2020届人教版带电粒子在电场中运动的综合性问题单元测试
带电粒子在电场中运动的综合问题
(1)求子弹打入靶盒后的瞬间,子弹和靶盒共 同的速度大小v1; 解析 子弹打入靶盒过程中,由动量守恒定 律得mv0=10mv1 解得v1=0.1v0。 答案 0.1v0
(2)求子弹打入靶盒后,靶盒向右离开O点的最
大距离s;
解析 靶盒向右运动的过程中,由牛顿第二
定律得qE=10ma
又 v21=2as 解得 s=2m0qvE20 。
4.(多选)如图 4 所示,ACB 为固定的光滑半圆形竖直绝
缘轨道,半径为 R,AB 为半圆水平直径的两个端点, OC 为半圆的竖直半径,AC 为41圆弧,OC 的左侧、OA 的下方区域有竖直向下的匀强电场。一个带负电的小
球,从 A 点正上方高为 H 处由静止释放,并从 A 点
沿切线进入半圆轨道。不计空气阻力,小球电荷量不
电场,x 轴沿水平方向,一带负电小球以初速度 v0 从坐标原点 O 水平射出,一
段时间后小球通过第四象限 PL,-L点(图 2 中没有标出)。已知小球质量为 m,
ቤተ መጻሕፍቲ ባይዱ
重力加速度为 g,则小球( AB )
A.从 O 到 P 的运动过程,运动时间为vL0
B.到达 P 点时动能为25mv20
C.到达 P 点时速度偏向角正切值为 tan θ=1
C.-mgLqsin θ
D.mgLqsin θ
图3
解析 带正电小滑块从 A 点由静止开始沿斜面下滑,受到重力和电荷 Q 的库仑
力作用,从 A 点运动到 B 点的过程,由动能定理可知 mgLsin θ+qUAB=0,解 得 A、B 两点间的电势差 UAB=-mgLqsin θ,C 正确。
对点练 2 电场中的力、电综合问题
答案
mv20 20qE
(3)若靶盒回到O点时,第2颗完全相同的子弹 也以v0水平向右打入靶盒,求第2颗子弹对靶 盒的冲量大小I。
人教版高中物理必修三同步练习题带电粒子在电场中的运动
知行合一第十章 静电场中的能量 10.5 带电粒子在电场中的运动一、单选题:1.两平行金属板相距为d ,电势差为U ,一电子质量为m 、电荷量为e ,从O 点沿垂直于极板的方向射出,最远到达A 点,然后返回,如图10所示,OA =L ,则此电子具有的初动能是( )A.edL UB .edULC.eU dLD.eUL d答案 D解析 电子从O 点运动到A点,因受电场力作用,速度逐渐减小.根据题意和题图判断,电子仅受电场力,知行合一不计重力.根据能量守恒定律得12mv 02=eU OA .因E =U d ,U OA =EL =UL d ,故12mv 02=eULd,所以D 正确.2.图甲为示波管的原理图。
如果在电极YY ′之间所加的电压按图乙所示的规律变化,在电极XX ′之间所加的电压按图丙所示的规律变化,则在荧光屏上看到的图形是( )解析 由于电极XX ′之间所加的是扫描电压,电极YY ′之间所加的电压为信号电压,所以荧光屏上会看到B 选项所示的图形。
知行合一答案 B3.当今医学上对某些肿瘤采用质子疗法进行治疗,该疗法用一定能量的质子束照射肿瘤杀死癌细胞。
现用一直线加速器来加速质子,使其从静止开始被加速到1.0×107 m/s 。
已知加速电场的场强为1.3×105 N/C ,质子的质量为1.67×10-27 kg ,电荷量为1.6×10-19 C ,则下列说法正确的是( )A.加速过程中质子电势能增加B.质子所受到的电场力约为2×10-15 NC.质子加速需要的时间约为8×10-6 sD.加速器加速的直线长度约为4 m解析 电场力对质子做正功,质子的电势能减少,A 错误;质子受到的电场力大小F =qE ≈2×10-14 N ,B 错误;质子的加速度a =F m ≈1.2×1013 m/s 2,加速时间t =v a ≈8×10-7 s ,C 错误;加速器加速的直线长度x =v22a≈4 m,知行合一故D 正确。
高中物理【带电粒子(或带电体)在电场中运动的综合问题】典型题(带解析)
高中物理【带电粒子、带电体在电场中运动的综合问题】典型题1.(多选)一带电小球在空中由A点运动到B点的过程中,只受重力、电场力和空气阻力三个力的作用.若重力势能增加5 J,机械能增加1.5 J,电场力做功2 J,则小球() A.重力做功为5 J B.电势能减少2 JC.空气阻力做功0.5 J D.动能减少3.5 J解析:选BD.小球的重力势能增加5 J,则小球克服重力做功5 J,故A错误;电场力对小球做功2 J,则小球的电势能减少2 J,故B正确;小球共受到重力、电场力、空气阻力三个力作用,小球的机械能增加1.5 J,则除重力以外的力做功为1.5 J,电场力对小球做功2 J,则知空气阻力做功为-0.5 J,即小球克服空气阻力做功0.5 J,故C错误;重力、电场力、空气阻力三力做功之和为-3.5 J,根据动能定理,小球的动能减少3.5 J,D正确.2. (多选)如图所示,一根不可伸长的绝缘细线一端固定于O点,另一端系一带电小球,置于水平向右的匀强电场中,现把细线水平拉直,小球从A点由静止释放,经最低点B后,小球摆到C点时速度为0,则()A.小球在B点时速度最大B.小球从A点到B点的过程中,机械能一直在减少C.小球在B点时细线的拉力最大D.从B点到C点的过程中小球的电势能一直增加解析:选BD.小球所受重力和电场力恒定,重力和电场力的合力恒定,小球相当于在重力和电场力的合力及细线的拉力作用下在竖直平面内做圆周运动.当小球运动到重力和电场力的合力和细线的拉力共线时(不是B点),小球的速度最大,此时细线的拉力最大,A、C错误;从A点到C点的过程中,小球所受重力做正功,小球摆到C点时速度为0,所以电场力对小球做负功,小球从A点到B点的过程中,机械能一直在减少,B正确;从B点到C点的过程中,小球克服电场力做功,小球的电势能一直增加,D正确.3.如图所示,在竖直向上的匀强电场中,一根不可伸长的轻质绝缘细绳,一端系着一个带电小球,另一端固定于O 点,小球在竖直平面内做匀速圆周运动,最高点为 a ,最低点为 b .不计空气阻力,则( )A .小球带负电B .电场力跟重力是一对平衡力C .小球从 a 点运动到 b 点的过程中,电势能减少D .运动过程中小球的机械能守恒解析:选B .小球在竖直平面内做匀速圆周运动,受到重力、电场力和细绳的拉力,电场力与重力平衡,则知小球带正电,故A 错误,B 正确.小球在从a 点运动到b 点的过程中,电场力做负功,小球的电势能增大,故C 错误.由于电场力做功,所以小球在运动过程中机械能不守恒,故D 错误.4.如图所示,高为h 的固定光滑绝缘斜面,倾角θ=53°,将其置于水平向右的匀强电场中,现将一带正电的物块(可视为质点)从斜面顶端由静止释放,其所受的电场力是重力的43倍,重力加速度为g ,则物块落地的速度大小为( )A .25ghB .2ghC .22ghD .532gh 解析:选D .对物块受力分析知, 物块不沿斜面下滑, 离开斜面后沿重力、 电场力合力的方向运动,F 合=53mg ,x =53h ,由动能定理得F 合·x =12m v 2,解得v =532gh . 5.(多选)如图所示,ABCD 为竖直放置的光滑绝缘细管道,其中AB 部分是半径为R 的14圆弧形管道,BCD 部分是固定的水平管道,两部分管道恰好相切于B 点.水平面内的M 、N 、B 三点连线构成边长为L 的等边三角形,M 、N 连线过C 点且垂直于BC D .两个带等量异种电荷的点电荷分别固定在M 、N 两点,电荷量分别为+Q 和-Q .现把质量为m 、电荷量为+q 的小球(小球直径略小于管道内径,小球可视为点电荷),由管道的A 处静止释放,已知静电力常量为k ,重力加速度为g ,则( )A .小球运动到B 点时受到的电场力小于运动到C 点时受到的电场力B .小球在B 点时的电势能小于在C 点时的电势能C .小球在A 点时的电势能等于在C 点时的电势能D .小球运动到C 点时的速度为gR 解析:选AC .根据等量异种点电荷的电场特征,B 点电场强度小于C 点,小球在B 点时受到的电场力小于运动到C 点时受到的电场力,故A 项正确.根据等量异种点电荷的电场特征可知A 、B 、C 三点处于同一个等势面上,所以三点的电势相等,小球在三点处的电势能是相等的,故B 项错误,C 项正确.从A 点到C 点的运动过程只有重力对小球做功,由动能定理可得:mgR =12m v 2C,所以小球在C 点时速度为2gR ,故D 项错误. 6.如图所示,在水平方向的匀强电场中有一表面光滑、与水平面成45°角的绝缘直杆AC ,其下端(C 端)距地面高度h =0.8 m .有一质量为500 g 的带电小环套在直杆上,正以某一速度沿杆匀速下滑.小环离杆后正好通过C 端的正下方P 点处.(g 取10 m/s 2)求:(1)小环离开直杆后运动的加速度大小和方向;(2)小环从C 运动到P 过程中的动能增量;(3)小环在直杆上匀速运动速度的大小v 0.解析:(1)结合题意分析知:qE =mg ,F 合=2mg =ma ,a =2g =10 2 m/s 2,方向垂直于杆向下.(2)设小环从C 运动到P 的过程中动能的增量为ΔE k =W 重+W 电其中W 重=mgh =4 J ,W 电=0,所以ΔE k =4 J.(3)环离开杆做类平抛运动,平行杆方向匀速运动,有22h =v 0t 垂直杆方向匀加速运动,有22h =12at 2,解得v 0=2 m/s. 答案:(1)10 2 m/s 2 垂直于杆向下 (2)4 J (3)2 m/s7.如图所示,矩形区域PQNM 内存在平行于纸面的匀强电场,一质量为m =2.0×10-11 kg 、电荷量为q =1.0×10-5 C 的带正电粒子(重力不计)从a 点以v 1=1×104 m/s 的初速度垂直于PQ 进入电场,最终从MN 边界的b 点以与水平边界MN 成30°角斜向右上方的方向射出,射出电场时的速度v 2=2×104 m/s ,已知MP =20 cm 、MN =80 cm ,取a 点电势为零,如果以a 点为坐标原点O ,沿PQ 方向建立x 轴,则粒子从a 点运动到b 点的过程中,电场的电场强度E 、电势φ、粒子的速度v 、电势能E p 随x 的变化图象正确的是( )解析:选D .因为规定a 点电势为零,粒子进入电场后做类平抛运动,根据电场力做功与电势能的变化的关系,有qEx =ΔE p =0-E p ,故E p =-qEx ,故选项D 正确;因为匀强电场中的电场强度处处相等,故选项A 错误;因为粒子离开电场时的速度v 2=v 1sin 30°=2v 1,电场的方向水平向右,沿电场线的方向电势降低,故选项B 错误;粒子在电场中运动的过程中,由动能定理可知,qEx =12m v 2-12m v 21,所以v 与x 不是线性关系,选项C 错误. 8. (多选)如图所示为匀强电场的电场强度E 随时间t 变化的图象.当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,下列说法中正确的是( )A.带电粒子将始终向同一个方向运动B.2 s末带电粒子回到原出发点C.3 s末带电粒子的速度为零D.0~3 s内,电场力做的总功为零解析:选CD.设第1 s内粒子的加速度大小为a1,第2 s内的加速度大小为a2,由a 可知,a2=2a1,设带电粒子开始时向负方向运动,可见,粒子第1 s内向负方向运动,=qEm1.5 s末粒子的速度为零,然后向正方向运动,至3 s末回到原出发点,粒子的速度为0,vt图象如图所示,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C、D 正确.9.(多选)如图所示,竖直放置的两平行金属板间有匀强电场,在两极板间同一等高线上有两个质量相等的带电小球a、b(可以看成质点).将小球a、b分别从紧靠左极板和两极板正中央的位置由静止释放,它们沿图中虚线运动,都能打在右极板上的同一点.从释放小球到刚要打到右极板的运动中,下列说法正确的是()A.它们的运动时间t a>t bB.它们的电荷量之比q a∶q b=2∶1C.它们的电势能减少量之比ΔE p a∶ΔE p b=4∶1D.它们的动能增加量之比ΔE k a∶ΔE k b=4∶1解析:选BC.两小球由同一高度释放,打在同一点,故竖直方向位移相同;在竖直方向上做自由落体运动,故两小球运动时间相同,A错误.在水平方向,s a=2s b,由于时间相同,所以水平方向的加速度a a=2a b,由Eq=F=ma知它们的电荷量之比为2∶1,B正确.电势能的减少量之比为电场力做的功之比,a球所受电场力和水平位移均为b球的两倍,所以它们电势能的减少量之比为4∶1,C正确.动能的增加量等于合外力做的功,合外力对a 球做的功不是对b球做功的4倍,D错误.10.如图甲所示,将一倾角θ=37°的粗糙绝缘斜面固定在地面上,空间存在一方向沿斜面向上的匀强电场.