥A BCD -中,AC AD ⊥,BC BD ⊥,平面ACD ⊥平面BCD ,π3ACD ∠=,π4BCD ∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为( )A .12πB .16πC .32πD .48π7.若sin()cos 2sin()αβααβ+=-,则tan()αβ+的最大值为( )A B C D8.设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c a b <<B .b c a <<C .b a c <<D .a b c <<二、多选题9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:11a >,202420251,a a >20242025101a a -<-,下列结论正确的是( ) A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.一个不透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则( ) A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A I 与事件13A A ⋂是互斥事件 11.已知6ln ,6e n m m a n a =+=+,其中e n m ≠,则e n m +的取值可以是( ) A .e B .2e C .23e D .24e三、填空题12.若1sin 3α=-,则()cos π2α-=. 13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为.14.已知点()2,0A ,()1,4B ,M ,N 是y 轴上的动点,且满足4MN =,AMN V 的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为,PQ PB +的最小值为.四、解答题V的内角A,B,C的对边分别为a,b,c,且15.设ABC()()()b a ABC BACc ABC C+∠-∠=∠-,BC,AC边上的两条中线AD,BE相交sin sin sin sin于点P.∠;(1)求BACV的面积.(2)若AD=BE=2,cos DPE∠=ABC16.如图,在三棱锥D-ABC中,△ABC是以AB为斜边的等腰直角三角形,△ABD是边长为2的正三角形,E为AD的中点,F为DC上一点,且平面BEF⊥平面ABD.(1)求证:AD⊥平面BEF;(2)若平面ABC⊥平面ABD,求平面BEF与平面BCD夹角的余弦值.17.为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:附表:2()()()()()n ad bc a b c d a c b d χ-=++++. (1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.已知函数()()ln 1f x x =+.(1)求曲线y =f x 在3x =处的切线方程.(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线y =g x 关于直线x m =对称.19.已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和⎛- ⎝⎭. (1)求椭圆C 的标准方程; (2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于A ,B 两点,过点A ,B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB V 面积的最大值.。

西安区第二中学2018-2019学年上学期高三数学10月月考试题含解析

西安区第二中学2018-2019学年上学期高三数学10月月考试题含解析

西安区第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 2. 若几何体的三视图如图所示,则该几何体的体积为( )A .B .C .D .π3. 在△ABC 中,a 2=b 2+c 2+bc ,则A 等于( ) A .120° B .60° C .45° D .30°4. 阅读如下所示的程序框图,若运行相应的程序,则输出的S 的值是( )A .39B .21C .81D .1025. 设S n 为等比数列{a n }的前n 项和,若a 1=1,公比q=2,S k+2﹣S k =48,则k 等于( )A .7B .6C .5D .46. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是( )A .()1,10B .()1,+∞C .()0,1D .()10,+∞ 7. 下列函数中,定义域是R 且为增函数的是( )A.x y e -=B.3y x = C.ln y x = D.y x = 8. 设定义域为(0,+∞)的单调函数f (x ),对任意的x ∈(0,+∞),都有f[f (x )﹣lnx]=e+1,若x 0是方程f (x )﹣f ′(x )=e 的一个解,则x 0可能存在的区间是( )A .(0,1)B .(e ﹣1,1)C .(0,e ﹣1)D .(1,e )9. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 10.平面α与平面β平行的条件可以是( )A .α内有无穷多条直线与β平行B .直线a ∥α,a ∥βC .直线a ⊂α,直线b ⊂β,且a ∥β,b ∥αD .α内的任何直线都与β平行11.已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .12.若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为22,则这个圆的方程是( ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++=二、填空题13.直线l :(t 为参数)与圆C :(θ为参数)相交所得的弦长的取值范围是 .14.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.15.某慢性疾病患者,因病到医院就医,医生给他开了处方药(片剂),要求此患者每天早、晚间隔小时各服一次药,每次一片,每片毫克.假设该患者的肾脏每小时从体内大约排出这种药在其体内残留量的,并且医生认为这种药在体内的残留量不超过毫克时无明显副作用.若该患者第一天上午点第一次服药,则第二天上午点服完药时,药在其体内的残留量是 毫克,若该患者坚持长期服用此药 明显副作用(此空填“有”或“无”)16.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.三、解答题17.已知曲线21()f x e x ax=+(0x ≠,0a ≠)在1x =处的切线与直线2(1)20160e x y --+= 平行.(1)讨论()y f x =的单调性;(2)若()ln kf s t t ≥在(0,)s ∈+∞,(1,]t e ∈上恒成立,求实数的取值范围.18.(本小题满分12分)如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .19.(本小题满分12分)已知1()2ln ()f x x a x a R x=--∈. (Ⅰ)当3a =时,求()f x 的单调区间;(Ⅱ)设()()2ln g x f x x a x =-+,且()g x 有两个极值点,其中1[0,1]x ∈,求12()()g x g x -的最小值. 【命题意图】本题考查导数的应用等基础知识,意在考查转化与化归思想和综合分析问题、解决问题的能力.20.【南京市2018届高三数学上学期期初学情调研】已知函数f (x )=2x 3-3(a +1)x 2+6ax ,a ∈R . (Ⅰ)曲线y =f (x )在x =0处的切线的斜率为3,求a 的值;(Ⅱ)若对于任意x ∈(0,+∞),f (x )+f (-x )≥12ln x 恒成立,求a 的取值范围; (Ⅲ)若a >1,设函数f (x )在区间[1,2]上的最大值、最小值分别为M (a )、m (a ), 记h (a )=M (a )-m (a ),求h (a )的最小值.21.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100](Ⅰ)求图中x 的值,并估计该班期中考试数学成绩的众数;(Ⅱ)从成绩不低于90分的学生和成绩低于50分的学生中随机选取2人,求这2人成绩均不低于90分的概率.22.已知和均为给定的大于1的自然数,设集合,,,...,,集合..。

黑龙江省哈尔滨市第六中学2019届高三10月月考地理试卷(有答案)

黑龙江省哈尔滨市第六中学2019届高三10月月考地理试卷(有答案)

哈尔滨市第六中学2019届10月阶段性总结高三地理试题一、单项选择题(本大题共有40小题,1--20每小题2分,21--40每小题1分,共计60分)木糖醇是可以从白桦树、橡树、玉米芯、甘蔗渣等植物中提取出来的一种天然植物甜味剂。

据此回答1-2题。

1.木糖醇生产厂应当接近( )A.消费市场B.原料产地C.廉价劳动力地区D.研发基地2.材料所述木糖醇工业原料中的糖料作物,在我国分布广泛的省区是( )A.四川、吉林B.宁夏、新疆C.江苏、河北D.广东、台湾地坑院也叫地窖,在我国已有约四千年历史了。

地坑院就是在平整的地面上挖一个正方形或长方形的深坑,深约6-7米,然后在坑的四壁挖若干孔洞,其中一孔洞内有一条斜坡通道拐个弧形直角通向地面,是人们出行的门洞。

结合下图,回答3-5题。

3.地坑院反映的当地环境是( )A.土层深厚B.冬暖夏凉C.降水稀少D.木材短缺4.下图中地坑院出入通道周围的砖墙主要作用是( )A.挡风B.防水C.阻沙D.遮阳5.该地可能位于( )A.河南B.黑龙江C.新疆D.福建一棵10米高的树长成可能需要50年,而这样高的竹子却只需约50天,不到5年便可以利用;因此,竹子产业被称作“黄金绿色产业”。

中国的成片竹林面积、年产竹材、年产竹笋数量分别为世界总量的1/3、1/3、1/2,位居全球之首,完成下列6-7小题。

6. 要发挥竹子的经济效益,应着眼于()A.发挥优势,扩大竹子的种植面积B.加大科技投入,进行深加工C.扩大竹笋食品的出口D.加强管理,提高竹子产量7. 竹子产业被称作“黄金绿色产业”,是因为()A.常年绿色,多用作园林绿化B.能帮助农民快速脱贫致富C.适应性强,在我国东部季风区都可推广种植D.分布广,能产生巨大的经济效益和环境效益下图为我国某月降水地区分布图(阴影部分)。

据此完成8-9问题。

8.图示的月份,华北地区哪个职能部门工作压力最大()A.电力部门B.水力部门 C.交通部门 D.通讯部门9.此时长江中下游的天气状况与下面诗句描述相对应的是()A.一年三季东风雨,独有夏季东风晴 B.忽如一夜春风来,千树万树梨花开C.黄梅时节家家雨,青草池塘处处蛙 D.三月东风吹雪消,湖南山色翠如浇快捷支付是一种全新的支付理念,具有方便、快速的特点,是未来消费的发展趋势,其特点体现在“快”。

乐昌市第一中学2018-2019学年上学期高三数学10月月考试题

乐昌市第一中学2018-2019学年上学期高三数学10月月考试题
x
(1)若曲线 y f x 与直线 y g x 相切,求实数 m 的值; (2)记 h x f x g x ,求 h x 在 0,1 上的最大值;
第 4 页,共 15 页
(3)当 m 0 时,试比较 e
f x 2
与 g x 的大小.
cos F1 PF2
A.
1 ,则双曲线的离心率等于( 2 5 B. 2
6 2
D.
7 2为折线 AC B,则不等式 f(x)≥log2(x+1)的解集是 .
14.抛物线 y2=﹣8x 上到焦点距离等于 6 的点的坐标是 . 15.定义在 R 上的可导函数 f ( x) ,已知
由图可得不等式 f(x)≥log2(x+1)的解集是:(﹣1,1],. 故答案为:(﹣1,1]
第 8 页,共 15 页
14.【答案】 (﹣4,
) . =2.
【解析】解:∵抛物线方程为 y2=﹣8x,可得 2p=8, ∴抛物线的焦点为 F(﹣2,0),准线为 x=2. 设抛物线上点 P(m,n)到焦点 F 的距离等于 6,
19.【镇江 2018 届高三 10 月月考文科】已知函数
第 3 页,共 15 页
,其中实数 为常数, 为自然对数的底数.
(1)当 (2)当 (3)当
时,求函数 时,如果函数
的单调区间; ; 不存在极值点,求 的取值范围.
时,解关于 的不等式
20.已知斜率为 2 的直线 l 被圆 x2+y2+14y+24=0 所截得的弦长为
20 名代表调查对这一提案的态度,已知该厂青年,中年,老年职工人数分别为 350 , 500 , 150 ,按分

数学丨辽宁省辽宁省实验中学2025届高三10月月考暨第一次阶段测试数学试卷及答案

数学丨辽宁省辽宁省实验中学2025届高三10月月考暨第一次阶段测试数学试卷及答案

辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要2.若,则()A. B. C. D.3.已知函数在上单调递增,则的取值范围是()A. B. C. D.4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形B.当时,是锐角三角形C.当时,是钝角三角形D.当时,是钝角三角形5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.7.已知正数,满足,则下列说法不正确的是()A. B.C D.8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

