用LZ110组成的快速充电器电路原理图.
手机充电器电路图详解
手机充电器电路图详解充电器电路手机(或其它小电器)充电器多如牛毛,不同厂家的电路结构大不相同,随着科技的进步新技术、新元件的出现又增加了新款的充电器,再加上山寨充电器充斥其中,导致小小充电器电路结构琳琅满目,让人应接不暇。
但有一款比较现代也比较简洁、很容易看懂电路图、容易查找故障的分立元件充电器,可作为经典教材进行研究,笔者使用这款充电器已有三年之久,由于后来大电流的快充的出现,现在已经不用它了,只将其作为一种研究对象进行分析,今天就将此分享给大家。
电路原理图见下图:电路图分析:一、该电路属于自励、反激式、变压器耦合型、PWM开关电源;电源变换过程:交流(AC,输入市电)→直流(DC)→交流(AC,高频)→直流(DC,输出);电路由整流、振荡、稳压、保护四大系统组成。
二、输入整流、滤波电路:由二极管VD1、电解电容器C1组成,属于半波整流电路,输出脉动直流电压,峰值电压311v,经电容滤波达到300v左右的直流电压。
VD1为1N4007这个二极管使用比较普遍,最大整流电流1A,最大反向电压1000v;电解电容器的耐压要大于300v;三、振荡电路:由R2、VT1、L1、L2、C4、R5组成,如果没有L2、C4、R5反馈支路的存在,三极管VT1过着一种平淡的田园生活,它通过偏置电阻R2提供合适的偏压,形成了一般的放大电路,但第三者---反馈电路的插足让它的生活不再平静,而是动荡不安--形成了振荡电流。
L2为反馈线圈,从图上L1、L2同名端的关系看出该反馈属于正反馈,于是形成了振荡电路,由于电容C4的存在导致该振荡电路形成的振荡是间歇振荡,不是正弦波;起振过程:电路接通时,启动电阻R2为电路提供偏置电流,于是VT1的集电极就有电流Ic通过Ic,当集电极线圈L1电流发生变化时(0→增加),就会产生自感电动势,方向上+下-,因L2与L1同绕在一个磁心上,于是L2在互感的作用下,产生下+上-的感应电动势;版权所有。
充电器工作原理
充电器工作原理一、引言充电器是现代生活中不可或缺的电子设备,它用于给各种电子设备充电,如手机、平板电脑、笔记本电脑等。
本文将详细介绍充电器的工作原理,包括其基本构造、工作原理和常见类型。
二、基本构造充电器通常由以下几个主要部分构成:1. 变压器:变压器是充电器的核心部件,用于改变输入电源的电压。
它由两个线圈组成,一个是输入线圈,另一个是输出线圈。
输入线圈接收来自电源的交流电,通过磁耦合作用将电能传递给输出线圈。
2. 整流器:整流器用于将交流电转换为直流电。
它通常采用整流二极管来实现,将输入的交流电转换为单向的直流电。
3. 滤波器:滤波器用于平滑直流电的波动,以确保输出电流的稳定性。
它通常由电容器组成,能够过滤掉直流电中的纹波。
4. 控制电路:控制电路用于监测和控制充电器的输出电流和电压。
它通常包括电流传感器、电压传感器和反馈回路,以确保输出电流和电压在设定范围内。
三、工作原理充电器的工作原理可以简单描述为以下几个步骤:1. 输入电源供电:将充电器插入电源插座后,输入电源将通过插头进入充电器。
2. 变压器变压:输入电源的交流电经过变压器的输入线圈,通过磁耦合作用传递给输出线圈。
变压器根据输出线圈的匝数比例,将输入电压变压为适合充电设备的输出电压。
3. 整流转换:经过变压器变压后的交流电进入整流器,整流器通过整流二极管将交流电转换为单向的直流电。
4. 滤波平滑:直流电通过滤波器,滤波器中的电容器能够平滑直流电的波动,确保输出电流的稳定性。
5. 控制调节:控制电路监测充电器的输出电流和电压,并根据设定范围内的要求进行调节。
如果输出电流或电压超出设定范围,控制电路将采取相应的措施,如调整变压器的输出电压或断开充电电路,以保护充电设备的安全和稳定。
6. 输出充电:经过以上步骤处理后的电流将通过充电器的输出端口供给充电设备,如手机、平板电脑等,从而实现对设备的充电。
四、常见类型根据充电器的设计和用途,常见的充电器类型包括以下几种:1. 直流充电器:直流充电器主要用于给低压直流设备充电,如手机、平板电脑等。
详解常见三种电动车充电器电路图及结构和工作原理KIAMOS管