一质量m =0.2 kg ,带电荷量q =2.0×10-3 C 的小物块从斜面底端静止释放,运动0.1 s 后撤去电场,小物块运动的v -t 图象如图乙所示(取沿斜面向上为正方向),g =10 m/s 2. (sin 37°=0.6,cos 37°=0.8),求:(1)电场强度E 的大小;(2)小物块在0~0.3 s 运动过程中机械能增加量.解析:(1)加速时:a 1=Δv 1Δt 1=20 m/s 2 减速时:加速度大小a 2=⎪⎪⎪⎪Δv 2Δt 2=10 m/s 2 由牛顿第二定律得:Eq -mg sin θ-F f =ma 1mg sin θ+F f =ma 2联立得E =3×103 N/C摩擦力F f =0.8 N.(2)方法一:ΔE k =0ΔE p =mgx sin 37°x =0.3 mΔE =ΔE pΔE =0.36 J.方法二:加速距离x 1=v 2t 1=0.1 m 减速距离x 2=v 2t 2=0.2 m 电场力做功W E =Eqx 1=0.6 J摩擦力做功W f =-F f (x 1+x 2)=-0.24 J物块在0~0.3 s 运动过程中机械能增加量ΔE =W E +W f =0.36 J.答案:(1)3×103 N/C (2)0.36 J11.如图所示,LMN 是竖直平面内固定的光滑绝缘轨道,MN 水平且足够长,LM 下端与MN 相切.质量为m 的带正电小球B 静止在水平面上,质量为2m 的带正电小球A 从LM 上距水平面高为h 处由静止释放,在A 球进入水平轨道之前,由于A 、B 两球相距较远,相互作用力可认为零,A 球进入水平轨道后,A 、B 两球间相互作用视为静电作用,带电小球均可视为质点.已知A 、B 两球始终没有接触.重力加速度为g .求:(1)A 球刚进入水平轨道的速度大小;(2)A 、B 两球相距最近时,A 、B 两球系统的电势能E p ;(3)A 、B 两球最终的速度v A 、v B 的大小.解析:(1)对A 球下滑的过程,据机械能守恒得2mgh =12·2m v 20 解得v 0=2gh .(2)A 球进入水平轨道后,两球组成的系统动量守恒,当两球相距最近时共速,有 2m v 0=(2m +m )v解得v =23v 0=232gh 据能量守恒定律得2mgh =12(2m +m )v 2+E p 解得E p =23mgh . (3)当两球相距最近之后,在静电斥力作用下相互远离,两球距离足够远时,相互作用力为零,系统势能也为零,速度达到稳定.则2m v 0=2m v A +m v B12×2m v 20=12×2m v 2A +12m v 2B 解得v A =13v 0=132gh v B =43v 0=432gh . 答案:(1)2gh (2)23mgh (3)132gh 432gh。
物理带电粒子在电场中的运动练习题含答案
物理带电粒子在电场中的运动练习题含答案一、高考物理精讲专题带电粒子在电场中的运动1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m 的油滴a 和b ,带电量为+q 的a 水平向右,不带电的b 竖直向上.b 上升高度为h 时,到达最高点,此时a 恰好与它相碰,瞬间结合成油滴p .忽略空气阻力,重力加速度为g .求(1)油滴b 竖直上升的时间及两油滴喷出位置的距离; (2)匀强电场的场强及油滴a 、b 结合为p 后瞬间的速度;(3)若油滴p 形成时恰位于某矩形区域边界,取此时为0t =时刻,同时在该矩形区域加一个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T 0(垂直纸面向外为正),已知P 始终在矩形区域内运动,求矩形区域的最小面积.(忽略磁场突变的影响) 【答案】(12hg2h (2)2mg q ;P v gh = 方向向右上,与水平方向夹角为45°(3)20min 22ghT s π= 【解析】 【详解】(1)设油滴的喷出速率为0v ,则对油滴b 做竖直上抛运动,有2002v gh =- 解得02v gh000v gt =- 解得02ht g=对油滴a 的水平运动,有000x v t = 解得02x h =(2)两油滴结合之前,油滴a 做类平抛运动,设加速度为a ,有qE mg ma -=,2012h at =,解得a g =,2mg E q =设油滴的喷出速率为0v ,结合前瞬间油滴a 速度大小为a v ,方向向右上与水平方向夹θ角,则0a cos v v θ=,00tan v at θ=,解得a 2v gh =45θ=︒两油滴的结束过程动量守恒,有:12p mv mv =,联立各式,解得:p vgh =,方向向右上,与水平方向夹45︒角(3)因2qE mg =,油滴p 在磁场中做匀速圆周运动,设半径为r ,周期为T ,则由2082pp v m qv m qT r π= 得04T gh r π=,由2p r T v π= 得02T T = 即油滴p 在磁场中的运动轨迹是两个外切圆组成的“8”字形.最小矩形的两条边长分别为2r 、4r (轨迹如图所示).最小矩形的面积为20min2242ghT s r r π=⨯=2.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m ,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq dt m= 得2mdt qE=代入数据解得t =1.0×10-6s水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 2md qE R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2EqmdE B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα) 把R =mv qB 、v =1v sin α、12qEd v m=12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆===Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t 把2md t qE =R =mv qB 、v 1=vsinα、12qEdv m=代入解得 0221221L qE n E v n md n B=⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=02(1)21221L qE n E v n md n B+=⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).3.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为2L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mgEq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A gL在D点时,下壁对球的支持力2022vF m mgr==由牛顿第三定律,22F F mg=='方向竖直向下.(3)小物体由P点运动到A点做匀加速直线运动,设所用时间为t1,则:211222L gt=解得12Ltg=小球在圆管内做匀速圆周运动的时间为t2,则:2323244Ar Ltv gππ⋅==小球离开管后做类平抛运动,物块从B到N的过程中所用时间:322Ltg=则:24ttππ=+【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.4.如图所示,在直角坐标系x0y平面的一、四个象限内各有一个边长为L的正方向区域,二三像限区域内各有一个高L,宽2L的匀强磁场,其中在第二象限内有垂直坐标平面向外的匀强磁场,第一、三、四象限内有垂直坐标平面向内的匀强磁场,各磁场的磁感应强度大小均相等,第一象限的x<L,L<y<2L的区域内,有沿y轴正方向的匀强电场.现有一质量为四电荷量为q的带负电粒子从坐标(L,3L/2)处以初速度v沿x轴负方向射入电场,射出电场时通过坐标(0,L)点,不计粒子重力.(1)求电场强度大小E;(2)为使粒子进入磁场后途经坐标原点0到达坐标(-L,0)点,求匀强磁场的磁感应强度大小B;(3)求第(2)问中粒子从进入磁场到坐标(-L,0)点所用的时间.【答案】(1)2mvEqL=(2)04nmvBqL=n=1、2、3 (3)2Ltvπ=【解析】本题考查带电粒子在组合场中的运动,需画出粒子在磁场中的可能轨迹再结合物理公式求解.(1)带电粒子在电场中做类平抛运动有:0L v t=,2122Lat=,qE ma=联立解得:2mvEqL=(2)粒子进入磁场时,速度方向与y 轴负方向夹角的正切值tan xyvvθ==l速度大小02sinvv vθ==设x为每次偏转圆弧对应的弦长,根据运动的对称性,粒子能到达(一L,0 )点,应满足L=2nx,其中n=1、2、3......粒子轨迹如图甲所示,偏转圆弧对应的圆心角为2π;当满足L=(2n+1)x时,粒子轨迹如图乙所示.若轨迹如图甲设圆弧的半径为R,圆弧对应的圆心角为2π.则有2R,此时满足L=2nx联立可得:22Rn=由牛顿第二定律,洛伦兹力提供向心力,则有:2vqvB mR=得:04nmvBqL=,n=1、2、3....轨迹如图乙设圆弧的半径为R,圆弧对应的圆心角为2π.则有222x R,此时满足()221L n x=+联立可得:()2212R n =+由牛顿第二定律,洛伦兹力提供向心力,则有:222v qvB m R =得:()02221n mv B qL+=,n=1、2、 3....所以为使粒子进入磁场后途经坐标原点0到达坐标(-L ,0)点,求匀强磁场的磁感应强度大小04nmv B qL =,n=1、2、3....或()02221n mv B qL+=,n=1、2、3.... (3) 若轨迹如图甲,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=2n×2π×2=2nπ,则02222n n m L t T qB v ππππ=⨯==若轨迹如图乙,粒子从进人磁场到从坐标(一L ,0)点射出磁场过程中,圆心角的总和θ=(2n+1)×2π=(4n+2)π,则2220(42)(42)2n n m Lt T qB v ππππ++=⨯== 粒子从进入磁场到坐标(-L ,0)点所用的时间为02222n n m Lt T qB v ππππ=⨯==或2220(42)(42)2n n m Lt T qB v ππππ++=⨯==5.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
2020届高考物理小题狂练13:带电粒子在电场中运动(附解析)
2020届高考物理小题狂练13:带电粒子在电场中运动(附解析)一、考点内容(1)带电粒子在匀强电场中的运动;(2)示波管、常见电容器;(3)电容器的电压、电荷量和电容的关系等。
二、考点突破1.(多选)如图所示,水平放置的平行板电容器,上板带负电,下板带正电,断开电源后一带电小球以速度v水平射入电场,且沿下板边缘飞出,若下板不动,将上板上移一小从原处飞入,则带电小球()段距离,小球仍以相同的速度vA.将打在下板中央B.仍沿原轨迹由下板边缘飞出C.不发生偏转,沿直线运动D.若上板不动,将下板上移一段距离,小球可能打在下板的中央2.如图所示,R是一个定值电阻,A、B为水平正对放置的两块平行金属板,两板间带电微粒P处于静止状态,则下列说法正确的是()A.若增大A、B两金属板的间距,则有向右的电流通过电阻RB.若增大A、B两金属板的间距,P将向上运动C.若紧贴A板内侧插入一块一定厚度的金属片,P将向上运动D.若紧贴B板内侧插入一块一定厚度的陶瓷片,P将向上运动3.(多选)如图所示,正方体真空盒置于水平面上,它的ABCD 面与EFGH 面为金属板,其他面为绝缘材料。
ABCD 面带正电,EFGH 面带负电。
从小孔P 沿水平方向以相同速率射入三个质量相同的带正电液滴,最后分别落在1、2、3三点,则下列说法正确的是( )A .三个液滴在真空盒中都做平抛运动B .三个液滴的运动时间一定相同C .三个液滴落到底板时的速率相同D .液滴3所带电荷量最多4.一匀强电场的方向竖直向上,t =0时刻,一带电粒子以一定初速度水平射入该电场,电场力对粒子做功的功率为P ,不计粒子重力,则P -t 关系图象是( )5.如图所示,在水平向右的匀强电场中,质量为m 的带电小球,以初速度v 从M 点竖直向上运动,通过N 点时,速度大小为2v ,方向与电场方向相反,则小球从M 运动到N 的过程( )A .动能增加12mv 2B .机械能增加2mv 2C .重力势能增加32mv 2D .电势能增加2mv 26.(多选)A 、B 两带电小球置于光滑绝缘水平面上,空间存在平行于水平面的匀强电场,将A 、B 两小球分别沿如图所示轨迹移动到同一电场线上的不同位置。