全部选对得6分,选对但不全的得部分分,有选错的得0分。

9.下列函数在其定义域上既是奇函数又是增函数的是()A. B.C. D.10.函数,(,)部分图象如图所示,下列说法正确的是()A.函数解析式为B.函数的单调增区间为C.函数的图象关于点对称D.为了得到函数的图象,只需将函数向右平移个单位长度11.已知函数,若有6个不同的零点分别为,且,则下列说法正确的是()A.当时,B.的取值范围为C.当时,取值范围为D.当时,的取值范围为三、填空题:本大题共3小题,每小题5分,共15分.12.已知,则用表示为______.13.已知,则的最小值为______.14.在锐角中,角的对边分别为,的面积为,满足,若,则的最小值为______.四、解答题:本大题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.为了研究学生的性别和是否喜欢跳绳的关联性,随机调查了某中学的100名学生,整理得到如下列联表:男学生女学生合计喜欢跳绳353570不喜欢跳绳102030合计4555100(1)依据的独立性检验,能否认为学生的性别和是否喜欢跳绳有关联?(2)已知该校学生每分钟的跳绳个数,该校学生经过训练后,跳绳个数都有明显进步.假设经过训练后每人每分钟的跳绳个数都增加10,该校有1000名学生,预估经过训练后该校每分钟的跳绳个数在内的人数(结果精确到整数).附:,其中.0.10.050.012.7063.841 6.635若,则,16.已知函数.(1)若在R上单调递减,求a的取值范围;(2)若,判断是否有最大值,若有,求出最大值;若没有,请说明理由.17.已知数列的前n项和为,数列满足,.(1)证明等差数列;(2)是否存在常数a、b,使得对一切正整数n都有成立.若存在,求出a、b的值;若不存在,说明理由.18.在中,设角A,B,C所对的边分别是a,b,c,且满足.(1)求角B;(2)若,求面积的最大值;(3)求的取值范围.19.已知集合是具有下列性质的函数的全体,存在有序实数对,使对定义域内任意实数都成立.(1)判断函数,是否属于集合,并说明理由;(2)若函数(,、为常数)具有反函数,且存在实数对使,求实数、满足的关系式;(3)若定义域为的函数,存在满足条件的实数对和,当时,值域为,求当时函数的值域.辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若,则是的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要【答案】A【解析】【分析】根据指、对数函数单调性解不等式,再根据包含关系分析充分、必要条件.【详解】对于,则,解得;对于,则,解得;因为是的真子集,所以是的充分不必要条件.故选:A.2.若,则()A. B. C. D.【答案】C【解析】【分析】先由条件得到,化弦为切,代入求出答案.【详解】因为,所以,所以.故选:C3.已知函数在上单调递增,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】根据在上恒大于0,且单调递增,可求的取值范围.【详解】因为函数在上单调递增,所以在上单调递增,所以.且在恒大于0,所以或.综上可知:.故选:B4.在中,角,,的对边分别为,,,若为非零实数),则下列结论错误的是()A.当时,是直角三角形B.当时,是锐角三角形C.当时,是钝角三角形D.当时,是钝角三角形【答案】D【解析】【分析】由正弦定理化简已知可得,利用余弦定理,勾股定理,三角形两边之和大于第三边等知识逐一分析各个选项即可得解.【详解】对于选项,当时,,根据正弦定理不妨设,,,显然是直角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,显然是等腰三角形,,说明为锐角,故是锐角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,可得,说明为钝角,故是钝角三角形,故命题正确;对于选项,当时,,根据正弦定理不妨设,,,此时,不等构成三角形,故命题错误.故选:D.5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是,通过主动降噪芯片生成的反向声波曲线是(其中,,),则().A. B. C.π D.【答案】D【解析】【分析】根据题意,结合余弦型函数的性质进行求解即可.【详解】由于抵消噪音,所以振幅没有改变,即,所以,要想抵消噪音,需要主动降噪芯片生成的声波曲线是,即,因为,所以令,即,故选:D.6.已知函数是定义在上的偶函数,且在区间单调递减,若,且满足,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】根据函数的奇偶性、单调性、对数运算等知识列不等式,由此求得的取值范围.【详解】依题意,是偶函数,且在区间单调递减,由得,所以,所以或,所以或,所以的取值范围是.故选:D7.已知正数,满足,则下列说法不正确的是()A. B.C. D.【答案】C【解析】【分析】令,则,对于A,直接代入利用对数的运算性质计算判断,对于B,结合对数函数的单调性分析判断,对于C,利用作差法分析判断,对于D,对化简变形,结合幂的运算性质及不等式的性质分析判断.【详解】令,则,对于A,,所以A正确,对于B,因为在上递增,且,所以,即,即,所以,所以B正确,对于C,因为,所以,所以C错误,对于D,,因为,所以,所以,所以,因为,所以,所以,所以,所以,所以D正确,故选:C8.设函数在上至少有两个不同零点,则实数取值范围是()A. B. C. D.【答案】A【解析】【分析】先令得,并得到,从小到大将的正根写出,因为,所以,从而分情况,得到不等式,求出答案.【详解】令得,因为,所以,令,解得或,从小到大将的正根写出如下:,,,,,……,因为,所以,当,即时,,解得,此时无解,当,即时,,解得,此时无解,当,即时,,解得,故,当,即时,,解得,故,当时,,此时在上至少有两个不同零点,综上,的取值范围是.故选:A【点睛】方法点睛:在三角函数图象与性质中,对整个图象性质影响最大,因为可改变函数的单调区间,极值个数和零点个数,求解的取值范围是经常考察的内容,综合性较强,除掌握三角函数图象和性质,还要准确发掘题干中的隐含条件,找到切入点,数形结合求出相关性质,如最小正周期,零点个数,极值点个数等,此部分题目还常常和导函数,去绝对值等相结合考查综合能力.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。

重庆市南坪中学校2019届高三数学上学期月考试题理

重庆市南坪中学校2019届高三数学上学期月考试题理

重庆市南坪中学校2019届高三数学上学期月考试题 理考试时间:120分钟 分值:150分第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{}(){}|sin ,x R ,|lg A y y x B x y x ==∈==-,则AB =()A .(]0,1B .[)1,0-C .[]1,0-D .(],1-∞ 2.已知复数满足i z i 3)31(=+,则()A .i 2323+ B .i 2323- C .i 4343+ D .i 4343- 3.设命题2:,ln p x R x x ∀∈>,则为()A .2000,ln x R x x ∃∈> B .2,ln x R x x ∀∈≤ C .2000,ln x R x x ∃∈≤ D .2,ln x R x x ∀∈<4.已知平面向量 与 00 相互垂直, =(﹣1,1)||=1,则|+2|=( ) A .B .C .2D .5.已知实数()ln ln ln ,ln ,2a b c πππ===,则,,a b c 的大小关系为()A .a b c <<B .a c b <<C .b a c <<D .c a b <<6.已知双曲线22221(0,0)x y a b a b -=>>(为双曲线的半焦距),则双曲线的离心率为() A .37 B .273C .73 D .773 7.执行如图所示的程序框图,若输入2,1==b a ,则输出的()A .25.1B .375.1C .4375.1D .40625.18.ABC ∆中,“角,,A B C 成等差数列”是“)sin sin cos C A A B =+”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件 9.已知函数()()2sin 0,22f x x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭的部分图象如图所示,则把函数()f x 的图像向左平移6π后得到的函数图象的解析式是()A .2sin 2y x =B .2sin 23y x π⎛⎫=-⎪⎝⎭C .2sin 26y x π⎛⎫=-⎪⎝⎭D .2sin 6y x π⎛⎫=-⎪⎝⎭10.已知数列{}n a 满足:)2112,11n a a +==+, 则12a =()A .B .122C .145D .17011.已知函数()()1,1010lg 2,10x x f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪-+>⎩,若()()282f m f m -<,则实数的取值范围是() A .()4,2- B .()4,1- C .()2,4- D .()(),42,-∞-+∞12.已知函数()21,g x m x x e e e ⎛⎫=-≤≤⎪⎝⎭为自然对数的底数与()2ln h x x =的图象上存在关于轴对称的点,则实数的取值范围是( )A .211,2e ⎡⎤+⎢⎥⎣⎦B .21,2e ⎡⎤-⎣⎦C .2212,2e e ⎡⎤+-⎢⎥⎣⎦D .)22,e ⎡-+∞⎣第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分。

西江中学高三数学10月月考试题(理科)

西江中学高三数学10月月考试题(理科)

西江中学2019届高三数学10月月考试题(理科)西江中学2019届高三数学10月月考试题(理科)参考公式:独立性检验:设随机变量(其中)是由观测样本的22列联表所得到的随机变量,则的计算值对应的概率如下表所示:P(K20.500. 400.250.150.100.050.0250.0100.0050.001k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828选择题:1.设全集,则A.{1}B.{l,2}C.{0,1,2}D.{一1,0,1,2}2.复数满足,则在复平面上复数对应的点位( )第一象限第二象限第三象限第四象限3. 下列函数中,既是奇函数又是在定义域上是减函数的为( ).A. B. C. D.4. 在中,若,则( ).A. B. C. D.5.如图右所示,该程序运行后输出的结果为()A.14B.16C.18D.646.如图1,、分别是正方体中、上的动点(不含端点),则四边形的俯视图可能是A. B. C. D.7.现有16张不同卡片,其中红色,黄色,蓝色,绿色卡片各4张,从中任取3张,要求这3张不能是同一颜色,且红色卡片至多1张,不同的取法为( )A.232种B.252种C.472种D.484种8.在区间上随机取两个数,其中满足的概率是( )A. B. C. D.二、填空题:9. 不等式的解集是.10. .11. 已知平面向量,,若,则实数.12. 若,满足约束条件,则的最大值是.13. 曲线在点处的切线方程为.选做(两题任选做一题)14. 以直角坐标系的原点为极点,x轴非负半轴为极轴,建立极坐标系,在两种坐标系中取相同的单位长度,点的极坐标为,曲线的参数方程为,则曲线上的点B与点A距离的最大值为.15. 如图,在中,斜边,直角边,如果以C为圆心的圆与AB相切于,则的半径长为。

解答题:(本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.)16. (本小题满分12分)已知、都是锐角,,,⑴求和的值;⑵求和的值。

湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案

湖北省襄阳市2024-2025学年高三上学期10月月考数学试题含答案

襄阳2025届高三上学期10月月考数学试卷(答案在最后)命题人:一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.已知集合31A x x ⎧⎫=∈∈⎨⎬-⎩⎭Z Z ,则用列举法表示A =()A.{}2,0,1,2,4- B.{}2,0,2,4- C.{}0,2,4 D.{}2,4【答案】B 【解析】【分析】由题意可得1x -可为1±、3±,计算即可得.【详解】由题意可得1x -可为1±、3±,即x 可为0,2,2,4-,即{}2,0,2,4A =-.故选:B.2.设3i,ia a z +∈=R ,其中i 为虚数单位.则“1a <-”是“z >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】首先根据复数代数形式的除法运算化简z ,再求出z,令z >求出相应的a 的取值范围,最后根据充分条件、必要条件的定义判断即可.【详解】因为23i 3i 3i i ia az a +-===-,所以z =令z >,即>1a >或1a <-,所以1a <-推得出z >,故充分性成立;由z >推不出1a <-,故必要性不成立;所以“1a <-”是“z >”的充分不必要条件.故选:A3.已知向量a ,b 不共线,且c a b λ=+ ,()21d a b λ=++ ,若c 与d 同向共线,则实数λ的值为()A.1B.12C.1或12-D.1-或12【答案】B 【解析】【分析】先根据向量平行求参数λ,再根据向量同向进行取舍.【详解】因为c与d 共线,所以()2110λλ+-=,解得1λ=-或12λ=.若1λ=-,则c a b =-+,d a b =- ,所以d c =- ,所以c 与d 方向相反,故舍去;若12λ=,则12c a b =+ ,2d a b =+ ,所以2d c = ,所以c与d 方向相同,故12λ=为所求.故选:B4.已知3322x y x y ---<-,则下列结论中正确的是()A.()ln 10y x -+>B.ln0yx> C.ln 0y x +> D.ln 0y x ->【答案】A 【解析】【分析】构造函数()32xf x x -=-,利用()f x 的单调性可得x y <,进而可得.【详解】由3322x y x y ---<-得3322x y x y ---<-,设()32xf x x -=-,因函数3y x =与2x y -=-都是R 上的增函数,故()f x 为R 上的增函数,又因3322x y x y ---<-,故x y <,()ln 1ln10y x -+>=,故A 正确,因y x,y x +,y x -与1的大小都不确定,故B ,C ,D 错误,故选:A5.从0,1,2,3,4,5,6这7个数中任选5个组成一个没有重复数字的“五位凹数12345a a a a a ”(满足12345a a a a a >><<),则这样的“五位凹数”的个数为()A.126个B.112个C.98个D.84个【答案】A 【解析】【分析】利用分步乘法计数原理可得.【详解】第一步,从0,1,2,3,4,5,6这7个数中任选5个共有57C 种方法,第二步,选出的5个数中,最小的为3a ,从剩下的4个数中选出2个分给12,a a ,由题意可知,选出后1245,,,a a a a 就确定了,共有24C 种方法,故满足条件的“五位凹数”5274C C 126=个,故选:A6.若数列{}n a 满足11a =,21a =,12n n n a a a --=+(3n ≥,n 为正整数),则称数列{}n a 为斐波那契数列,又称黄金分割数列.在现代物理、准晶体结构、化学等领域,斐波那契数列都有直接的应用.设n S 是数列{}n a 的前n 项和,则下列结论成立的是()A.78a =B.135********a a a a a +++⋅⋅⋅+=C.754S =D.24620202021a a a a a +++⋅⋅⋅+=【答案】B 【解析】【分析】按照斐波那契数列的概念,找出规律,得出数列的性质后逐个验证即可.【详解】解析:按照规律有11a =,21a =,32a =,43a =,55a =,68a =,713a =,733S =,故A 、C 错;21112123341n n n n n n n n n n n n n n a a a a a a a a a a a a a S ++--------=+=+++=+++++==+ ,则202020181220183520191352019111a S a a a a a a a a a a =+=++++=++++=++++ ,故B 对;24620202234520182019a a a a a a a a a a a ++++=+++++++ 1234520182019201920211a a a a a a a S a =+++++++==- ,故D 错.故选:B .7.已知12,F F 是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,A ,B 是椭圆C 上的两点.若122F A F B = ,且12π4AF F ∠=,则椭圆C 的离心率为()A.13B.23C.33D.23【答案】B 【解析】【分析】设1AF =,结合题意可得2AF ,根据椭圆定义整理可得22b c m -=,根据向量关系可得1F A ∥2F B ,且2BF =2b c m+=,进而可求离心率.【详解】由题意可知:()()12,0,,0F c F c -,设1,0AF m =>,因为12π4AF F ∠=,则()2,2A c m m -+,可得2AF =由椭圆定义可知:122AF AF a +=,即2a =,整理可得22b c m-=;又因为122F A F B = ,则1F A ∥2F B ,且2112BF AF ==,则(),B c m m +,可得1BF =由椭圆定义可知: 䁕2a =,2bcm+=;即2c c-=+3c=,所以椭圆C的离心率3cea==.故选:B.【点睛】方法点睛:椭圆的离心率(离心率范围)的求法求椭圆的离心率或离心率的范围,关键是根据已知条件确定a,b,c的等量关系或不等关系,然后把b用a,c代换,求e的值.8.圆锥的表面积为1S,其内切球的表面积为2S,则12SS的取值范围是()A.[)1,+∞ B.[)2,+∞C.)∞⎡+⎣ D.[)4,+∞【答案】B【解析】【分析】选择OBC∠(角θ)与内切球半径R为变量,可表示出圆锥底面半径r和母线l,由圆锥和球的表面积公式可得()122212tan1tanSSθθ=-,再由2tan(0,1)tθ=∈换元,转化为求解二次函数值域,进而得12SS的取值范围.【详解】设圆锥的底面半径为r,母线长为l,圆锥内切球半径为R,如图作出圆锥的轴截面,其中设O为外接圆圆心,,D E为切点,,AB AC为圆锥母线,连接,,,OB OD OA OE.设OBCθ∠=,tanRrθ=,0tan1θ<<tanRrθ∴=.OD AB⊥,OE BC⊥,πDBE DOE∴∠+∠=,又πAOD DOE∠+∠=,2AOD DBE θ∴∠=∠=,tan 2AD R θ∴=,22tan 2tan Rl r AD BD r AD r R θθ∴+=++=+=+,则圆锥表面积()21πππS r rl r l r =+=+,圆锥内切球表面积224πS R =,所求比值为()212222π2tan 21tan 1tan tan 4π2tan 1tan R R R S S R θθθθθθ⎛⎫+ ⎪-⎝⎭==-,令2tan 0t θ=>,则()2211()2122222g t t t t t t ⎛⎫=-=-+=--+ ⎪⎝⎭,则10()2g t <≤,且当12t =时,()g t 取得最大值12,故122S S ≥,即12S S 的取值范围是[)2,+∞.故选:B.【点睛】关键点点睛:求解立体几何中的最值问题一般方法有两类,一是设变量(可以是坐标,也可以是关键线段或关键角)将动态问题转化为代数问题,利用代数方法求目标函数的最值;二是几何法,利用图形的几何性质,将空间问题平面化,将三维问题转化为二维问题来研究,以平面几何中的公理、定义、定理为依据,以几何直观为主要手段直接推理出最值状态何时取到,再加以求解.二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设A ,B 为随机事件,且()P A ,()P B 是A ,B 发生的概率.()P A ,()()0,1P B ∈,则下列说法正确的是()A.若A ,B 互斥,则()()()P A B P A P B ⋃=+B.若()()()P AB P A P B =,则A ,B 相互独立C .若A ,B 互斥,则A ,B 相互独立D.若A ,B 独立,则()(|)P B A P B =【答案】ABD 【解析】【分析】利用互斥事件的概率公式可判断A 选项;由相互独立事件的概念可判断B 选项;由互斥事件和相互独立事件的概念可判断C 选项;由相互独立事件的概念,可判断D 选项.【详解】对于选项A ,若,A B 互斥,根据互斥事件的概率公式,则()()()P A B P A P B ⋃=+,所以选项A 正确,对于选项B ,由相互独立事件的概念知,若()()()P AB P A P B =,则事件,A B 是相互独立事件,所以选项B 正确,对于选项C ,若,A B 互斥,则,A B 不一定相互独立,例:抛掷一枚硬币的试验中,事件A :“正面朝上”,事件B :“反面朝上”,事件A 与事件B 互斥,但()0P AB =,1()()2P A P B ==,不满足相互独立事件的定义,所以选项C 错误,对于选项D ,由相互独立事件的定义知,若A ,B 独立,则()(|)P B A P B =,所以选项D 正确,故选:ABD.10.已知函数()sin sin cos 2f x x x x =-,则()A.()f x 的图象关于点(π,0)对称B.()f x 的值域为[1,2]-C.若方程1()4f x =-在(0,)m 上有6个不同的实根,则实数m 的取值范围是17π10π,63⎛⎤⎥⎝⎦D.若方程[]22()2()1(R)f x af x a a -+=∈在(0,2π)上有6个不同的实根(1,2,,6)i x i = ,则61ii ax=∑的取值范围是(0,5π)【答案】BCD 【解析】【分析】根据(2π)()f f x =-是否成立判断A ,利用分段函数判断BC ,根据正弦函数的单调性画出分段函数()f x 的图象,求出的取值范围,再利用对称性判断D.【详解】因为()sin sin cos 2f x x x x =-,所以(2π)sin(2π)sin(2π)cos 2(2π)sin sin cos 2()f x x x x x x x f x -=----=--≠-,所以()f x 的图象不关于点(π,0)对称,故A 错误;当sin 0x ≥时,()222()sin 12sin 3sin 1f x x x x =--=-,由[]sin 0,1x ∈可得[]()1,2f x ∈-,当sin 0x <时,()222()sin 12sin sin 1f x x x x =---=-,由[)sin 1,0x ∈-可得(]()1,0f x ∈-,综上[]()1,2f x ∈-,故B 正确:当sin 0x ≥时,由21()3sin 14f x x =-=-解得1sin 2x =,当sin 0x <时,由21()sin 14f x x =-=-解得3sin 2x =-,所以方程1()4f x =-在(0,)+∞上的前7个实根分别为π6,5π6,4π3,5π3,13π6,17π6,10π3,所以17π10π63m <≤,故C 正确;由[]22()2()1f x af x a -+=解得()1f x a =-或()1f x a =+,又因为()223sin 1,sin 0sin 1,sin 0x x f x x x ⎧-≥=⎨-<⎩,所以根据正弦函数的单调性可得()f x 图象如图所示,所以()1f x a =-有4个不同的实根,()1f x a =+有2个不同的实根,所以110012a a -<-<⎧⎨<+<⎩,解得01a <<,设123456x x x x x x <<<<<,则1423πx x x x +=+=,563πx x +=,所以615πii x==∑,所以61i i a x =∑的取值范围是(0,5π),故D 正确.故选:BCD.11.在平面直角坐标系中,定义(){}1212,max ,d A B x x y y =--为两点()11,A x y 、()22,B x y 的“切比雪夫距离”,又设点P 及l 上任意一点Q ,称(),d P Q 的最小值为点P 到直线l 的“切比雪夫距离”,记作(),d P l ,给出下列四个命题,正确的是()A .对任意三点,,A B C ,都有()()(),,,d C A d C B d A B +≥;B.已知点()2,1P 和直线:220l x y --=,则()83d P l =,;C.到定点M 的距离和到M 的“切比雪夫距离”相等的点的轨迹是正方形.D.定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()()12,,2220d P F d P F a c a =>>-,则点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点.【答案】AD 【解析】【分析】对于选项A ,根据新定义,利用绝对值不等性即可判断;对于选项B ,设点Q 是直线21y x =-上一点,且(,21)Q x x -,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,讨论|2|x -,1|2|2x -的大小,可得距离d ,再由函数的性质,可得最小值;对于选项C ,运用新定义,求得点的轨迹方程,即可判断;对于选项D ,根据定义得{}{}max ,max ,2x c y x c y a +--=,再根据对称性进行讨论,求得轨迹方程,即可判断.【详解】A 选项,设()()(),,,,,A A B B C C A x y B x y C x y ,由题意可得:()(){}{},,max ,max ,,A C A CBC B C A C B C A B d C A d C B x x y y x x y y x x x x x x +=--+--≥-+-≥-同理可得:()(),,A B d C A d C B y y +≥-,则:()(){}(),,max ,,A B A B d C A d C B x x y y d A B +≥--=,则对任意的三点A ,B ,C ,都有()()(),,,d C A d C B d A B +≥;故A 正确;B 选项,设点Q 是直线220x y --=上一点,且1,12Q x x ⎛⎫- ⎪⎝⎭,可得()1,max 2,22d P Q x x ⎧⎫=--⎨⎬⎩⎭,由1222x x -≥-,解得0x ≤或83x ≥,即有(),2d P Q x =-,当83x =时,取得最小值23;由1222x x -<-,解得803x <<,即有()1,22d P Q x =-,(),d P Q 的范围是2,23⎛⎫⎪⎝⎭,无最值,综上可得,P ,Q 两点的“切比雪夫距离”的最小值为23,故B 错误;C 选项,设(),M a b{}max ,x a y b =--,若y b x a -≥-,y b =-,两边平方整理得x a =;此时所求轨迹为x a =(y b ≥或)y b ≤-若y b x a -<-,则x a =-,两边平方整理得y b =;此时所求轨迹为y b =(x a ≥或)x a ≤-,故没法说所求轨迹是正方形,故C 错误;D 选项,定点()1,0F c -、()2,0F c ,动点(),P x y 满足()()12,,2d P F d P F a -=(220c a >>),则:{}{}max ,max ,2x c y x c y a +--=,显然上述方程所表示的曲线关于原点对称,故不妨设x ≥0,y ≥0.(1)当x c yx c y ⎧+≥⎪⎨-≥⎪⎩时,有2x c x c a +--=,得:0x a y a c =⎧⎨≤≤-⎩;(2)当x c y x c y ⎧+≤⎪⎨-≤⎪⎩时,有02a =,此时无解;(3)当x c y x c y⎧+>⎪⎨-<⎪⎩时,有2,x c y a a x +-=<;则点P 的轨迹是如图所示的以原点为中心的两支折线.结合图像可知,点P 的轨迹与直线y k =(k 为常数)有且仅有2个公共点,故D 正确.故选:AD.【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.三、填空题:本题共3小题,每小题5分,共15分.12.若)nax的展开式的二项式系数和为32,且2x -的系数为80,则实数a 的值为________.【答案】 【解析】【分析】由二项式系数和先求n ,再利用通项53215C ()r r rr T a x -+=-得到2x -的指数确定r 值,由2x -的系数为80,建立关于a 的方程求解可得.【详解】因为)na x-的展开式的二项式系数和为32,所以012C C C C 232nnn n n n ++++== ,解得5n =.所以二项式展开式的通项公式为5352155C ()C ()rr rr r rr a T a x x--+=-=-,由5322r-=-,解得3r =,所以2x -的系数为3335C ()1080a a -=-=,解得2a =-.故答案为:2-.13.已知函数()()()2f x x a x x =--在x a =处取得极小值,则a =__________.【答案】1【解析】【分析】求得()()()221f x x x x a x =-+--',根据()0f a ¢=,求得a 的值,结合实数a 的值,利用函数的单调性与极值点的概念,即可求解.