随机抽样-高考理科数学一轮复习考点检测练习

合集下载

高考数学一轮复习专题训练—随机抽样

高考数学一轮复习专题训练—随机抽样

随机抽样考纲要求1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.知识梳理1.简单随机抽样(1)定义:设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样. (2)最常用的简单随机抽样的方法:抽签法和随机数法. 2.系统抽样(1)定义:当总体中的个体数目较多时,可将总体分成均衡的几个部分,然后按照事先定出的规则,从每一部分抽取一个个体得到所需要的样本,这种抽样方法叫做系统抽样. (2)系统抽样的操作步骤假设要从容量为N 的总体中抽取容量为n 的样本. ①先将总体的N 个个体编号;②确定分段间隔k ,对编号进行分段,当N n (n 是样本容量)是整数时,取k =Nn (否则,先剔除一些个体);③在第1段用简单随机抽样确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号(l +k ),再加k 得到第3个个体编号(l +2k ),……,依次进行下去,直到获取整个样本. 3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样. (2)应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.1.不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)简单随机抽样每个个体被抽到的机会不一样,与先后有关.()(2)系统抽样在起始部分抽样时采用简单随机抽样.()(3)分层抽样中,每个个体被抽到的可能性与层数及分层有关.()(4)要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平.()答案(1)×(2)√(3)×(4)×2.在“世界读书日”前夕,为了了解某地5 000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析.在这个问题中,5 000名居民的阅读时间的全体是() A.总体B.个体C.样本的容量D.从总体中抽取的一个样本答案 A解析由题目条件知,5 000名居民的阅读时间的全体是总体;其中每1名居民的阅读时间是个体;从5 000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.3.一个公司共有N名员工,下设一些部门,要采用等比例分层抽样的方法从全体员工中抽取样本容量为n的样本,已知某部门有m名员工,那么从该部门抽取的员工人数是________.答案nm N解析 每个个体被抽到的概率是n N ,设这个部门抽取了x 个员工,则x m =n N ,∴x =nmN.4.(2020·上饶一模)总体由编号为00,01,02,…,48,49的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第3个个体的编号为( ) 附:第6行至第9行的随机数表如下: 2635 7900 3370 9160 1620 3882 7757 4950 3211 4919 7306 4916 7677 8733 9974 6732 2748 6198 7164 4148 7086 2888 8519 1620 7477 0111 1630 2404 2979 7991 9683 5125 A .3 B .16 C .38 D .20答案 D解析 按随机数表法,从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,超出00~49及重复的不选,则编号依次为33,16,20,38,49,32,…,则选出的第3个个体的编号为20,故选D.5.(2021·郑州调研)某校有高中生1 500人,现采用系统抽样法抽取50人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、490人、515人)按1,2,3,…, 1 500编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为( ) A .15 B .16 C .17 D .18答案 C解析 采用系统抽样法从1 500人中抽取50人,所以将1 500人平均分成50组,每组30人,并且在第一组抽取的号码为23,所以第n 组抽取的号码为a n =23+(n -1)×30=30n -7,而高二学生的编号为496到985,所以496≤30n -7≤985,又n ∈N *,所以17≤n ≤33,则共有17人,故选C.6.(2018·全国Ⅲ卷)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________. 答案 分层抽样解析 因为不同年龄段的客户对公司的服务评价有较大差异,所以需按年龄进行分层抽样,才能了解到不同年龄段的客户对公司服务的客观评价.考点一 简单随机抽样及其应用1.下面的抽样方法是简单随机抽样的是( )A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见D .用抽签方法从10件产品中选取3件进行质量检验 答案 D解析 A ,B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体中的个体有明显的层次;D 是简单随机抽样.故选D.2.用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( ) A.110,110 B .310,15C.15,310 D .310,310答案 A解析 在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110,故选A.3.(2021·南昌一模)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08 B.07 C.02 D.01答案 D解析从第1行第5列和第6列组成的数65开始由左到右依次选出的数为08,02,14,07,01,所以第5个个体编号为01.感悟升华 1.简单随机抽样需满足:(1)被抽取的样本总体的个体数有限;(2)逐个抽取;(3)是不放回抽取;(4)是等可能抽取.2.简单随机抽样常有抽签法(适用于总体中个体数较少的情况)、随机数法(适用于个体数较多的情况).考点二系统抽样及其应用【例1】(1)(2021·太原调研)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为()A.15 B.18 C.21 D.22(2)(2019·全国Ⅰ卷)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生(3)中央电视台为了解观众对某综艺节目的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除________个个体,抽样间隔为________.答案 (1)C (2)C (3)2 10解析 (1)由已知得间隔数为k =244=6,则抽取的最大编号为3+(4-1)×6=21.(2)根据题意,系统抽样是等距抽样, 所以抽样间隔为1 000100=10.因为46除以10余6,所以抽到的号码都是除以10余6的数,结合选项知应为616.故选C. (3)把502名观众平均分成50组,由于502除以50的商是10,余数是2,所以每组有10名观众,还剩2名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从502名观众中抽取2名观众,这2名观众不参加座谈;再将剩下的500名观众编号为1,2,3,…,500,并均匀分成50段,每段含50050=10个个体.所以需剔除2个个体,抽样间隔为10.感悟升华 1.如果总体容量N 能被样本容量n 整除,则抽样间隔为k =Nn ,否则,可随机地从总体中剔除余数,然后按系统抽样的方法抽样,特别注意,每个个体被抽到的机会均是nN .2.系统抽样中依次抽取的样本对应的号码就是一个等差数列,首项就是第1组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.【训练1】 (1)(2021·衡水调研)衡水中学高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________. (2)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________. 答案 (1)45 (2)4解析 (1)分组间隔为648=8,∵在第一组中随机抽取的号码为5,∴在第6组中抽取的号码为5+5×8=45.(2)依题意,可将编号为1~35号的35个数据分成7组,每组有5个数据,从每组中抽取一人.成绩在区间[139,151]上共有20个数据,分在4个小组内,每组抽取1人,共抽取4人. 考点三 分层抽样及其应用角度1 求某层入样的个体数【例2】 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有 20 000人,其中各种态度对应的人数如下表所示:最喜爱 喜爱 一般 不喜欢 4 8007 2006 4001 600为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( ) A .25,25,25,25 B .48,72,64,16 C .20,40,30,10 D .24,36,32,8答案 D解析 法一 因为抽样比为10020 000=1200,所以每类人中应抽取的人数分别为4 800×1200=24,7 200×1200=36,6 400×1200=32,1 600×1200=8.法二 最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为66+9+8+2×100=24,96+9+8+2×100=36,86+9+8+2×100=32,26+9+8+2×100=8.角度2 求总体或样本容量【例3】 (1)(2021·东北三省四校联考)某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取容量为n 的样本,其中高中生有24人,那么n 等于( ) A .12B .18C .24D .36(2)(2020·西安调研)甲、乙两套设备生产的同类型产品共4 800件,采用分层抽样的方法从中抽取一个容量为80的样本进行质量检测.若样本中有50件产品由甲设备生产,则乙设备生产的产品总数为________件. 答案 (1)D (2)1 800解析 (1)根据分层抽样方法知n 960+480=24960,解得n =36.(2)由题设,抽样比为804 800=160.设甲设备生产的产品为x 件,则x60=50,∴x =3 000.故乙设备生产的产品总数为4 800-3 000=1 800.感悟升华 1.求某层应抽个体数量:按该层所占总体的比例计算.2.已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.3.分层抽样的计算应根据抽样比构造方程求解,其中“抽样比=样本容量总体容量=各层样本数量各层个体数量”.【训练2】 (1)(2020·郴州二模)已知我市某居民小区户主人数和户主对户型结构的满意率分别如图1和图2所示,为了解该小区户主对户型结构的满意程度,用分层抽样的方法抽取30%的户主进行调查,则样本容量和抽取的户主对四居室满意的人数分别为( )A .240,18B .200,20C .240,20D .200,18(2)(2021·合肥模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种,10种,30种,20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是________. 答案 (1)A (2)6解析 (1)样本容量n =(250+150+400)×30%=240,抽取的户主对四居室满意的人数为150×30%×40%=18.(2)抽样比为2040+10+30+20=15,则抽取的植物油类种数是10×15=2,抽取的果蔬类食品种数是20×15=4,所以抽取的植物油类与果蔬类食品种数之和是2+4=6.A 级 基础巩固一、选择题1.(2020·兰州二模)某学校为响应“平安出行”号召,拟从2 019名学生中选取50名学生加入“交通志愿者”,若采用以下方法选取:先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率( ) A .不全相等 B .均不相等C .都相等,且为140D .都相等,且为502 019答案 D解析 先用简单随机抽样方法剔除19名学生,剩下的2 000名再按照系统抽样的方法抽取,则每名学生入选的概率相等,且为p =502 019,故选D. 2.(2021·永州模拟)现从已编号(1~50)的50位同学中随机抽取5位以了解他们的数学学习状况,用选取的号码间隔一样的系统抽样方法确定所选取的5位同学的编号可能是( ) A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5 D .2,10,18,26,34答案 B解析 抽样间隔为505=10,只有选项B 符合题意.3.(2020·长春一模)完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;②从某中学的15名艺术特长生中选出3名调查学习负担情况.宜采用的抽样方法依次是( ) A .①简单随机抽样,②系统抽样 B .①分层抽样,②简单随机抽样 C .①系统抽样,②分层抽样 D .①②都用分层抽样 答案 B4.在一个容量为N 的总体中抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( ) A .p 1=p 2<p 3 B .p 2=p 3<p 1 C .p 1=p 3<p 2 D .p 1=p 2=p 3 答案 D解析 由随机抽样的知识知,三种抽样中,每个个体被抽到的概率都相等,故选D. 5. (2021·襄阳联考)如图是调查某学校高三年级男女学生是否喜欢数学的等高条形图,阴影部分的高表示喜欢数学的频率.已知该年级男、女生各500名(所有学生都参加了调查),现从所有喜欢数学的学生中按分层抽样的方式抽取32人,则抽取的男生人数为( )A .16B .32C .24D .8答案 C解析 由题中等高条形图可知喜欢数学的女生和男生的人数比为1∶3,,所以抽取的男生人数为24.故选C.6.某中学400名教师的年龄分布情况如图,现要从中抽取40名教师作样本,若用分层抽样方法,则40岁以下年龄段应抽取( )A .40人B .200人C .20人D .10人答案 C解析 由图知,40岁以下年龄段的人数为400×50%=200,若采用分层抽样应抽取200×40400=20(人).7.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( ) A .50 B .40 C .25 D .20答案 C解析 由系统抽样的定义知,分段间隔为1 00040=25.8.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800双B .1 000双C .1 200双D .1 500双答案 C解析 因为a ,b ,c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的13,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的13,即为1 200双皮靴. 二、填空题9.某单位在岗职工共620人,为了调查工人用于上班途中的时间,决定抽取62名工人进行调查,若采用系统抽样方法将全体工人编号等距分成62段,再用简单随机抽样法得到第1段的起始编号为4,则第40段应抽取的个体编号为________. 答案 394解析 将620人的编号分成62段,每段10个编号,按系统抽样,所抽取工人编号成等差数列,因此第40段的编号为4+(40-1)×10=394.10.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,将800袋牛奶按000,001,…,799进行编号,若从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________(下面摘取了随机数表第7行至第9行).答案 068解析 由随机数表知,前4个样本的个体编号分别是331,572,455,068.11.某企业三月中旬生产A ,B ,C 三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:由于不小心,表格中A A 产品的样本容量比C 产品的样本容量多10,根据以上信息,可得C 的产品数量是________件. 答案 800解析 设样本容量为x ,则x3 000×1 300=130,∴x =300.∴A 产品和C 产品在样本中共有300-130=170(件). 设C 产品的样本容量为y ,则y +y +10=170,∴y =80. ∴C 产品的数量为3 000300×80=800(件).12.某校高三年级共有30个班,学校心理咨询室为了了解同学们的心理状况,将每个班编号,依次为1到30,现用系统抽样的方法抽取5个班进行调查,若抽到的编号之和为75,则抽到的最小的编号为________. 答案 3解析 系统抽样的抽取间隔为305=6.设抽到的最小编号为x ,则x +(6+x )+(12+x )+(18+x )+(24+x )=75,所以x =3.B 级 能力提升13.我国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A .104人 B .108人C .112人D .120人答案 B解析 由题意知,抽样比为 3008 100+7 488+6 912=175,所以北乡遣175×8 100=108(人).14.下列抽取样本的方式属于简单随机抽样的个数为( ) ①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里. ③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛. A .0 B .1 C .2 D .3答案 A解析 ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样.因为它是有放回抽样;③不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样.因为不是等可能抽样.故选A.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数减少1人,在采用系统抽样时,需要在总体中先剔除2个个体,则n =________. 答案 18解析 总体容量为6+12+18=36,当样本容量为n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n -1)时,总体容量剔除以后是34人,系统抽样的间隔为34n -1,因为34n -1必须是整数,所以n 只能取18,即样本容量n =18.16.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定:如果在第1组随机抽取的号码为m,那么在第k组(k≥2)中抽取的号码个位数字与m+k的个位数字相同,若m=8,则k的值为________,在第8组中抽取的号码是________.答案876解析由题意知m=8,k=8,则m+k=16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76.。