详解常见三种电动车充电器电路图及结构和工作原理KIAMOS管电动车充电器电路图一、电动车充电器的作用充电器是电动自行车的附件,是给蓄电池补充电能的装置。
它可以满足电动自行车用电的需要,并对蓄电池产生保护,有效的延长蓄电池的使用寿命。
电动自行车的充电器一般采用开关电源充电器,分为二阶段充电模式和三阶段充电模式两种。
二阶段充电模式即恒压充电,它是将充电过程分为恒流、恒压两个充电阶段,充电电流随蓄电池电压上升而逐渐减少。
当蓄电池电量上升到一定程度时,再转为恒压充电,使蓄电池内的电压缓慢上升,当蓄电池的电压达到充电器的充电终止电压(不同的充电方式,电压不一样,多段式充电方式的终止电压一般为41.4V,恒压式充电方式一般为43.8~44.4V)时,再转为涓流充电,即浮充,这样可以有效的保护蓄电池,延长蓄电池的使用寿命。
电动车普遍采用三阶段式充电。
电动自行车充电器是从电动自行车中独立出来的。
充电器是给蓄电池补充电能的装置。
充电器的好坏对蓄电池的使用寿命及电动自行车的正常行驶有着直接的影响。
电动自行车使用的蓄电池有多种类型,各种类型的充电方式不尽相同,但工作原理大同小异。
充电器充电就是在蓄电池放电后,按与放电电流相反的方向用直流电通过蓄电池,使电能在蓄电池内转化为化学能储存起来,恢复其工作能力,这个过程叫做蓄电池充电。
蓄电池的充电方式有恒流充电和恒压充电两种方式。
蓄电池的充电电压必须高于蓄电池的总电动势。
其充电方法是:将蓄电池负极与电源负极相连,蓄电池正极与电源正极相连。
二、电动车充电器的工作原理充电器主要由塑料外壳、输出插头、输入插头等组成。
充电器上有指示灯,同时作为电源指示和充电指示使用,使用时先插上充电的输出插头,再插上输入插头即可进行充电。
蓄电池的充电并不是随意接上电源就能充的,如交流电不变成直流电不能充,电压和电流的大小不适当不能充,不能过充电等,这些都需要充电器来完成。
充电器的结构形式有两种:一种是变压器式普通充电器,另一种是开关电源式充电器,两种充电器各具有不同的特点。
电源快速充电电路图集锦
电源快速充电电路图集锦TOP1 简易快速充电电源模块电路模块采用NEC upd78F0547单片机为主控制器,通过键盘来设置直流电源的输出电流,并可由液晶显示器显示输出的电压、电流值。
主电路采用运放LM324和达林顿管组成调节电路,电路设计合理,编程正确。
除了完成题目要求外,电路设计了步进设置功能,可设置不同的恒流和稳压值。
恒流、恒压充电电路:这部分电路是整个电路的核心部分,主要由D/A转换电路,恒流、恒压调整电路,检测电路组成。
控制电路输送来的数字信号由D/A转换电路IC205转换成模拟信号作为基准电压,然后送到电压比较器IC201的正输入端。
输出端取样电阻上取得取样电压信号送到电压比较器IC201的负输入端,与基准电压比较,比较结果由IC201的输出端反馈到T202,控制T202的导通状态。
由D201、D202、R201、T203组成一个恒流源A,恒流值I=2Ud-Ube/R201 。
T202的导通状态影响着对恒流源A的吸收电流,从而改变恒流源A对调整管T201基极的驱动电流,稳定调整管T201的输出值。
为减小输出纹波,调整管T201使用达林顿三极管。
调整管T201基极电流由一恒流源提供,进一步减小电源电压波动对调整管T201带来的影响。
电路采用悬浮驱动。
电位器W103以及单片机(内含A/D转换)组成电压检测电路。
W103将输出电压的取样信号送单片机内部的A/D 电路进行转换,转换得到的数字信号由单片机处理,并由LCD显示器显示测量值。
取样电阻R202、IC202以及单片机(内含A/D转换)组成电流检测电路。
取样电阻R202上的取样信号送IC202处理、送单片机内部的A/D电路进行转换,转换得到的数字信号由单片机处理,并由LCD显示器显示测量值。
图2.1 恒流、恒压充电电路原理图图2.2 D/A转换电路原理图控制电路:控制电路主要由NEC upd78F0547单片机及外围电路、键盘电路等组成。
简单解析手机充电器的工作原理
简单解析手机充电器的工作原理刚好前段时间拆了两个充电器,看下里面的电路就明白了。
鉴于网络上不明真相出来误导人的特别多,很多网站竟然还有文章说手机充电器里没有变压器隔离的。