2020届高考物理 带电粒子在电场中的运动专题练习(含答案)
v图4带电室信号输入墨盒纸2020届高考物理 带电粒子在电场中的运动专题练习(含答案)1. 如图,一充电后的平行板电容器的两极板相距l ,在正极板附近有一质量为M 、电荷量为q (q >0)的粒子,在负极板附近有另一质量为m 、电荷量为-q 的粒子,在电场力的作用下,两粒子同时从静止开始运动。
已知两粒子同时经过一平行于正极板且与其相距的平面。
若两粒子间相互作用力可忽略,不计重力,则M :m 为( A ) A. 3∶2 B. 2∶1 C. 5∶2 D. 3∶12. 如图,两平行的带电金属板水平放置。
若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态。
现将两板绕过a 点的轴(垂直于纸面)逆时针旋转45°,再由a 点从静止释放一同样的微粒,该微粒将 ( D ) A .保持静止状态 B .向左上方做匀加速运动 C .向正下方做匀加速运动 D ..向左下方做匀加速运动3. 如图所示,三块平行放置的带电金属薄板A 、B 、C 中央各有一小孔,小孔分别位于O 、M 、P 点。
由O 点静止释放的电子恰好能运动到P 点,现将C 板向右平移到P'点,则由O 点静止释放的电子 ( A ) (A)运动到P 点返回(B)运动到P 和P'点之间返回 (C)运动到P'点返回 (D)穿过P'点4. 如图所示,在点电荷Q 产生的电场中,实线MN 是一条方向未标出的电场线,虚线AB 是一个电子只在静电力作用下的运动轨迹。
设电子在A 、B 两点的加速度大小分别为a A 、a B ,电势能分别为E p A 、E p B 。
下列说法正确的是 A .电子一定从A 向B 运动B .若a A >a B ,则Q 靠近M 端且为正电荷C .无论Q 为正电荷还是负电荷一定有E p A <E p BD .B 点电势可能高于A 点电势 【答案】BC5. 喷墨打印机的简化模型如图4所示,重力可忽略的墨汁微滴,经带电室带负电后,以速度v 垂直匀强电场飞入极板间,最终打在纸上,则微滴在极板间电场中l 52P'MNABaA.向负极板偏转B.电势能逐渐增大C.运动轨迹是抛物线D.运动轨迹与带电量无关 答: C6. 图(a )为示波管的原理图。
2020届高考物理专题突破:带电粒子在电场中的运动
2020高考物理 专题突破:带电粒子在电场中的运动(含答案)巩固练习(一) 带电粒子在电场中的直线运动例题1. 如图所示,M 、N 是在真空中竖直放置的两块平行金属板,板间有匀强电场,质量为m 、电荷量为-q的带电粒子,以初速度v 0由小孔进入电场,当M 、N 间电压为U 时,粒子刚好能到达N 板,如果要使这个带电粒子能到达M 、N 两板间距的12处返回,则下述措施能满足要求的是( ).A .使初速度减为原来的12B .使M 、N 间电压提高到原来的2倍C .使M 、N 间电压提高到原来的4倍D .使初速度和M 、N 间电压都减为原来的12【答案】 BD例题2. 如图甲所示,在真空中足够大的绝缘水平地面上,一个质量为m =0.2 kg ,带电荷量为q =+2.0×10-6C 的小物块处于静止状态,小物块与地面间的动摩擦因数μ=0.1.从t =0时刻开始,空间加上一个如图乙所示的场强大小和方向呈周期性变化的电场(取水平向右的方向为正方向,g =10 m/s 2),求:(1)23 s 内小物块的位移大小. (2)23 s 内电场力对小物块所做的功. 【答案】 (1)47 m (2)9.8 J例题3. 如图所示,在等势面沿竖直方向的匀强电场中,一带负电的微粒以一定初速度射入电场,并沿直线AB 运动,由此可知( ).A .电场中A 点的电势高于B 点的电势B .微粒在A 点时的动能大于在B 点时的动能,在A 点时的电势能小于在B 点时的电势能C .微粒在A 点时的动能小于在B 点时的动能,在A 点时的电势能大于在B 点时的电势能D .微粒在A 点时的动能与电势能之和等于在B 点时的动能与电势能之和 【答案】 AB例题4. 一水平放置的平行板电容器的两极板间距为d ,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方d2处的P 点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移d3,则从P 点开始下落的相同粒子将( ). A .打到下极板上 B .在下极板处返回 C .在距上极板d2处返回D .在距上极板25d 处返回【答案】 D例题5. 如图所示,电子由静止开始从A 板向B 板运动,到达B 板的速度为v ,保持两板间电压不变,则( ).A .当减小两板间的距离时,速度v 增大B .当减小两板间的距离时,速度v 减小C .当减小两板间的距离时,速度v 不变D .当减小两板间的距离时,电子在两板间运动的时间变长 【答案】 C例题6. 如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一稳压电源(未画出)相连,若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中该粒子( )A .所受重力与电场力平衡B .电势能逐渐增加C .机械能逐渐减小D .做匀变速直线运动 【答案】 D例题7. 如图所示、两极板水平放置的平行板电容器间形成匀强电场.两极板间相距为d. — 带负电的微粒从上极板M 的边缘以初速度射入,沿直线从下极板的边缘射出.已知微粒的电量为q 、质量为m 。
浙江2020高考物理尖子生核心素养提升专题05 带电粒子(体)在电场中运动的综合问题(原卷版)
[集训冲关]
1.(多选)(2019·沈阳模拟)如图所示,在电场强度大小为E的匀强电场中,将一个质量为m、电量为q的带正电小球从O点由静止释放,小球沿直线OA斜向下运动,直线OA与竖直方向的夹角为θ。已知重力加速度为g,不计空气阻力,下列判断正确的是()
(1)小球所受的电场力大小;
(2)小球在A点的速度v0为多大时,小球经过B点时对圆轨道的压力最小。
(1)带电小球的运动可以视为只有“等效重力”时竖直平面内的圆周运动。
(2)小球经过C点时速度最大,可以作为“等效最低点”,则通过圆心和C点相对的D点可以作为“等效最高点”。
(3)重力和电场力合力的方向,一定在“等效最高点”和“等效最低点”连线的延长线的方向上。
7.如图所示,在E=103V/m的竖直向上的匀强电场中,有一光滑半圆形绝缘轨道QPN与一水平绝缘轨道MN在N点平滑相接,半圆形轨道平面与电场线平行,其半径R=40 cm,N为半圆形轨道最低点,P为圆弧QN的中点。一带负电的小滑块质量m=10 g,电荷量大小q=10-4C,与水平轨道间的动摩擦因数μ=0.15,位于N点右侧x=1.5 m的M处,g取10 m/s2。求:
A.A点电势高于B点电势
B.尘埃在A点的加速度大于在B点的加速度
C.尘埃在迁移过程中做匀变速运动
D.尘埃在迁移过程中电势能始终在增大
3.如图所示,真空中存在一个水平向左的匀强电场,场强大小为E,一根不可伸长的绝缘细线长度为l,细线一端拴一个质量为m、电荷量为q的带负电小球,另一端固定在O点。把小球拉到使细线水平的A点,由静止释放,小球沿弧线运动到细线与水平方向成θ=60°角的B点时速度为零。以下说法中正确的是()
2020-2021学年新教材高中物理 第十章 静电场中的能量 单元达标检测卷(含解析)新人教版必
第十章 单元达标检测卷一、选择题:本题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下面是某同学对电场中的一些概念及公式的理解,其中正确的是( )A .根据电场强度的定义式E =F q 可知,电场中某点的电场强度与试探电荷所带的电荷量成反比B .根据电容的定义式C =Q U 可知,电容器的电容与其所带电荷量成正比,与两极板间电压成反比C .根据真空中点电荷的电场强度公式E =k Q r 2可知,电场中某点的电场强度与场源电荷所带的电荷量无关D .根据电势差的定义式U AB =W AB q可知,带电荷量为1 C 的正电荷,从A 点移动到B 点克服静电力做功为1 J ,则A 、B 两点间的电势差为-1 V【答案】D【解析】电场强度取决于电场本身,与有无试探电荷无关,A 错误;电容取决于电容器本身,与电容器所带电荷量和两极板间电压无关,B 错误;E =k Q r 2中,Q 是场源电荷,所以电场中某点的电场强度与Q 成正比,C 错误;由U AB =W AB q知,D 正确. 2.如图所示,在直线l 上A 、B 两点各固定电荷量均为Q 的正电荷,O 为AB 的中点,C 、D 两点关于A 点对称,C 、D 两点的场强大小分别为E C 、E D ,电势分别为φC 、φD .则下列说法正确的是( )A .E C >E D ,φC >φDB .EC <ED ,φC >φDC .在直线l 上与D 点电势相同的点除D 点外可能还有2个D .将一负电荷从C 点移到D 点其电势能减小【答案】B【解析】A 在C 点产生的场强方向水平向右,B 在C 点产生的场强方向水平向左,并且小于A 在C 点的电场强度大小,故C 点的电场强度大小为两电荷在C 点产生电场强度之差,同理在D 点产生的电场强度为两点电场强度之和,故E C <E D ,根据公式U =Ed 可得,C 到A点的距离等于D 到A 点的距离,但是AD 间的电场强度大于CA 间的电场强度大小,所以AD 间的电势差大于AC 间的电势差,可知D 点的电势小于C 点的电势,即φC >φD ,A 错误,B 正确;根据电场强度的叠加可知在直线l 上,与D 点电势相等的点可能有3个,分别处于CO 间、OB 间和B 的右侧,C 错误;因为AD 间的电势差大于AC 间的电势差,可知C 点的电势高于D 点,根据E p =qφ知,负电荷在C 点的电势能小于D 点的电势能,即将一负电荷从C 点移到D 点其电势能增大,D 错误.3.下列四个电场中,a 、b 两点电场强度与电势均相同的是( )【答案】C【解析】A 中a 、b 是同一等势面上的两点,电势相同,场强大小相等,但方向不同,故A 错误;B 中a 处电场线比b 处电场线密,则a 处场强较大,顺着电场线方向,电势降低,则b 点的电势较高,故B 错误;C 中a 、b 是匀强电场中的两点,电场强度相同,a 、b 连线与电场线垂直,在同一等势面上,电势相等,故C 正确;D 中等量异种电荷连线的中垂线是一条等势线,则a 、b 的电势相同.根据电场线的分布可知,a 处场强较大,故D 错误.4.一带正电粒子仅在电场力作用下从A 点经B 、C 运动到D 点,其v -t 图像如图所示,则下列说法中正确的是( )A .A 处的电场强度一定小于B 处的电场强度B .A 处的电势一定大于在B 处的电势C .CD 间各点电场强度和电势都为零D .AB 两点间的电势差不等于CB 两点间的电势差【答案】B【解析】由v -t 图像斜率可看出,带正电的粒子的加速度在A 点时较大,由牛顿第二定律得知在A 点的电场力大,故A 点的电场强度一定大于B 点的电场强度,故A 错误;B 点速度比A 点的速度大,说明从A 到B 电场力做正功,电势能减小,由于是正电荷,根据φ=E p q,电势也减小,A 点电势大于B 点电势,B 正确;CD 间各点电荷的加速度为零,故不受电场力,故电场强度为零,电场强度为零,说明各点之间的电势差为零,但电势不一定为零,C 错误;A 、C 两点的速度相等,故粒子的动能相同,因此从A 到B 和从B 到C 电场力做功的绝对值相同,AB 两点间的电势差等于CB 两点间的电势差,故D 错误.5.如图所示,一质量为m 、带电荷量为q 的粒子,以初速度v 0从a 点竖直向上射入匀强电场中,匀强电场方向水平向右.粒子通过电场中的b 点时,速率为2v 0,方向与电场方向一致,则a 、b 两点间的电势差为( )A .mv 202qB .3mv 20qC .2mv 20q D .3mv 202q 【答案】C【解析】由题意可知,粒子受重力和水平方向的静电力作用,由加速度定义a =Δv Δt ,可得加速度的大小a x =2a y =2g ,由牛顿第二定律可知,qE =2mg ,水平位移x =2v 02t ,竖直位移y =v 02t ,即x =2y ,因此静电力做功W 1=qEx =qU ab ,重力做功W 2=-mgy =-W 14,由动能定理得W 1+W 2=12m (2v 0)2-12mv 20,解得U ab =2mv 20q. 6.如图所示,PQ 为等量异种点电荷A 、B 连线的中垂线,C 为中垂线上的一点,M 、N分别为AC 、BC 的中点,若取无穷远处的电势为零,则下列判断正确的是( )A .M 、N 两点的电场强度相同B .M 、N 两点的电势相等C .若将一负试探电荷由M 点移到C 点,电场力做正功D .