核按钮(新课标)高考数学一轮复习第十一章统计11.1随机抽样习题理

核按钮(新课标)高考数学一轮复习第十一章统计11.1随机抽样习题理

§11.1 随机抽样1.简单随机抽样(1)简单随机抽样:一般地,设一个总体含有N 个个体,从中逐个________地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的机会________,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样方法有两种:________法和________法.抽签法(抓阄法):一般地,抽签法就是把总体中的N 个个体________,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取______个号签,连续抽取________次,就得到一个容量为n 的样本.随机数法:随机数法就是利用______________、随机数骰子或计算机产生的随机数进行抽样.简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.2.系统抽样(1)一般地,假设要从容量为N 的总体中抽取容量为n 的样本,我们可以按下列步骤进行系统抽样:①先将总体的N 个个体________.有时可直接利用个体自身所带的号码,如学号、准考证号、门牌号等;②确定分段间隔k ,对编号进行分段.当N n (n 是样本容量)是整数时,取k =N n ,如果遇到N n不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除;③在第1段用______________抽样方法确定第一个个体编号l (l ≤k );④按照一定的规则抽取样本.通常是将l 加上________得到第2个个体编号________,再________得到第3个个体编号________,依次进行下去,直到获取整个样本.(2)当总体中元素个数较少时,常采用____________,当总体中元素个数较多时,常采用______________.3.分层抽样(1)分层抽样的概念:一般地,在抽样时,将总体分成________的层,然后按照一定的________,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)当总体是由__________的几个部分组成时,往往选用分层抽样的方法.(3)分层抽样时,每个个体被抽到的机会是________的.自查自纠1.(1)不放回 都相等(2)抽签 随机数 编号 1 n 随机数表2.(1)①编号 ③简单随机④间隔k(l+k) 加k(l+2k)(2)简单随机抽样系统抽样3.(1)互不交叉比例(2)差异明显(3)均等(2015·南昌模拟)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解:∵总体中所要调查的因素受学段影响较大,而受性别影响不大,∴最合理的抽样方法是按学段分层抽样.故选C.从匀速传递的新产品生产流水线上,质检员每10分钟从中抽取一件新产品进行某项指标检测,这样的抽样是( ) A.系统抽样B.分层抽样C.简单随机抽样D.随机数法解:根据定义易判断这样的抽样为系统抽样.故选A.(2014·重庆)某中学有高中生3500人,初中生1500人.为了解学生的学习情况,用分层抽样的方法从该校学生中抽取一个容量为n的样本,已知从高中生中抽取70人,则n为( )A.100 B.150 C.200 D.250解:样本抽取比例为703500=150,该校总人数为3500+1500=5000,由n5000=150得n=100.故选A.为了了解某地参加计算机水平测试的5008名学生的成绩,从中抽取了200名学生的成绩进行统计分析,运用系统抽样抽取样本时,每组的容量为____________.解:由于5008不能被200整除,所以须先剔除8人,再由5000÷200=25知每组的容量为25.故填25.某单位200名职工的年龄分布情况如图所示,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号为第1组,6~10号为第2组,…,196~200号为第40组).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.解:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37;易知40岁以下年龄段的职工数为200×0.5=100,所以40岁以下年龄段应抽取的人数为40200×100=20.故填37;20.类型一简单随机抽样某大学为了支援我国西部教育事业,决定从应届毕业生报名的18名志愿者中选取6名组成志愿小组.请用抽签法和随机数表法设计抽样方案.解:(抽签法)第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者就是志愿小组的成员.(随机数表法)第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如从第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01~18中的数或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09;第四步:找出以上号码对应的志愿者,即是志愿小组的成员.【点拨】考虑到总体中个体数较少,利用抽签法或随机数表法很容易获取样本,但须按这两种抽样方法的操作步骤进行.注意掌握随机数表的使用方法.有一批机器,编号为1,2,3,…,112,为调查机器的质量问题,打算抽取10台入样,请写出用简单随机抽样方法获得样本的步骤.解法一:将112个外形完全相同的号签(编号001,002,…,112)放入一个不透明的盒子里,充分搅拌均匀后,每次不放回地从盒子中抽取1个号签,连续抽取10次,就得到1个容量为10的样本.解法二:第一步,将机器编号为001,002,003, (112)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如选第9行第7个数“3”,向右读;第三步,从“3”开始,向右读,每次读取三位,凡不在001~112中的数跳过去不读,前面已经读过的数也跳过去不读,依次可得到074,100,094,052,080,003,105,107,083,092,这样就得到一个容量为10的样本;第四步,找出以上号码对应的机器,即是要抽取的样本.类型二系统抽样从某厂生产的10002辆汽车中随机抽取100辆测试某项性能,请合理选择抽样方法进行抽样,并写出抽样过程.解:因为总体容量和样本容量都较大,可用系统抽样.抽样步骤如下:第一步,将10002辆汽车用随机方式编号;第二步,从总体中剔除2辆(剔除法可用随机数表法),将剩下的10000辆汽车重新编号(分别为00001,00002,…,10000),并分成100段;第三步,在第一段00001,00002,…,00100这100个编号中用简单随机抽样方法抽出一个作为起始号码(如00006);第四步,把起始号码依次加上间隔100,可获得样本.【点拨】①总体容量和样本容量都较大时,选用系统抽样比较合适;②系统抽样的号码成等差数列,公差为每组的容量.(2013·陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1, 2, … , 840随机编号,则抽取的42人中,编号落入区间[481, 720]的人数为( )A.11 B.12 C.13 D.14解:从840名职工中抽取42人,按系统抽样分42组,每组20人,每组中抽取1人,在[481,720] 中有720-480=240人,240÷20=12组,编号落入区间[481,720]的人数为12.故选B.类型三分层抽样某企业共有5个分布在不同区域的工厂,职工3万人,其中职工比例为3∶2∶5∶2∶3.现从3万人中抽取一个300人的样本,分析员工的生产效率.已知生产效率与不同的地理位置的生活习俗及文化传统有关,问应采取什么样的方法?并写出具体过程.解:应采取分层抽样的方法.过程如下:(1)将3万人分为五层,其中一个工厂为一层.(2)按照样本容量的比例随机抽取各工厂应抽取的样本:300×315=60(人);300×215=40(人);300×515=100(人);300×215=40(人);300×315=60(人).因此各工厂应抽取的人数分别为60人,40人,100人,40人,60人.(3)将300人组到一起即得到一个样本.【点拨】分层抽样的实质为按比例抽取,当总体由差异明显的几部分组成时,多用分层抽样.应认识到,在各层抽取样本时,又可能会用到简单随机抽样,系统抽样,甚至分层抽样来抽取样本.(2014·天津)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取__________名学生.解:应从一年级本科生中抽取300×44+5+5+6=60名学生.故填60.1.简单随机抽样是系统抽样和分层抽样的基础,是一种等概率的抽样,它的特点是:(1)它要求总体个数较少;(2)它是从总体中逐个抽取的;(3)它是一种不放回抽样.2.系统抽样又称等距抽样,号码序列一旦确定,样本即确定好了.但要注意,如果编号的个体特征随编号的变化呈现一定的周期性,那么样本的代表性是不可靠的,甚至会导致明显的偏向.3.分层抽样一般在总体是由差异明显的几个部分组成时使用.4.抽样方法经常交叉使用,比如系统抽样中均匀分段后的第一段,可采用简单随机抽样;分层抽样中,若每层中个体数量仍很大时,则可辅之以系统抽样等.1.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A .①简单随机抽样;②系统抽样;③分层抽样B .①简单随机抽样;②分层抽样;③系统抽样C .①系统抽样;②简单随机抽样;③分层抽样D .①分层抽样;②系统抽样;③简单随机抽样解:由各抽样方法的适用范围可知较为合理的抽样方法是:①用简单随机抽样,②用系统抽样,③用分层抽样.故选A .2.(2014·广东)为了解1000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )A .50B .40C .25D .20解:由100040=25,可得分段的间隔为25.故选C .3.(2015·河北模拟)用简单随机抽样的方法从含有100个个体的总体中依次抽取一个容量为5的样本,则个体m 被抽到的概率为( )A.1100B.120C.199D.150解:简单随机抽样中,每个个体被抽到的概率为样本容量总体中的个体数,即个体m 被抽到的概率为5100=120.故选B .4.(2014·湖南)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解:根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法中每个个体被抽到的概率相等,均是nN,故p 1=p 2=p 3,故选D .5.(2013·江西)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依A.08B .07C .02D .01解:从选定的两位数字开始向右读,剔除不合题意及与前面重复的编号,得到符合题意的编号分别为08,02,14,07,01,…,因此选出来的第5个个体的编号为01.故选D .6.将参加夏令营的600名学生编号为001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区.三个营区被抽中的人数依次为( )A .25,17,8B .25,16,9C .26,16,8D .24,17,9解:依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k (k ∈N *)组抽中的号码是3+12(k -1).令3+12(k -1)≤300得k ≤1034,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k -1)≤495得1034<k ≤42,因此第Ⅱ营区被抽中的人数是42-25=17;同理可知第Ⅲ营区被抽中的人数是8.故选A .7.(2015·安徽模拟)高三(1)班有学生52人,现将所有学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知5号,31号,44号学生在样本中,则样本中还有一个学生的编号是____________.解:∵系统抽样是等距抽样,52÷4=13,间隔为13,且5号,31号,44号学生在样本中,∴5+13=18,即样本中还有一个学生的编号是18.故填18.8.(2015·浙江模拟)某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250 ; ②5,9,100,107,111,121,180,195,200,265 ;③11,38,65,92,119,146,173,200,227,254 ; ④30,57,84,111,138,165,192,219,246,270 . 关于上述样本的下列结论: (1)②③都不能为系统抽样 (2)②④都不能为分层抽样 (3)①④都可能为分层抽样 (4)①③都可能为系统抽样正确的是____________.(填上所有正确结论的编号)解:根据三种抽样方法的特征,若是分层抽样,则各年级应占的比例为4∶3∶3,①②③均适合;若是系统抽样,则抽取的样本号码应该构成公差为27的等差数列,且首项小于或等于27,①③适合,④的首项为30,不是系统抽样,综上知,故填(4).9.为了考察某校的教学水平,将抽查该校高三年级部分学生本学年的考试成绩进行考察.为了全面地反映实际情况,采用以下三种方式进行抽样(已知该校高三年级共有20个教学班,并且每个班内的学生已经按随机方式编好了学号,假定该校每班学生人数都相同):①从全年级20个班中任意抽取一个班,再从该班中任意抽取20人,考察他们的学习成绩;②每个班都抽取1人,共计20人,考察这20个学生的成绩;③把学生按成绩分成优秀、良好、普通三个级别,从中抽取100名学生进行考察(已知若按成绩分,该校高三学生中优秀生共150人,良好生共600人,普通生共250人).根据上面的叙述,回答下列问题:(1)上面三种抽取方式中,其总体、个体、样本分别指什么?每一种抽取方式抽取的样本中,其样本容量分别是多少?(2)上面三种抽取方式中各自采用了何种抽取样本的方法?解:(1)这三种抽取方式中,其总体都是指该校高三全体学生本学年的考试成绩,个体都是指高三年级每个学生本学年的考试成绩.其中第一种抽取方式中样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第二种抽取方式中,样本为所抽取的20名学生本学年的考试成绩,样本容量为20;第三种抽取方式中,样本为所抽取的100名学生本学年的考试成绩,样本容量为100.(2)第一种采用简单随机抽样法;第二种采用系统抽样法和简单随机抽样法;第三种采用分层抽样法和简单随机抽样法.10.一支田径队有男运动员56人,女运动员42人,用分层抽样的方法从全体运动员中抽出一个容量为28的样本.解:田径运动员的总人数是56+42=98(人),要得到28人的样本,占总体的比例为27.于是,应该在男运动员中随机抽取56×27=16(人),在女运动员中随机抽取28-16=12(人).这样,就可以得到一个容量为28的样本.11.某大学今年有毕业生1503人,为了了解毕业生择业的意向,打算从中选50人进行询问调查,试用系统抽样法确定出这50个人.解:总体中的每个个体都必须等可能地入样,为了实现系统抽样的平均分组且又等概率抽样,必须先剔除1503被50除的余数3,再“分段”,定起始位置.第一步:将1503名大学生随机编号:0001,0002, (1503)第二步:因为1503被50除余3,所以应从总体中剔除3人,用随机数表法确定被剔除的3位学生;第三步:将余下的1500名学生重新编号为0001,0002, (1500)第四步:将上述1500个号码按顺序平均分成50段,每段30人;第五步:在第一段0001,0002,…,0030这30个编号中随机确定一起始号i0;第六步:取出编号为i0,i0+30,i0+60,…,i0+49×30的大学生,即得所需样本.某公司有1000名员工,其中:高层管理人员为50名,属于高收入者;中层管理人员为150名,属于中等收入者;一般员工为800名,属于低收入者.要对这个公司员工的收入情况进行调查,欲抽取100名员工,应当怎样进行抽样?解:可以采用分层抽样的方法,按照收入水平分成三层:高收入者、中等收入者、低收入者.从题中数据可以看出,高收入者为50名,占所有员工的比例为501000=5%,为保证样本的代表性,在所抽取的100名员工中,高收入者所占的比例也应为5%,数量为100×5%=5,所以应抽取5名高层管理人员.同理,抽取15名中层管理人员、80名一般员工,再对收入状况分别进行调查.。

高考数学一轮题组训练:《随机抽样》(人教版)

高考数学一轮题组训练:《随机抽样》(人教版)

第九篇统计与统计案例第1讲随机抽样基础巩固题组(建议用时:40分钟)一、选择题1.某中学进行了该学年度期末统一考试,该校为了了解高一年级1 000名学生的考试成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法正确的是().A.1 000名学生是总体B.每个学生是个体C.1 000名学生的成绩是一个个体D.样本的容量是100解析 1 000名学生的成绩是总体,其容量是1 000,100名学生的成绩组成样本,其容量是100.答案 D2.(2013·新课标全国Ⅰ卷)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是().A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案 C3.(2014·东北三校联考)某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=().A.54 B.90C.45 D.126解析依题意有33+5+7×n=18,由此解得n=90,即样本容量为90.答案 B4.(2013·江西卷)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为().A.08 B.07C.02 D.01解析由题意知前5个个体的编号为08,02,14,07,01.答案 D5.(2014·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是().A.1,2,3,4,5,6 B.6,16,26,36,46,56C.1,2,4,8,16,32 D.3,9,13,27,36,54解析系统抽样是等间隔抽样.答案 B二、填空题6.(2014·成都模拟)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应城市数分别为4,12,8.若用分层抽样抽取6个城市,则甲组中应抽取的城市数为________.解析甲组中应抽取的城市数为624×4=1.答案 17.某校高级职称教师26人,中级职称教师104人,其他教师若干人.为了了解该校教师的工资收入情况,按分层抽样从该校的所有教师中抽取56人进行调查,已知从其他教师中共抽取了16人,则该校共有教师________人.解析设其他教师为x人,则5626+104+x=16x,解得x=52,∴x+26+104=182(人).答案1828.(2014·青岛模拟)某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号,若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析因为12=5×2+2,即第三组抽出的是第二个同学,所以每一组都相应抽出第二个同学,所以第8组中抽出的号码为5×7+2=37号.答案37三、解答题9.某初级中学共有学生2 000名,各年级男、女生人数如下表:0.19.(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?解(1)∵x2 000=0.19.∴x=380.(2)初三年级人数为y+z=2 000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482 000×500=12名.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数表法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.能力提升题组(建议用时:25分钟)一、选择题1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为().A.800 B.1 000C.1 200 D.1 500解析因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200双皮靴.答案 C2.将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为().A.26,16,8 B.25,17,8C.25,16,9 D.24,17,9解析由题意知间隔为60050=12,故抽到的号码为12k+3(k=0,1,…,49),列出不等式可解得:第Ⅰ营区抽25人,第Ⅱ营区抽17人,第Ⅲ营区抽8人.答案 B二、填空题3.200名职工年龄分布如图所示,从中随机抽40名职工作样本,采用系统抽样方法,按1~200编号为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为______.若采用分层抽样,40岁以下年龄段应抽取________人.解析将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中抽取x人,则40200=x100,解得x=20.答案3720三、解答题4.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:文艺节目新闻节目总计(1)40岁的观众应该抽取几名?(2)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解(1)应抽取大于40岁的观众人数为2745×5=35×5=3(名).(2)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3).5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”,则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=610=35.。