因此简单说下手机充电器的工作原理。
图1:开关式手机充电器拆机图上面是我手头一个山寨充电器的拆机图,没错,这是个山寨充电器,5V1A,不到10元买的,拆了之后发现做工还是可以的,下文上其他相关图片,不算是太坑爹的山寨。
山寨充电器的电路和正规的多数都差不多,个别坑爹的山寨可能没有反馈和保护,用的元件质量差或者压根就是拆机件,同事还存在参数虚标的问题,下面就结合这个充电器的拆机图简要说下原理。
为啥现在手机充电器可以做的那么小?很多人稍微对电子有了解的人都记得传统大个头的变压器,通过变压器原副边线圈绕组的匝数比来实现交流电压的变换,然后通过桥式整流,稳压滤波,甚至通过稳压芯片来实现恒定的电压输出。
图2 传统的充电器和变压器传统的充电器很大的一个问题是,变压器必须做的很大,电能是转换成磁能进行传递,要想能够传递足够功率的电能就需要更多的匝数来产生足够的磁能,从而完成大功率的电压变换。
所以要求输出的电流越大,对变压器的个头就得越大。
那为什么现在的充电器可以做的那么小呢?苹果的绿点充电器非常迷你,又是什么样的原理呢?这就是开关型电源的优势所在了,请参考图1中的充电器内部图,绝大多数的充电器基本原理都是一致的,因此我就用这个图来做统一说明。
首先,开关型电源也是有变压器的,无论是手机充电器还是电脑的开关电源,这个在图中已经注明,那么为什么和传统的变压器相比这个变压器可以那么小呢?前面说过,变压器室通过电磁转换来传递能量,而在电流一定的情况下电流转换为电磁能量主要有两个因素,意识线圈匝数,而是交流电的频率,传统变压器由于市电50Hz的固定频率,为了传递更大的功率,只能来改变匝数,所以功率越大,变压器个头越大。
而开关电源通过提高变压器上交流电的频率可以使得变压器在满足功率要求的情况下保持较小的体积,这个特点非常符合现代电子设备的需求。
自制简单锂电池充电器电路-副本
自制简单锂电池充电器电路电路很简单,如附图所示,元件很容易廉价获得,适用范围很宽,可以适应1节一4节串连电压,充电电流可以通过元件参数选择,充电特性也比较理想,原理如下:由LM317和R1、R2 R3组成一个典型的恒流电路(431暂时认为断开R4比较大可以先不看)。
当电压不太高时保持恒定的充电电流。
以两节电池充电为例,理想状态下,充电电流应该是电压达到8.3V前一直保持恒定。
当A点电压达到拐点值8.3V时,经过R4R5分压,TL431 开始导通,并把LM3仃的基准点电压从8.3V逐渐拉下。
所谓拐点就是指电流开始下降的那点。
直到电压达到8.4V的0电流点,A点仍然保持这个8.3V电压,LM3仃的输出Vout下降到8.4V,其调整端下降到7.17V。
电池电压为8.3V时(拐点)各点的电压都标在图上,充电截止(8.4V )的各点电压以括号形式也标在后边。
元件选择LM317,三端可调串连稳压块,选塑封的,LM3仃T常用。
根据电流不同,应选用相应的散热片。
TL431,三端可调并联稳压块,与一个小三极管外形一样,常用。
RL就是外接被充电池。
电流采样电阻R1,计算方法是R1 = 1.23 / 充电电流。
例如,若充电电流为0.3A,则电阻应该选择4.1欧。
这个电阻一般要选择功率大一些的,比如1A就应该是2W的。
可调电阻R4可以选择那种篮色的精密多圈,取比额定值大一些的,比如23.2k的就可以选择25K的多圈。
若嫌多圈太贵或难找,也可以用一个固定电阻串连一个普通可调电阻。
例如23.2k的就可以选择22k固定加一个2.2k —3.9k可调节的,以便进行精细调节。
电阻R2的要求不是很高,可以采用串并联的方法得到。
比如8.8欧可以选择10欧并联75欧(或并50欧—91欧)若电路设计为适应不同的电压,比如可以转换完成2节、3节、4节电池的充电,那就应该分别选择可调电阻,并找一个2刀3掷波段开关,用来切换两个可调电阻。
若要求充电电流也可以变化,自然也可以使用波段开关来转换。
CL1101_CN
●栅极驱动器
CL1101的外部功率MOSFET是由一个专门的栅极驱动器驱动的. 太弱的栅极驱动高强度运作导致的 结果是MOSFET开关功率的大量损耗,而过于强大的栅极驱动只能勉强支持EMI。通过内置的图腾柱 栅极的设计来对输出强度进行控制是一个很好的方案.