【详解】由函数()()()2f x x a x x =--,可得()()()221f x x x x a x =-+--',因为x a =处函数()f x 极小值,可得()20f a a a =-=',解得0a =或1a =,若0a =时,可得()(32)f x x x '=-,当0x <时,()0f x '>;当203x <<时,()0f x '<;当23x >时,()0f x '>,此时函数()f x 在2(,0),(,)3-∞+∞单调递增,在2(0,)3上单调递减,所以,当0x =时,函数()f x 取得极大值,不符合题意,(舍去);若1a =时,可得()(1)(31)f x x x '=--,当13x <时,()0f x '>;当113x <<时,()0f x '<;当1x >时,()0f x '>,此时函数()f x 在1(,),(1,)3-∞+∞单调递增,在(0,1)上单调递减,所以,当1x =时,函数()f x 取得极小值,符合题意,综上可得,实数a 的值为1.故答案为:1.14.数学老师在黑板上写上一个实数0x ,然后老师抛掷一枚质地均匀的硬币,如果正面向上,就将黑板上的数0x 乘以2-再加上3得到1x ,并将0x 擦掉后将1x 写在黑板上;如果反面向上,就将黑板上的数0x 除以2-再减去3得到1x ,也将0x 擦掉后将1x 写在黑板上.然后老师再抛掷一次硬币重复刚才的操作得到黑板上的数为2x .现已知20x x >的概率为0.5,则实数0x 的取值范围是__________.【答案】()(),21,-∞-+∞ 【解析】【分析】构造函数()23f x x =-+,()32xg x =--,由两次复合列出不等式求解即可.【详解】由题意构造()23f x x =-+,()32xg x =--,则有()()43f f x x =-,()()9f g x x =+,()()92g f x x =-,()()342x g g x =-.因为()()f g x x >,()()g f x x <恒成立,又20x x >的概率为0.5,所以必有43,3,42x x x x ->⎧⎪⎨-≤⎪⎩或者43,3,42x x x x -≤⎧⎪⎨->⎪⎩解得()(),21,x ∈-∞-⋃+∞.故答案为:()(),21,-∞-+∞ 四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +-=-.(1)求B ;(2)若ABC的面积为4,且2AD DC = ,求BD 的最小值.【答案】(1)π3(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a +-=-,再结合余弦定理得2221cos 22a cb B ac +-==,从而可求解.(2)结合ABC V 的面积可求得3ac =,再由112333BD BC CA BA BC =+=+ ,平方后得,()222142993BD c a =++ ,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a +-=-,即222a c b ac +-=,由余弦定理可得2221cos 222a cb ac B ac ac +-===,因为()0,πB ∈,所以π3B =.【小问2详解】因为ABC V 的面积为33π,43B =,所以133sin 24ac B =,所以3ac =.因为()11123333BD BC CA BC BA BC BA BC =+=+-=+,所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当6,2a c ==时取等号,所以BD .16.已知抛物线2:2(0)E y px p =>与双曲线22134x y -=的渐近线在第一象限的交点为Q ,且Q 点的横坐标为3.(1)求抛物线E 的方程;(2)过点(3,0)M -的直线l 与抛物线E 相交于,A B 两点,B 关于x 轴的对称点为B ',求证:直线AB '必过定点.【答案】(1)24y x =(2)证明见解析【解析】【分析】(1)由双曲线求其渐近线方程,求出点Q 的坐标,由此可求抛物线方程;(2)联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).【小问1详解】设点Q 的坐标为()03,y ,因为点Q 在第一象限,所以00y >,双曲线22134x y -=的渐近线方程为233y x =±,因为点Q在双曲线的渐近线上,所以0y =,所以点Q的坐标为(3,,又点(3,Q 在抛物线22y px =上,所以1223p =⨯,所以2p =,故抛物线E 的标准方程为:24y x =;【小问2详解】设直线AB 的方程为3x my =-,联立243y xx my ⎧=⎨=-⎩,消x 得,24120y my -+=,方程24120y my -+=的判别式216480m ∆=->,即230m ->,设 , ,则12124,12y y m y y +==,因为点A 、B 在第一象限,所以121240,120y y m y y +=>=>,故0m >,设B 关于x 轴的对称点为()22,B x y '-,则直线AB '的方程为212221()y y y y x x x x ---+=-,令0y =得:212221x x x y x y y -=+-⨯-122121x y x y y y +=+()()12211233y my y my y y -+-=+()21121223my y y y y y -+=+241212344m m mmm-===.直线AB '过定点(3,0).【点睛】方法点睛:联立直线AB 的方程与抛物线方程可得关于x 的一元二次方程,设 , ,()22,B x y '-,根据韦达定理求出12124,12y y m y y +==,求出直线AB '的方程并令0y =,求出x 并逐步化简可得3x =,则直线AB '过定点(3,0).17.如图,已知正方形ABCD 的边长为4,,E F 分别为,AD BC 的中点,沿EF 将四边形EFCD 折起,使二面角A EF C --的大小为60°,点M 在线段AB 上.(1)若M 为AB 的中点,且直线MF 与直线EA 的交点为O ,求OA 的长,并证明直线OD //平面EMC ;(2)在线段AB 上是否存在点M ,使得直线DE 与平面EMC 所成的角为60°;若存在,求此时二面角M EC F --的余弦值,若不存在,说明理由.【答案】(1)2OA =;证明见解析.(2)存在点M ,使得直线DE 与平面EMC 所成的角为60°;此时二面角M EC F --的余弦值为14.【解析】【分析】(1)根据中位线性质可求得OA ,由//MN OD ,结合线面平行判定定理可证得结论;(2)由二面角平面角定义可知60DEA ∠=︒,取AE ,BF 中点O ,P ,由线面垂直的判定和勾股定理可知OD ,OA ,OP 两两互相垂直,则以O 为坐标原点建立空间直角坐标系;设()1,,0M m ()04m ≤≤,利用线面角的向量求法可求得m ;利用二面角的向量求法可求得结果.【小问1详解】,E F 分别为,AD BC 中点,////EF AB CD ∴,且2AE FB ==,又M 为AB 中点,且,AB OE AB BF ⊥⊥,易得OAM FBM ≅ ,2OA FB AE ∴===,连接,CE DF ,交于点N ,连接MN ,由题设,易知四边形CDEF 为平行四边形,N Q 为DF 中点,//,AM EF A 是OE 的中点,M ∴为OF 中点,//MN OD ∴,又MN ⊂平面EMC ,OD ⊄平面EMC ,//OD ∴平面EMC ;【小问2详解】////EF AB CD ,EF DE ⊥ ,EF AE ⊥,又DE ⊂平面CEF ,AE ⊂平面AEF ,DEA ∴∠即为二面角A EF C --的平面角,60DEA ∴=︒∠;取,AE BF 中点,O P ,连接,OD OP ,如图,60DEA ∠=︒ ,112OE DE ==,2414cos 603OD ∴=+-︒=,222OD OE DE +=,OD AE ∴⊥,//OP EF ,OP DE ⊥,OP AE ⊥,又,AE DE ⊂平面AED ,AE DE E = ,OP ∴⊥平面AED ,,OD AE ⊂ 平面AED ,,OD OP AE OP ∴⊥⊥,则以O 为坐标原点,,,OA OP OD方向为,,x y z轴正方向建立空间直角坐标系如下图所示,则(D ,()1,0,0E -,()1,4,0F -,(0,C ,设()()1,,004M m m ≤≤,则(1,0,DE =-,()2,,0EM m =,(1,EC = ,设平面EMC 的法向量,则1111111·20·40EM n x my EC n x y ⎧=+=⎪⎨=++=⎪⎩,令12y =,则1x m =-,1z=1,m m ⎛∴=- ⎝,∵直线DE 与平面EMC 所成的角为60o ,·sin 60cos ,·DE n DE n DE n∴︒==11132=,解得1m =或3m =,存在点M ,当1AM =或3AM =时,使得直线DE 与平面EMC 所成的角为60o ;设平面CEF 的法向量()2222,,n x yz =,又(1,EC = ,(FC =,2222222·40·0EC n x y FC n x ⎧=++=⎪∴⎨=+=⎪⎩ ,令21z =,则2x =,20y =,()2m ∴=;当1m =时,11,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;当3m =时,23,2,n ⎛=- ⎝,12121243·13cos ,84·2n n n n n n ∴=== ;综上所述:二面角M EC F --的余弦值为14.【点睛】关键点点睛:本题第二步的关键在于证明三线互相垂直,建立空间直角坐标系,设出动点M 的坐标,熟练利用空间向量的坐标运算,求法向量,求二面角、线面角是解题的关键.18.已知函数()12ex xf x x λ-=-.(1)当1λ=时,求()f x 的图象在点 h 处的切线方程;(2)若1x ≥时,()0f x ≤,求λ的取值范围;(3)求证:()1111111232124e 2e*n n n n nnn +++-+++->∈N .【答案】(1)0y =(2)[)1,+∞(3)证明见详解【解析】【分析】(1)利用导数的几何意义求解即可;(2)根据题意,由条件式恒成立分离参数,转化为212ln xx xλ≥+,求出函数()212ln x g x x x =+的最大值得解;(3)先构造函数()12ln x x x x ϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,可得()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,迭代累加可证得结果.【小问1详解】当1λ=时,()12ex xf x x -=-,h t ,则()12121e x x f x x x -⎛⎫=-+ ⎪⎝'⎭,则()0122e 0f =-=',所以()f x 在点 h 处的切线方程为0y =.【小问2详解】由1x ≥时,()0f x ≤,即12e0x xx λ--≤,整理得212ln x x xλ≥+,对1x ≥恒成立,令()212ln x g x x x =+,则()()42321ln 222ln x x x x x g x x x x---=-+'=,令()1ln h x x x x =--,1x ≥,所以()ln 0h x x '=-≤,即函数 在1x ≥上单调递减,所以()()10h x h ≤=,即()0g x '≤,所以函数()g x 在1x ≥上单调递减,则()()11g x g ≤=,1λ∴≥.【小问3详解】设()12ln x x x xϕ=-+,1x >,则()()222221212110x x x x x x x xϕ---+-='=--=<,所以 在 ∞上单调递减,则()()10x ϕϕ<=,即12ln 0x x x-+<,11ln 2x x x ⎛⎫∴<- ⎪⎝⎭,1x >,令11x n=+,*N n ∈,可得1111111ln 1112211n n n n n ⎛⎫⎪⎛⎫⎛⎫+<+-=+ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎪+⎝⎭,所以()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭,()()111ln 2ln 1212n n n n ⎛⎫+-+<+ ⎪++⎝⎭,()()111ln 3ln 2223n n n n ⎛⎫+-+<+ ⎪++⎝⎭,…()()111ln 2ln 212212n n n n ⎛⎫--<+ ⎪-⎝⎭,以上式子相加得()112221ln 2ln 212212n n n n n n n ⎛⎫-<+++++ ⎪++-⎝⎭,整理得,11111ln 2412212n n n n n-<++++++-L ,两边取指数得,11111ln 2412212e e n n n n n -++++++-<L ,即得111114122122e e n n n n n -++++-<L ,()*Nn ∈得证.【点睛】关键点点睛:本题第三问解题的关键是先构造函数()12ln x x x xϕ=-+,利用导数证明11ln 2x x x ⎛⎫<- ⎪⎝⎭,1x >,令11x n=+,得到()111ln 1ln 21n n n n ⎛⎫+-<+ ⎪+⎝⎭.19.已知整数4n ,数列{}n a 是递增的整数数列,即12,,,n a a a ∈Z 且12n a a a <<<.数列{}n b 满足11b a =,n n b a =.若对于{}2,3,,1i n ∈- ,恒有1i i b a --等于同一个常数k ,则称数列{}n b 为{}n a 的“左k 型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b +-等于同一个常数k ,则称数列{}n b 为{}n a 的“右k型间隔数列”;若对于{}2,3,,1i n ∈- ,恒有1i i a b k +-=或者1i i b a k --=,则称数列{}n b 为{}n a 的“左右k 型间隔数列”.(1)写出数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)已知数列{}n a 满足()81n a n n =-,数列{}n b 是{}n a 的“左k 型间隔数列”,数列{}n c 是{}n a 的“右k 型间隔数列”,若10n =,且有1212n n b b b c c c +++=+++ ,求k 的值;(3)数列{}n a 是递增的整数数列,且10a =,27a =.若存在{}n a 的一个递增的“右4型间隔数列{}n b ”,使得对于任意的{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,求n a 的关于n 的最小值(即关于n 的最小值函数()f n ).【答案】(1)1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.(2)80k =(3)()()382n n f n -=+【解析】【分析】(1)由“左右k 型间隔数列”的定义,求数列{}:1,3,5,7,9n a 的所有递增的“左右1型间隔数列”;(2)根据“左k 型间隔数列”和“右k 型间隔数列”的定义,由1212n n b b b c c c +++=+++ ,则有1291016a a k a a ++=+,代入通项计算即可;(3)由“右4型间隔数列”的定义,有144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣,则有()()()232431n n n a a a a a a a a -=+-+-++- ()()()()413216n n ≥-+-+-+-++- ,化简即可.【小问1详解】数列{}:1,3,5,7,9n a 的“左右1型间隔数列”为1,2,4,6,9或1,2,4,8,9或1,2,6,8,9或1,4,6,8,9.【小问2详解】由12101210b b b c c c +++=+++ ,可得239239b b b c c c +++=+++ ,即128341088a a a k a a a k ++++=+++- ,即1291016a a k a a ++=+,即16168988109k +=⨯⨯+⨯⨯,所以80k =.【小问3详解】当{}2,3,,1i n ∈- 时,由144i i i b a a +=->-,可知{}3i i b a nn -∈≥-∣.又因为对任意{},2,3,,1i j n ∈- ,都有i j i j a b b a +≠+,即当{}2,3,,1i n ∈- 时,i i b a -两两不相等.因为()()()232431n n n a a a a a a a a -=+-+-++- ()()()2233117444n n b a b a b a --=++-++-+++- ()()()()223311742n n n b a b a b a --=+-+-+-++- ()()()()413216n n ≥-+-+-+-++- ()382n n -=+.所以n a 的最小值函数()()382n n f n -=+.另外,当数列䁕 的通项()0,1,38,2,2i i a i i i n =⎧⎪=⎨-+≤≤⎪⎩间隔数列 的通项(),1,13,21,2i i a i i n b i i i n ==⎧⎪=⎨-+≤≤-⎪⎩或时也符合题意.【点睛】方法点睛:在实际解决“新定义”问题时,关键是正确提取新定义中的新概念、新公式、新性质、新模式等信息,确定新定义的名称或符号、概念、法则等,并进行信息再加工,寻求相近知识点,明确它们的共同点和不同点,探求解决方法,在此基础上进行知识转换,有效输出,合理归纳,结合相关的数学技巧与方法来分析与解决!。