若将一负试探电荷由无穷远处移到N 点时,电势能一定增加【答案】C【解析】M 、N 两点场强大小相等,但方向不同,A 错误;PQ 线上各点的电势均为零,PQ 左侧电势为负,右侧电势为正,则M 点电势低于N 点电势,B 错误;负电荷由M 点移到C 处,电势能减小,故电场力做正功,C 正确;无穷远处电势为零,N 点电势大于零,故负电荷由无穷远处移到N 点时,电势能一定减小,D 错误.7.下列关于静电场的说法正确的是( )A.沿电场线的方向,电场强度越来越小B.正电荷逆着电场线方向移动时,电势能减少C.同一等势面上,各点电场强度的大小一定相等D.电场线与等势面处处相互垂直【答案】D【解析】沿电场线方向电势降低,而场强不一定变化,故A错误.正电荷逆着电场线运动时,电场力做负功,根据功能关系知电势能增大,故B错误.同一等势面上的电势相等,而电场能强度的大小关系无法确定,故C错误.沿着等势面移动电荷,电场力不做功,则电场力与等势面垂直,即电场线与等势面垂直,故D正确.8.如图所示的电路中,AB是两金属板构成的平行板电容器.先将开关S闭合,等电路稳定后再将S断开,然后将B板向下平移一小段距离,并且保持两板间的某点P与A板的距离不变.下列说法不正确的是( )A.电容器的电容变小B.电容器内部电场强度变大C.电容器内部电场强度不变D.P点电势升高【答案】B二、多项选择题:本题共4小题,每小题4分,共16分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得4分,选对但不全的得2分,有选错的得0分.9.如图所示.平行板电容器两个极板为A、B,B板接地,A板带有电荷量+Q.板间电场有一固定点P.若将B板固定,A板下移一些,或者将A板固定,B板上移一些.在这两种情况下,以下说法正确的是( )A.A板下移时,P点的电场强度不变,P点电势不变B.A板下移时,P点的电场强度不变,P点电势升高C.B板上移时,P点的电场强度不变,P点电势降低D.B板上移时,P点的电场强度减小,P点电势降低【答案】AC【解析】电容器两板所带电量不变,正对面积不变,A 板下移时,根据C =εr S 4πkd 、U =QC 和E =U d 可推出,E =4πkQ εr S,可知P 点的电场强度E 不变.P 点与下板的距离不变,根据公式U =Ed ,P 点与下板的电势差不变,则P 点的电势不变,故A 正确,B 错误.B 板上移时,同理得知,P 点的电场强度不变,根据公式U =Ed ,P 点与下板的电势差减小,而P 点的电势高于下板的电势,下板的电势为零,所以P 点电势降低,故C 正确,D 错误.10.如图所示,在两等量异种点电荷的电场中,MN 为两电荷连线的中垂线,a 、b 、c三点所在直线平行于两电荷的连线,且a 点和c 点关于MN 对称、b 点位于MN 上,d 点位于两电荷的连线上.以下判断正确的是( )A .b 点电场强度大于d 点电场强度B .b 点电场强度小于d 点电场强度C .a 、b 两点间的电势差等于b 、c 两点间的电势差D .试探电荷+q 在a 点的电势能小于在c 点的电势能【答案】BC【解析】如图所示,两电荷连线的中点位置用O 表示,在中垂线MN 上,O 点电场强度最大,在两电荷之间连线上,O 点电场强度最小,即E b <E O ,E O <E d ,故E b <E d ,A 错误,B 正确;等量异种电荷的电场中,电场线、等势线均具有对称性,a 、c 两点关于MN 对称,U ab =U bc ,C 正确;试探电荷+q 从a 移到c ,远离正电荷,靠近负电荷,静电力做正功,电势能减小,D 错误.11.测定电子的电荷量的实验装置示意图如图所示,置于真空中的油滴室内有两块水平放置的平行金属板M 、N ,并分别与电压为U 的恒定电源两极相连,板的间距为d .现有一质量为m 的带电油滴在极板间匀速下落,已知元电荷为e 、重力加速度为g ,则( )A .油滴中电子的数目为mgd eUB .油滴从小孔运动至N 板过程中,电势能增加mgdC .油滴从小孔运动至N 板过程中,机械能增加eUD .若将极板M 向下缓慢移动一小段距离,油滴将加速下降【答案】AB【解析】带电油滴在极板间匀速下落,故受力平衡,则有mg =q U d ,所以油滴带电荷量q=mgd U ,所以电子的数目为n =q e =mgd eU,故A 正确.油滴下降过程中,静电力方向向上,静电力做的功为-mgd ,电势能增加mgd ,故B 正确.机械能减少,故C 错误.若将极板M 向下缓慢移动一小段距离,d 减小,静电力F =q U d增大,合外力竖直向上,油滴将减速下降,故D 错误.12.如图所示虚线为某电场中间距相等且平行的等势面,实线是垂直等势面的一条直线,其中A 的电势为2 V ,一电子仅在静电力的作用下运动,经过O 、C 等势面时的动能分别为10 eV 和4 eV ,已知每个间距大小为2 cm ,则下列说中正确的是( )A .此电场的电场强度的大小为100 V/m ,向从O 点指向D 点B .等势面B 点的电势为零C .电子不可能到达D 等势面D .电子运动到某一位置, 其电势能变为-2 eV 时,它的动能应为8 eV【答案】ABD【解析】根据题述,匀强电场中等势面间距相等,相邻等势面之间的电势差相等.设相邻等势面之间的电势差为U ,经过O 、C 等势面时的动能分别为10 eV 和4 eV ,根据动能定理可得-e (φO -φC )=(4-10) eV ,变形得(φO -φC )=3U =6 V ,解得U =2 V, 因A 的电势为2 V ,故等势面B 的电势为零,所以B 正确;从O 到C 动能减小,电势能增大,而电子带负电,所以C 点电势小,沿电场线方向电势减小,所以电场线方向由O 指向C ,根据E =Ud=100 V/m ,A 正确;因只有电场力做功,动能与电势能之和保持不变.当电子的速度为零时,由能量守恒可得eφB +6 eV =eφ,因B 点的电势为零,解得φ=-6 V ,而D 点的电势为-4 V ,所以C 错误;同理由能量守恒可得eφB +6 eV =-2 eV +E k ,E k =8 eV ,所以D 正确.三、非选择题:本题共6小题,共60分.13.(6分)定性研究平行板电容器的电容与结构之间的关系的装置如图所示,平行板电容器的A 板与静电计相连,B 板和静电计金属壳都接地.若充电后保持电容器所带电荷量不变,试指出下列三种情况下,静电计指针的偏转角度变化情况.(均选填“变大”“变小”或“不变”)(1)图甲中正对面积减小时,静电计指针的偏转角度将 .(2)图乙中板间距离增大时,静电计指针的偏转角度将 .(3)图丙中插入电介质时,静电计指针的偏转角度将 .【答案】(1)变大 (2)变大 (3)变小【解析】(1)电容器所带电荷量一定,正对面积减小时,由C =εr S 4πkd知,电容C 减小,由C =Q U 知,电势差U 变大,故指针的偏转角度变大.(2)板间距离增大时,由C =εr S 4πkd 知,电容C 减小,由C =Q U 知,电势差U 变大,故指针的偏转角度变大.(3)插入电介质时,由C =εr S 4πkd 知,电容C 变大,由C =QU知,电势差U 变小,故指针的偏转角度变小.14.(6分)如图甲是观察用干电池对电容器充电过程中电容器两端电压随时间变化的图像,图乙是其对应的充电电流随时间变化的图像.在充电的开始阶段,充电电流较大,电容器两端电压U 增加 (填“较快”或“较慢”),随着电容器两端电压的增加,充电电流 (填“逐渐减小”或“逐渐增加”),且电容器两端电压U 的上升速度变缓,而向着 趋近.在充电过程中电容器的电能 .充电开始的瞬间电容器两端电压 (填“能突变”或“不能突变”).通过图像看出在第 2 s 时电容器增加的电荷量Q 约为 C(已知Q =It ).【答案】较快 逐渐减小 10 V 增加 不能突变 0.7×10-315.(10分)在电场中将2.0×10-9 C 的正电荷从A 点移到B 点,静电力做功1.5×10-7J ,再把这个电荷从B 点移到C 点静电力做功-4×10-7 J .求:(1)AB 间、BC 间、AC 间电势差各是多少?(2)将1.5×10-9 C 的电荷从A 点移到C 点静电力做功多少?【答案】(1)75 V -200 V -125 V (2)-1.875×10-7 J 【解析】(1) AB 间电势差U AB =W AB q =1.5×10-72×10-9 V =75 V BC 间电势差U BC =W BC q =-4×10-72×10-9 V =-200 V AC 间电势差U AC =U AB +U BC =75 V +(-200) V =-125 V .(2)将1.5×10-9C 的电荷从A 点移到C 点静电力做功 W ′AC =U AC q ′=-125×1.5×10-9 J =-1.875×10-7 J .16.(12分)如图所示,某空间有一竖直向下的匀强电场,电场强度E =1.0×102 V/m ,一块足够大的接地金属板水平放置在匀强电场中,在金属板的正上方高度h =0.80 m 的a 处有一粒子源,盒内粒子以v 0=2.0×102 m/s 的初速度向水平面以下的各个方向均匀放出质量为m =2.0×10-15 kg 、电荷量为q =+10-12 C 的带电粒子,粒子最终落在金属板b 上,若不计粒子重力,求:(结果保留2位有效数字)(1)带电粒子打在金属板上时的动能;(2)从粒子源射出的粒子打在金属板上的范围(所形成的面积);若使带电粒子打在金属板上的范围减小,可以通过改变哪些物理量来实现?【答案】(1)1.2×10-10 J (2)面积为4.0 m 2可以通过减小h 或增大E 来实现 【解析】(1)不计粒子重力,只有静电力做功,对粒子由动能定理得qU ab =E k -12mv 20 可得带电粒子打在金属板上时的动能为 E k =qU ab +12mv 20=1.2×10-10 J . (2)粒子源射出的粒子打在金属板上的范围以粒子水平抛出的落点为边界.设水平抛出后t 时刻落在板上x =v 0t ,h =12at 2,a =qE m,S =πx 2 联立以上各式得所形成的面积S =2πmv 20h qE≈4.0 m 2,可以通过减小h 或增大E 来实现. 17.(13分)如图所示,在沿水平方向的匀强电场中有一固定点O ,用一根长度为l =0.20 m 的绝缘轻线把质量m =0.10 kg 、带有正电荷的金属小球悬挂在O 点,小球静止在B 点时轻线与竖直方向的夹角θ=37°.现将小球拉至位置A ,使轻线水平张紧后由静止释放.g 取10 m/s 2,sin 37°=0.60,cos 37°=0.80.求:(1)小球所受静电力的大小;(2)小球通过最低点C 时的速度大小;(3)小球通过最低点C 时轻线对小球的拉力大小.【答案】(1)0.75 N (2)1.0 m/s (3)1.5 N【解析】(1)小球受重力mg 、静电力F 和拉力F T ,其静止时受力如图所示.根据共点力平衡条件有F =mg tan 37°=0.75 N .(2)设小球到达最低点时的速度为v ,小球从水平位置运动到最低点的过程中,根据动能定理有mgl -Fl =12mv 2 解得v =2gl 1-tan 37°=1.0 m/s .(3)设小球通过最低点C 时细线对小球的拉力大小为F ′T根据牛顿第二定律有F ′T -mg =m v 2l解得F ′T =1.5 N .18.(13分)A 、B 两带电平行板间电场强度E =6×103N/C ,两板间距离为5 cm ,电场中P 1点距A 板0.5 cm ,B 板接地,如图所示.求:(1)A 、B 两板电压为多大?(2)P 1点电势为多大?(3)现将一个带电荷量为2×10-3C 的带电粒子由P 1点移到P 2点,此过程电场力做功-9.6×10-2 J ,则P 2点距离B 板多远?【答案】(1)300 V (2)-270 V (3)3.7 cm【解析】(1)由公式U =Ed得U AB =-6×103×5×10-2 V =-300 V那么AB 的电压为300 V .(2)两板间距离为5 cm ,电场中P 1点距A 板0.5 cm ,则P 1点距B 板的距离为4.5 cm ,由公式U =Ed得UP 1B =6×103×4.5×10-2 V =270 V由于B 板接地且B 极带正电,则P 1点电势为-270 V .(3)带电荷量为2×10-3C 的带电粒子由P 1点移到P 2点,此过程电场力做功-9.6×10-2J ,则这两点的电势差为UP 1P 2=W q =-9.6×10-22×10-3 V =-48 V 所以P 2点电势为-222 V又UP 2B =Ed ′所以d ′=φP 2-0E =-2226×103 m =-3.7 cm 负号表示逆着电场线方向.。
2020届高中物理二轮总复习《带电粒子在电场中的运动》试题
(1)电子飞入两板前所经历的加速电场的电压; (2)为使带电粒子能射中荧光屏所有位置,两板间所加电压的取值范围.