2023届高考数学一轮复习作业随机抽样北师大版

2023届高考数学一轮复习作业随机抽样北师大版

随机抽样一、选择题1.某学校从编号依次为01,02,…,90的90个学生中用系统抽样(等间距抽样)的方法抽取一个样本,已知样本中相邻的两个组的编号分别为14,23,则该样本中来自第四组的学生的编号为( )A.32 B.33 C.41 D.42A [因为相邻的两个组的编号分别为14,23,所以样本间隔为23-14=9,所以第一组的编号为14-9=5,所以第四组的编号为5+3×9=32,故选A.]2.我国古代数学专著《九章算术》中有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡遣( ) A.104人 B.108人 C.112人 D.120人B [由题意可知,这是一个分层抽样的问题,其中北乡可抽取的人数为300×=300×=108.]3.某学校高一年级1 802人,高二年级1 600人,高三年级1 499人,现采用分层抽样的方法从中抽取98名学生参加全国中学生禁毒知识竞赛,则在高一、高二、高三三个年级中抽取的人数分别为( )A.35,33,30B.36,32,30C.36,33,29D.35,32,31B [先将每个年级的人数凑整,得高一:1 800人,高二:1 600人,高三:1 500人,则三个年级的总人数所占比例分别为,,,因此,各年级抽取人数分别为98×=36,98×=32,98×=30,故选B.]4.某中学有高中生960人,初中生480人,为了了解学生的身体状况,采用分层抽样的方法,从该校学生中抽取一个容量为n的样本,其中高中生有24人,那么n等于( )A.12 B.18 C.24 D.36D [根据分层抽样方法知=,解得n=36.]5.某公司员工对户外运动分别持“喜欢”“不喜欢”和“一般”三种态度,其中持“一般”态度的比持“不喜欢”态度的多13人,按分层抽样方法从该公司全体员工中选出部分员工座谈户外运动,如果选出的人有6人对户外运动持“喜欢”态度,有2人对户外运动持“不喜欢”态度,有3人对户外运动持“一般”态度,那么这个公司全体员工中对户外运动持“喜欢”态度的人数有( )A.26 B.39 C.78 D.13C [设持“喜欢”“不喜欢”“一般”态度的人数分别为6x,2x,3x,由题意可得3x-2x =13,x=13,∴持“喜欢”态度的有6x=78(人).]6.某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样法,抽取4个班进行调查,若抽到的最小编号为3,则抽取的最大编号为( )A.15 B.18 C.21 D.22C [由题意可知,抽取的编号为首项为3,公差为6的等差数列,其4个编号依次为3,9,15,21.故抽取的最大编号为21,故选C.]7.将参加夏令营的600名学生按001,002,…,600进行编号.采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分别住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,则三个营区被抽中的人数依次为( )A.26,16,8B.25,17,8C.25,16,9D.24,17,9B [由题意及系统抽样的定义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(k∈N*)组抽中的号码是3+12(k-1).令3+12(k-1)≤300,得k≤,因此第Ⅰ营区被抽中的人数是25;令300<3+12(k-1)≤495,得<k≤42,因此第Ⅱ营区被抽中的人数是42-25=17;第Ⅲ营区被抽中的人数为50-25-17=8.]二、填空题8.某校高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第1组中随机抽取的号码为5,则在第6组中抽取的号码为________.45 [依题意,分组间隔为=8,因为在第1组中随机抽取的号码为5,所以在第6组中抽取的号码为5+5×8=45.]9.利用随机数法对一个容量为500,编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,选取方法是从随机数表第12行第5列、第6列、第7列数字开始由左到右依次选取三个数字(下面摘取了随机数表中的第11行至第12行),根据下表,读出的第3个数是________.18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10 55 23 64 05 0526 62 38 97 75 84 16 07 44 99 83 11 46 32 24 20 14 85 88 45 10 93 7288 71114 [最先读到的数据的编号是389,向右读下一个数是775,775大于499,故舍去,再下一个数是841,舍去,再下一个数是607,舍去,再下一个数是449,再下一个数是983,舍去,再下一个数是114.故读出的第3个数是114.]10.某企业三月中旬生产A,B,C三种产品共3 000件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别A B C产品数量(件) 1 300样本容量130由于不小心,表格中A,C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C的产品数量是________件.800 [设样本容量为x,则×1 300=130,所以x=300.所以A产品和C产品在样本中共有300-130=170(件).设C产品的样本容量为y,则y+y+10=170,所以y=80.所以C产品的数量为×80=800(件).]1.某工厂在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a,b,c,且a,b,c构成等差数列,则第二车间生产的产品数为( )A.800双B.1 000双C.1 200双D.1 500双C [因为a,b,c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占12月份生产总数的三分之一,即为1 200双.]2.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:若将运动员按成绩由好到差编号为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]内的运动员人数是( )A.3 B.4 C.5 D.6B [第一组(130,130,133,134,135),第二组(136,136,138,138,138),第三组(139,141,141,141,142),第四组(142,142,143,143,144),第五组(144,145,145,145,146),第六组(146,147,148,150,151),第七组(152,152,153,153,153),故成绩在[139,151]上恰有4组,故有4人,故选B.]3.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:高一年级高二年级高三年级跑步a b c登山x y z 其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取__ ______人.36 [根据题意可知样本中参与跑步的人数为200×=120,所以从高二年级参与跑步的学生中应抽取的人数为120×=36.]4.一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画出了如图所示的频率分布直方图,现要从这10 000人中用分层抽样的方法抽取100人作进一步调查,则月收入在[2 500,3 000)(元)内应抽取________人.25 [由频率分布直方图可得在[2 500,3 000)收入段共有10 000×0.000 5×500=2 500(人),按分层抽样应抽出2 500×=25(人).]1.在《九章算术》第三章“衰分”中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱多少衰出之,问各几何?”其译文为:今有甲持560钱,乙持350钱,丙持180钱,甲、乙、丙三人一起出关,关税共100钱,要按照各人带钱多少的比例进行交税,问三人各应付多少税?则下列说法中所有正确的序号有( )①甲应付51钱;②乙应付32钱;③丙应付16钱;④三者中甲付的钱最多,丙付的钱最少.A.①②③ B.①②④ C.②③④ D.①③④D [依题意,抽样比为=.由分层抽样知识可知,甲应付×560=51钱,故①正确;乙应付×350=32钱,故②不正确;丙应付×180=16钱,故③正确.显然51>32>16,④正确.故选D.]2.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号分为40组,分别为1~5啦啦,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取___ _____人.37 20 [将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件得200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则=,解得x=20.]。

高考数学一轮复习同步检测题:《随机抽样》

高考数学一轮复习同步检测题:《随机抽样》

2019 年高考数学一轮复习同步检测题:《随机抽样》由查词典数学网编写老师精心供给,2019 年高考数学一轮复习同步检测题:《随机抽样》,所以考生及家长请仔细阅读,关注孩子的学习成长。