强名校试题解析金卷:(第30卷)山东省莱芜市第一中学2019届高三第一次月考(10月)化学试题解析(解析版)

强名校试题解析金卷:(第30卷)山东省莱芜市第一中学2019届高三第一次月考(10月)化学试题解析(解析版)

出题教师:董丽、许燕审核教师:杨华锋孙其砚2019.10.7注意事项:1.本试卷分第I卷(选择题)和第II卷(非选择题)两部分。

第I卷1~4页,第II卷5~8页,请将答案答在答题卡上。

共100分,考试时间90分钟。

2.答题前考生务必将自己的准考证号用2B铅笔涂写在答题卡上,并将姓名、班级、座号填写在相应位置,第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案涂黑。

可能用到的相对原子质量:H:1 C:12 O:16 Na:23 Cu:64 Fe:56 Mn:55第I卷选择题(42分)一、选择题(本题包括14小题,每小题3分,共42分。

每小题只有一个选项符合题意)1【答案】D【解析】试题分析:A.Al(OH)3受热分解生成H2O并吸收大量的热量,使周围环境温度降低,且生成的氧化铝熔点较高,附着在可燃物表面,从而阻止可燃物燃烧,故A错误;B.用氢氟酸蚀刻玻璃是因为二氧化硅与氢氟酸反应生成四氟化硅和水,二氧化硅酸性氧化物,故B错误;C.过氧化钠与二氧化碳反应生成碳酸钠和氧气,过氧化钠既是氧化剂又是还原剂,故C错误;D.乙烯具有还原性,能够被酸性的高锰酸钾氧化,用浸有酸性高锰酸钾溶液的硅藻土作水果保鲜剂,故D正确;故选D。

考点:考查了过氧化钠、乙烯、氢氧化铝的性质的相关知识。

2.下列物质的保存方法正确的是( )A.用橡皮塞把液溴密封于玻璃瓶中B.用磨口玻璃塞把氢氟酸密封于棕色试剂瓶中C.把氯气加压液化后密封于钢瓶中D.氯水通常保存于无色试剂瓶中【答案】C【解析】试题分析:A、液溴有强氧化性,能将橡皮塞氧化而加快其老化,应用玻璃塞,故A错误;B、玻璃的主要成分之一为二氧化硅,能和HF反应生成四氟化硅气体和水,从而能毁坏玻璃塞,故应用橡胶塞,故B错误;C、氯气和干燥的钢瓶不反应,故可以用干燥的钢瓶储存,故C正确;D、氯水中的次氯酸见光易分解,故氯水应避光保存,保存在棕色试剂瓶中,故D错误;故选C。

考点:考查了化学试剂的存放的相关知识。

成都七中高三10月月考数学(理)试卷及答案

成都七中高三10月月考数学(理)试卷及答案

成都七中高2019届数学(理科)10月阶段考试(一) 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分, 考试时间120分钟.第I 卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的)1.设x ∈R ,则“l<x<2”是“|x - 2|<1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件2.二项式(x+1)n (n ∈N*)的展开式中x 2的系数为15,则n=( )A . 5B . 6C . 8D . 103.己知cos31°=a ,则sin 239°·tan 149°的值是( )A .21a a -BC .21a a- D .- 4.若a 为实数,且231ai i i+=++,则a=( ) A . 一4 B . 一3 C . 3 D . 4 5.函数f (x)=ln(x+1)—2x 的一个零点所在的区间是( ) A. (0,1) B. (1,2) C. (2,3) D. (3,4)6.若实数a ,b 满足11a b+=,则ab 的最小值为( )A. , B .2 C . D .47.已知则8.设函数则A. 3B. 6C. 9D. 129.设函数f ’(x)是奇函数f (x) (x ∈R)的导函数,f (-1)=0,当x>0时,x f ’(x)-f (x )<0,则使得f(x)>0成立的x 的取值范围是( )A .(一∞,一1)(0,1)B .(一1,0)(1,+∞)C .(一∞,一1)(一1,0)D .(0,1) (1,+∞)10.设函数若互不相等的实数x 1,x 2,x 3满足 123()()()f x f x f x ==,则x 1+x 2+x 3的取值范围是( )11.己知f(x)是定义在R上的增函数,函数y=f(x-l)的图象关于点(1,0)对称,若对任意的x,y∈R,不等式f(x2-6x+21)+f(y2-8y)<0恒成立,则当x>3时,x2+y2的取值范围是( )A. (3,7)B. (9,25)C. (13,49]D. (9,49)12.设函数则使得成立的x的取值范围是第II卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.若函数f(x)= (a>0,且a≠1)的值域是[4,+∞),则实数a的取值范围是14.在区间[0,2]上随机地取一个数x,则事件“-1≤发生的概率为15.己知函数f(x)-2 sin ωx(ω>0)在区间上的最小值是-2,则ω的最小值为16.己知函数f(x)= 则不等式f(x)≥log2(x+1)的解集是三、解答题(解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)在直角坐标系xOy中,曲线C1(t为参数,t≠0),其中0≤a<π,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C2 : p = 2 sinθ,C3 : p =cosθ(1)求C2与C3交点的直角坐标;(2)若C1与C2相交于点A,C1与C3相交于点B,求|AB|的最大值.18.(本小题满分10分)己知关于x的不等式|x+a|<b的解集为{x|2<x<4)(1)求实数a,b的值;(2)19.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)己知每检测一件产品需要费用1 00元,设X 表示直到检测出2件次品或者检测 出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).20.(本小题满分12分)已知函数厂(x)=sin (ωx+φ)(0<ω<1,0≤φ≤π)是R 上 的偶函数,其图象关于点M对称 (1)求ω,φ的值;(2)求f(x)的单调递增区间;(3) x ∈,求f(x)的最大值与最小值.21.(本小题满分12分)己知函数f (x)= 1ln 1x x+- (1)求曲线y=f (x)在点(0,f(0))处的切线方程;(2)求证:当x ∈(0,1)时,f (x)>233x x ⎛⎫+ ⎪⎝⎭ (3)设实数k 使得f (x)>k 33x x ⎛⎫+ ⎪⎝⎭对x ∈(0,1)恒成立,求k 的最大值.22.(本小题满分14分)(1)已知e x ≥ax +1,对0x ∀≥恒成立,求a 的取值范围;(2)己知xe - f '(x)=1 - e -x ,0<x<m ,求证f (x)<2m .。