第 II 卷(非选择题)
三、解答题:本题共 4 小题,共 34 分。解答应写出文字说明、推导过程或演算步骤,并将答案写在答题卡上, 只写结果得 0 分。 17.(6 分)如图所示,半径为 R 的环形塑料管竖直放置,AB 为该环的水平直径,且管的内径远小于环的半径,环 的 AB 及以下部分处于水平向左的匀强电场中,管的内壁光滑.现将一质量为 m,带电量为+q 的小球从管中 A 点由静止释放,已知 qE=mg.求:
V,实线是仅受电场力的带电粒子的运动轨迹,a、b、c 是轨迹上的三个点,a 到中间虚线的距离大于 c 到中间虚
线的距离,下列说法正确的是( )
A.粒子在 a、b、c 三点受到的电场力方向相同
B.粒子带负电
C.粒子在 a、b、c 三点的电势能大小关系为 Epc>Epb>Epa
D.粒子从 a 运动到 b 与从 b 运动到 c,电场力做的功可能相等
6.如图所示,是一个说明示波管工作原理的示意图,电子经电压 U1 加速后垂直进入偏转电场,离开电场时的偏 转量是 h,两平行板间的距离为 d,电势差为 U2,板长为 L.为了提高示波管的灵敏度(每单位电压引起的偏转量 h ),可采用的方法是( ) U2
2020年高考物理一轮复习《电场及带电粒子在电场中的运动问题》练习
高频考点强化(六)电场及带电粒子在电场中的运动问题(45分钟100分)一、选择题(本题共12小题,每小题6分,共72分。
1~8题为单选题,9~12题为多选题)1.关于静电场下列说法中正确的是( )A.将负电荷由电势低的地方移到电势高的地方,电势能一定增加B.无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,电荷在该点的电势能越大C.在同一个等势面上的各点,场强的大小必然是相等的D.电势下降的方向就是电场强度的方向【解析】选B。
根据E p=qφ,将负电荷由电势低的地方移到电势高的地方,电势能减小,故A错误;无论是正电荷还是负电荷,从电场中某点移到无穷远处时,静电力做的正功越多,因无穷远处电势能为零,因此电荷在该点的电势能越大,故B正确;在等势面上,电势处处相等,场强不一定相等,故C错误;电势下降最快的方向才是电场强度的方向,故D错误。
2.(2018·宜春模拟)两个固定的等量异种电荷,在它们连线的垂直平分线上有a、b、c三点,如图所示,下列说法正确的是( )A.a点电势比b点电势高B.a、b两点场强方向相同,a点场强比b点小C.一带电粒子(不计重力),在a点无初速度释放,则它将在a、b线上运动D.正负电荷连线上c点场强最大【解析】选B。
等量异种电荷连线的垂直平分线是一条等势线, a点电势与b点电势相等,故A错误;根据电场线与等势面垂直可知,a、b、c三点电场强度方向都与两电荷连线平行,方向相同,根据电场强度矢量合成可知,a点场强比b点小,故B正确;a点场强方向向右,一带电粒子(不计重力)在a点受电场力向左或向右,无初速度释放将向左或向右运动,不可能在a、b线上运动,故C错误;正负电荷连线上c点场强最小,故D错误。
3.(2016·江苏高考)一金属容器置于绝缘板上,带电小球用绝缘细线悬挂于容器中,容器内的电场线分布如图所示。
容器内表面为等势面,A、B为容器内表面上的两点,下列说法正确的是( )A.A点的电场强度比B点的大B.小球表面的电势比容器内表面的低C.B点的电场强度方向与该处内表面垂直D.将检验电荷从A点沿不同路径移到B点,电场力所做的功不同【解题指导】解答本题应注意以下四点:(1)电场线的疏密反映电场强度的大小。
《带电粒子在电场中的运动》压轴培优题型训练【九大题型】(原卷版)25学年高中物理(人教版必修第三册)
《带电粒子在电场中的运动》压轴培优题型训练【九大题型】一.带电粒子在周期性变化的电场中做直线运动(共2小题)二.带电粒子在匀强电场中做类平抛运动(共4小题)三.带电粒子在周期性变化的电场中偏转(共4小题)四.带电粒子射出偏转电场后打在挡板上(共3小题)五.带电粒子在单个或多个点电荷电场中的运动(共5小题)六.带电粒子(计重力)在匀强电场中的直线运动(共5小题)七.带电粒子(计重力)在非匀强电场中的直线运动(共3小题)八.从能量转化与守恒的角度解决电场中的问题(共18小题)九.动量守恒定律在电场问题中的应用(共4小题)一.带电粒子在周期性变化的电场中做直线运动(共2小题)1.如图甲所示,A、B两块金属板水平放置,相距为d=0.6cm,两板间加有一周期性变化的电压,当B板接地(φB=0)时,A板电势φA,随时间变化的情况如图乙所示.现有一带负电的微粒在t=0时刻从B板中央小孔射入电场,若该带电微粒受到的电场力为重力的两倍,且射入电场时初速度可忽略不计.求:(1)在0~和~T这两段时间内微粒的加速度大小和方向;(2)要使该微粒不与A板相碰,所加电压的周期最长为多少(g=10m/s2).2.如图1所示,真空中相距d=5cm的两块平行金属板A、B与电源连接(图中未画出),其中B板接地(电势为零),A板电势变化的规律如图2所示.将一个质量m=2.0×10﹣27kg,电量q=+1.6×10﹣19C的带电粒子从紧临B板处释放,不计重力.求(1)在t=0时刻释放该带电粒子,释放瞬间粒子加速度的大小;(2)若A板电势变化周期T=1.0×10﹣5s,在t=0时将带电粒子从紧临B板处无初速释放,粒子达到A板时动量的大小;(3)A板电势变化频率多大时,在t=到t=时间内从紧临B板处无初速释放该带电粒子,粒子不能到达A板.二.带电粒子在匀强电场中做类平抛运动(共4小题)3.某种负离子空气净化原理如图所示。
带电粒子在电场中的运动综合专题
带电粒子在电场中的运动综合专题知识要点梳理1、带电粒子在电场中的加速运动要点诠释:(1)带电粒子在任何静电场中的加速问题,都可以运用动能定理解决,即带电粒子在电场中通过电势差为U AB的两点时动能的变化是,则(2)带电粒子在静电场和重力场的复合场中的加速,同样可以运用动能定理解决,即(W为重力和电场力以外的其它力的功)(3)带电粒子在恒定场中运动的计算方法带电粒子在恒力场中受到恒力的作用,除了可以用动能定理解决外还可以由牛顿第二定律以及匀变速直线运动的公式进行计算。
2、带电粒子在偏转电场中的运动问题(定量计算通常是在匀强电场中,并且大多数情况是初速度方向与电场线方向垂直)要点诠释:(1)运动性质:受到恒力的作用,初速度与电场力垂直,做类平抛运动。
(2)常用的关系:(U为偏转电压,d为两平行金属板间的距离或沿着电场线方向运动的距离,L为偏转电场的宽度(或者是平行板的长度),v0为经加速电场后粒子进入偏转电场时的初速度。
)带电粒子离开电场时:沿电场线方向的速度是;垂直电场线方向的速度合速度大小是:方向是:离开电场时沿电场线方向发生的位移3、带电微粒或者带电物体在静电场和重力场的复合场中运动时的能量守恒要点诠释:(1)带电物体只受重力和静电场力作用时,电势能、重力势能以及动能相互转化,总能量守恒,即(2)带电物体除受重力和静电场力作用外,如果还受到其它力的作用时,电势能、重力势能以及动能之和发生变化,此变化量等于其它力的功,这类问题通常用动能定理来解决。
规律方法指导1、理解物体做直线运动的条件和曲线运动的条件(1)物体做直线运动的条件:物体受到合外力为零或者合外力与速度共线;(2)物体做曲线运动的条件:物体受到的合外力与速度不共线。
当合外力方向与速度方向成锐角时,物体做加速曲线运动;成钝角时做减速曲线运动。
2、带电粒子或者带电物体在恒定的场中时,除了匀变速直线运动外,就是做类抛体运动,灵活地将运动分解是顺利解题的关键所在。
105带电粒子在电场中的运动同步练习(Word版含解析)
人教版必修第三册 10.5 带电粒子在电场中的运动一、单选题1.示波器是一种常见的电学仪器,可以在荧光屏上显示出被检测的电压随时间变化的情况。
示波器的内部构造简化图如图所示,电子经电子枪加速后进入偏转电场,最终打在荧光屏上。
下列关于所加偏转电压与荧光屏上得到图形的说法中正确的是()A.如果只在XX'上加图甲所示的电压,则在荧光屏上看到的图形如图(a)B.如果只在YY'上加图乙所示的电压,则在荧光屏上看到的图形如图(b)C.如果在YY'、XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(c)D.如果在YY',XX'上分别加图甲、乙所示的电压,则在荧光屏上看到的图形如图(d)2.如图,竖直放置的圆环处于水平向左的匀强电场中,A,B、C、D为圆环上的四个点,AD竖直,AB与AD间夹角=60θ,AC为圆环直径,沿AB、AC、AD分别固定光滑细杆。
现让质量均为m、带电量均为+ q的带孔小球分别套在细杆AB、AC、AD上(图中未画出),均从A点由静止开始下滑,设小球分别经时间tB、tC、tD到达B、C、D三点。
已知匀强电场场强大小E g,关于三个小球的运动时间tB、tC、tD,下列说法正确的是()A.tB=tC=tD B.tB > tC > tD C.tB < tC < tD D.tD < tB < tC 3.如图所示,绝缘的水平面上有一质量为0.1kg的带电物体,物体与水平面间的动摩擦因数μ=0.75,物体恰能在水平向左的匀强电场中向右匀速运动,电场强度E=1×103N/C,g取10m/s2。
则下列说法正确的是()A.物体带正电B.物体所带的电荷量绝对值为47.510CC.若使物体向右加速运动,则电场方向应变为斜向左下方且与水平方向成37°角D.若使物体向右加速运动,则加速度的最大值为1.25m/s24.如图所示,氘核和氦核以相同初速度从水平放置的两平行金属板正中间进入板长为L、两板间距离为d、板间加直流电压U的偏转电场,一段时间后离开偏转电场。
【人教版】2020届高考物理一轮复习第7章静电场第3讲电容器带电粒子在电场中的运动课时作业(含解析)
3、电容器 带电粒子在电场中的运动[基础训练]1.(2018·云南曲靖联考)(多选)如图所示电路中,A 、B 为两块竖直放置的金属板,G 是一只静电计,开关S 合上后,静电计指针张开一个角度,下述哪些做法可使指针张角增大( )A .使A 、B 两板靠近一些 B .使A 、B 两板正对面积错开一些C .断开S 后,使B 板向右平移拉开一些D .断开S 后,使A 、B 两板正对面积错开一些答案:CD 解析:图中静电计的金属杆接A 板,外壳和B 板均接地,静电计显示的是A 、B 两极板间的电压,指针张角越大,表示两板间的电压越高.当合上S 后,A 、B 两板与电源两极相连,板间电压等于电源电压不变,静电计指针张角不变;当断开S 后,板间距离增大,正对面积减小,都将使电容器的电容变小,而电容器电荷量不变,由U =Q C可知,板间电压U 增大,从而使静电计指针张角增大.综上所述,选项C 、D 正确.2.(2018·山东菏泽期末)(多选)一平行板电容器充电后与电源断开,负极板接地,在两极板间有一带正电小球(电荷量很小)固定在P 点,如图所示.以U 表示两极板间的电压,E 表示两极板间的场强,E p 表示该小球在P 点的电势能,若保持负极板不动,而将正极板移至图中虚线所示位置,则( )A .U 变小B .U 不变C .E 变大D .E p 不变答案:AD 解析:根据电容器充电后与电源断开可知,Q 不变,将正极板移至图中虚线所示位置,间距d 减小,由C =εr S 4πkd ,知电容C 增大,又U =Q C ,电压U 减小,因E =U d =Q Cd =4πkQ εr S,E 不变,P 点到下极板的距离不变,则P 点与下极板的电势差不变,P 点的电势φ不变,P 点电势能E p =φq 不变,选项A 、D 正确.3.如图所示,从F 处由静止释放一个电子,电子向B 板方向运动,设电源电动势为U (V),下列对电子运动的描述中错误的是( )A .电子到达B 板时的动能是U (eV)B .电子从B 板到达C 板的过程中,动能的变化量为零 C .电子到达D 板时动能是3U (eV) D .电子在A 板和D 板之间做往复运动答案:C 解析:由题图可知,电子在A 、B 板间做加速运动,电场力做的正功为U (eV);电子在B 、C 板间做匀速运动,动能变化量为零;电子在C 、D 板间做减速运动,电场力做的功为-U (eV),电子在D 板处速度为零,故电子在A 板和D 板之间做往复运动,选C.4.如图所示,电子(不计重力,电荷量为e ,质量为m )由静止经加速电场加速,然后从相互平行的A 、B 两板的正中间射入,已知加速电场两极间电压为U 1,A 、B 两板之间电压为U 2,则下列说法中正确的是( )A .电子穿过A 、B 板时,其动能一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22B .为使电子能飞出A 、B 板,则要求U 1>U 2C .若把电子换成另一种带负电的粒子(忽略重力),它将沿着电子的运动轨迹运动D .在A 、B 板间,沿电子的运动轨迹,电势越来越低答案:C 解析:电子穿过A 、B 板时不一定从板的边缘射出,所以动能不一定等于e ⎝ ⎛⎭⎪⎫U 1+U 22,故A 错误.为使电子能飞出A 、B 板,不能只要求U 1>U 2,因为竖直位移还与板长、板间距离有关,故B 错误.电子在A 、B 板间的水平位移x =v 0t ,竖直位移y =12at 2,其中a =eU 2md ,eU 1=12mv 20,联立得y =U 2x24U 1d,与电荷量、质量无关,所以C 正确.