一、选择题1.为保证食品安全,质检部门检查一箱装有 1 000 件包装食品的质量,抽查总量的 2%.在这个问题中以下说法正确的选项是 ( )(A)整体是指这箱 1 000 件包装食品(B)个体是一件包装食品(C)样本是按 2%抽取的 20 件包装食品(D)样本容量为 202.问题:①某社区有500 个家庭,此中高收入家庭125 户,中等收入家庭 280 户,低收入家庭95 户,为了认识社会购置力的某项指标,要从中抽出一个容量为 100 的样本 ;②从 10 名学生中抽出 3 名参加座谈会 .方法:Ⅰ简单随机抽样法;Ⅱ系统抽样法 ;Ⅲ分层抽样法 .问题与方法配对正确的选项是( )(A)①Ⅲ,②Ⅰ (B)①Ⅰ,②Ⅱ(C)①Ⅱ,②Ⅲ (D)①Ⅲ,②Ⅱ3.从 2 012 名学生中选用 10 名学生参加全国数学联赛,若采纳下边的方法选用:先用简单随机抽样法从2 012 人中剔除 2 人,剩下的 2 010人再按系统抽样的方法抽取,则每人当选的概率( )(A) 不全相等(B)均不相等(C)都相等,且为(D)都相等,且为4.利用简单随机抽样,从n 个个体中抽取一个容量为10 的样本 .若第二次抽取时,余下的每个个体被抽到的概率为则n 的值为 ( )(A)30 (B)28 (C)20 (D)185.某连队身高切合国庆阅兵标准的士兵共有45 人,此中 18 岁~ 19 岁的士兵有 15 人,20 岁~ 22 岁的士兵有 20 人,23 岁以上的士兵有 10 人,若该连队有9 个参加阅兵的名额,假如按年纪分层选派士兵,那么,该连队年纪在 23 岁以上的士兵参加阅兵的人数为 ( ) (A)5 (B)4 (C)3 (D)2 6.(2019 锦州模拟 )某高中在校学生 2 000 人,高一年级与高二年级人数同样并都比高三年级多 1 人.为了响应阳光体育运动呼吁,学校举行了跑步和爬山竞赛活动.每人都参加并且只参加了此中一项竞赛,各年级参加竞赛人数状况以下表:高一年级高二年级高三年级跑步 a b c爬山x y z此中a∶b∶c=2∶3∶ 5,全校参加爬山的人数占总人数的为了认识学生对本次活动的满意程度,从中抽取一个 200 人的样本进行检查,则从高二年级参加跑步的学生中应抽取( )(A)24 人 (B)30 人 (C)36 人 (D)60 人7.(2019 中山模拟 )用系统抽样法从 160 名学生中抽取容量为 20 的样本,将 160 名学生随机地从 1~160 编号,按编号次序均匀分红 20 组第 2页 /共 12页(1~8 号, 9~16 号,,153~160 号),若第 16 组抽出的号码为 126,则第 1 组顶用抽签的方法确立的号码是 ( ) (A)5 (B)6 (C)7 (D)88.(2019 莆田模拟 )将参加夏令营的600 名学生编号为: 001,002,,600.采纳系统抽样方法抽取一个容量为50 的样本,且随机抽得的号码为003.这 600 名学生疏住在三个营区,从 001 到 300 在第Ⅰ营区,从 301到 495 在第Ⅱ营区,从 496 到 600 在第Ⅲ营区,三个营区被抽中的人数挨次为 ( )(A)26,16,8 (B)25,17,8(C)25,16,9 (D)24,17,99.一工厂生产了某种产品16 800 件,它们来自甲、乙、丙三条生产线,为查验这批产品的质量,决定采纳分层抽样的方法进行抽样,已知在甲、乙、丙三条生产线抽取的个体数挨次构成一个等差数列,则乙生产线生产的产品数是 ( )(A)5 000 (B)5 200 (C)5 400 (D)5 60010.某公路设计院有工程师 6 人,技术员 12 人,技工 18 人,要从这些人中抽取 n 个人参加市里召开的科学技术大会.假如采纳系统抽样和分层抽样的方法抽取,不用剔除个体,假如参会人数增添 1 个,则在采纳系统抽样时,需要在整体中先剔除 1 个个体,则 n 等于 ( )(A)5 (B)6 (C)7 (D)8二、填空题11.某单位 200 名员工的年纪散布状况如图,现要从中抽取40 名员工作样本,用系统抽样法,将全体员工随机按1~200 编号,并按编号次序均匀分为 40 组(1~5 号, 6~10 号,,196~200 号).若从第 5 组抽出的号码为 22,则从第 8 组抽出的号码应是 __________.若用分层抽样方法,则在40 岁以下年纪段应抽取 __________人.12.(2019 盐城模拟 )某公司三月中旬生产A, B,C 三种产品共 3 000件,依据分层抽样的结果,公司统计员制作了以下的统计表格:产品类型 A B C 产品数目 (件) 1 300 样本容量 130 因为不当心,表格中A,C 产品的有关数据已被污染看不清楚了,统计员只记得A 产品的样本容量比C 产品的样本容量多10,依据以上信息,可得C 产品的数目是 __________件.13.(2019 泰安模拟 )将一个整体中的100 个个体编号为 0,1,2,3,,99,并挨次将其分为 10 个小组,组号为 0,1,2,,9.要用系统抽样的方法抽取一个容量为 10 的样本,假如在第 0 组(号码为 0,1,,9)随机抽取的号码为 s,那么挨次错位地抽取后边各组的号码,其第 k 组中抽取的号码个位数为 k+s 或 k+s-10(假如 k+s10),若 s=6,则所抽取的 10 个号码挨次是 _________.14.(2019 镇江模拟 )某地有居民 100 000 户,此中一般家庭99 000 户,高收入家庭 1 000 户.从一般家庭中以简单随机抽样方式抽取990 户,从高收入家庭中以简单随机抽样方式抽取100 户进行检查,发现共有120 户家庭拥有 3 套以上住宅,此中一般家庭 50 户,高收入家庭70户,依照这些数据并联合所掌握的统计知识,你以为该地拥有 3 套或3 套以上住宅的家庭所占比率的合理预计是__________.三、解答题15.(能力挑战题 )某中学举行了为期3天的新世纪体育运动会,同时进行全校精神文明擂台赛.为认识此次活动在全校师生中产生的影响,分别在全校 500 名教职员工、 3 000 名初中生、 4 000 名高中生中作问卷检查,假如要在所有答卷中抽出120 份用于评估 .(1)应怎样抽取才能获得比较客观的评论结论?(2)要从 3 000 份初中生的答卷中抽取一个容量为48 的样本,假如采用简单随机抽样,应怎样操作?(3)为了从 4 000 份高中生的答卷中抽取一个容量为64 的样本,怎样使用系统抽样抽取到所需的样本?答案分析1.【分析】选 D.由从整体中抽取样本的意义知 D 是正确的 .2.【分析】选 A. ①因为社会购置力与家庭收入有关,所以要采纳分层抽样法 ;②从 10 名学生中抽取 3 名,样本和整体都比较少,合适采纳简单随机抽样法 .3.【分析】选 C.从 N 个个体中抽取M 个个体,则每个个体被抽到的概率都等于4.【分析】选 B.由题意知 n=28.5.【分析】选 D.设该连队年纪在23 岁以上的士兵参加阅兵的人数为x,则解得 x=2.6.【分析】选 C.∵爬山的占总数的故跑步的占总数的又跑步中高二年级占高二年级跑步的占总人数的设从高二年级参加跑步的学生中应抽取x 人,由得 x=36.7.【分析】选 B.设第 1 组抽出的号码为x,则第 16 组应抽出的号码是 815+x=126,解得 x=6.8.【分析】选 B.依题意及系统抽样的意义可知,将这 600 名学生按编号挨次分红 50 组,每一组各有 12 名学生,第 k(kN*) 组抽中的号码是3+12(k-1).令 3+12(k-1)300 得所以第Ⅰ营区被抽中的人数是 25;令3003+12(k-1)495 得所以第Ⅱ营区被抽中的人数是 42-25=17.联合各选项知,选 B.9.【分析】选 D.因为在甲、乙、丙三条生产线抽取的个体数挨次构成一个等差数列 .则可设三项分别为 a-x,a,a+x.故样本容量为(a-x)+a+(a+x)=3a,因此每个个体被抽到的概率为所以乙生产线生产的产品数为10.【思路点拨】先依据样本容量是 n 时,系统抽样的间隔及分层抽样中各层人数为整数,得出 n 的特点,再由当样本容量为 n+1 时,整体剔除 1 个个体后,系统抽样的间隔为整数考证可得 .【分析】选 B.整体容量为 6+12+18=36.当样本容量是 n 时,由题意知,系统抽样的间隔为分层抽样的比率是抽取的工程师人数为技术员人数为技工人数为所以 n 应是 6 的倍数, 36 的约数,即 n=6,12,18.当样本容量为 n+1 时,从整体中剔除 1 个个体,系统抽样的间隔为因为一定是整数,所以n 只好取 6.即样本容量 n=6.11.【分析】由系统抽样知,在第 5 组抽取的号码为22 而分段间隔为5,则在第 6 组抽取的号码应为27,在第 7 组抽取的号码应为32,在第 8 组抽取的号码应为37.由图知 40 岁以下的人数为100,则抽取的比率为为抽取人数.答案: 37 2012.【分析】设样本容量为x,则x=300.A 产品和 C 产品在样本中共有300-130=170(件).设 C 产品的样本容量为 y,则 y+y+10=170,y=80.C 产品的数目为 =800(件).答案: 80013.【分析】由题意知,第 1 组为 10+1+6=17,第 2 组为 20+2+6=28. 第 3组为 30+3+6=39,第 4 组为 40+4+6-10=40,第 5 组为 50+5+6-10=51,第 6 组为 60+6+6-10=62,第 7 组为 70+7+6-10=73,第 8 组为 80+8+6-10=84,第 9 组为 90+9+6-10=95.答案: 6,17,28,39,40,51,62,73,84,9514.【思路点拨】依据分层抽样原理,分别预计一般家庭和高收入家庭拥有 3 套或 3 套以上住宅的户数,从而得出 100 000 户居民中拥有 3 套或 3 套以上住宅的户数,用它除以 100 000 即可获得结果 .【分析】该地拥有 3 套或 3 套以上住宅的家庭预计约有:(户).所以所占比率的合理预计约是 5 700100 000=5.7%.答案: 5.7%15.【分析】 (1)因为此次活动对教职员工、初中生和高中生产生的影响不会同样,所以应该采纳分层抽样的方法进行抽样.因为样本容量为 120,整体个数为 500+3 000+4 000=7 500,则抽样比:所以有所以在教职员工、初中生、高中生中抽取的个体数分别是8,48,64.分层抽样的步骤是:①分层:分为教职员工、初中生、高中生,共三层.②确立每层抽取个体的个数:在教职员工、初中生、高中生中抽取的个体数分别是 8,48,64.③各层分别按简单随机抽样或系统抽样的方法抽取样本.④综合每层抽样,构成样本.这样便达成了整个抽样过程,就能获得比较客观的评论结论.(2)因为简单随机抽样有两种方法:抽签法和随机数法.假如用抽签法,要作3000 个号签,费时费劲,所以采纳随机数法抽取样本,步骤是:①编号:将 3 000 份答卷都编上号码: 0001,0002,0003,,3000.②在随机数表上随机选用一个开端地点.③规定读数方向:向右连续取数字,以4 个数为一组,假如读取的 4位数大于 3000,则去掉,假如碰到同样号码则只取一个,这样向来到取满 48 个号码为止 .(3)因为 4 00064=62.5不是整数,则应先使用简单随机抽样从4000名学生中随机剔除 32 个个体,再将节余的 3 968 个个体进行编号: 1,2,,3968,而后将整体分为 64 个部分,此中每个部分中含有 62 个个体,如第1 部分个体的编号为 1,2,,62.从中随机抽取一个号码,如若抽取的是 23,则从第 23 号开始,每隔 62 个抽取一个,这样获得容量为 64 的样本: 23,85,147,209,271,333,395,457,,3929.【方法技巧】三种常用抽样方法(1)抽签法制签:先将整体中的所有个体编号(号码能够从 1 到 N),并把号码写在形状、大小同样的号签上,号签能够用小球、卡片、纸条等制作,而后将这些号签放在同一个箱子里,进行均匀搅拌.抽签:抽签时,每次从中抽出 1 个号签,连续抽取n 次;成样:对应号签就获得一个容量为n 的样本 .抽签法简易易行,当整体的个体数不多时,适合采纳这类方法.(2)随机数表法编号:对整体进行编号,保证位数一致.读数:当随机地选定开始读数的数后,读数的方向能够向右,也能够向左、向上、向低等 .在读数过程中,获得一串数字号码,在去掉其中不合要乞降与前方重复的号码后,此中挨次出现的号码能够当作是挨次从整体中抽取的各个个体的号码.成样:将对应号码的个体抽出就获得一个容量为n 的样本 .(3)系统抽样的步骤①将整体中的个体编号.采纳随机的方式将整体中的个体编号;②将整个的编号进行分段.为将整个的编号进行分段,要确立分段的间隔 k.当是整数时,当不是整数时,经过从整体中剔除一些个体使剩下的个体数 N 能被 n 整除,这时③确立开端的个体编号.在第 1 段用简单随机抽样确立开端的个体编号 l;④抽取样本 .依照先确立的规则 (常将 l 加上间隔 k)抽取样本:l,l+k,l+2k,,l+(n-1)k.【变式备选】某单位近来组织了一次健身活动,参加活动的员工分为爬山组和游泳组,且每个员工至多参加此中一组.在参加活动的员工中,青年人占 42.5%,中年人占 47.5%,老年人占 10%.爬山组的员工占参加活动总人数的且该组中青年人占50%,中年人占 40%,老年人占 10%.为了认识各组中不一样年纪层次的员工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体员工中抽取一个容量为200的样本 .试确立(1)游泳组中青年人、中年人、老年人分别所占的比率.(2)游泳中青年人、中年人、老年人分抽取的人数.【分析】 (1)方法一:爬山人数x,游泳中青年人、中年人、老年人所占比率分a,b,c,有解得 b=50%,c=10%.故 a=100%-50%-10%=40%,即游泳中青年人、中年人、老年人所占比率分40%,50%,10%.方法二:参加活的人数 x,游泳中青年人、中年人、老年人所占比率分a,b,c,参加爬山的青年人人数加上参加游泳的青年人人数等于参加活的青年人人数,即解得 a=0.4=40%,同理b=50%,c=10%.即游泳中青年人、中年人、老年人所占比率分40%,50%,10%.我国古代的人 ,从上学之日起 ,就日不 ,一般在几年内就能几千个字 ,熟几百篇文章 ,写出的文也是咬文嚼字,琅琅上口 ,成腹的文人。

高考数学一轮复习简单随机抽样专题练习(含解析)

高考数学一轮复习简单随机抽样专题练习(含解析)

高考数学一轮复习简单随机抽样专题练习(含解析)简单随机抽样指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样专题练习,请考生通过练习查缺补漏。

一、选择题1.关于简单随机抽样的特点,有以下几种说法,其中不正确的是()A.要求总体的个数有限B.从总体中逐个抽取C.它一般情况是一种不放回的抽取D.每个个体被抽到的可能性与抽取的顺序有关[答案] D[解析] 在简单随机抽样中,每个个体被抽到的可能性相等,它与抽取的顺序无关,故D错误.2.下列抽样中,用抽签法方便的有()A.从某厂生产的3 000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验[答案] B[解析] 当样本个数比较小且制号签比较方便时,用抽签法.故选B.3.下列说法正确的是()A.抽签法中可一次抽取两个个体B.随机数法中每次只取一个个体C.简单随机抽样是有放回抽样D.抽签法中将号签放入箱子中,可以不搅拌直接抽取[答案] B[解析] 根据简单随机抽样的特点判断.4.下列抽样方法是简单随机抽样的是()A.从50个零件中一次性抽取5个做质量检验B.从50个零件中有放回地抽取5个做质量检验C.从实数集中随机的抽取10个正整数分析奇偶性D.运动员从8个跑道中随机抽取一个跑道[答案] D[解析] 简单随机抽样每个样本是逐个抽取,并且是无放回的抽取,样本总体的容量为有限个,故A、B、C均错.5.用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的概率是()A.0.01B.0.04C.0.2D.0.25[答案] C[解析] 明确是简单随机抽样且每个个体被抽到的概率是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的概率为=0.2.6.下列问题中,最适合用简单随机抽样方法抽样的是()A.某单位有员工40人,其中男员工30人,女员工10人,要从中抽8人调查吸烟情况B.从20台电视机中抽取5台进行质量检查C.中央电视台要对春节联欢晚会的收视率进行调查,从全国观众中选10000名观众D.某公司在甲、乙、丙三地分别有120个、80个、150个销售点,要从中抽取35个调查收入情况[答案] B[解析] 根据简单随机抽样的概念及其特点可知当总体中的个体数和样本容量都较小时可采用简单随机抽样.抽出的样本必须准确地反映总体特征.二、填空题7.抽签法中确保样本具有代表性的关键是________.[答案] 搅拌均匀[解析] 在数理统计里,为了使样本具有较好的代表性,设计抽样方法时,最重要的是将总体搅拌均匀,使每个个体有同样的机会被抽到,而抽签法是简单随机抽样,因此在给总体标号后,一定要搅拌均匀.8.某总体容量为M,其中带有标记的有N个,现用简单随机抽样方法从中抽取一个容量为m的样本,则抽取的m个个体中带有标记的个数估计为________.[答案] N[解析] 设m个个体中带有标记的个数为n,根据简单随机抽样的特点知=,解得n=N.三、解答题9.为了了解某校高三期中文、理科数学考试填空题的得分情况,决定从80名文科学生中抽取10名学生,从300名理科学生中抽取50名学生进行分析,请选择合适的抽样方法设计抽样方案.[分析] 应从文、理科学生中分别抽样,由于文科学生总人数较少,抽取的人数也较少,故宜用抽签法,但理科学生人数较多,抽取人数也较多,故抽取理科学生宜用随机数法. [解析] 文科抽样用抽签法,理科抽样用随机数法.抽样过程如下:(1)先抽取10名文科学生:将80名文科学生依次编号为1,2,3,,80;将号码分别写在相同形状、大小的纸片上,制成号签;把80个号签放入同一个容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;与号签上号码相对应的10名学生的填空题得分就构成容量为10的一个样本.(2)再抽取50名理科学生:将300名理科学生依次编号为001,002,,081,082,,300;从随机数表中任选一数字作为读数的起始数字,任选一方向作为读数方向,比如从教材附表的第4行第1列数字1开始向右读,每次读取三位,凡不在001300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,这50个号码所对应的学生的填空题得分就是抽取的对象.唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚远。

2021高考数学一轮复习考点规范练:54随机抽样(含解析)

2021高考数学一轮复习考点规范练:54随机抽样(含解析)

2021高考数学一轮复习考点规范练:54随机抽样(含解析)基础巩固1.从一个容量为N的总体中抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同的方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3答案:D解析:由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3,故选D.2.“双色球”彩票中红色球的号码由编号为01,02,…,33的33个个体组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出来的第6个红色球的编号为()49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A.23B.09C.02D.17答案:C解析:从随机数表第1行的第6列和第7列数字开始由左到右依次选取两个数字,则选出的6个红色球的编号依次为21,32,09,16,17,02,即选出来的第6个红色球的编号为02.故选C.3.某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]上的人数为()A.11B.12C.13D.14答案:B解析:由=20,即每20人抽取1人,所以抽取编号落入区间[481,720]上的人数为=12.4.从2 015名学生中选取50名学生参加全国数学联赛,若采用下面的方法选取:先用简单随机抽样从2 015人中剔除15人,剩下的2 000人再按系统抽样的方法抽取,则每人入选的概率()A.不全相等B.均不相等C.都相等,且为D.都相等,且为答案:C解析:因为简单随机抽样和系统抽样都是等可能抽样,从N个个体中抽取M个个体,则每个个体被抽到的概率都等于,即从2015名学生中选取50名学生参加全国数学联赛,每人入选的概率都相等,且为故选C.5.某学院A,B,C三个专业共有1 200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取的学生人数为()A.30B.40C.50D.60答案:B解析:由题知C专业有学生1200-380-420=400(名),故C专业应抽取的学生人数为120=40.6.某班级有男生20人,女生30人,从中抽取10人作为样本,恰好抽到了4名男生、6名女生,则下列命题正确的是()A.该抽样可能是简单随机抽样B.该抽样一定不是系统抽样C.该抽样中女生被抽到的概率大于男生被抽到的概率D.该抽样中女生被抽到的概率小于男生被抽到的概率答案:A解析:本题看似是一道分层抽样的题,实际上每种抽样方法都可能出现这个结果,故B不正确.根据抽样的等概率性知C,D不正确.7.为了检查某超市货架上的奶粉是否含有三聚氰胺,从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样的方法确定所抽取的5袋奶粉的编号可能是()。