隆安县实验中学2018-2019学年上学期高三数学10月月考试题

隆安县实验中学2018-2019学年上学期高三数学10月月考试题

隆安县实验中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 以下四个命题中,真命题的是( )A .,(0,)x π∃∈sin tan x x=B .“对任意的,”的否定是“存在,x R ∈210x x ++>0x R ∈20010x x ++<C .,函数都不是偶函数R θ∀∈()sin(2)f x x θ=+D .中,“”是“”的充要条件ABC ∆sin sin cos cos A B A B +=+2C π=【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力.2. 如图,三行三列的方阵中有9个数a ij (i=1,2,3;j=1,2,3),从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .B .C .D .3. 命题:“若a 2+b 2=0(a ,b ∈R ),则a=b=0”的逆否命题是( )A .若a ≠b ≠0(a ,b ∈R ),则a 2+b 2≠0B .若a=b ≠0(a ,b ∈R ),则a 2+b 2≠0C .若a ≠0且b ≠0(a ,b ∈R ),则a 2+b 2≠0D .若a ≠0或b ≠0(a ,b ∈R ),则a 2+b 2≠04. 已知函数f (x )=sin 2(ωx )﹣(ω>0)的周期为π,若将其图象沿x 轴向右平移a 个单位(a >0),所得图象关于原点对称,则实数a 的最小值为( )A .πB .C .D .5. 下列四组函数中表示同一函数的是( )A .,B .,()f x x =2()g x =2()f x x =2()(1)g x x =+C .,D .,1111]()f x =()||g x x =()0f x =()g x =6. 下列函数中,与函数的奇偶性、单调性相同的是( )()3x xe ef x --=A .B .C .D .(ln y x =2y x =tan y x =xy e=7. 如果是定义在上的奇函数,那么下列函数中,一定为偶函数的是( )A .B .C .D .8. 已知函数,其中,对任意的都成立,在122()32f x x ax a =+-(0,3]a ∈()0f x ≤[]1,1x ∈-和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为,则( )T T =A .B .C .D .20152201532015232015229. 某公园有P ,Q ,R 三只小船,P 船最多可乘3人,Q 船最多可乘2人,R 船只能乘1人,现有3个大人和2个小孩打算同时分乘若干只小船,规定有小孩的船必须有大人,共有不同的乘船方法为( )A .36种B .18种C .27种D .24种10.(文科)要得到的图象,只需将函数的图象( )()2log 2g x x =()2log f x x =A .向左平移1个单位B .向右平移1个单位C .向上平移1个单位D .向下平移1个单位二、填空题11.抛物线y 2=4x 的焦点为F ,过F 且倾斜角等于的直线与抛物线在x 轴上方的曲线交于点A ,则AF 的长为 .12.17.已知函数f (x )是定义在R 上的奇函数,且它的图象关于直线x=1对称.13.一组数据2,x ,4,6,10的平均值是5,则此组数据的标准差是 . 14.在(1+2x )10的展开式中,x 2项的系数为 (结果用数值表示).15.已知函数()()31,ln 4f x x mxg x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .16.已知函数的一条对称轴方程为,则函数的最大值为21()sin cos sin 2f x a x x x =-+6x π=()f x ()A .1B .±1CD .【命题意图】本题考查三角变换、三角函数的对称性与最值,意在考查逻辑思维能力、运算求解能力、转化思想与方程思想.三、解答题17.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.18.(1)求z=2x+y的最大值,使式中的x、y满足约束条件(2)求z=2x+y的最大值,使式中的x、y满足约束条件+=1.19.武汉市为增强市民交通安全意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[20,25),第2组[25,30),第3组[30,35),第4组[35,40),第5组[40,45],得到的频率分布直方图如图所示.(1)分别求第3,4,5组的频率;(2)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参加广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(3)在(2)的条件下,该市决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.20.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6,(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{}的前n 项和.21.(本小题满分10分)已知曲线,直线(为参数).22:149x y C +=2,:22,x t l y t =+⎧⎨=-⎩(1)写出曲线的参数方程,直线的普通方程;C (2)过曲线上任意一点作与夹角为的直线,交于点,求的最大值与最小值.C P 30A ||PA 22.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.隆安县实验中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1.【答案】D2.【答案】D【解析】古典概型及其概率计算公式.【专题】计算题;概率与统计.【分析】利用间接法,先求从9个数中任取3个数的取法,再求三个数分别位于三行或三列的情况,即可求得结论.【解答】解:从9个数中任取3个数共有C93=84种取法,三个数分别位于三行或三列的情况有6种;∴所求的概率为=故选D.【点评】本题考查计数原理和组合数公式的应用,考查概率的计算公式,直接解法较复杂,采用间接解法比较简单.3.【答案】D【解析】解:“且”的否定为“或”,因此其逆否命题为“若a≠0或b≠0,则a2+b2≠0”;故选D.【点评】此类题型考查四种命题的定义与相互关系,一般较简单,但要注意常见逻辑连接词的运用与其各自的否定方法、形式.4.【答案】D【解析】解:由函数f (x )=sin 2(ωx )﹣=﹣cos2ωx (ω>0)的周期为=π,可得ω=1,故f (x )=﹣cos2x .若将其图象沿x 轴向右平移a 个单位(a >0),可得y=﹣cos2(x ﹣a )=﹣cos (2x ﹣2a )的图象;再根据所得图象关于原点对称,可得2a=k π+,a=+,k ∈Z .则实数a 的最小值为.故选:D【点评】本题主要考查三角恒等变换,余弦函数的周期性,函数y=Acos (ωx+φ)的图象变换规律,正弦函数、余弦函数的奇偶性,属于基础题. 5. 【答案】C 【解析】试题分析:A 定义域值域均不相同,B 对应法则不相同,D 定义域不相同,故选C. 考点:定义域与值域.6. 【答案】A 【解析】试题分析:所以函数为奇函数,且为增函数.B 为偶函数,C 定义域与不相同,D 为非()()f x f x -=-()f x 奇非偶函数,故选A.考点:函数的单调性与奇偶性.7. 【答案】B【解析】【知识点】函数的奇偶性【试题解析】因为奇函数乘以奇函数为偶函数,y=x 是奇函数,故是偶函数。

辽宁普通高中2025届高三上学期10月月考物理模拟试题+答案解析

辽宁普通高中2025届高三上学期10月月考物理模拟试题+答案解析

辽宁省普通高中2024-2025学年度上学期10月月考模拟试题(2)高三物理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共10小题,共46分。

在每小题给出的四个选项中,第1~7题中只有一项符合题目要求,每小题4分;第8~10题有多项符合题目要求,每小题6分,全部选对的得6分,选对但不全的得3分,有选错的得0分。

1.汽车在水平地面转弯时,坐在车里的小云发现车内挂饰偏离了竖直方向,如图所示。

设转弯时汽车所受的合外力为F ,关于本次转弯,下列图示可能正确的是( )A .B .C .D .2.影视作品中的武林高手展示轻功时都是吊威亚(钢丝)的。

如图所示,轨道车A 通过细钢丝跨过滑轮拉着特技演员B 上升,便可呈现出演员B 飞檐走壁的效果。

轨道车A 沿水平地面以速度大小5m/s v =向左匀速前进,某时刻连接轨道车的钢丝与水平方向的夹角为37°,连接特技演员B 的钢丝竖直,取sin370.6°=,cos370.8°=,则下列说法正确的是( ) A .该时刻特技演员B 有竖直向上的加速度 B .该时刻特技演员B 处于失重状态C .该时刻特技演员B 的速度大小为3m/sD .该时刻特技演员B 的速度大小为6.25m/s 3.如图所示,倾角为θ的光滑斜面体始终静止在水平地面上,其上有一斜劈A,A 的上表面水平且放有一斜劈B ,B 的上表面上有一物块C ,A 、B 、C 一起沿斜面匀加速下滑.已知A 、B 、C 的质量均为m ,重力加速度为g ,下列说法正确的是( ) A .A 、B 间摩擦力为零 B .A 加速度大小为cos g θ C .C 可能只受两个力作用 D .斜面体受到地面的摩擦力为零4.2024年3月20日,鹊桥二号中继星成功发射升空,并顺利进入月球附近的椭圆形捕获轨道,沿顺时针方向运行。

高三文科数学10月月考试题(带答案)

高三文科数学10月月考试题(带答案)

2019届高三文科数学10月月考试题(带答案)2019届高三文科数学10月月考试题(带答案)第I卷(选择题共50分)一、选择题:(本大题共10小题,每小题5分,满分50分。

在每小题给出的四个选项中,只有一项是符合题目要求)1、集合,,则AB=( )A、B、C、D、2、下列函数中,既是奇函数又是增函数的为( )A、B、C、D、3、设,若,则( A )A. B. C. D.4、给出下列五个命题:①命题使得的否定是:② a R,1是1的必要不充分条件③为真命题是为真命题的必要不充分条件④命题若则x=1的逆否命题为若其中真命题的个数是( )A、1 B、2 C、3 D、45、已知f(x)是R上的奇函数,且满足f(x+2)=-f(x),当x (0,2)时f(x)=2x2,( )A、B、C、D、6、设,则a,b,c的大小关系是A、bB、cC、cbD、b7、函数的零点一定位于下列哪个区间( )A、B、C、D、8、把函数f(x)的图象向右平移一个单位长度,所得图象恰与函数的图像关于直线y=x对称,则f(x)=( )A、B、C、D、9、设函数则不等式的解集是( )A、B、C、D、10、若函数满足:对于区间(1,2)上的任意实数,恒成立,则称为完美函数.在下列四个函数中,完美函数是( )A. B. C. D.第Ⅱ卷(非选择题共100分)二、填空题:(本大题共5小题,每小题5分,满分25分)11、函数的定义域为_______.12、已知则=________.13、函数的单调递减区间为__________14、函数为奇函数,则实数15、定义在(-,+)上的偶函数f(x)满足f(x+1)=-f(x),且f(x)在[-1,0]上是增函数,下面五个关于f(x)的命题中:① f(x)是周期函数② f(x) 的图象关于x=1对称③ f(x)在[0,1]上是增函数,④f(x)在[1,2]上为减函数⑤ f (2)=f(0)正确命题的是__________三、解答题:(本大题共6小题,共75分。