在A 、B 板间,电场力对电子做正功,电势能减少,沿电子的运动轨迹电势升高,所以D 错误.5.(2018·湖北宜昌模拟)如图所示,一个带电粒子从粒子源飘入(初速度很小,可忽略不计)电压为U 1的加速电场,经加速后从小孔S 沿平行金属板A 、B 的中线射入,A 、B 板长为L ,相距为d ,电压为U 2.则带电粒子能从A 、B 板间飞出应该满足的条件是( )A.U 2U 1<2dL B.U 2U 1<d LC.U 2U 1<2d 2L2 D.U 2U 1<d 2L2 答案:C 解析:根据qU 1=12mv 2,再根据t =L v 和y =12at 2=12·qU 2md ·⎝ ⎛⎭⎪⎫L v 2,由题意知,y <12d ,解得U 2U 1<2d2L 2,故C正确.6.如图所示的示波管,电子由阴极K 发射后,初速度可以忽略,经加速电场加速后垂直于电场方向飞入偏转电场,最后打在荧光屏上.已知加速电压为U 1,偏转电压为U 2,两偏转极板间距为d ,板长为L ,偏转极板右端到荧光屏的距离为D ,不计重力,求:(1)电子飞出偏转电场时的偏转位移y ; (2)电子打在荧光屏上的偏转距离OP .答案:(1)U 2L 24dU 1 (2)U 2L4dU 1(L +2D )解析:设电子加速后速度为v 0,则eU 1=12mv 20在偏转电场中水平方向:L =v 0t 竖直方向:y =12eU 2dmt 2联立解得y =U 2L 24dU 1.(2)由类平抛运动的推论可得y OP =12L L2+D联立解得OP =y +2D L y =U 2L 24dU 1+U 2LD 2dU 1=U 2L4dU 1(L +2D ).[能力提升]7.(2018·河北张家口模拟)如图所示,P 、Q 为平行板电容器,两极板竖直放置,在两板间用绝缘线悬挂一带电小球.将该电容器与电源连接,闭合开关后,悬线与竖直方向夹角为α,则()A .保持开关闭合,缩小P 、Q 两板间的距离,角度α会减小B .保持开关闭合,加大P 、Q 两板间的距离,角度α会增大C .断开开关,加大P 、Q 两板间的距离,角度α会增大D .断开开关,缩小P 、Q 两板间的距离,角度α不变化答案:D 解析:保持开关闭合,电容器两端的电压不变,减小两板间距离,根据E =Ud,电场强度增大,角度α增大,A 错误;增大两板间距离,场强减小,角度α减小,B 错误;将开关断开,Q 不变,则有E =U d =Q Cd=Q εr S4πkd·d =4πkQεr S,改变距离d ,场强不变,角度α不变,C 错误,D 正确.8.如图所示,在空间中有平行于xOy 平面的匀强电场,一群带正电粒子(电荷量为e ,重力不计,不计粒子间相互作用)从P 点出发,可以到达以原点O 为圆心、R =25 cm 为半径的圆上的任意位置,比较圆上这些位置,发现粒子到达圆与x 轴正半轴的交点A 时,动能增加量最大,为60 eV ,已知∠OAP =30°.则下列说法正确的是( )A .该匀强电场的方向沿x 轴负方向B .匀强电场的电场强度是240 V/mC .过A 点的电场线与x 轴垂直D .P 、A 两点间的电势差为60 V答案:D 解析:到A 点时,动能增加量最大,说明等势面在A 点与圆相切(否则一定还可以在圆上找到比A 点电势低的点,粒子到达这点,动能增加量比到达A 点时动能增加量大),即等势面与y 轴平行,电场力做正功,所以电场沿x 轴正方向,P 、A 两点间的电势差U PA =W e=60 V ,由匀强电场中电场强度与电势差的关系可得E =U PA2R cos 30°cos 30°=160 V/m ,故D 正确,A 、B 、C 错误.9.(多选)两个相同的电容器A 和B 如图所示连接,它们的极板均水平放置,当它们都带有一定电荷并处于静电平衡时,电容器A 中的一带电粒子恰好静止,现在电容器B 的两极板间插入一长度与板长相同的金属块,且两极板的间距d 不变,这时带电粒子的加速度大小为12g ,重力加速度的大小为g .则下列说法正确的是( )A .带电粒子加速度方向向下B .电容器A 的带电量增加为原来的2倍C .金属块的厚度为23dD .电容器B 两板间的电压保持不变答案:AC 解析:带电粒子静止,则有mg =qU d ,得U =mgdq①,当在电容器B 的两极板间插入一长度与板长相同的金属块时,板间距减小,则由C =εr S4πkd 可知,电容器B 的电容C 增大,而两个电容器的总电量不变,电压相等,则知电容器B 两端的带电量增大,电容器A 两端的电量减小,则由C =Q U知电容器A 板间电压减小,场强减小,粒子所受的电场力减小,所以粒子向下加速运动,故A 项正确;带电粒子向下加速运动,根据牛顿第二定律得mg -qU ′d =m g 2②,由①②解得U ′=12mgd q ,则板间电压变为原来的12,根据电容的定义式C =QU,可知电容器A 的带电量变为原来的12,则电容器B 的带电量变为原来的32倍,由电容的定义式C =QU ,可知电容器B 的电容变为原来的3倍,则电容器B 的板间距减小到原来的13,故金属块的厚度为23d ,C 项正确,B 、D 项错误.10.如图所示,矩形区域ABCD 内存在竖直向下的匀强电场,两个带正电的粒子a 和b 以相同的水平速度射入电场,粒子a 由顶点A 射入,从BC 的中点P 射出,粒子b 由AB 的中点O 射入,从顶点C 射出.若不计重力,则a 和b 的比荷之比是()A .1∶2B .2∶1C .1∶8D .8∶1答案:D 解析:如图所示,设AB 长为2h ,BC 长为2l ,对a 粒子有2h =12a a t 2a =q a E 2m a t 2a ,l =v 0t a ,解得2h =q a E 2m a ⎝ ⎛⎭⎪⎫l v 02,对b 粒子有h =12a b t 2b =q b E 2m b t 2b ,2l =v 0t b ,解得h =q b E 2m b ⎝ ⎛⎭⎪⎫2l v 02,可得q am a q b m b=81,D 正确.11.如图甲所示,质量为m 、电荷量为e 的电子经加速电压U 1加速后,在水平方向沿O 1O 2垂直进入偏转电场.已知形成偏转电场的平行板电容器的极板长为L (不考虑电场边缘效应),两极板间距为d ,O 1O 2为两极板的中线,P 是足够大的荧光屏,且屏与极板右边缘的距离也为L .甲乙(1)求电子进入偏转电场时的速度大小v ;(2)若偏转电场两板间加恒定电压,电子经过偏转电场后正好打中屏上的A 点,A 点与极板M 在同一水平线上,求偏转电场所加电压U 2;(3)若偏转电场两板间的电压按如图乙所示做周期性变化,要使电子经加速电场后在t =0时刻进入偏转电场,最后水平击中A 点,求偏转电场电压U 0以及周期T 分别应该满足的条件.答案:见解析 解析:(1)电子经加速电场加速eU 1=12mv 2解得v =2eU 1m.(2)由题意知,电子经偏转电场偏转后做匀速直线运动到达A 点,设电子离开偏转电场时的偏转角为θ,由几何关系得d 2=⎝⎛⎭⎪⎫L +12L tan θ解得tan θ=d3L又tan θ=v y v =eU 2md ·L v v =eU 2L mdv 2=U 2L2U 1d解得U 2=2U 1d23L2.(3)要使电子在水平方向击中A 点,电子必向上极板偏转,且v y =0,则电子应在t =0时刻进入偏转电场,且电子在偏转电场中运动的时间为整数个周期,因为电子水平射出,则电子在偏转电场中的运动时间满足t =Lv =nT T =L nv=L n2eU 1m=L n m2eU 1(n =1,2,3,…) 在竖直方向满足d2=2n ×12a ⎝ ⎛⎭⎪⎫T 22=2n ×12·eU 0md ⎝ ⎛⎭⎪⎫T 22解得U 0=4nU 1d2L2(n =1,2,3,…).。
人教版高二物理选修3-1第一章 1.9带电粒子在电场中的运动 课后训练题(含答案解析)
1.9 带电粒子在电场中的运动一、单选题1.如图,一充电后的平行板电容器的两极板相距l.在正极板附近有一质量为M、电荷量为q(q>0)的粒子;在负极板附近有另一质量为m、电荷量为-q的粒子.在电场力的作用下,两粒子同时从静止开始运动.已知两粒子同时经过一平行于正极板且与其相距l的平面.若两粒子间相互作用力可忽略,不计重力,则M∶m为()A. 3∶2B. 2∶1C. 5∶2D. 3∶12.如图所示,两平行金属板水平放置,板长为L,板间距离为d,板间电压为U,一不计重力、电荷量为q的带电粒子以初速度v0沿两板的中线射入,恰好沿下板的边缘飞出,粒子通过平行金属板的时间为t,则()A.在时间内,电场力对粒子做的功为UqB.在时间内,电场力对粒子做的功为UqC.在粒子下落的前和后过程中,电场力做功之比为1∶1D.在粒子下落的前和后过程中,电场力做功之比为1∶23.如图甲所示,在距离足够大的平行金属板A、B之间有一电子,在A、B之间加上如图乙所示规律变化的电压,在t=0时刻电子静止且A板电势比B板电势高,则()A.电子在A、B两板间做往复运动B.在足够长的时间内,电子一定会碰上A板C.当t=时,电子将回到出发点D.当t=时,电子的位移最大4.如图所示,电子在电势差为U1的加速电场中由静止开始运动,然后射入电势差为U2的两块平行极板间的电场中,射入方向跟极板平行,整个装置处在真空中,重力可忽略,在满足电子能射出平行板区的条件下,下述四种情况中,一定能使电子的偏转角θ变大的是()A.U1变大、U2变大B.U1变小、U2变大C.U1变大、U2变小D.U1变小、U2变小二、多选题5.(多选)如图所示,电量和质量都相同的带正电粒子以不同的初速度通过A、B两板间的加速电场后飞出,不计重力的作用,则()A.它们通过加速电场所需的时间相等B.它们通过加速电场过程中动能的增量相等C.它们通过加速电场过程中速度的增量相等D.它们通过加速电场过程中电势能的减少量相等6.(多选)带有等量异种电荷的平行金属板M、N水平放置,两个电荷P和Q以相同的速率分别从极板M边缘和两板中间沿水平方向进入板间电场,恰好从极板N边缘射出电场,如图所示.若不考虑电荷的重力和它们之间的相互作用,下列说法正确的是()A.两电荷的电荷量可能相等B.两电荷在电场中运动的时间相等C.两电荷在电场中运动的加速度相等D.两电荷离开电场时的动能相等7.(多选)如图所示,六面体真空盒置于水平面上,它的ABCD面与EFGH面为金属板,其他面为绝缘材料.ABCD面带正电,EFGH面带负电.从小孔P沿水平方向以相同速率射入三个质量相同的带正电液滴A、B、C,最后分别落在1、2、3三点,则下列说法正确的是()A.三个液滴在真空盒中都做平抛运动B.三个液滴的运动时间一定相同C.三个液滴落到底板时的速率相同D.液滴C所带电荷量最多8.(多选)如图所示,平行直线表示电场线,但未标明方向,带电量为+10-2C的微粒在电场中只受电场力作用,由A点移到B点,动能损失0.1 J,若A点电势为-10 V,则()A.B点的电势为0 VB.电场线方向从右向左C.微粒的运动轨迹可能是轨迹1D.微粒的运动轨迹可能是轨迹29.(多选)如图所示,一个质量为m、带电荷量为q的粒子(不计重力),从两平行板左侧中点沿垂直场强方向射入,当入射速度为v时,恰好穿过电场而不碰金属板.要使粒子的入射速度变为,仍能恰好穿过电场,则必须再使()A.粒子的电荷量变为原来的B.两板间电压减为原来的C.两板间距离增为原来的4倍D.两板间距离增为原来的2倍10.(多选)如图甲所示,两平行金属板MN、PQ的板长和板间距离相等,板间存在如图乙所示的随时间周期性变化的电场,电场方向与两板垂直,不计重力的带电粒子沿板间中线垂直电场方向源源不断地射入电场,粒子射入电场时的初动能均为E k0,已知t=0时刻射入电场的粒子刚好沿上板右边缘垂直电场方向射出电场.则()A.所有粒子都不会打到两极板上B.所有粒子最终都垂直电场方向射出电场C.运动过程中所有粒子的最大动能不可能超过2E k0D.只有t=n(n=0,1,2…)时刻射入电场的粒子才能垂直电场方向射出电场三、计算题11.一个带正电的微粒,从A点射入水平方向的匀强电场中,微粒沿直线AB运动,如图所示.AB与电场线夹角θ=30°,已知带电粒子的质量m=1.0×10-7kg,电荷量q=1.0×10-10C,A、B相距L=20 cm.(取g=10 m/s2,结果保留两位有效数字)求:(1)说明微粒在电场中运动的性质,要求说明理由.(2)电场强度的大小和方向.(3)要使微粒从A点运动到B点,微粒射入电场时的最小速度是多少?12.长为L的平行金属板水平放置,两极板带等量的异种电荷,板间形成匀强电场,一个带电荷量为+q、质量为m的带电粒子,以初速度v0紧贴上极板垂直于电场线方向进入该电场,刚好从下极板边缘射出,射出时速度恰与下极板成30°角,如图所示,不计粒子重力,求:(1)粒子末速度的大小;(2)匀强电场的场强;(3)两板间的距离.13.如图所示,A、B两块带异号电荷的平行金属板间形成匀强电场,一电子以v0=4×106m/s的速度垂直于场强方向沿中心线由O点射入电场,从电场右侧边缘C点飞出时的速度方向与v0方向成30°的夹角.已知电子电荷e=1.6×10-19C,电子质量m=0.91×10-30kg.求:(1)电子在C点时的动能是多少焦?(2)O、C两点间的电势差大小是多少伏?14.如图所示,有一电子(电荷量为e)经电压U0加速后,进入两块间距为d、电压为U的平行金属板间.