2023届高考数学一轮复习测试卷2

2023届高考数学一轮复习测试卷2

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(考点:随机抽样,★)中国古代数学算经十书之一的《九章算术》有一衰分问题:今有北乡八千一百人,西乡七千四百八十八人,南乡六千九百一十二人,凡三乡,发役三百人,则北乡应派遣人数为().A.104B.108C.112D.1202.(考点:复数,★)设复数z满足|z+1|=|z-2i|,且z在复平面内对应的点为(x,y),则().A.x+2y-3=0B.2x+4y-3=0C.2x-4y+3=0D.x-2y+3=03.(考点:等差数列,★)已知等差数列{a n}的前n项和为S n,满足a4=5,S n+S n-2=2S n-1+2(n≥3),则().A.a n=nB.a n=2n-3C.a1=-2D.S n=n(n-1)24.(考点:基本初等函数,★)设a=log0.25,b=0.23,c=(14)-0.2,则a,b,c的大小关系为().A.a<b<cB.a<c<bC.b<a<cD.b<c<a5.(考点:直线和圆的综合,★★)圆C:x2+y2-2x-4y+3=0被直线l:ax+y-1-a=0截得的弦长的最小值为().A.1B.2C.√2D.√36.(考点:二项式定理,★★)若(1-2x)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,则a3a4的值为().A.1B.2C.-23D.127.(考点:函数图象的判断,★★)已知定义在R上的函数f(x)满足f(x+2)=2f(x),当x∈[0,2]时,f(x)={-x2+2x,x∈[0,1),2-x,x∈[1,2],则函数y=f(x)在[2,4]上的大致图象是().8.(考点:函数的零点,★★★)已知函数f (x )={13f (x -2),x >2,1-|x -1|,x ≤2,则函数g (x )=9[f (x )]2+17f (x )-2的零点个数为( ). A .4 B .5 C .6 D .7二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.(考点:样本的数学特征,★)如图所示的是某人根据2019年1月至2019年11月期她每月步行的里程(单位:十公里)的数据绘制的折线图.根据该折线图,下列结论正确的是( ).A .月步行里程逐月增加B .月步行里程的最大值出现在10月C .月步行里程的中位数为7月份对应的里程数D .1月至5月的月步行里程相对于6月至11月波动性更小,变化比较平稳10.(考点:立体几何的综合运用,★★)如图,在四棱锥P-ABCD 中,AB ∥CD ,AB=BC=2,CD=4,∠APB=∠CBA=90°,PA=PB ,平面PAB ⊥平面ABCD ,M 为棱PD 上一点,则下列说法正确的是( ).A .PA ⊥平面PB CB .V P-ABCD =43C .AD ⊥平面AMCD .若PB//平面MAC ,则PM MD =1211.(考点:函数的综合运用,★★★)已知定义域为R 的奇函数f (x ),满足f (x )={22x -3,x >2,x 2-2x +2,0<x ≤2,则下列说法正确的是( ).A .存在实数k ,使函数y=f (x )的图象与直线y=kx 有7个不同的交点B .当-1<x 1<x 2<1时,恒有f (x 1)>f (x 2)C .若当x ∈(0,a ]时,f (x )的最小值为1,则a ∈[1,52]D .若关于x 的方程f (x )=32和f (x )=m 的所有实数根之和为零,则m=-3212.(考点:抛物线,★★★)已知抛物线x 2=2py (p>0)的焦点为F ,过点F 的直线l 交抛物线于A ,B 两点,以线段AB为直径的圆交x 轴于M ,N 两点,设线段AB 的中点为Q.若抛物线C 上存在一点E (t ,2)到焦点F 的距离等于3,则下列说法正确的是( ).A .抛物线的方程是x 2=2yB .抛物线的准线方程是y=-1C .sin ∠QMN 的最小值是12D .线段AB 的最小值是6 三、填空题:本题共4小题,每小题5分,共20分.13.(考点:三角恒等变换,★)已知θ∈(0,π2),cos θ=2√55,则tanθcos2θ= . 14.(考点:双曲线,★★)已知F 1,F 2分别为双曲线C :x 29-y 227=1的左、右焦点,点M (2,0),点A ∈C ,点I ∈AM ,且I 是△F 1AF 2的内心,则|AI ||IM |= .15.(考点:新定义题型,★★★)如果存在函数g (x )=ax+b (a ,b 为常数),使得对函数f (x )定义域内的任意x 都有f (x )≤g (x )成立,那么称g (x )为函数f (x )的一个“线性覆盖函数”.给出如下四个结论:①函数f (x )=2x 存在“线性覆盖函数”;②对于给定的函数f (x ),其“线性覆盖函数”可能不存在,也可能有无数个;③g (x )=12x+12为函数f (x )=√x 的一个“线性覆盖函数”;④若g (x )=2x+b 为函数f (x )=-x 2的一个“线性覆盖函数”,则b>1.16.(考点:与球有关的计算,★★★)如图,在四棱锥C-ABDE 中,四边形ABDE 为矩形,EA=CA=CB=2,AC ⊥CB ,F ,G 分别为AB ,AE 的中点,平面ABDE ⊥平面ABC ,则四面体CFDG 的体积为 ;若四面体CFDG 的各个顶点均在球O 的球面上,则球O 的体积为 .四、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.已知数列{}n a 中,11a =,且满足12n n a a n +=-,()2*n n b a n n =+∈N .(1)证明:数列{}n b 是等差数列,并求数列{}n b 的通项公式;(2)设n S 为数列11n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和,求满足512n S ≥的n 的最小值.18.某学校田径运动会跳远比赛规定:比赛设立及格线,每个运动员均有3次跳远机会,若在比赛过程中连续两次跳不过及格线,则该运动员比赛结束.已知运动员甲跳过及格线的概率为23,且该运动员不放弃任何一次跳远机会.(1)求该运动员跳完两次就结束比赛的概率;(2)设该运动员比赛过程中跳过及格线的总次数为ξ,求ξ的概率分布.19.已知ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c,且sin cos 2a C C c =+. (1)求A ;(2)若2a =,且sin sin 2sin B C A +=,求ABC ∆的面积.20.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=,1AB =,4BC =,PA =M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥(1)证明:DC PM ⊥;(2)求直线AN 与平面PCM 所成角的正弦值.21.已知双曲线)(2222:10,0x y C a b a b -=>>的渐近线方程为:y x =,且过点⎛ ⎭⎝(1)求双曲线C 的标准方程(2)过右焦点F 且斜率不为0的直线l 与C 交于A ,B 两点,点M 坐标为3,02⎛⎫⎪ ⎭⎝,求AM BM k k +22.已知函数2()(2)(3)x f x a x e x =+-+(a R ∈,e 为自然对数的底数). (1)讨论函数()f x 的单调性.(2)当1a e>时,证明:2(2)ln 3f x x x x ->---。

高考理科数学(人教版)一轮复习练习:第九篇第1节 随机抽样含解析

高考理科数学(人教版)一轮复习练习:第九篇第1节 随机抽样含解析

高考理科数学(人教版)一轮复习练习:第九篇第1节随机抽样含解析第1节随机抽样【选题明细表】基础巩固(时间:30分钟)1.(2017·福州一模)在检测一批相同规格共500 kg航空耐热垫片的品质时,随机抽取了280片,检测到有5片非优质品,则这批垫片中非优质品约为( B )(A)2.8 kg (B)8.9 kg (C)10 kg (D)28 kg解析:由题意,这批垫片中非优质品约为×500≈8.9 kg.故选B.2.用系统抽样法(按等距离的规则),要从160名学生中抽取容量为20的样本,将160名学生从1~160进行编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是( B )(A)7 (B)5 (C)4 (D)3解析:设第一组确定的号码是x,则x+(16-1)×8=125,解得x=5.故选B.3.从1 008名学生中抽取20人参加义务劳动,规定采用下列方法选取:先用简单随机抽样的方法从1 008人中剔除8人,剩下1 000人再按系统抽样的方法抽取,那么这1 008人中每个人入选的概率是( B )(A)都相等且等于(B)都相等且等于(C)不全相等(D)均不相等解析:在抽取时,每个人被抽到的概率均为=.故选B.4.某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是( B )(A)5 (B)7 (C)11 (D)13解析:间隔数k==16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7. 故选B.5.某地区共有10万户居民,该地区城市住户与农村住户之比为4∶6.根据分层抽样方法,调查了该地区1 000户居民冰箱拥有情况,调查结果如表所示,那么可以估计该地区农村住户中无冰箱的户数约为( A )。

高考数学(理科)一轮复习随机抽样学案附答案

高考数学(理科)一轮复习随机抽样学案附答案

高考数学(理科)一轮复习随机抽样学案附答案本资料为woRD文档,请点击下载地址下载全文下载地址第十章概率与统计、统计案例学案56 随机抽样导学目标:1.理解随机抽样的必要性和重要性.2.会用简单随机抽样方法从总体中抽取样本.3.了解分层抽样和系统抽样方法.自主梳理.简单随机抽样定义:设一个总体含有N个个体,从中____________抽取n个个体作为样本,如果每次抽取时总体内的各个个体被抽到的机会都________,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样的方法:__________和____________.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.先将总体的N个个体进行________;确定____________,对编号进行________.当Nn是整数时,取k=Nn;在第1段用________________确定第一个个体编号l;按照一定的规则抽取样本.通常是将l加上间隔k得到第2个个体编号________,再加k得到第3个个体编号________,依次进行下去,直到获取整个样本.3.分层抽样定义:一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由________________________________组成时,往往选用分层抽样.自我检测.为了了解所加工的一批零件的长度,抽取其中200个零件并测量其长度,在这个问题中,200个零件的长度是A.总体B.个体c.总体的一个样本D.样本容量2.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么A.①是系统抽样,②是简单随机抽样B.①是分层抽样,②是简单随机抽样c.①是系统抽样,②是分层抽样D.①是分层抽样,②是系统抽样3.一个单位有职工800人,其中具有高级职称的为160人,具有中级职称的为320人,具有初级职称的为200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是A.12,24,15,9B.9,12,12,7c.8,15,12,5D.8,16,10,64.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为A.7B.15c.25D.355.在120个零件中,一级品24个,二级品36个,三级品60个,用系统抽样方法从中抽取量为20的样本,则三级品a被抽到的可能性为________.探究点一抽样方法的选取例1 要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为A.①简单随机抽样法,②系统抽样法B.①分层抽样法,②简单随机抽样法c.①系统抽样法,②分层抽样法D.①②都用分层抽样法变式迁移1 某高级中学有学生270人,其中一年级108人,二、三年级各81人,现要抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270;使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段.如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250;②5,9,100,107,111,121,180,195,200,265;③11,38,65,92,119,146,173,200,227,254;④30,57,84,111,138,165,192,219,246,270.关于上述样本的下列结论中,正确的是A.②、③都不能为系统抽样B.②、④都不能为分层抽样c.①、④都可能为系统抽样D.①、③都可能为分层抽样探究点二系统抽样例2 将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495在第Ⅱ营区,从496到600在第Ⅲ营区,三个营区被抽中的人数依次为A.26,16,8B.25,17,8c.25,16,9D.24,17,9变式迁移2 某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作为样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组.若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取______________________人.探究点三分层抽样例3 某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为A.9B.18c.27D.36变式迁移3 某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1∶2∶1,用分层抽样方法从3个分厂生产的电子产品中共抽取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为________h..简单随机抽样的特点:样本的总体个数不多;从总体中逐个不放回地抽取,是不放回抽样;是一种等机会抽样,各个个体被抽取的机会均等,保证了抽样的公平性.2.系统抽样的特点:适用于总体个数较多的情况;剔除多余个体并在第一段中用简单随机抽样确定起始的个体编号;是等可能抽样.3.对于分层抽样的理解应注意:分层抽样适用于由差异明显的几部分组成的情况;在每一层进行抽样时,采用简单随机抽样或系统抽样;分层抽样充分利用已掌握的信息,使样本具有良好的代表性;分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛.一、选择题.现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查;②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样c.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是A.简单随机抽样法B.抽签法c.随机数法D.分层抽样法3.要从已经编号的60枚最新研制的某型号导弹中随机抽取6枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是A.5,10,15,20,25,30B.3,13,23,33,43,53c.1,2,3,4,5,6D.2,4,8,16,32,484.某校共有学生XX名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生的人数为一年级二年级三年级女生373xy男生377370zA.24B.18c.16D.125.某中学开学后从高一年级的学生中随机抽取90名学生进行家庭情况调查,经过一段时间后再次从这个年级随机抽取100名学生进行学情调查,发现有20名同学上次被抽到过,估计这个学校高一年级的学生人数为A.180B.400c.450D.XX二、填空题6.一个总体有100个个体,随机编号为0,1,2, (99)依编号顺序平均分成10组,组号依次为1,2,3,…,10,现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组中随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是________.7.某学院的A,B,c三个专业共有1200名学生.为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的c专业应抽取________名学生.8.一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中每个个体被抽到的概率都为112,则总体中的个体数为________.三、解答题9.某校高中三年级的295名学生已经编号为1,2,…,295,为了解学生的学习情况,要按1∶5的比例抽取一个样本,用系统抽样的方法进行抽取,并写出过程.10.潮州统计局就某地居民的月收入调查了10000人,并根据所得数据画了样本的频率分布直方图).求居民月收入在[3000,3500)的频率;根据频率分布直方图算出样本数据的中位数;为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这10000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人?1.某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如表所示:文艺节目新闻节目总计20至40岁40858大于40岁52742总计554500由表中数据直观分析,收看新闻节目的观众是否与年龄有关?用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.学案56 随机抽样自主梳理.逐个不放回地相等抽签法随机数法2.编号分段间隔k 分段简单随机抽样 3.差异明显的几个部分自我检测.c2.A [因为①中牛奶生产线上生产的牛奶数量很大,每隔30分钟抽取一袋,这符合系统抽样;②中样本容量和总体容量都很小,采用的是简单随机抽样.]3.D [由题意,各种职称的人数比为160∶320∶200∶120=4∶8∶5∶3,所以抽取的具有高、中、初级职称的人数和其他人员的人数分别为40×420=8,40×820=16,40×520=10,40×320=6.]4.B [由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人,得样本容量为15.]5.16解析每一个个体被抽到的概率都是样本容量除以总体,即XX0=16.课堂活动区例1 解题导引解决本题的关键在于对各种抽样方法概念的正确理解以及在每一次抽样的步骤中所采用的抽样方法.采用什么样的抽样方法要依据研究的总体中的个体情况来定.B [①中总体由差异明显的几部分构成,宜采用分层抽样法,②中总体中的个体数较少,宜采用简单随机抽样法.] 变式迁移1 D [③中每部分选取的号码间隔一样,可能为系统抽样方法,排除A;②可能为分层抽样,排除B;④不是系统抽样,排除c,故选D.]例2 解题导引系统抽样是一种等间隔抽样,间隔k =Nn.预先定出规则,一旦第1段用简单随机抽样确定出起始个体的编号,那么样本中的个体编号就确定下来.从小号到大号逐次递增k,依次得到样本全部.因此可以联想等差数列的知识结合Ⅰ、Ⅱ、Ⅲ营区的编号范围来求解.B [由题意,系统抽样间隔k=60050=12,故抽到的个体编号为12k+3.令12k+3≤300,解得k≤24.∴k=0,1,2,…,24,共25个编号.所以从Ⅰ营区抽取25人;令300&lt;12k+3≤495,解得25≤k≤41.∴k=25,26,27,…,41,共17个编号.所以从Ⅱ营区抽取17人;因此从第Ⅲ营区抽取50-25-17=8.]变式迁移2 37 20解析由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为40200×100=20.例3 解题导引分层抽样中各层抽取的个体数依各层个体数成比例分配.因此要善于利用列比例等式来解决该类问题.必要时引进字母来表示一些未知量.B [设该单位老年职工有x人,从中抽取y人.则160+3x=430&#8658;x=90,即老年职工有90人,则90160=y32&#8658;y=18.]变式迁移3 1013解析利用分层抽样可知从3个分厂抽出的100个电子产品中,每个厂中的产品个数比也为1∶2∶1,故分别有25,50,25个.再由三个厂子算出的平均值可得100件产品的总的平均寿命为980×25+1020×50+1032×25100=1013.课后练习区.A [①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样.] 2.D [由分层抽样的定义可知,该抽样为按比例的抽样.]3.B [系统抽样是等距抽样,间隔k=606=10.]4.c [∵二年级女生有XX×0.19=380,∴三年级共有XX--=500.∴应在三年级抽取的人数为64XX×500=16.]5.c [设这个学校高一年级人数为x,则90x=XX0,∴x=450.]6.63解析由题意知,第7组中抽取的号码的个位数与6+7的个位数相同,即为3;又第7组中号码的十位上的数为6,所以在第7组中抽取的号码是63.7.40解析由题知c专业有学生1200-380-420=400,那么c专业应抽取的学生数为120×4001200=40.8.120解析分层抽样中,每个个体被抽到的概率都相等,则10x=112&#8658;x=120.9.解按照1∶5的比例,应该抽取的样本容量为295÷5=59,我们把295名同学分成59组,每组5人.第1组是编号为1~5的5名学生,第2组是编号为6~10的5名学生,依次下去,第59组是编号为291~295的5名学生.采用简单随机抽样的方法,从第1组5名学生中抽出一名学生,不妨设编号为l,那么抽取的学生编号为,得到59个个体作为样本,如当l=3时的样本编号为3,8,13,…,288,293.0.解月收入在[3000,3500)的频率为0.0003×=0.15.∵0.0002×=0.1,0.0004×=0.2,0.0005×=0.25,0.1+0.2+0.25=0.55&gt;0.5.∴样本数据的中位数为XX+0.5-&#61480;0.1+0.2&#61481;0.0005=XX+400=2400.居民月收入在[2500,3000)的频率为0.0005×=0.25,所以10000人中月收入在[2500,3000)的人数为0.25×10000=2500,再从10000人中分层抽样方法抽出100人,则月收入在[2500,3000)的这段应抽取100×250010000=25.1.解因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目,所以,经直观分析,收看新闻节目的观众与年龄是有关的.从题中所给条件可以看出收看新闻节目的共45人,随机抽取5人,则抽样比为545=19,故大于40岁的观众应抽取27×19=3.抽取的5名观众中大于40岁的有3人,在20至40岁的有2人,记大于40岁的人为a1,a2,a3,20至40岁的人为b1,b2,则从5人中抽取2人的基本事件有,,,,,,,,,共10个,其中恰有1人为20至40岁的有6个,故所求概率为610=35.。