北京市2025届高三上学期10月月考数学试题含答案

北京市2025届高三上学期10月月考数学试题含答案

北京市2024-2025学年高三上学期10月月考数学试题(答案在最后)(清华附中朝阳望京学校)2024.10.10姓名____________一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.已知全集{}0U x x =>,集合{}23A x x =≤≤,则U A =ð()A.(][)0,23,+∞B.()()0,23,+∞ C.(][),23,-∞⋃+∞ D.()(),23,-∞⋃+∞【答案】B 【解析】【分析】由补集定义可直接求得结果.【详解】()0,U =+∞ ,[]2,3A =,()()0,23,U A ∴=+∞ ð.故选:B.2.若等差数列{}n a 和等比数列{}n b 满足11a b =,222a b ==,48a =,则{}n b 的公比为()A.2B.2- C.4D.4-【答案】B 【解析】【分析】根据等差数列的基本量运算可得111a b ==-,然后利用等比数列的概念结合条件即得.【详解】设等差数列{}n a 的公差为d ,等比数列{}n b 的公比为q ,则242822a a d d +=+==,所以3d =,∴22123b a a ===+,111a b ==-,所以212b q b ==-.故选:B.3.在平面直角坐标系xOy 中,角α与角β均以Ox 为始边,它们的终边关于直线y x =对称.若3sin 5α=,则cos β=()A.45-B.45C.35-D.35【答案】D 【解析】【分析】根据对称关系可得()22k k παβπ+=+∈Z ,利用诱导公式可求得结果.【详解】y x = 的倾斜角为4π,α\与β满足()22242k k k ππαβππ+=⨯+=+∈Z ,3cos cos 2cos sin 225k ππβπααα⎛⎫⎛⎫∴=+-=-==⎪ ⎪⎝⎭⎝⎭.故选:D.4.若点()1,1M 为圆22:40C x y x +-=的弦AB 的中点,则直线AB 的方程是()A.20x y --=B.20x y +-=C.0x y -=D.0x y +=【答案】C 【解析】【分析】由垂径定理可知MC AB ⊥,求出直线AB 的斜率,利用点斜式可得出直线AB 的方程.【详解】圆C 的标准方程方程为()2224x y -+=,()221214-+< ,即点M 在圆C 内,圆心()2,0C ,10112MC k -==--,由垂径定理可知MC AB ⊥,则1AB k =,故直线AB 的方程为11y x -=-,即0x y -=.故选:C.5.已知D 是边长为2的正△ABC 边BC 上的动点,则AB AD ⋅的取值范围是()A.B.2]C.[0,2]D.[2,4]【答案】D 【解析】【分析】根据向量数量积的几何意义可得||cos [1,2]AD DAB ∠∈ ,再由||||cos AD AB D A A B AD B =∠⋅即可求范围.【详解】由D 在边BC 上运动,且△ABC 为边长为2的正三角形,所以03DAB π≤∠≤,则[]cos 1,2AB DAB ∠∈ ,由||||cos [2,4]AD AB D D B A A A B =∠⋅∈.故选:D6.若0a b >>,则①11b a >;②11a ab b +>+>的序号是()A.①②B.①③C.②③D.①②③【答案】A 【解析】【分析】对①,由a b >两边同除ab 化简即可判断;对②,由a b >得a ab b ab +>+,两边同除()1b b +化简即可判断;>>【详解】对①,0a b a b ab ab>>⇒>,即11b a >,①对;对②,由()()011a b a ab b ab a b b a >>⇒+>+⇒+>+,则()()()()111111a b b a a a b b b b b b +++>⇒>+++,②对;对③,由>,>,与0a b >>矛盾,③错;故选:A7.若命题“2,20x x x m ∃∈++≤R ”是真命题,则实数m 的取值范围是()A.1m < B.1m ≤ C.1m > D.1m ≥【答案】B 【解析】【分析】不等式能成立,等价于方程有实数解,用判别式计算求参数即可.【详解】由题可知,不等式220x x m ++≤在实数范围内有解,等价于方程220x x m ++=有实数解,即440m ∆=-≥,解得1m ≤.8.“1a =”是“函数()22x x af x a+=-具有奇偶性”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性的定义,及奇偶性的定义求参数a ,判断题设条件间的关系即可.【详解】当1a =时21()21x x f x +=-,则定义域为{|0}x x ≠,211221()()211221x x x x xx f x f x --+++-===-=----,故()f x 为奇函数,充分性成立;若2()2x x af x a+=-具有奇偶性,当()f x 为偶函数,则212()()212x x x xa a f x f x a a --++⋅-===--⋅,所以212212x xx xa a a a ++⋅=--⋅恒成立,可得0a =;当()f x 为奇函数,则212()()212x x x xa a f x f x a a --++⋅-===---⋅,所以212212x xx xa a a a ++⋅-=--⋅恒成立,可得1a =或=−1;所以必要性不成立;综上,“1a =”是“函数()22x x af x a+=-具有奇偶性”的充分而不必要条件.故选:A9.已知函数()32x x f x =-,则()A.()f x 在R 上单调递增B.对R,()1x f x ∀∈>-恒成立C.不存在正实数a ,使得函数()xf x y a=为奇函数D.方程()f x x =只有一个解【答案】B【分析】对()f x 求导,研究()f x '在0x ≥、0x <上的符号,结合指数幂的性质判断()f x '零点的存在性,进而确定单调性区间、最小值,进而判断A 、B 的正误;利用奇偶性定义求参数a 判断C ;由(0)0f =、(1)1f =即可排除D.【详解】由3ln 3ln 22[(ln 3ln ()322]2x x x xf x =-'=-,而20x >,当0x ≥时()0f x '>,即(0,)+∞上()f x 递增,且(30)2x x f x =->恒成立;而0x <,令()0f x '=,可得3ln 2()2ln 3x=,所以00x x ∃=<使03ln 2(2ln 3x =,综上,0(,)x -∞上()0f x '<,()f x 递减;0(,)x +∞上()0f x '>,()f x 递增;故在R 上不单调递增,A 错误;所以0x x =时,有最小值0000002()323()3ln 3[1]3(1)ln 2x x x x xf x ===---,而0031x <<,ln 310ln 2<-,所以0ln 3ln 4111ln 2()ln 2f x >-->=-,故R,()1x f x ∀∈>-恒成立,B 正确;令()()x f x y g x a ==为奇函数且0a >,则3232()()x x x x x xg x g x a a ------==-=-恒成立,所以6(23)23x x x x x xxaa --=恒成立,则a =满足要求,C 错误;显然000)20(3f -==,故0x =为一个解,且(1)321f =-=,即1x =为另一个解,显然不止有一个解,D 错误.故选:B【点睛】关键点点睛:A 、B 判断注意分类讨论()f x '的符号,结合指数幂的性质确定导函数的零点位置,C 、D 应用奇偶性定义得到等式恒成立求参、特殊值法直接确定()f x x =的解.10.如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为()A. B.C. D.【答案】C 【解析】【分析】根据速度差函数的定义,分[0,6],[6,10],[10,12],[12,15]x x x x ∈∈∈∈四种情况,分别求得函数解析式,从而得到函数图像.【详解】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =;当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =;当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =,结合选项C 满足“速度差函数”解析式,故选:C.二、填空题共5小题,每小题5分,共25分.11.函数()1ln 1f x x x =+-的定义域是____________.【答案】()()0,11+,⋃∞.【解析】【分析】根据分母不为零、真数大于零列不等式组,解得结果.【详解】由题意得,10x x -≠⎧⎨>⎩故答案为:()()0,11,+∞ .【点睛】本题考查函数定义域,考查基本分析求解能力,属基础题.12.直线:1l x y +=截圆22220x y x y +--=的弦长=___________.【答案】【解析】【分析】由圆的弦长与半径、弦心距的关系,求直线l 被圆C 截得的弦长.【详解】线l 的方程为10x y +-=,圆心(1,1)C 到直线l 的距离2d ==.∴此时直线l 被圆C 截得的弦长为=..13.如图,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥底面ABCD ,2PA AB ==,E 为线段PB 的中点,F 为线段BC 上的动点,平面AEF 与平面PBC ____________(填“垂直”或“不垂直”);AEF △的面积的最大值为_____________.【答案】①.垂直②.【解析】【分析】根据线面垂直的的性质定理,判定定理,可证AE ⊥平面PBC ,根据面面垂直的判定定理,即可得证.分析可得,当点F 位于点C 时,面积最大,代入数据,即可得答案.【详解】因为PA ⊥底面ABCD ,⊂BC 平面ABCD ,所以PA BC ⊥,又底面ABCD 为正方形,所以AB BC ⊥,又AB PA A = ,,AB PA ⊂平面PAB ,所以⊥BC 平面PAB ,因为AE ⊂平面PAB ,所以BC AE ⊥,又2PA AB ==,所以PAB 为等腰直角三角形,且E 为线段PB 的中点,所以AE PB ⊥,又BC PB B ⋂=,,BC PB ⊂平面PBC ,所以AE ⊥平面PBC ,因为AE ⊂平面AEF ,所以平面AEF ⊥与平面PBC .因为AE ⊥平面PBC ,EF ⊂平面PBC ,所以AE EF ⊥,所以当EF 最大时,AEF △的面积的最大,当F 位于点C 时,EF 最大且EF ==,所以AEF △的面积的最大为12⨯⨯=.14.设函数()221,,x x af x x a x a⎧-<=⎨+≥⎩①若2a =-,则()f x 的最小值为__________.②若()f x 有最小值,则实数a 的取值范围是__________.【答案】①.2-②.1a ≤-【解析】【分析】对①,分别计算出每段的范围或最小值即可得;对②,由指数函数在开区间内没有最小值,可得存在最小值则最小值一定在x a ≥段,结合二次函数的性质即可得.【详解】①当2a =-时,()221,22,2x x f x x x ⎧-<-=⎨-≥-⎩,则当2x <-时,()3211,4xf x ⎛⎫=-∈--⎪⎝⎭,当2x ≥-时,()222f x x =-≥-,故()f x 的最小值为2-;②由()221,,x x a f x x a x a⎧-<=⎨+≥⎩,则当x a <时,()()211,21x af x =-∈--,由()f x 有最小值,故当x a ≥时,()f x 的最小值小于等于1-,则当1a ≤-且x a ≥时,有()min 1f x a =≤-,符合要求;当1>-a 时,21y x a a =+≥>-,故不符合要求,故舍去.综上所述,1a ≤-.故答案为:2-;1a ≤-.15.设数列{}n a 的前n 项和为n S ,10a >,21(R)n n n a a a λλ+-=∈.给出下列四个结论:①{}n a 是递增数列;②{}R,n a λ∀∈都不是等差数列;③当1λ=时,1a 是{}n a 中的最小项;④当14λ≥时,20232022S >.其中所有正确结论的序号是____________.【答案】③④【解析】【分析】利用特殊数列排除①②,当0λ≠时显然有0n a ≠,对数列递推关系变形得到1n n na a a λ+=+,再判断③④即可.【详解】当数列{}n a 为常数列时,210n n n a a a +-=,{}n a 不是递增数列,是公差为0的等差数列,①②错误;当1λ=时,211n n na a a +-=,显然有0n a ≠,所以11n n na a a +=+,又因为10a >,所以由递推关系得0n a >,所以110n n na a a +-=>,故数列{}n a 是递增数列,1a 是{}n a 中的最小项,③正确;当14λ≥时,由③得0n a >,所以由基本不等式得11n n n a a a λ+=+≥=≥,当且仅当n na a λ=时等号成立,所以2320232022a a a ++⋅⋅⋅+≥,所以20232022S >,④正确.故选:③④.三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.16.在ABC V 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+.(1)求A 的大小;(2)如果cos 2B b ==,求ABC V 的面积.【答案】(1)3π;(2)2【解析】【分析】(1)利用余弦定理的变形:222cos 2b c a A bc+-=即可求解.(2)利用正弦定理求出3a =,再根据三角形的内角和性质以及两角和的正弦公式求出sin C ,由三角形的面积公式即可求解.【详解】(1)222b c a bc +=+。

广东广雅中学2024-2025学年高三10月月考数学试题(含答案)

广东广雅中学2024-2025学年高三10月月考数学试题(含答案)

广东广雅中学2025届高三10月月考数学(时间:120分钟,满分:150分)第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是符合要求的。