若电子从两板正中间垂直电场方向射入,且正好能穿过电场,求:(1)金属板AB的长度;(2)电子穿出电场时的动能.答案解析1.【答案】A【解析】因两粒子同时经过一平行于正极板且与其相距l的平面,电荷量为q的粒子通过的位移为l,电荷量为-q的粒子通过的位移为l,由牛顿第二定律知它们的加速度分别为a1=,a2=,由运动学公式有l=a1t2=t2①l=a2t2=t2②得=.B、C、D错,A对.2.【答案】C【解析】由类平抛规律,在时间t内有:L=v0t,=at2,在内有:y=a()2,比较可得y=,则电场力做的功为W=qEy==,所以A、B错误.粒子下落的前和后过程中电场力做的功分别为:W1=qE×,W2=qE×,所以W1:W2=1∶1,所以C正确,D错误.3.【答案】B【解析】粒子先向A板做半个周期的匀加速运动,接着做半个周期的匀减速运动,经历一个周期后速度为零,以后重复以上过程,运动方向不变,选B.4.【答案】B【解析】设电子被加速后获得初速度v0,则由动能定理得:qU1=mv①若极板长为l,则电子在电场中偏转所用时间:t=②设电子在平行板间受电场力作用产生的加速度为a,由牛顿第二定律得:a==③电子射出偏转电场时,平行于电场方向的速度:v y=at④由①②③④可得:v y=又有:tanθ====故U2变大或U1变小都可能使偏转角θ变大,故选项B正确,选项A、C、D错误.5.【答案】BD【解析】由于电量和质量相等,因此产生的加速度相等,初速度越大的带电粒子经过电场所用时间越短,A错误;加速时间越短,则速度的变化量越小,C错误;由于电场力做功W=qU与初速度及时间无关,因此电场力对各带电粒子做功相等,则它们通过加速电场的过程中电势能的减少量相等,动能增加量也相等,B、D正确.6.【答案】AB【解析】两个电荷在电场中做类平抛运动,将它们的运动分解为沿水平方向的匀速直线运动和竖直方向的匀加速直线运动.设板长为L,粒子的初速度为v0,则粒子运动时间为t=,L、v0相同,则时间相同.故B正确.竖直方向的位移为y=at2,a=,则y=t2,E、t相同,y不同,因m的大小关系不清楚,q有可能相等.故A正确.由于位移为y=at2,t相同,y不同,a不等,故C错误.根据动能定理,E k-mv=qEy则E k=mv+qEy,故D错误.7.【答案】BD【解析】三个液滴在水平方向受到电场力作用,水平方向不是匀速直线运动,所以三个液滴在真空盒中不是做平抛运动,选项A错误.由于三个液滴在竖直方向做自由落体运动,三个液滴的运动时间相同,选项B正确.三个液滴落到底板时竖直分速度相等,而水平分速度不相等,所以三个液滴落到底板时的速率不相同,选项C错误.由于液滴C在水平方向位移最大,说明液滴C在水平方向加速度最大,所带电荷量最多,选项D正确.8.【答案】ABC【解析】由动能定理可知WE=ΔE k=-0.1 J;可知粒子受到的电场力做负功,故粒子电势能增加,B点的电势高于A点电势;而电场线由高电势指向低电势,故电场线向左,故B正确;A、B两点的电势差UAB==-10 V,则UA-UB=-10 V.解得UB=0 V;故A正确;若粒子沿轨迹1运动,A点速度沿切线方向向右,受力向左,故粒子将向上偏转,故C正确;若粒子沿轨迹2运动,A点速度沿切线方向向右上,而受力向左,故粒子将向左上偏转,故D错误.9.【答案】AD【解析】粒子恰好穿过电场时,它沿平行板的方向发生位移L所用时间与垂直板方向上发生位移所用时间t相等,设板间电压为U,则有:=··()2,得时间t==.当入射速度变为,它沿平行板的方向发生位移L所用时间变为原来的2倍,由上式可知,粒子的电荷量变为原来的或两板间距离增为原来的2倍时,均使粒子在与垂直板方向上发生位移所用时间增为原来的2倍,从而保证粒子仍恰好穿过电场,因此选项A、D正确.10.【答案】ABC【解析】粒子在平行极板方向不受电场力,做匀速直线运动,故所有粒子的运动时间相同;t=0时刻射入电场的带电粒子沿板间中线垂直电场方向射入电场,沿上板右边缘垂直电场方向射出电场,说明竖直方向分速度变化量为零,故运动时间为周期的整数倍;所有粒子最终都垂直电场方向射出电场;由于t=0时刻射入的粒子在竖直方向始终做单向直线运动,竖直方向的分位移最大,故所有粒子最终都不会打到极板上;故A、B正确,D错误;t=0时刻射入的粒子竖直方向的分位移为;有:=·由于L=d故:v y m=v0故E k′=m(v+v)=2E k0,故C正确.11.【答案】(1)微粒只在重力和电场力作用下沿AB方向运动,在垂直于AB方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B指向A,与初速度v A方向相反,微粒做匀减速运动.(2)E=×104N/C,电场强度的方向水平向左.(3)v A=2m/s.【解析】(1)微粒只在重力和电场力作用下沿AB方向运动,在垂直于AB方向上的重力和电场力必等大反向,可知电场力的方向水平向左,如图所示,微粒所受合力的方向由B指向A,与初速度v A方向相反,微粒做匀减速运动.(2)在垂直于AB方向上,有qE sinθ-mg cosθ=0所以电场强度E=×104N/C,电场强度的方向水平向左.(3)微粒由A运动到B时的速度v B=0时,微粒进入电场时的速度最小,由动能定理得,-(mgL sinθ+qEL cosθ)=0-mv,代入数据,解得v A=2m/s.12.【答案】(1)(2)(3)L【解析】(1)粒子离开电场时,合速度与水平方向夹角为30°,由几何关系得合速度:v==.(2)粒子在匀强电场中做类平抛运动,在水平方向上:L=v0t,在竖直方向上:v y=at,v y=v0tan 30°=,由牛顿第二定律得:qE=ma解得:E=.(3)粒子做类平抛运动,在竖直方向上:d=at2,解得:d=L.13.【答案】(1)9.7×10-18J(2)15.2 V【解析】(1)依据几何三角形解得:电子在C点时的速度为:v=①而E k=mv2②联立①②得:E k=m()2≈9.7×10-18J.(2)对电子从O到C,由动能定理,有eU=mv2-mv③联立①③得:U=≈15.2 V.14.【答案】(1)d(2)e(U0+)【解析】(1)设电子飞离加速电场时的速度为v0,由动能定理得eU0=mv①设金属板AB的长度为L,电子偏转时间t=②电子在偏转电场中产生偏转加速度a=③电子在电场中的侧位移y=d=at2④联立①②③④得:L=d.(2)设电子穿出电场时的动能为E k,根据动能定理得E k=eU0+e=e(U0+).。
2020年高考物理 专题24 带电粒子在电场中运动的综合问题限时训练(含解析)
专题24 带电粒子在电场中运动的综合问题(限时:80min)一、选择题(本大题共10小题)1.(2019·日照模拟)有一种电荷控制式喷墨打印机,它的打印头的结构简图如图所示.其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.不考虑墨汁的重力,为使打在纸上的字迹缩小,下列措施可行的是()A.减小墨汁微粒的质量B.增大墨汁微粒所带的电荷量C.增大偏转电场的电压D.增大墨汁微粒的喷出速度【答案】D【解析】根据偏转距离公式y=错误!可知,为使打在纸上的字迹缩小,要增大墨汁微粒的质量,减小墨汁微粒所带的电荷量,减小偏转电场的电压,增大墨汁微粒的喷出速度,D正确。
2.(多选)一带电小球在空中由A点运动到B点的过程中,只受重力、电场力和空气阻力三个力的作用。
若重力势能增加5 J,机械能增加1。
5 J,电场力做功2 J,则小球( )A.重力做功为5 J B.电势能减少2 JC.空气阻力做功0.5 J D.动能减少3.5 J【答案】BD【解析】小球的重力势能增加5 J,则小球克服重力做功5 J,故A 错误;电场力对小球做功2 J,则小球的电势能减小2 J,故B正确;小球共受到重力、电场力、空气阻力三个力作用,小球的机械能增加1.5 J,则除重力以外的力做功为1。
5 J,电场力对小球做功2 J,则知空气阻力做功为-0.5 J,即小球克服空气阻力做功0.5 J,故C 错误;重力、电场力、空气阻力三力做功之和为-3.5 J,根据动能定理,小球的动能减小3.5 J,D正确。
3.(多选)如图所示为匀强电场的电场强度E随时间t变化的图像。
当t=0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,下列说法中正确的是()A.带电粒子将始终向同一个方向运动B.2 s末带电粒子回到原出发点C.3 s末带电粒子的速度为零D.0~3 s内,电场力做的总功为零【答案】CD【解析】设第1 s内粒子的加速度为a1,第2 s内的加速度为a2,由a=错误!可知,a2=2a1,设带电粒子开始时向负方向运动,可见,粒子第1 s内向负方向运动,1.5 s末粒子的速度为零,然后向正方向运动,至3 s 末回到原出发点,粒子的速度为0,设带电粒子开始时向负方向运动,由动能定理可知,此过程中电场力做的总功为零,综上所述,可知C 、D 正确。
2020年高考物理专题冲刺专题15带电粒子在电场中的运动含解析
专题15 带电粒子在电场中的运动第I卷一、选择题(本题共8小题,在每小题给出的四个选项中,至少有一项符合题目要求)1.如图所示,平行板电容器充电后断开电源,板间有一点P,在P点固定一个试探电荷q.现将下极板向下平移一小段距离,如果用F表示试探电荷在P点所受的电场力,用E表示极板间的电场强度,用φ表示P点的电势,用E p表示试探电荷在P点的电势能,则下列物理量随两板间距离d的变化关系的图线,可能正确的是( )【答案】C【题型】选择题【难度】一般2. 如图所示,在真空中有一对带电的平行金属板水平放置.一带电粒子沿平行于板面的方向,从左侧两极板中央射入电场中,恰能从右侧极板边缘处离开电场.不计粒子重力.若可以改变某个量,下列哪种变化,仍能确保粒子一定飞出电场( )A.只增大粒子的带电量B.只增大电场强度C.只减小粒子的比荷D.只减小粒子的入射速度【答案】C【题型】多选题【难度】较易3.如图所示,在真空室中有一水平放置的不带电平行板电容器,板间距离为d,电容为C,上板B接地.现有大量质量均为m、带电量均为q的小油滴,以相同的初速度持续不断地从两板正中间沿图中虚线所示方向射入,第一滴油滴正好落到下板A的正中央P点.如果能落到A板的油滴仅有N滴,且第N+1滴油滴刚好能飞离电场,假定落到A板的油滴的电量能被板全部吸收,不考虑油滴间的相互作用,重力加速度为g,则以下说法错误的是( )A.落到A板的油滴数N=B.落到A板的油滴数N=C.第N+1滴油滴通过电场的整个过程所增加的动能等于D.第N+1滴油滴通过电场的整个过程所减少的机械能等于【答案】A【题型】多选题【难度】一般4.如图所示,平行板电容器与电动势为E′的直流电源(内阻不计)连接,下极板接地,静电计所带电荷量很少,可被忽略.一带负电油滴被固定于电容器中的P点.现将平行板电容器的下极板竖直向下移动一小段距离,则下列说法中正确的是( )A.平行板电容器的电容将变小B.静电计指针张角变小C.带电油滴的电势能将减少D.若先将上极板与电源正极的导线断开,再将下极板向下移动一小段距离,则带电油滴所受电场力不变【答案】ACD【解析】将平行板电容器的下极板竖直向下移动一小段距离时,两极板的正对面积S不变,间距d变大,【题型】多选题【难度】一般5.如图所示,一竖直放置的平行板电容器与电源连接后充电,然后与电源断开,两板所带电荷量分别为Q1、Q2,两板之间的距离d=0.5 cm.如果两个平行金属板之间有A、B两点,其电势分别为φA=-40 V,φB=-10 V,AB=0.3 cm,AB与竖直方向的夹角θ=30°,则下列说法正确的是( )A.Q1为正电荷,Q2为负电荷B.两板间的电场强度大小为2.0×104 V/mC.如果使每个板的电荷量都减少了3×10-4 C后,电容器两板间电压降为原来的,则此电容器的电容为4.5 μFD.若把电容器极板上的电荷量全部放掉,电容器的电容是零【答案】BC【解析】两板电荷的电性可根据场强方向确定,电场强度的大小可由E=求得.带等量异种电荷的两个平行金属板之间的电场为匀强电场,又φA<φB,则电场线一定垂直于板向左,场强方向垂直于板向左,所以Q1为负电荷,Q2为正电荷,A项错误;由E=,d1=AB sin 30°=0.15 cm=1.5×10-3 m,知E = V/m=2.0×104V/m,B项正确;设电容为C,原电荷量、电压分别为Q、U,电荷量及电压的改变量分别为ΔQ和ΔU,根据电容不变得C==,整理得C=,又电容器两板间电势差的变化量为ΔU=U(1-)=Ed×= V,故C==F=4.5 μF,C项正确;电容器的电容是由其本身决定的,与是否带电无关,所以电容器放掉全部电荷后,电容不变,D项错误.【题型】多选题【难度】较易6.如图甲,两水平金属板间距为d,板间电场强度的变化规律如图乙所示.t=0时刻,质量为m的带电微粒以初速度v0沿中线射入两板间,0~时间内微粒匀速运动,T时刻微粒恰好经金属板边缘飞出.微粒运动过程中未与金属板接触.重力加速度的大小为g.关于微粒在0~T时间内运动的描述,正确的是( )A.末速度大小为v0B.末速度沿水平方向C.重力势能减少了mgdD.克服电场力做功为mgd【答案】BC【题型】多选题【难度】一般7.如图所示,倾斜放置的平行板电容器两极板与水平面的夹角为θ,极板间距为d,带负电的微粒质量为m、带电荷量为q,微粒从极板M的左边缘A处以初速度v0水平射入极板间,沿直线运动并从极板N的右边缘B处射出,则( )A.微粒到达B点时动能为B.微粒的加速度大小等于g sin θC.两极板间的电势差U MN=D.微粒从A点到B点的过程中电势能减少【答案】C【题型】选择题【难度】一般8.如图所示,匀强电场分布在边长为L的正方形区域ABCD内,M、N分别为AB和AD的中点,一个初速度为v0、质量为m、电荷量为q的带负电粒子沿纸面射入电场.带电粒子的重力不计.如果带电粒子从M点垂直电场方向进入电场,则恰好从D点离开电场.若带电粒子从N点垂直BC方向射入电场,则带电粒子( )A.从BC边界离开电场B.从AD边界离开电场C.在电场中的运动时间为D.离开电场时的动能为【答案】BD【题型】多选题【难度】一般第Ⅱ卷二、非选择题(本题共4个小题。