●输出线压降补偿
CL1101 的输出线压降补偿是为了实现良好的负载调节,内部电流流入电阻分压器并在 FB 引脚产生 偏置电压。并与 COMP 的引脚产生的电压成反比。结果,产生反比的输出负载电流。因此,减少由 于线压降可以得到赔偿。由于负载电流有满负荷状态下降到无负载状态,将会增加 FB 引脚的抵消电 压,通过调整电阻分压器来弥补下降的线电压以达到补偿的目的。
CHIPLINK SEMICONDUCTOR
特性曲线
CL1101
2010-01-28 5
CL1101_CN_01
CHIPLINK SEMICONDUCTOR
CL1101
使用说明
CL1101是一款专门应用于10W以内AC/DC手机电池充电器的高性能离线式PWM控制器。它利用了原 边反馈技术使系统应用中可以节省TL431和光耦以降低成本。内置的频率抖动可以实现高精度恒流/ 恒压控制,可以满足充电器的应用需求。
最小值
8.2 13.5 27 26
880 50 65
1.97
8
典型值.
5 2 9.0 14.8 28.5 27.5
625 910 210
17
70 50 14 +/-6
2 60 37.5
16 650 40
最大值 20 3 10.5 16.0 30 29
940
75
2.03
1
单位
电动车充电器电源原理图与解析
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
手机充电器的原理图
这种充电器采用抑制振荡型开关电源,它的简单工作原理是把220v交流电整流滤波成峰值电压300v左右的三角波(滤波电容用的很小或干脆不用),利用开关管E极较大的电阻取出电压进行比较,在电源电压达200v左右时就使开关电源停振,加上此开关电源初级电流很小,开关管C极反峰电压也较低,因此可以使用Vceo大于300v的TO-92封装的小型开关管,以缩小体积降低成本。
分析一个电源,往往从输入开始着手。
220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。
这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。
右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。
13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。
当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。
由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。
不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。
左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。
13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。
当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。
变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。
电动车充电器电源原理图与解析
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
手机充电器电路工作原理PPT(35张)
在Q2导通期间,L3中的感应电动势极性为上 负下正,D7截止;在Q2截止期间,L3中的 感应电动势极性为上正下负,D7导通,向 外供电。 图1中,VD1、Q1等元件组成稳压 电压。若输出电压过高,则L2绕组的感应 电压也将升高,D1整流、C4滤波所得电压 升高。由于VD1两端始终保持5.6V的稳压值, 则Q1 b极电压升高,Q1导通程序加深,即 对Q2 b极电流的分流作用增强,Q2提前截 止,输出电压下降 若输出电压降低,其稳 压控制过程与上述相反。