高考数学一轮复习简单随机抽样专题复习题(带答案)

高考数学一轮复习简单随机抽样专题复习题(带答案)

高考数学一轮复习简单随机抽样专题复习题(带答案)简单随机抽样是指从总体N个单位中任意抽取n个单位作为样本,使每个可能的样本被抽中的概率相等的一种抽样方式。

以下是简单随机抽样专题复习题,请考生认真练习。

一、选择题1.对于简单随机抽样,下列说法中正确的有()它要求被抽取样本的总体的个数有限,以便对其中各个个体被抽取的概率进行分析;它是从总体中逐个地进行抽取,以便在抽取实践中进行操作;它是一种不放回抽样;它是一种等概率抽样,不仅每次从总体中抽取一个个体时,各个个体被抽取的概率相等,而且在整个抽样过程中,各个个体被抽取的概率也相等,从而保证了这种方法抽样的公平性.A. B.C. D.[答案] D[解析] 由简单随机抽样定义得D正确.2.下面的抽样方法是简单随机抽样的是()A.在某年的明信片销售活动中,规定每100万张为一个开奖组,通过随机抽样的方式确定号码的后四位为2 709的为三等奖B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D.用抽签法从10件产品中选取3件进行质量检验[答案] D[解析] A、B不是简单随机抽样,因为抽取的个体间的间隔是固定的,不具有随意性;C不是简单随机抽样,因为总体的个体之间差别比较大,抽取的个体不一定具有代表性;D是简单随机抽样.二、填空题3.某总体共有60个个体,并且编号为00,01,,59,现需从中抽取一个容量为8的样本,请从随机数表的倒数第5行(下表为随机数表的最后5行)第11、12列的18开始,依次向下读数,到最后一行后向右,直到取足样本为止(大于59及与前面重复的数字跳过),则抽取样本的号码是________.95 33 95 22 00 18 74 72 00 18 38 79 58 69 32 81 76 80 26 92 82 80 84 25 3990 84 60 79 80 24 36 59 87 38 82 07 53 89 35 56 35 23 79 18 05 98 90 07 3546 40 62 98 80 54 97 20 56 95 15 74 80 08 32 16 46 70 50 80 67 72 16 42 7920 31 89 03 43 38 46 82 68 72 32 14 82 99 70 80 60 47 18 97 63 49 30 21 3071 59 73 05 50 08 22 23 71 77 91 01 93 20 49 82 96 59 26 94 66 39 67 98 60[答案] 18,24,54,38,08,22,23,01[解析] 由随机数表法可得.4.下列抽样方法属于简单随机抽样的有________.①从1000个个体中一次性抽取50个个体作为样本;将1000个个体编号,并把编号写在形状、大小相同的签上,然后将号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;从10个乒乓球中抽取3个进行质量检验.首先将乒乓球进行编号0,1,2,,9,再将转盘分成10等份,分别标上整数0,1,2,,9,转动转盘,指针指向的数字是几就取几号个体,直到抽出3个个体为止.[答案][解析] 简单随机抽样是逐个抽取,不能是一次性抽取,所以不属于简单随机抽样;属于简单随机抽样中的抽签法;属于简单随机抽样中的随机数法.故填.三、解答题5.某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?[分析] 由于本题的调查对象较少,可采用简单随机抽样方法.简单随机抽样有两种方法:抽签法和随机数法,所以有两种思路.[解析] 方法一:抽签法:(1)将100件轴编号为1,2,,100;(2)做好大小、形状相同的号签,分别写上这100个号码;(3)将这些号签放在一个不透明的容器内,搅拌均匀;(4)逐个抽取10个号签;(5)然后测量这10个号签对应的轴的直径.方法二:随机数法:(1)将100件轴编号为00,01,,99;(2)在教材表1-2的随机数表中选定一个起始位置,如从第21行第1个数9开始;(3)规定读数的方向,如向右读;(4)依次选取10个数为93,12,47,79,57,37,89,18,45,50,则与这10个编号相对应的个体即为所要抽取的样本.6.某次音乐颁奖典礼上,欲邀请20名内地、港台艺人参加演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人,试用抽签法确定选中的艺人并确定他们的演出顺序.[解析] 第一步:确定演出人员:将30名内地艺人从1到30编号,然后将1到30这30个号码分别写到形状、大小相同的号签上,然后放在一个不透明的容器中摇匀,从中逐个抽出10个号签,相应编号的艺人参加演出,再运用相同的办法分别从18名香港艺人中抽取6人,从10 名台湾艺人中抽取4人.第二步:确定演出顺序:确定了演出人员后,再将1到20这20个号码分别写到形状、大小相同的号签上,用来代表演出的顺序,然后让每名演出者抽取1个号签,抽到的号签上的数字就是这名演员的演出顺序.7.为了了解高一(10)班53名同学的牙齿健康状况,需从中抽取10名做医学检验,现已对53名同学编号00,01,02,,50,51,52.从下面所给的随机数表的第1行第3列的5开始从左向右读下去.则选取的号码依次为多少?随机数表如下:0154 3287 6595 4287 53467953 2586 5741 3369 83244597 7386 5244 3578 6241[解析] 从数5,开始从左向右读下去,两位两位地读,在00~52范围内前面没有出现过的记下,否则跳过,直到取满10人为止.如下表01 54 32 87 65 95 42 87 53 4679 53 25 86 57 41 33 69 83 2445 97 73 86 52 44 3578 6241选取的号码依次为32,42,46,25,41,33,24,45,52,44.简单随机抽样专题复习题及答案的全部内容就是这些,查字典数学网希望对考生复习数学有帮助。