2020-2021学年度人教版(2019)必修第三册 10
2020-2021学年度人教版(2019)必修第三册10.5带电粒子在电场中的运动同步训练4(含解析)1.如图所示,在xOy 竖直平面内存在着水平向右的匀强电场。
有一带正电的小球自坐标原点沿着y 轴正方向以初速度0v 抛出,运动轨迹最高点为M ,与x 轴交点为N ,不计空气阻力,则小球( )A .做匀加速运动B .从O 到M 的过程动能增大C .到M 点时的动能为零D .到N 点时的动能大于2012mv 2.如图所示,在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了12J ,金属块克服摩擦力做功8J ,重力做功28J ,则以下判断正确的是( )A .金属块带负电荷B .金属块克服电场力做功8JC .金属块的电势能减少8JD .金属块的机械能减少12J3.如图所示,固定的光滑绝缘斜面OM 与光滑绝缘水平面平滑连接(不考虑滑块经过M 点的能量损失),倾角37θ=,斜面和水平面所在空间存在着平行于斜面向上的匀强电场,电场强度310N/C E =。
现有质量为1kg m =,带电量为32.010C q -=⨯的带正电的小滑块(可视为质点)从O 点由静止释放恰好滑至水平面的N 点。
(g 取210m/s ,sin 370.6︒=,cos370.8︒=),则OM 与MN 的长度之比为( )A.2:5B.3:5C.1:1D.2:34.如图甲所示,某电场中的一条电场线恰好与M、P所在直线重合,以M为坐标原点,向右为正方向建立直线坐标系x,P点的坐标x P = 5.0cm,此电场线上各点的电场强度大小E随x变化的规律如图乙所示。
若一电子仅在电场力作用下自M点运动至P点,其电势能减小45eV,对于此电场,以下说法正确的是()A.该电子做匀变速直线运动B.x轴上各点的电场强度方向都为x轴负方向C.M点的电势是P点电势的二分之一D.图象中的E0的数值为125.如图甲所示,某静电除尘装置矩形通道的长为L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限时规范专题练(三)带电粒子在电场中运动的综合性问题时间:60分钟满分:100分一、选择题(本题共10小题,每小题7分,共70分。
其中1~6为单选,7~10为多选)1.如图所示,有三个质量相等,分别带正电、负电和不带电小球,从平行板电场中的P点以相同的初速度v0垂直进入电场,它们分别落到A、B、C三点()A.落到A点的小球带正电,落到B点的小球不带电B.三小球在电场中运动的时间相等C.三小球到达正极板时动能关系:E k A>E k B>E k CD.三小球在电场中运动的加速度关系:a A>a B>a C答案 A解析带负电的小球受到的合力为mg+F电,带正电的小球受到的合力为mg-F电′,不带电小球仅受重力mg,根据牛顿第二定律可得带负电的小球加速度最大,其次为不带电小球,最小的为带正电的小球,故小球在板间运动时间t=xv0,x C<x B<x A,所以t C<t B<t A,又h C=h B=h A,故a C>a B>a A,B、D错误;故落在C点的小球带负电,落在A点的小球带正电,落在B点的小球不带电,A正确;因为重力对三个小球做功相同,电场对带负电的小球C做正功,对带正电的小球A做负功,对不带电的B球不做功,根据动能定理可得三小球落在板上的动能大小关系为E k C>E k B>E k A,C错误。
2.(2018·山东菏泽模拟)如图所示,两极板水平放置的平行板电容器间形成匀强电场,两极板间相距为d。
一带负电的微粒从上极板M的边缘以初速度v0射入,沿直线从下极板的边缘射出。
已知微粒的电量为q、质量为m。
下列说法正确的是()A.微粒运动的加速度不为0 B.微粒的电势能减小了mgdC.两极板间的电势差为mgd qD.N极板的电势高于M板的电势答案 C解析由题意分析可知,微粒所受电场力方向竖直向上,与重力平衡,微粒做匀速直线运动,加速度为零,A错误;微粒穿过平行板电容器过程,重力做功mgd,微粒的重力势能减小,动能不变,根据能量守恒定律知,微粒的电势能增加了mgd,B错误;微粒的电势能增加量ΔE=mgd,又ΔE=qU,得到两极板的电势差U=mgdq,C正确;电场力方向竖直向上,微粒带负电,故电场强度方向竖直向下,M板的电势高于N板的电势,D错误。
3.(2017·海南高考)如图所示,平行板电容器的两极板竖直放置并分别与电源的正、负极相连,一带电小球经绝缘轻绳悬挂于两极板之间,处于静止状态。
现保持右极板不动,将左极板向左缓慢移动。
关于小球所受的电场力大小F和绳子的拉力大小F T,下列判断正确的是()A.F逐渐减小,F T逐渐减小B .F 逐渐增大,F T 逐渐减小C .F 逐渐减小,F T 逐渐增大D .F 逐渐增大,F T 逐渐增大答案 A解析 匀强电场的电场强度E =U d ,因为两极板分别与电源的正、负极相连,所以两极板间的电压U 不变,将左极板向左缓慢移动,距离d 增大,电场强度减小,电场力F =qE 也减小,带电小球的受力分析如图所示,可知细绳的拉力F T =(mg )2+F 2,由于F 减小,mg 不变,所以拉力F T 减小,A 正确。
4.(2018·湘东五校联考)一带电油滴在匀强电场E 中的运动轨迹如图中虚线所示,电场方向竖直向下,带电油滴仅受重力和电场力作用。
带电油滴从a 运动到b 的过程中,能量变化情况为( )A .动能减小B .电势能增加C .重力势能和电势能之和增加D .动能和重力势能之和增加答案 D解析 由带电油滴从a 运动到b 的轨迹可知,带电油滴所受的合力竖直向上,即油滴的电场力方向竖直向上,所以油滴带负电荷,合外力与位移的夹角小于90°,合外力做正功,带电油滴的动能增大,A错误;由b点电势比a点电势高,且油滴带负电,可知油滴在a点的电势能比在b点的大,即从a到b油滴的电势能减小,B错误;油滴从a运动到b,电势能减小,重力势能增大,动能也增大,又油滴的电势能、重力势能与动能之和不变,则油滴重力势能和电势能之和减小,动能和重力势能之和增大,C错误,D正确。
5.(2018·昆明质检)如图所示,竖直平面内有两个固定的电荷量相等的正点电荷,两点电荷的连线处于水平方向,O为连线的中点,P、M为连线的垂直平分线上的两点,且PO=OM=h。
现将一带负电的小球从P点静止释放,重力加速度为g,下列说法正确的是()A.从P到O的过程中,小球的电势能一直增大B.从P到O的过程中,小球的加速度一直增大C.从O到M的过程中,小球的机械能先增大后减小D.到达M点时,小球的速度大小为2gh答案 D解析从P到O的过程中,电场力做正功,小球的电势能一直减小,A错误;由于在P、M的连线上,O点的电场强度为零,无限远处电场强度为零,但不知道电场强度最大处的位置,故将一带负电的小球从P点静止释放,从P到O 的过程中,小球的加速度可能一直增大,可能先增大后减小,也可能一直减小,B错误;带负电的小球从O到M的过程中,克服电场力做功,根据功能关系,小球的机械能一直减小,C错误;由于P、M两点关于两点电荷的连线对称,故两点电势相等,带负电的小球在P、M两点的电势能相等,对带负电的小球从P点到M点的过程,由能量守恒定律,mg·2h=12m v2,解得到达M点时小球的速度大小为v=2gh,D正确。
6.(2018·河北五个一名校联盟联考)如图所示,离地H高处有一个质量为m、电荷量为+q 的物体处于电场强度随时间变化规律为E =E 0-kt (E 0、k 均为大于零的常数,电场方向以水平向左为正)的电场中,物体与竖直绝缘墙壁间的动摩擦因数为μ,已知μqE 0<mg 。
t =0时,物体从墙上由静止释放,若物体所受的最大静摩擦力等于滑动摩擦力,当物体下滑H 2后脱离墙面,此时速度大小为gH 2,物体最终落在地面上。
则下列关于物体的运动说法不正确的是( )A .当物体沿墙壁下滑时,物体先做加速运动再做匀速直线运动B .物体从脱离墙壁到落地之前的运动轨迹是一段曲线C .物体克服摩擦力所做的功W =38mgHD .物体与墙壁脱离的时刻为t =E 0k答案 A解析 在竖直方向上,由牛顿第二定律有mg -μqE =ma ,随着电场强度E 的减小,加速度a 逐渐增大,故物体做变加速运动,当E =0时,加速度增大到重力加速度g ,此后物体脱离墙面,物体脱离墙面时的速度向下,之后所受合外力与初速度不在同一条直线上,所以运动轨迹为曲线,A 错误,B 正确;物体从开始运动到刚好脱离墙面时电场力一直不做功,由动能定理得mg H 2-W =12m ⎝ ⎛⎭⎪⎫gH 22,物体克服摩擦力所做的功为W =38mgH ,C 正确;当物体与墙壁脱离时所受的支持力为零,即电场力为零,此时电场强度为零,所以有E 0-kt =0,解得时间为t =E 0k ,D 正确。
7.(2019·银川一中模拟)如图所示,匀强电场分布在边长为L 的正方形区域ABCD 内,M 、N 分别为AB 和AD 的中点,一个初速度为v 0、质量为m 、电荷量为q 的带负电粒子沿纸面射入电场,带电粒子的重力不计。
如果带电粒子从M 点垂直电场方向进入电场,则恰好从D 点离开电场,若带电粒子从N 点垂直BC方向射入电场,则带电粒子( )A .从BC 边界离开电场B .从AD 边界离开电场C .在电场中的运动时间为L v 0D .离开电场时的动能为12m v 20答案 BD解析 从M 到D 过程粒子做类平抛运动,则沿v 0方向有:L =v 0t ,垂直v 0方向:12L =12at 2,又a =F m ,解得:F =m v 20L ,当带电粒子从N 点垂直BC 方向射入电场,粒子做匀减速直线运动,设粒子匀减速运动的位移为x 时速度减至零,根据动能定理得:-Fx =0-12m v 20,解得x =L 2,粒子运动到位移为L 2处,又沿原路返回,所以粒子最终从AD 边离开电场,A 错误,B 正确;设粒子在电场中运动的时间为t ′,则L 2=v 02·t ′2,t ′=2L v 0,C 错误;离开电场时电场力做功为零,故离开电场时的动能为:E k =12m v 20,故D 正确。
8.如图所示,有一沿水平方向的匀强电场,其电场强度为E 。
一带电小球,以大小为v 0的初速度竖直向上进入该匀强电场;小球运动一段时间后,速度大小仍然为v 0且方向沿电场方向,则在这一过程中,下列说法正确的是( )A .小球在运动过程中机械能守恒B .小球在电场中所受到的合力F 与水平方向成45°角C .电场力所做的功一定大于重力做的功D .电势能的减少量一定等于重力势能的增加量答案 BD解析 根据机械能守恒的条件可知A 错误;设小球的质量为m 、电荷量为q ,小球在水平方向上的加速度为a x =qE m ,速度为v x =a x t ,竖直方向上速度为v y =v 0-gt ,到达B 点时v x =v 0,v y =0,所以有v 0=a x t,0=v 0-gt ,故a x =g ,qE =mg ,由此可知小球在电场中所受到的合力F 与水平方向成45°角,故B 正确;由动能定理qEx -mgh =0,x 、h 分别是小球在水平方向上和竖直方向上的位移,可得x =h ,W G =-W E ,ΔE pG =-ΔE pE ,故C 错误,D 正确。
9.(2018·浙江宁波模拟)如图所示,MPQO 为有界的竖直向下的匀强电场,电场强度为E ,ACB 为光滑固定的半圆形轨道,轨道半径为R ,A 、B 为其水平直径的两个端点,AC 为14圆弧。
一个质量为m 、电荷量为-q (q >0)的带电小球,从A 点正上方高为H 处由静止释放,并从A 点沿切线进入半圆形轨道。
不计空气阻力及一切摩擦,关于带电小球的运动情况,下列说法正确的是( )A.小球一定能从B点离开轨道B.小球在AC部分可能做匀速圆周运动C.若小球能从B点离开,上升的高度一定小于HD.小球到达C点的速度可能为零答案BC解析小球受到的重力竖直向下,电场力竖直向上,如果到达B点时重力做的正功大于电场力做的负功,小球能离开半圆轨道,否则不能,A错误;若电场力等于重力,小球在AC部分做匀速圆周运动,B正确;因电场力做负功,有机械能损失,若小球能从B点离开,上升的高度一定小于H,C正确;若小球到达C点的速度为零,则电场力大于重力,小球在到达C点之前就已经脱离轨道,D错误。
10.(2018·福建质检)如图所示,M、N两点处于同一水平面,O为M、N连线的中点,过O点的竖直线上固定一根绝缘光滑细杆,杆上A、B两点关于O点对称。