VD17的导通/截止直接受电网电压和负载的 影响。电网电压越低或负载电流越大,VD17 的导通时间越短,V2的导通时间越长,反之, 电网电压越高或负载电流越小,VD5的整流 电压越高,VD17的导通时间越长,V2的导通 时间越短。V1是过流保护管,R5是V2 Ie的 取样电阻。当V2 Ie过大时,R5上的电压降 使V1导通,V2截止,可有效消除开机瞬间的 冲击电流,同时对VD17的控制功能也是一种 补偿。VD17以电压取样来控制V2的振荡时间, 而V1是以电流取样来控制V2振荡时间的。
按下SW2,V5基极瞬间得一低电平而导通,可 充电池上的残余电压通过V5的ec极在R17上 放电,同时放电指示灯VD14点亮。在按下 SW2后会随即释放,这时可充电池上的残余 电压通过R16、R13分压,C9滤波后为V4的基 极提供一个高电平,V4导通,这相当于短接 SW2。随着放电时间的延长,可充电池上的 残余电压也越来越低,当V4基极上的电压不 能维持其继续导通时,V4截止,放电终止, 充电器随即转入充电状态。
由于集成块IC1 的2、3、4脚和电容C4共同组成振荡 谐振电路,其2脚输出的振荡脉冲经电阻R16送至 充电指示灯LED--发光二极管(绿)的正极,其负 极接到集成块IC1的8脚。 在电池刚接人电路时, 集成块IC1的8脚输出的电平越低,充电指示灯 LED1闪烁发光强。随着充电时间延长,电池所充 的电压慢慢升高,集成块IC1的8脚 输出电压慢慢 升高,充电指示灯LED1闪烁发光逐渐变弱。当电 池E慢慢充到4.2V左右时,集成块IC1的6脚电位也 达到其内部的参考电压1.8V.此时,集成块IC1内 部电路动作,使其8脚电压输出高电平,三极管 VT3截止,充电指示灯LED1不再闪烁发光而熄灭, 充满指极管VT2及开关变压器1等组 成。接通源后,交流220V经二极管VD2半波整 流,形成100V左右的直流电压。该电压经开 关变压器T的1初级绕组加到了三极管VT2的c 极,同时该电压经启动电阻R4为VT2的b极提 供一个正向偏置电压,使VT2导通。此时,三 极管VT2和开关变压器 T1组成的间歇振荡电 路开始工作,开关变压器T的1-1初级绕组中 有电流通过。
4节镍氢电池串联充电原理图
充电过程与充电方法电池的充电过程通常可分为预充电、快速充电、补足充电、涓流充电四个阶段.对长期不用的或新电池充电时,一开始就采用快速充电,会影响电池的寿命.因此,这种电池应先用小电流充电,使其满足一定的充电条件,这个阶段称为预充电.快速充电就是用大电流充电,迅速恢复电池电能.快速充电速率一般在1C以上,快速充时间由电池容量和充电速率决定.为了避免过充电,一些充电器采用小电流充电.镍镉电池正常充电时,可以接受C/10或更低的充电速率,这样充电时间要10h以上.采用小电流充电,电池内不会产生过多的气体,电池温度也不会过高.只要电池接到充电器上,低速率恒流充电器就能对电池提供很小的涓流充电电流.电池采用小电流充电时,电池内产生的热量可以自然散去.涓流充电器的主要问题是充电速度太慢,例如,容量为1Ah的电池,采用C/10充电速率时,充电时间要10h以上.此外,电池采用低充电速率反复充电时,还会产生枝晶.大部分涓流充电器中,都没有任何电压或温度反馈控制,因而不能保证电池充足电后,立即关断充电器.快速充电分恒流充电和脉冲充电两种,恒流充电就是以恒定电流对电流充电,脉冲充电则是首先用脉冲电流对电池充电.然后让电池放电,如此循环.电池脉冲的幅值很大、宽度很窄.通常放电脉冲的幅值为充电脉冲的3倍左右.虽然放电脉冲的幅值与电池容量有关,但是,与充电电流幅值的比值保持不变,脉冲充电时,充电电流波形如图1-4所示.充电过程中,镍镉电池中的氢氧化镍还原为氢氧化亚镍,氢氧化镉还原为镉.在这个过程中产生的气泡,聚集在极板两边,这样就会减小极板的有效面积,使极板的内阻增大.由于极板的有效面积变小,充入全部电量所需的时间增加.加入放电脉冲后,气泡离开极板并与负极板上的氧复合.这个去极化过程减小了电池的内部压力、温度和内阻.同时,充入电池的大部分电荷都转换为化学能,而不会转变为气体和热量.充放电脉冲宽度的选择应能保证极板恢复原来的晶体结构,从而消除记忆效应.