2025年高考数学一轮复习-10.1-随机抽样、统计图表-专项训练【含解析】

2025年高考数学一轮复习-10.1-随机抽样、统计图表-专项训练【含解析】

10.1-随机抽样、统计图表-专项训练(原卷版)基础巩固组1.(2024·陕西宝鸡二模)北京2024年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”很受欢迎,现工厂决定从20只“冰墩墩”,15只“雪容融”和10个北京2024年冬奥会会徽中,采用分层随机抽样的方法,抽取一个容量为n的样本进行质量检测,若“冰墩墩”抽取了4只,则n为()A.3B.2C.5D.92.(2023·江苏南京六校联考)总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字.下面摘取了随机数表中的第1、2行,则选出来的第5个个体的编号为() 78161572080263150216431997140198 32049234493682003623486969387181A.02B.15C.16D.193.(2024·广东深圳二模)为调查某大型公益活动期间志愿者的服务时长(单位:小时),对参加过活动的志愿者进行随机抽样调查,将样本中个体的服务时长进行整理,得到如图所示的频率分布直方图.据此估计,7.2万名参加过活动的志愿者中服务时长超过32小时的约有()A.3.3万人B.3.4万人C.3.8万人D.3.9万人4.(2024·山东济南一模)某学校于3月12日组织师生举行植树活动,购买垂柳、银杏、侧柏、海桐四种树苗共计1200棵,比例如图所示.高一、高二、高三报名参加植树活动的人数分别为600,400,200,若每种树苗均按各年级报名人数的比例进行分配,则高三年级应分得侧柏的数量为()A.34B.46C.50D.705.(2023·天津南开中学模拟)为承办某项赛事,现面向某市招募1000名志愿者,按年龄分成5组:第一组[20,25),第二组[25,30),第三组[30,35),第四组[35,40),第五组[40,45],经整理得到如下的频率分布直方图.若采用分层随机抽样的方法从前三组志愿者中抽出39人负责疏导交通工作,则在第二组中抽出的人数为()A.6B.9C.12D.186.(多选)(2024·江苏南京二模)我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.2017年—2021年某市城镇居民、农村居民年人均可支配收入比上年增长率如下图所示.根据下面图表,下列说法一定正确的是()A.该市农村居民年人均可支配收入高于城镇居民B.对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C.对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大D.2021年该市城镇居民、农村居民年人均可支配收入都比2020年有所上升7.(2023·陕西咸阳高三检测)为了研究人们生活健康情况,某市随机选取年龄在15~75岁之间的1 000人进行调查,得到频率分布直方图如图所示,其中 73,利用分层随机抽样从年龄在[15,25),[25,35),[35,45),[45,55),[55,65),[65,75]之间共选取20名市民书写生活健康情况的报告,其中选取年龄在[35,45)范围内的市民的人数为()A.2B.3C.4D.78.(2024·内蒙古呼和浩特二模)3月12日是植树节,某地组织青年志愿者进行植树活动,植树的树种及其数量的折线图,如图所示.后期,该地区农业局根据树种采用分层随机抽样的方法抽取150棵树,请专业人士查看树种的成活情况,则被抽取的梧桐树的棵数为.综合提升组9.(多选)(2023·山东济南历城第二中学模拟)某保险公司为客户定制了A,B,C,D,E共5个险种,并对5个险种参保客户进行抽样调查,得出如下的统计图:参保人数比例不同年龄段人均参保费用参保险种比例用该样本估计总体,以下四个说法正确的有()A.57周岁及以上参保人数最少B.18~30周岁人群参保总费用最少C.C险种更受参保人青睐D.31周岁及以上的人群约占参保人群80%10.(多选)(2023·广东佛山模拟)学生的睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万名学生的睡眠及学习时长得出下图,则以下判断正确的有()A.高三年级学生平均学习时间最长B.中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C.大多数年龄段学生平均睡眠时间长于平均学习时间D.与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠创新应用组11.(多选)(2024·山东临沂三模)有以下经济数据,图1为三大产业比重,图2为第三产业中各行业比重.图1图2以下关于这些经济数据的说法正确的有()A.第一产业的生产总值不超过第三产业中“房地产业”的生产总值B.第一产业的生产总值与第三产业中“租赁和商务服务业”的生产总值基本持平C.若“住宿和餐饮业”生产总值为7500亿元,则“金融业”生产总值为32500亿元D.若“金融业”生产总值为45600亿元,则第二产业生产总值为185000亿元10.1-随机抽样、统计图表-专项训练(解析版)基础巩固组1.(2024·陕西宝鸡二模)北京2024年冬奥会吉祥物“冰墩墩”和冬残奥会吉祥物“雪容融”很受欢迎,现工厂决定从20只“冰墩墩”,15只“雪容融”和10个北京2024年冬奥会会徽中,采用分层随机抽样的方法,抽取一个容量为n的样本进行质量检测,若“冰墩墩”抽取了4只,则n为()A.3B.2C.5D.9答案:D解析: 20+15+10 420,解得n=9.2.(2023·江苏南京六校联考)总体由编号为01,02,…,29,30的30个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第3列和第4列数字开始由左到右依次选取两个数字.下面摘取了随机数表中的第1、2行,则选出来的第5个个体的编号为() 78161572080263150216431997140198 32049234493682003623486969387181A.02B.15C.16D.19答案:D解析:由题意,依次取到的编号为16,15,08,02,19,所以第5个个体的编号为19.3.(2024·广东深圳二模)为调查某大型公益活动期间志愿者的服务时长(单位:小时),对参加过活动的志愿者进行随机抽样调查,将样本中个体的服务时长进行整理,得到如图所示的频率分布直方图.据此估计,7.2万名参加过活动的志愿者中服务时长超过32小时的约有()A.3.3万人B.3.4万人C.3.8万人D.3.9万人答案:A解析:依题意样本中服务时长超过32小时的个体频率为1-4×(0.005+0.04+0.09)=0.46;可得总体中服务时长超过32小时的个体数为7.2×0.46=3.312≈3.3(万人).4.(2024·山东济南一模)某学校于3月12日组织师生举行植树活动,购买垂柳、银杏、侧柏、海桐四种树苗共计1200棵,比例如图所示.高一、高二、高三报名参加植树活动的人数分别为600,400,200,若每种树苗均按各年级报名人数的比例进行分配,则高三年级应分得侧柏的数量为()A.34B.46C.50D.70答案:C解析:由扇形统计图知,购买的1200棵树苗中,侧柏的数量为1200×25%=300,依题意,高一、高二、高三分到的侧柏的棵数比例为600∶400∶200=3∶2∶1,所以高三年级应分得侧柏的数量为13+2+1×300=50.5.(2023·天津南开中学模拟)为承办某项赛事,现面向某市招募1000名志愿者,按年龄分成5组:第一组[20,25),第二组[25,30),第三组[30,35),第四组[35,40),第五组[40,45],经整理得到如下的频率分布直方图.若采用分层随机抽样的方法从前三组志愿者中抽出39人负责疏导交通工作,则在第二组中抽出的人数为()A.6B.9C.12D.18答案:D解析:由直方图可知前三组志愿者的人数之比为3∶6∶4,所以从前三组志愿者中抽出39人负责疏导交通工作,则在第二组中抽出的人数为63+6+4×39=18.6.(多选)(2024·江苏南京二模)我国居民收入与经济同步增长,人民生活水平显著提高.“三农”工作重心从脱贫攻坚转向全面推进乡村振兴,稳步实施乡村建设行动,为实现农村富强目标而努力.2017年—2021年某市城镇居民、农村居民年人均可支配收入比上年增长率如下图所示.根据下面图表,下列说法一定正确的是()A.该市农村居民年人均可支配收入高于城镇居民B.对于该市居民年人均可支配收入比上年增长率的极差,城镇比农村的大C.对于该市居民年人均可支配收入比上年增长率的中位数,农村比城镇的大D.2021年该市城镇居民、农村居民年人均可支配收入都比2020年有所上升答案:BCD解析:由农村居民的增长率高,得不出收入高,即A错误;由表中数据,可知城镇居民相关数据极差较大,即B正确;由表中数据,可知农村居民相关数据中位数较大,即C正确;由表中数据,可知增长率均为正,即D正确.故选BCD.7.(2023·陕西咸阳高三检测)为了研究人们生活健康情况,某市随机选取年龄在15~75岁之间的1 000人进行调查,得到频率分布直方图如图所示,其中 73,利用分层随机抽样从年龄在[15,25),[25,35),[35,45),[45,55),[55,65),[65,75]之间共选取20名市民书写生活健康情况的报告,其中选取年龄在[35,45)范围内的市民的人数为()A.2B.3C.4D.7答案:D解析:由频率分布直方图得73,10( +0.03+ +0.01+0.005+0.005) 1,解得a=0.035,b=0.015,所以年龄在[15,25),[25,35),[35,45),[45,55),[55,65),[65,75]内的人数分别为150,300,350,100,50,50,若共选取20名市民,则利用分层随机抽样选取的人数分别为3,6,7,2,1,1.8.(2024·内蒙古呼和浩特二模)3月12日是植树节,某地组织青年志愿者进行植树活动,植树的树种及其数量的折线图,如图所示.后期,该地区农业局根据树种采用分层随机抽样的方法抽取150棵树,请专业人士查看树种的成活情况,则被抽取的梧桐树的棵数为.答案:10解析:被抽取的梧桐树的棵数为150×50200+100+250+150+50=10.综合提升组9.(多选)(2023·山东济南历城第二中学模拟)某保险公司为客户定制了A,B,C,D,E共5个险种,并对5个险种参保客户进行抽样调查,得出如下的统计图:参保人数比例不同年龄段人均参保费用参保险种比例用该样本估计总体,以下四个说法正确的有()A.57周岁及以上参保人数最少B.18~30周岁人群参保总费用最少C.C险种更受参保人青睐D.31周岁及以上的人群约占参保人群80%答案:ACD解析:由扇形图可知,57周岁及以上参保人数最少,故A正确;由折线图可知,18~30周岁人群人均参保费用最少,但是由扇形图知参保人数并不是最少的,经计算可知参保总费用不是最少,故B错误;由条形图可知,C险种参保比例最高,故C正确;由扇形图可知,31周岁及以上的人群约占参保人群80%,故D正确,故选ACD.10.(多选)(2023·广东佛山模拟)学生的睡眠很重要,教育部《关于进一步加强中小学生睡眠管理工作的通知》中强调“小学生每天睡眠时间应达到10小时,初中生应达到9小时,高中生应达到8小时”.某机构调查了1万名学生的睡眠及学习时长得出下图,则以下判断正确的有()A.高三年级学生平均学习时间最长B.中小学生的平均睡眠时间都没有达到《通知》中的标准,其中高中生平均睡眠时间最接近标准C.大多数年龄段学生平均睡眠时间长于平均学习时间D.与高中生相比,大学生平均学习时间大幅下降,释放出的时间基本是在睡眠答案:BC解析:根据图象可知,高三年级学生平均学习时间没有高二年级学生平均学习时间长,A选项错误.根据图象可知,中小学生平均睡眠时间都没有达到《通知》中的标准,高中生平均睡眠时间最接近标准,B选项正确.平均学习时间长于平均睡眠时间的有:初二、初三、高一、高二、高三,占比516.平均睡眠时间长于平均学习时间的占比1116,C选项正确.分析数据易知D选项错误.故选BC.创新应用组11.(多选)(2024·山东临沂三模)有以下经济数据,图1为三大产业比重,图2为第三产业中各行业比重.图1图2以下关于这些经济数据的说法正确的有()A.第一产业的生产总值不超过第三产业中“房地产业”的生产总值B.第一产业的生产总值与第三产业中“租赁和商务服务业”的生产总值基本持平C.若“住宿和餐饮业”生产总值为7500亿元,则“金融业”生产总值为32500亿元D.若“金融业”生产总值为45600亿元,则第二产业生产总值为185000亿元答案:AD解析:对于A,第一产业的生产总值占6%,第三产业中“房地产业”的生产总值占57%×13%=7.41%,正确;对于B,第一产业的生产总值占6%,第三产业中“租赁和商务服务业”的生产总值占57%×6%=3.42%,错误;对于C,若“住宿和餐饮业”生产总值为7500亿元,则“金融业”生产总值为75003%×16%=40000亿元,错误;对于D,若“金融业”生产总值为45600亿元,则第二产业生产总值为4560057%×16%×37%=185000亿元,正确.故选AD.。

随机抽样复习测试题(含答案届数学高考一轮)【推荐下载】

随机抽样复习测试题(含答案届数学高考一轮)【推荐下载】

随机抽样复习测试题(含答案届数学高考一轮)随机抽样复习测试题(含答案2015届数学高考一轮)A组基础演练1.(2014宁波月考)在简单随机抽样中,某一个个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性最大B.与第几次抽样有关,第一次抽到的可能性最小C.与第几次抽样无关,每一次抽到的可能性相等D.与第几次抽样无关,与样本容量无关解析:由随机抽样的特点知某个体被抽到的可能性与第几次抽样无关,每一次抽到的可能性相等.答案:C2.(2013湖南)某学校有男、女学生各500名.为了解男、女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法B.随机数法C.系统抽样法D.分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取.故选D.答案:D3.(2013课标全国Ⅰ)为了解某地区的中小学生的视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女视力情况差异不大.在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样解析:因为男女生视力情况差异不大,而学段的视力情况有较大差异,所以应按学段分层抽样,故选C.答案:C4.(2013陕西)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为()A.11 B.12C.13 D.14解析:因为840∶42=20∶1,故编号在[481,720]内的人数为240÷20=12.答案:B5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()A.7 B.15C.25 D.35解析:由题意知青年职工人数∶中年职工人数∶老年职工人数=350∶250∶150=7∶5∶3.由样本中青年职工为7人得样本容量为15.答案:B6.(2014中山模拟)为了检查某超市货架上的饮料是否含有塑化剂,要从编号依次为1到50的塑料瓶装饮料中抽取5瓶进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5瓶饮料的编号可能是A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47解析:抽取5瓶,应将50瓶分5组.抽样间隔505=10,故选D.答案:D7.(2012天津)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.解析:150×30150+75+25=150×30250=18,75×30250=9.答案:1898.(2012湖北)一支田径运动队有男运动员56人,女运动员42人,现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女动员有________.解析:设抽取的女运动员有x人,则x42=856,解得x=6.答案:69.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.解析:将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x人,则40200=x100,解得x=20.答案:3720B组能力突破1.(2014西安质检)现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③高新中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名,为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是()A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样解析:对于①,个体没有差异且总数不多可用随机抽样法,是简单随机抽样;对于②,将总体分成均衡的若干部分指的是将总体分段,在第1段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号,是系统抽样;对于③,个体有明显的差异,所以选用分层抽样,故选A.答案: A2.用系统抽样法(按等距离的规则),要从160名学生中抽取容量为20 的样本,将160名学生从1~160进行编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()A.7 B.5C.4 D.3解析:设第一组确定的号码是x,则x+(16-1)×8=125,解得x=5.答案:B3.(2014舟山模拟)为了了解某校高中学生的近视眼发病率,在该校学生中进行分层抽样调查,已知该校高一、高二、高三分别有学生800名、600名、500名,若高三学生共抽取25名,则高一年级每一位学生被抽到的概率是________.解析:无论高几,每一位学生被抽到的概率都相同,故高一年级每一位学生被抽到的概率为25500=120.答案:1204.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.解析:用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人的人数较少,他们分别按1~10编号,1~20编号,然后采用抽签法分别抽取2人,4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人.(3)将2人,4人,14人的编号对应的人汇合在一起就取得了容量为20 的样本.。