1.有下列一组数据:2,17,33,15,11,42,34,13,22,则这组数据的第30百分位数是( ) A .11B .15C .13D .342.设常数a R ∈,集合}(1)|()0{A x x x a =−−≥,}1{|B x x a =≥−,若A B R ⋃=,则a 的取值范围为( ) A .(,2)−∞B .(,2]−∞C .(2+∞,)D .[2+∞,)3.如图,在复平面内,复数1z ,2z 对应的向量分别是OA ,OB ,则12z z ⋅对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限4.sin 3α=,π0,2α⎛⎫∈ ⎪⎝⎭,π4β=,则()tan αβ−=( ) A .1 B .3− C .3D .3−5.已知m ,n 是两条不同直线,α,β,γ是三个不同平面,则下列命题中正确的是( ) A .若//m n ,n ⊂α,则//m α B .若αγ⊥,βγ⊥,则//αβC .若m α⊥,n α⊥,m β⊂,n γ⊂,则//βγD .若//m α,//n α,则m ,n 平行、相交、异面均有可能6.已知O 为坐标原点,()11,P x y 是椭圆()2222:10x y E a b a b+=>>上一点()10x >,F 为右焦点.延长PO ,PF 交椭圆E 于D ,G 两点,0DF FG ⋅=,4DF FG =,则椭圆E 的离心率为( )A .3B .5C .6D .57.已知函数()()f x g x ,的定义域是R ,()g x 的导函数为()g x ',且()()5f x g x '+=,()()155f x g x −'−−=,若()g x 为偶函数,则下列说法中错误的是( ) A .()05f =B .()()()()123202410120f f f f ++++=C .若存在0x 使()f x 在[]00,x 上严格增,在[]0,2x 上严格减,则2024是()g x 的极小值点D .若()f x 为偶函数,则满足题意的()f x 唯一,()g x 不唯一8.小丽同学有一枚不对称的硬币,每次掷出后正面向上的概率为(01)p p <<,她掷了N 次硬币后有10次正面向上.但她没有留意自己一共掷了多少次硬币.设随机变量X 表示每掷N 次硬币中正面向上的次数,现以使(10)P X =最大的N 值估计N 的取值并计算()E X .(若有多个N 使(10)P X =最大,则取其中的最小N 值).下列说法正确的是( ) A .()10E X > B .()10E X <C .()10E X =D .()E X 与10的大小无法确定二、多选题:本题共3小题,每小题6分,共18分。

平定县实验中学2018-2019学年上学期高三数学10月月考试题

平定县实验中学2018-2019学年上学期高三数学10月月考试题

第 3 页,共 16 页
(1)证明: AB PC ; (2)证明:平面 10 月月考文科】已知函数 (1)当 (2)当 (3)当 时,求函数 时,如果函数 的单调区间; ; 时,解关于 的不等式
,其中实数 为常数, 为自然对数的底数.
当 x≤0 时,h(x)=2+x+x2=(x+ )2+ ≥ , 当 x>2 时,h(x)=x2﹣5x+8=(x﹣ )2+ ≥ ,
第 7 页,共 16 页
故当 = 时,h(x)= ,有两个交点, 当 =2 时,h(x)= ,有无数个交点, 由图象知要使函数 y=f(x)﹣g(x)恰有 4 个零点, 即 h(x)= 恰有 4 个根, 则满足 < <2,解得:b∈( ,4), 故选:D. 【点评】本题主要考查函数零点个数的判断,根据条件求出函数的解析式,利用数形结合是解决本题的关键. 5. 【答案】C 【解析】解:F1(﹣5,0),F2(5,0),|F1F2|=10, ∵3|PF1|=4|PF2|,∴设|PF2|=x,则 由双曲线的性质知 ∴|PF1|=8,|PF2|=6, ∴∠F1PF2=90°, ∴△PF1F2 的面积= 故选 C. 【点评】本题考查双曲线的性质和应用,解题时要认真审题,仔细解答,注意公式的合理运用. 6. 【答案】B 【解析】解:由 m、n 是两条不同的直线,α,β,γ 是三个不同的平面: 在①中:若 m⊥α,n∥α,则由直线与平面垂直得 m⊥n,故①正确; 在②中:若 α∥β,β∥γ,则 α∥γ, ∵m⊥α,∴由直线垂直于平面的性质定理得 m⊥γ,故②正确; 在③中:若 m⊥α,n⊥α,则由直线与平面垂直的性质定理得 m∥n,故③正确; 在④中:若 α⊥β,m⊥β,则 m∥α 或 m⊂α,故④错误. 故选:B. 7. 【答案】 B 【解析】解: 故选:B. = = =i. . ,解得 x=6. ,

双峰县第二中学2018-2019学年上学期高三数学10月月考试题

双峰县第二中学2018-2019学年上学期高三数学10月月考试题

双峰县第二中学2018-2019学年上学期高三数学10月月考试题班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.某三棱椎的三视图如图所示,该三棱锥的四个面的面积中,最大的是( )A.B .8C .D.2. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:23. 已知函数,关于的方程()有3个相异的实数根,则的()x e f x x=x 2()2()10f x af x a -+-=a R Îa 取值范围是()A .B .C .D .21(,)21e e -+¥-21(,21e e --¥-21(0,)21e e --2121e e ìü-ïïíý-ïïîþ【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.4. 的倾斜角为( )10y -+=A . B . C .D .15012060305. 冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37121新设备22202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对6. 已知函数y=f (x )对任意实数x 都有f (1+x )=f (1﹣x ),且函数f (x )在[1,+∞)上为单调函数.若数列{a n }是公差不为0的等差数列,且f (a 6)=f (a 23),则{a n }的前28项之和S 28=( )A .7B .14C .28D .567. 已知a ,b 是实数,则“a 2b >ab 2”是“<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件8. 已知正三棱柱的底面边长为,高为,则一质点自点出发,沿着三棱111ABC A B C -4cm 10cm A 柱的侧面,绕行两周到达点的最短路线的长为( )1AA .B .C .D .16cm 26cm9. 函数()log 1xa f x a x =-有两个不同的零点,则实数的取值范围是()A .()1,10B .()1,+∞C .()0,1D .()10,+∞10.若命题“p 或q ”为真,“非p ”为真,则()A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假11.已知函数f (x )是R 上的奇函数,且当x >0时,f (x )=x 3﹣2x 2,则x <0时,函数f (x )的表达式为f (x )=( )A .x 3+2x 2B .x 3﹣2x 2C .﹣x 3+2x 2D .﹣x 3﹣2x 212.设l ,m ,n 表示不同的直线,α,β,γ表示不同的平面,给出下列四个命题:①若m ∥l ,m ⊥α,则l ⊥α;②若m ∥l ,m ∥α,则l ∥α;③若α∩β=l ,β∩γ=m ,γ∩α=n ,则l ∥m ∥n ;④若α∩β=l ,β∩γ=m ,γ∩α=n ,n ∥β,则l ∥m .其中正确命题的个数是( )A .1B .2C .3D .4二、填空题13.已知是函数两个相邻的两个极值点,且在1,3x x ==()()()sin 0f x x ωϕω=+>()f x 32x =处的导数,则___________.302f ⎛⎫'<⎪⎝⎭13f ⎛⎫= ⎪⎝⎭14.已知点M (x ,y )满足,当a >0,b >0时,若ax+by 的最大值为12,则+的最小值是 .15.【常熟中学2018届高三10月阶段性抽测(一)】函数的单调递减区间为__________.()21ln 2f x x x =-16.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.17.已知正整数的3次幂有如下分解规律:m ;;;;…113=5323+=119733++=1917151343+++=若的分解中最小的数为,则的值为.)(3+∈N m m 91m 【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.三、解答题18.在极坐标系内,已知曲线C1的方程为ρ2﹣2ρ(cosθ﹣2sinθ)+4=0,以极点为原点,极轴方向为x正半轴方向,利用相同单位长度建立平面直角坐标系,曲线C2的参数方程为(t为参数).(Ⅰ)求曲线C1的直角坐标方程以及曲线C2的普通方程;(Ⅱ)设点P为曲线C2上的动点,过点P作曲线C1的切线,求这条切线长的最小值.19.如图:等腰梯形ABCD,E为底AB的中点,AD=DC=CB=AB=2,沿ED折成四棱锥A﹣BCDE,使AC=.(1)证明:平面AED⊥平面BCDE;(2)求二面角E﹣AC﹣B的余弦值.20.在直接坐标系中,直线的方程为,曲线的参数方程为(为参数)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牡一中2016级高三学年10月月考
数学理科试题
一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四选项中只有一项是符合题目要求的。


1.已知全集{}1,2,3,4,5,6,7,8U = ,集合{}2,3,5,6A = ,集合{}1,3,4,6,7B = ,则集合B C A U ⋂等于 ( )
A {}2,5
B {}3,6
C {}2,5,6
D {}2,3,5,6,8 2.的虚部为则复数设复数Z i i
i z ,211++-=( ) A.0B.i C.1D.2
3. 下列函数中,既不是奇函数,也不是偶函数的是( )
A .x e x y +=
B .x x y 1+
=C .x x y 212+=D .21x y += 4.命题“0232,2≥++∈∀x x R x ”的否定 A.0232,0200<++∈∃x x R x B.0232,0200≤++∈∃x x R x C.0232,2<++∈∀x x R x D.0232,2≤++∈∀x x R x
5.在ABC ∆中,若C B A 222sin sin sin <+,则ABC ∆的形状是( )
A .锐角三角形
B .直角三角形
C .钝角三角形
D .不能确定
6.为了得到函数sin(2)3y x π=-
的图像,只需把函数x y 2sin =的图像( ) (A )向左平移3π个长度单位 (B )向右平移3
π个长度单位 (C )向左平移6π个长度单位 (D )向右平移6
π个长度单位 7. 满足条件︒===45,23,4A b a 的三角形的个数是( )
A .1个 B.2个 C.无数个 D.不存在
8. 若α是第四象限角,5t a n 312πα⎛⎫+=-
⎪⎝⎭,则cos 6πα⎛⎫-= ⎪⎝⎭( ) A.15 B.135± C.513 D.513
- 9. 已知函数()sin(2)f x x ϕ=+,其中ϕ为实数,若()()6
f x f π
≤对x R ∈恒成立,且()()2
f f ππ>,则()f x 的单调递增区间是( ) A ,()36k k k Z ππππ⎡
⎤-+∈⎢⎥⎣⎦ B ,()2k k k Z πππ⎡⎤+∈⎢⎥⎣⎦ C 2,()63k k k Z ππππ⎡
⎤++∈⎢⎥⎣⎦ D ,()2k k k Z πππ⎡⎤-∈⎢⎥⎣⎦
10. 设()ln ,0f x x a b =<<,若p f =,(
)2a b q f +=,1(()())2r f a f b =+,则下列关系式中正确的是 ( ) A. q=r<p B. q=r>p C .p=r<q D. p=r>q
11.关于函数)42sin()(π
+=x x f 与函数),4
32cos()(π-=x x g 下列说法正确的是( ) A.函数)(x f 和)(x g 的图象有一个交点在y 轴上
B.函数)(x f 和)(x g 的图象在区间),0(π内有3个交点
C.函数)(x f 和)(x g 的图象关于直线2π
=x 对称
D.函数)(x f 和)(x g 的图象关于原点)0,0(对称
12.已知()()m x g x x f x
-⎪⎭⎫ ⎝⎛==21,2,若对任意的[]3,11-∈x ,存在[]2,02∈x ,使()()21x g x f ≥,则实数m 的取值范围是( )
A .41≥
m B .1≥m C .0≥m D .2≥m
二、填空题(本大题共有4个小题,每小题5分,共20分)。

相关文档
最新文档