采用放电去极化措施后,可以提高充电效率并且允许大电流快速充电.采用某些快速充电止法时,快速充电终止后,电池并未充足电.为了保证充入100%的电量,还应加入补足充电过程.补足充电速率一般不超过0.3C.在补足充电过程中,温度会继续上升,当温度超过规定的极限时,充电器转入涓流充电状态.存放时,镍镉电池的电量将按C/30到C/50的放电速率减小,为了补偿电池因自放电而损失的电量,补足充电结束后,充电器应自动转入涓流电过程.涓流充电也称为维护充电.根据电池的自放电特性,涓流充电速率一般都很低.只要电池接在充电器上并且充电器接通电源,在维护充电状态下,充电器将以某一充电速率给电池补充电荷,这样可使电池总处于充足电状态.快速充电终止控制方法采用快速充电法时,充电电流为常规充电电流的几十倍.充足电后,如果不与时停止快速充电,电池的温度和内部压力将迅速上升.内部压力过大时,密封电池将打开放气孔,从而使电解液逸散,造成电解液的粘稠性增大,电池的内阻增大,容量下降.从镍镉电池快速充电特性可以看出,充足电后,电池电压开始下降,电池的温度和内部压力迅速上升,为了保证电池充足电又不过充电,可以采用定时控制、电压控制和温度控制待多种方法. 〔1〕定时控制采用1.25C充电速率时,电池1h可充足;采用2.5C充电速率时,30min可充足.因此,根据电池的容量和充电电流,很容易确定所需的充电时间.这种控制方法最简单,但是由于电池的起始充电状态不完全相同,有的电池充不足,有的电池过充电,因此,只有充电速率小于0.3C时,才允许采用这种方法.〔2〕电压控制在电压控制法中,最容易检测的是电池的最高电压.常用的电压控制法有:最高电压〔Vmax〕从充电特性曲线可以看出,电池电压达到最大值时,电池即充足电.充电过程中,当电池电压达到规定值后,应立即停止快速充电.这种控制方法的缺点是:电池充足电的最高电压随环境温度、充电速率而变,而且电池组中各单体电池的最高充电压也有差别,因此采用这种方法不可能非常准确地判断电池已足充电.电压负增量〔-ΔV〕由于电池电压的负增量与电池组的绝对电压无关,而且不受环境温度和充电速率等因素影响,因此可以比较准确地判断电池已充足电.这种控制方法的缺点是:电池电压出现负增量后,电池已经过充电,因此电池的温度较高.此外镍氢电池充足电后,电池电压要经过较长时间,才出现负增量,过充电较严重.因此,这种控制方法主要适用于镍镉电池.电压零增量〔0ΔV〕镍氢电池充电器中,为了避免等待出现电压负增量的时间过久而损坏电池,通常采用0ΔV控制法.这种方法的缺点是:充足电以前,电池电压在某一段时间内可能变化很小,从而造成过早地停止快速充电.为此,目前大多数镍氢电池快速充电器都采用高灵敏-0ΔV检测,当电池电压略有降低时,立即停止快速充电.〔3〕温度控制为了避免损坏电池,电池温度过低时不能开始快速充电,电池温度上升到规定数值后,必须立即停止快速充电.常用的温度控制方法有:最高温度〔Tmax〕充电过程中,通常当电池温度达到45℃时,应立即停止快速充电.电池的温度可通过与电池装在一起的热敏电阻来检测.这种方法的缺点是热敏电阻的响应时间较长,温度检测有一定滞后,同时,电池的最高工作温度与环境温度有关.当环境温度过低时,充足电后,电池的温度也达不到45℃.温升〔ΔT〕为了消除环境影响,可采用温升控制法.当电池的温升达到规定值后,立即停止快速充电.为了实现温升控制,必须用两只热敏电阻,分别检测电池温度和环境温度.温度变化率〔ΔT/Δt〕镍氢和镍镉电池充足电后,电池温度迅速上升,而且上升速率ΔT/Δt基本相同,当电池温度每分钟上升1℃时,应当立即终止快速充电,这种充电控制方法,近年来被普遍采用.应当说明,由于热敏电阻的阻值与温度关系是非线性的,因此,为了提高检测精度应设法减小热敏电阻非线性的影响.最低温度〔Tmin〕当电池温度低于10℃时,采用大电流快速充电,会影响电池的寿命.在这种情况下,充电器应自动转入涓流充电,待电池的温度上升到10℃后,再转入快速充电.。
手机充电器电路工作原理PPT(35张)
超力通手机旅行充电器电路