人教A版高考理科数学一轮总复习课后习题 课时规范练54 随机抽样

人教A版高考理科数学一轮总复习课后习题 课时规范练54 随机抽样

课时规范练54 随机抽样基础巩固组1.某校有男教师150人、女教师200人,为了了解该校教师的健康情况,从中随机抽取男教师15人、女教师20人进行调查,这种抽样方法是( ) A.简单随机抽样 B.抽签法C.随机数法D.分层抽样2.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p33.某公司将180个产品,按编号为001,002,003,…,180从小到大的顺序均匀地分成若干组,采用系统抽样方法每组抽取一个样本进行检测,若第一组抽取的编号是003,第二组抽取的编号是018,则样本中最大的编号应该是( )A.168B.167C.153D.1354.某班级有男生20人,女生30人,从中抽取10人作为样本,恰好抽到了4名男生、6名女生,则下列说法正确的是( )A.该抽样可能是简单随机抽样B.该抽样一定不是系统抽样C.该抽样中每个女生被抽到的概率大于每个男生被抽到的概率D.该抽样中每个女生被抽到的概率小于每个男生被抽到的概率5.某校高一、高二、高三年级各有学生400人、400人、300人.某眼镜店为了解该校学生的视力情况,用分层抽样的方法从三个年级中共抽取110名学生进行调查,那么从高三年级抽取了名学生.综合提升组6.某高中为了解高三学生对“社会主义核心价值观”的学习情况,把高三年级的1000名学生编号:1到1 000,再用系统抽样的方法随机抽取50位同学了解他们的学习状况,若编号为213的同学被抽到,则下列几个编号中,可能被抽到的是( )A.83B.343C.253D.7637.(山西临汾考前适应)为了庆祝中国共产党成立100周年,某学校组织了一次“学党史、强信念、跟党走”主题竞赛活动.活动要求把该学校教师按年龄分为35岁以下,35~45岁,45岁及以上三个大组.用分层抽样的方法从三个大组中抽取一个容量为10的样本,组成答题团队.已知35~45岁组,则该学校共有教师( )中每位教师被抽到的概率为124A.120人B.180人C.240人D.无法确定8.现有20~30岁若干人、30~40岁30人、40~50岁30人共3类人群组成的一个总体.若抽取一个容量为10的样本来分析拥有自住房的比例.如果采用系统抽样和分层抽样方法抽取,都不用剔除个体,则总体容量n的值可能是.(写出n的所有可能值)创新应用组9.《九章算术·衰分》中有如下问题:“今有甲持钱五百六十,乙持钱三百五十,丙持钱一百八十,凡三人俱出关,关税百钱.欲以钱数多少衰出之,问各几何?”翻译为:“今有甲持钱560,乙持钱350,丙持钱180,甲、乙、丙三个人一起出关,关税共计100钱,要按个人带钱多少的比率交税,问三人各应付多少税?”则下列说法错误的是( )A.乙付的税钱应占总税钱的35109B.乙、丙两人付的税钱不超过甲C.丙应出的税钱约为32D.甲、乙、丙三人出税钱的比例为56∶35∶18答案:课时规范练54 随机抽样1.D2.D 由随机抽样的原则可知简单随机抽样、分层抽样、系统抽样都必须满足每个个体被抽到的概率相等,即p1=p2=p3,故选D.3.A 样本间隔为18-3=15,即抽取样本数为180÷15=12,则最大的样本编号为3+15×11=168.故选A.4.A 本题看似是一道分层抽样的题,实际上每种抽样方法都可能出现这个结果,故B不正确.根据抽样的等概率性知C,D不正确.5.30 设应从高三年级抽取n名学生,由分层抽样可得n300=110400+400+300,解得n=30.6.C 1000名学生用系统抽样抽取50位同学,则间隔为20,因编号为213的同学被抽到,则第一组抽取编号为13的同学,即第i组抽取同学的编号为x i=13+20(i-1),i=1,2,3, (50)选项A中,令x i=13+20(i-1)=83,无解,同理选项B,C,D中的值只有C的值有解,故选C.7.C 因为在抽样过程中,每位教师被抽到的概率都相等,所以该学校共有教师10÷124=240(人).故选C.8.100,150,300 设总体中的20~30岁的人数为x(x∈N*),则n=x+30+30=x+60.当样本容量为10时,系统抽样间隔为n10=x+6010∈N*,所以x+60是10的倍数.分层抽样的抽样比为10n =10x+60,求得20~30岁、30~40岁、40~50岁的抽样人数分别为x×10x+60=10xx+60,30×10x+60=300x+60,30×10x+60=300x+60,所以x+60应是300的约数,所以x+60可能为75,100,150,300.根据“x+60是10的倍数”以及“x+60可能为75,100,150,300”可知,x+60可能为100,150,300,所以x可能为40,90,240.经检验发现,当x分别为40,90,240时,10xx+60分别为4,6,8,都符合题意. 综上所述,x可能为40,90,240,所以n可能为100,150,300.9.C 乙付的税钱应占总税钱的350560+350+180=35109,可知A正确;乙、丙两人付的税钱占总税钱的53109<12,不超过甲,可知B正确;丙应出的税钱为100×18109=1800109≈17,可知C错误;甲、乙、丙三人出税钱的比例为560∶350∶180=56∶35∶18,可知D正确. 故选C.。

【成功方案】2020届高考数学一轮复习课时检测 第九章 第一节 随机抽样 理

【成功方案】2020届高考数学一轮复习课时检测 第九章 第一节 随机抽样 理

第九章第一节随机抽样一、选择题1.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为 ( ) A.分层抽样,简单随机抽样B.简单随机抽样,分层抽样C.分层抽样,系统抽样D.简单随机抽样,系统抽样解析:结合简单随机抽样、系统抽样与分层抽样的定义可知D项正确.答案:D2.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13B.514C.14D.1027解析:由题意知9n-1=13,∴n=28,∴P=1028=514.答案:B3.(2020·温州模拟)某工厂生产A、B、C三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为 ( ) A.50 B.60C.70 D.80解析:由分层抽样的方法得33+4+7×n=15,解得n=70.答案:C4.某学校在校学生2 000人,为了迎接“2020年深圳世界大学生运动会”,学校举行了“迎大运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a :b :c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取 ( )A .15人B .30人C .40人D .45人解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取 110×450=45(人) 答案:D5.(2020·济南模拟)为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( )A .13B .19C .20D .51解析:由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7、7+13、7+13×2、7+13×3,从而可知选C. 答案:C6.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000C .1 200D .1 500解析:因为a 、b 、c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200.答案:C 二、填空题7.(2020·天津高考)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.解析:抽取的男运动员的人数为2148+36×48=12.答案:128.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取1个容量为若干户的样本,若高收入家庭抽取了25户,则低收入家庭被抽取的户数为________.解析:设低收入家庭被抽取的户数为x,由每个家庭被抽取的概率相等得25125=x95,解得x=19.答案:199.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k(2≤k≤10,k∈N*)组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是________.解析:因第7组抽取的号码个位数字应是3,所以抽取的号码是63.答案:63三、解答题10.某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?解:(1)由x900=0.16,解得x=144.(2)第三批次的人数为y+z=900-(196+204+144+156)=200,设应在第三批次中抽取m名,则m200=54900,解得m=12.∴应在第三批次中抽取12名教职工.11.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.解:(1)设登山组人数为x ,游泳组中青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb4x =47.5%,x ·10%+3xc4x=10%,解得b =50%,c =10%,则a =40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为 200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).12.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n 36,抽取的工程师人数为n 36·6=n 6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18,36.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1, 因为35n +1必须是整数,所以n只能取6. 即样本容量n=6。

备考2020年高考数学一轮复习:54 随机抽样

备考2020年高考数学一轮复习:54 随机抽样

备考2020年高考数学一轮复习:54 随机抽样一、单选题(共10题;共20分)1.(2分)某校期末考试后,为了分析该校高一年级1000名学生的学习成绩,从中随机抽取了100名学生的成绩单,就这个问题来说,下面说法中正确的是()A.1000名学生是总体B.每名学生是个体C.每名学生的成绩是所抽取的一个样本D.样本的容量是1002.(2分)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,……,1000。

从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生3.(2分)某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是()A.13B.23C.33D.434.(2分)总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.01D.025.(2分)某学校为了了解本校学生的上学方式,在全校范围内随机抽查部分学生,了解到上学方式主要有:A——结伴步行,B——自行乘车,C——家人接送,D——其他方式,并将收集的数据整理绘制成如下两幅不完整的统计图.根据图中信息,求得本次抽查的学生中A类人数是()A.30B.40C.42D.486.(2分)某公司生产A,B,C三种不同型号的轿车,产量之比依次为2:3:4,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n的样本,若样本中A种型号的轿车比B种型号的轿车少8辆,则n=()A.96B.72C.48D.367.(2分)某工厂利用随机数表对生产的600 个零件进行抽样测试,先将600 个零件进行编号,编号分别为001,002,⋅⋅⋅,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号()A.522B.324C.535D.5788.(2分)一支由学生组成的校乐团有男同学48人,女同学36人,若用分层抽样的方法从该乐团的全体同学中抽取21人参加某项活动,则抽取到的男同学人数为()A.10B.11C.12D.139.(2分)某校有高中生1470人,现采用系统抽样法抽取49人作问卷调查,将高一、高二、高三学生(高一、高二、高三分别有学生495人、493人、482人)按1,2,3,…,1470编号,若第一组用简单随机抽样的方法抽取的号码为23,则所抽样本中高二学生的人数为()A.15B.16C.17D.1810.(2分)某校共有学生2000名,各年级男、女生人数如右表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的女学生人数为()A.24B.16C.12D.8二、填空题(共8题;共8分)11.(1分)某学校高一年级举行选课培训活动,共有1024名学生、家长、老师参加,其中家长256人.学校按学生、家长、老师分层抽样,从中抽取64人,进行某问卷调查,则抽到的家长有人12.(1分)某课题组进行城市空气质量调查,按地域把24个城市分成甲、乙、丙三组,对应的城市数分别为4,12,8,若用分层抽样抽取6个城市,则丙组中应抽取的城市数为。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A级基础夯实练
1.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()
A.p1=p2<p3B.p2=p3<p1
C.p1=p3<p2D.p1=p2=p3
解析:选 D.由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p1=p2=p3.
2.某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为()
A.93 B.123
C.137 D.167
解析:选C.初中部的女教师人数为110×70%=77,高中部的女教师人数为150×(1-60%)=60,该校女教师的人数为77+60=137,故选C.
3.现用系统抽样方法从已编号(1~60)的60枚新型导弹中,随机抽取6枚进行试验,则所选取的6枚导弹的编号可能是() A.5,10,15,20,25,30 B.2,4,8,16,32,48
C.5,15,25,35,45,55 D.1,12,34,47,51,60
解析:选C.从60枚新型导弹中随机抽取6枚,采用系统抽样间
隔应为606
=10,只有C 选项中导弹的编号间隔为10. 4.某班有34位同学,座位号记为01,02,…,34,用下面的随机数表选取5组数作为参加青年志愿者活动的五位同学的座号.选取方法是从随机数表第一行的第6列数字开始,由左到右依次选取两个数字,则选出来的第4个志愿者的座号是( )
49 54 43 54 82 17 37 93 23 78 87 35
20 96 43 84 26 34 91 64 57 24 55 06
88 77 04 74 47 67 21 76 33 50 25 83
92 12 06
A .23
B .09
C .02
D .16
解析:选D.从随机数表第一行的第6列数字3开始,由左到右依次选取两个数字,不超过34的依次为21,32,09,16,17,故第4个志愿者的座号为16.
5.某工厂的一、二、三车间在2017年11月份共生产了3 600双皮靴,在出厂前检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a 、b 、c ,且a 、b 、c 成等差数列,则二车间生产的产品数为( )
A .800
B .1 000
C .1 200
D .1 500
解析:选C.因为a 、b 、c 成等差数列,所以2b =a +c ,所以从
二车间抽取的产品数占抽取产品总数的13
,根据分层抽样的性质可知,二车间生产的产品数占产品总数的13
,所以二车间生产的产品数为 3 600×13
=1 200.故选C.
6.(2018·陕西西安八校联考)某班对八校联考成绩进行分析,利用随机数表法抽取样本时,先将60个同学的成绩按01,02,03,…,60进行编号,然后从随机数表第9行第5列的数开始向右读,则选出的第6个个体是(注:下表为随机数表的第8行和第9行)( )
⎭⎬⎫63 01 63 78 59 16 95 55 67 19 98 10 5071 75 12 86 73 58 07 44 39 52 38 79
第8行
⎭⎬⎫33 21 12 34 29 78 64 56 07 82 52 45 0744 38 15 51 00 13 42 99 66 02 79 54
第9行 A .07
B .25
C .42
D .52
解析:选 D.依题意得,依次选出的个体分别是12,34,29,56,07,52,…,因此选出的第6个个体是52,选D.
7.(2018·陕西部分学校摸底检测)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为42的样本,则应分别抽取老年人、中年人、青年人的人数是( )
A .7,11,18
B .6,12,18
C .6,13,17
D .7,14,21
解析:选D.因为该单位共有27+54+81=162(人),样本容量为42,所以应当按42162=727
的比例分别从老年人、中年人、青年人中抽取样本,且应分别抽取的人数是7,14,21.故选D.
8.(2018·贵阳市检测)某高校有教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一
个容量为n的样本.已知从讲师中抽取的人数为16,那么n=________.
解析:依题意得,
80
120+100+80+60

16
n,由此解得n=72.
答案:72
9.为了解1 200名学生对学校某项教改实验的意见,打算从中抽取一个容量为30的样本,考虑采取系统抽样,则分段的间隔k为________.
解析:在系统抽样中,确定分段间隔k,对编号进行分段,k=N n
(N为总体的容量,n为样本的容量),所以k=N
n=
1 200
30=40.
答案:40
10.一汽车制造厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):
50辆,其中有A类轿车10辆,则z的值为________.
解析:设该厂这个月共生产轿车n辆,
由题意得50
n=
10
100+300
,所以n=2 000,
则z=2 000-100-300-150-450-600=400.
B级能力提升练
11.(2018·江西南昌摸底)高三(2)班现有64名学生,随机编号为0,1,2,…,63,依编号顺序平均分成8组,组号依次为1,2,3,…,8.现用系统抽样方法抽取一个容量为8的样本,若在第一组中随机抽取的号码为5,则在第6组中抽取的号码为________.
解析:分组间隔为64
8=8,∵在第一组中随机抽取的号码为5,
∴在第6组中抽取的号码为5+5×8=45.
答案:45
12.(2018·四川成都龙泉联考)某学校高一、高二、高三年级的学生人数之比为4∶3∶3,现用分层抽样的方法从该校高中三个年级的学生中抽取一个容量为80的样本,则应从高一年级抽取________名学生.
解析:从高一年级抽取的学生人数为80×4
4+3+3
=32.
答案:32
13.某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.
解析:抽样间隔为840
42=20.设在1,2,…,20中抽取号码x0(x0∈
[1,20]),在[481,720]之间抽取的号码记为20k+x0,则481≤20k+
x0≤720,k∈N*.∴241
20≤k+x0
20≤36.
∵x0
20∈⎣⎢




1
20,1,∴k=24,25,26, (35)
∴k值共有35-24+1=12(个),即所求人数为12.
14.某校三个年级共有18个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到18,现用系统抽样方法,抽取6个班进行调查.若抽到的编号之和为57,则抽到的最小编号为________.
解析:系统抽样的间隔为18
6=3.
设抽到最小编号为x,
则x+(3+x)+(6+x)+(9+x)+(12+x)+(15+x)=57.解得x=2.
答案:2
15.某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:
其中a∶b∶c=2∶3∶5,全校参与登山的人数占总人数的2
5,为
了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________人.
解析:根据题意可知样本中参与跑步的人数为200×3
5=120,所
以从高二年级参与跑步的学生中应抽取的人数为120×
3
2+3+5

36(人).
答案:36
16.为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”“锻炼”“看电视”和“其他”四个选项,用随机抽样的方法调查了该市部分市民,并根据调查结果绘制成统计图如图所示.
根据统计图所提供的信息,解答下列问题:
(1)本次共调查了________名市民;
(2)补全条形统计图;
(3)该市共有480万市民,估计该市市民晚饭后1小时内“锻炼”的人数.
解:(1)本次共调查的市民人数为800÷40%=2 000.
(2)晚饭后选择“其他”的人数为2 000×28%=560,晚饭后选择“锻炼”的人数为2 000-800-240-560=400.
将条形统计图补充完整,如图所示.
(3)晚饭后选择“锻炼”的人数所占的比例为:400÷2 000=20%,
该市市民晚饭后1小时内锻炼的人数为:480×20%=96(万).。

相关文档
最新文档