适合摩托罗拉308、328、338及368等系列手机电池充 电。该充电器具有镍镉、镍氢、锂离子电池充电转换 开关,并具有放电功能。在150~250V、40mA的交流 市电输入时,可输出300±50mA的集成电路(YLT539)和三极管 VT3等组成。从变压器T的1-3绕组感应出的交流电压5.5V经二 极管VD3整流、电容C3 滤波后,输出一个直流8.5V左右电压 (空载时),该电压一部分加到三极管VT3的e极;另一部分 送到软塑封集成块IC1(YLT539)的1脚,为其提 供工作电源。 集成块IC1有了工作电源后开始启动工作,在其8脚输出低电 平充电脉冲,使三极管VT3导通,直流8.5V电压开始向电池E 充电。当 待充电池E电压低于4.2V时,该电压经取样电阻R11、 R12分压后,加到集成块IC1的6脚上,该电压低于集成块IC1 内部参考电压越多,集成块 IC1的8脚输出的电平越低,三极 管VT3的b极电位也越低,其导通量越大,直流电压(8.5V) 经极性转换开关S1向电池E快速充电。
1.振荡电路
• 该电路主要由三极管VT2及开关变压器1等组 成。接通源后,交流220V经二极管VD2半波整 流,形成100V左右的直流电压。该电压经开 关变压器T的1初级绕组加到了三极管VT2的c 极,同时该电压经启动电阻R4为VT2的b极提 供一个正向偏置电压,使VT2导通。此时,三 极管VT2和开关变压器 T1组成的间歇振荡电 路开始工作,开关变压器T的1-1初级绕组中 有电流通过。
由于集成块IC1 的2、3、4脚和电容C4共同组成振荡 谐振电路,其2脚输出的振荡脉冲经电阻R16送至 充电指示灯LED--发光二极管(绿)的正极,其负 极接到集成块IC1的8脚。 在电池刚接人电路时, 集成块IC1的8脚输出的电平越低,充电指示灯 LED1闪烁发光强。随着充电时间延长,电池所充 的电压慢慢升高,集成块IC1的8脚 输出电压慢慢 升高,充电指示灯LED1闪烁发光逐渐变弱。当电 池E慢慢充到4.2V左右时,集成块IC1的6脚电位也 达到其内部的参考电压1.8V.此时,集成块IC1内 部电路动作,使其8脚电压输出高电平,三极管 VT3截止,充电指示灯LED1不再闪烁发光而熄灭, 充满指示灯LED2(绿)由灭变亮。
充电器电路图
充电器电路图利用单晶体管构建智能的电池充电器电路图本文的自动电池充电器电路设计采用了一种电路,该电路可以称得上有史以来用单个晶体管制造的最简单的窗口比较器(见图)。
当电压下降到预定值以下时它开始充电,当电压超过预定值时它停止充电。
借助精确的可变电压电源,可在设定上下电压。
正常连接的继电器引线不接入15V dc 电源,它阻止了电压传至电池引线。
这样可以精确设置上下电压。
但15 V dc 的充电电源被连接至电路。
第 2 页共 71 页第 3 页共 71 页首先,可变电压电源被固定在13.3 V dc——这是电池充满电的电压,并被连接至电路的电池连接点。
VR1的滑块被调到附在电池正极的最顶端。
VR2的滑块应向连接至VR1的一端调节。
该晶体管开始工作,分流VR1。
然后,VR1的滑块向另一端调节,即连接至VR2的一端。
现在将测试电源电压设为11.8 V dc,这是电池耗尽时的电压。
然后,调节VR2以使它让晶体管不再工作。
测试电压再提高至13.3 V dc,调节VR1使晶体管工作。
利用设置的上下电压,NC点被连接至电路(15V dc充电电压)。
现在电池充电器已经就绪了。
典型半桥式电动自行车电瓶充电器电路图下图是天能TN-1智能负脉冲充电器电路图。
这个充电器主要部分是典型的半桥式两段充电器。
这里主要介绍负脉冲充电部分的工作原理。
这部分电路由放电开关、负脉冲加载控制、脉冲振荡器三部分组成。
放电开关是三极管Q6、Q6导通,其集电极和发射极将电瓶短路,电瓶放电。
Q6截止,电瓶恢复充电。
Q5和Q6是直接耦合,俗称达林顿管。
Q6受加载负脉冲控制和振荡第 4 页共 71 页器联合控制。
加载负脉冲控制由IC3的C和D构成。
D接成反相器(电路中,与非门两个输入并联看作一个非门),只有C的两个输入都为高电平时,③脚为低电平,经D反相使Q6导通,给电瓶放电。
C的②脚来自多谐振荡器的每秒1个(脉宽3ms)正脉冲,C的①脚来自两阶段电流检测电路IC2的①脚,恒流充电时①脚为高电平。
手机万能充电器电路图介绍(doc 14页)
手机万能充电器电路图介绍(doc 14页)一、手机万能充电器是一个小型的开关电源,电路结构简单,外围元件较少。
但是一旦发生故障,有些人束手无策,因为没有电路图。
现在我将电路图传上,和大家一起分享。
有问题可以向我提问。
希望和大家共同进步!二、超力通电路图(原图)三、我修改过的图纸(我认为原图可能有错误)四、超力通电路原理该充电器具有镍镉、镍氢、锂离子电池充电转换开关,并具有放电功能。
在150~250V、40mA的交流市电输入时,可输出300±50mA的直流电流。
该充电器采用了RCC型开关电源,即振荡抑制型变换器,它与PWM 型开关电源有一定的区别。
PWM型开关电源由独立的取样误差放大器和直流放大器组成脉宽调制系统;而RCC型开关电源只是由稳压器组成电平开关,控制过程为振荡状态和抑制状态。
由于PWM型开关电源中的开关管总是周期性的通断,系统控制只是改变每个周期的脉冲宽度,而RCC型开关电源的控制过程并非线性连续变化,它只有两个状态:当开关电源输出电压超过额定值时,脉冲控制器输出低电平,开关管截止;当开关电源输出电压低于额定值时,脉冲控制器输出高电平,开关管导通。
当负载电流减小时,滤波电容放电时间延长,输出电压不会很快降低,开关管处于截止状态,直到输出电压降低到额定值以下,开关管才会再次导通。
开关管的截止时间取决于负载电流的大小。
开关管的导通/截止由电平开关从输出电压取样进行控制。
因此这种电源也称非周期性开关电源。
220V市电经VD1~VD4桥式整流后在V2的集电极上形成一个300V左右的直流电压。
由V2和开关变压器组成间歇振荡器。
开机后,300V直流电压经过变压器初级加到V2的集电极,同时该电压还经启动电阻R2为V2的基极提供一个偏置电压。
由于正反馈作用,V2 Ic 迅速上升而饱和,在V2进入截止期间,开关变压器次级绕组产生的感应电压使VD7导通,向负载输出一个9V左右的直流电压。
开关变压器的反馈绕组产生的感应脉冲经VD5整流、C1滤波后产生一个与振荡脉冲个数呈正比的直流电压。
110V充电电路技术文件
110VDC CHARGER DESIGN一、前言:应用FL YBACK架构,市电经过整流后通过芯片IC3845的调节,将能量转移到变压器副边,给电池充电。
此种架构已被广泛应用于充电器的设计,但其缺点在于充电功率不恒定,表现为在市电电压很低时,输出功率会比额定输出功率小很多;相反,在市电电压很高时,又会大很多。
可以通过改善硬件的设计弥补此缺点。
二、电路工作原理:图(a)为FL YBACK基本架构。
工作原理为:当开通Q01时,由于D1反向,能量储存在变压器原边,此时由C1向负载提供能量;当Q01关断,储存在变压器原边的能量通过D1输给负载,同时给C1充电。
通过采样输出电压,通过IC3845调节Q01的导通时间来稳定输出电压。
图(b)为理想情况下,由于输入电压为一直流电压,当Q01开通时原边电流的波形。
电流线性增长,变压器开始储存能量图(c)为当Q01关断时,D1的电流波形(假设为阻性负载)。
同时由于电流未延续到下一Q01开通时间,表示电路工作在不连续工作模式。
此种模式由于有较高的(相对于连续模式)峰值电流,因此会增加绕组的损耗及输入电容的涟波。
图(d)为Q01承受的峰值电压。
在Q01关断且D1还有电流时(不考虑漏感),假设D1压降为1V,则:DSV=)1(++OVmNPNdcV三、设计理论:1、变压器设计已知输入电压范围,输出功率,工作频率,效率按照85%计算。
ηfLIPPO221=(1)onPin TILV=(2) 式中:OP:输出功率;f:变压器工作频率η:工作效率PI:初级侧电流尖峰onT:Q01开通时间将已知输出功率和最小输入电压代入上式,可得变压器原边电感值及原边电流峰值。
JID rms13.1=(3)PTrmsIDI3=(4)式中:D :绕线直径 r m s I : 电流有效值J:电流密度(取值5.5)T D :最大占空比根据上式可以得到原边与副边的线径。
变压器的面积Ae 可由下式推导: m a x8210)33.6(B D I L A A p p e c =(5)代入原边线径及设定最大磁通密度可以得到所需变压器型号。