QoS Guaranteed Network Resource Allocation via Software Defined Networking(SDN)
什么是QoS有什么特点
什么是QoS有什么特点QoS的英文全称为"Quality of Service",中文名为"服务质量"。
QoS是网络的一种安全机制, 是用来解决网络延迟和阻塞等问题的一种技术。
在正常情况下,如果网络只用于特定的无时间限制的应用系统,并不需要QoS,比如Web应用,或E-mail设置等。
但是对关键应用和多媒体应用就十分必要。
当网络过载或拥塞时,QoS 能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。
QoS具有如下功能:1.分类分类是指具有QoS的网络能够识别哪种应用产生哪种数据包。
没有分类,网络就不能确定对特殊数据包要进行的处理。
所有应用都会在数据包上留下可以用来识别源应用的标识。
分类就是检查这些标识,识别数据包是由哪个应用产生的。
以下是4种常见的分类方法。
(1)协议有些协议非常“健谈”,只要它们存在就会导致业务延迟,因此根据协议对数据包进行识别和优先级处理可以降低延迟。
应用可以通过它们的EtherType进行识别。
譬如,AppleTalk协议采用0x809B,IPX使用0x8137。
根据协议进行优先级处理是控制或阻止少数较老设备所使用的“健谈”协议的一种强有力方法。
(2)TCP和UDP端口号码许多应用都采用一些TCP或UDP端口进行通信,如HTTP采用TCP端口80。
通过检查IP数据包的端口号码,智能网络可以确定数据包是由哪类应用产生的,这种方法也称为第四层交换,因为TCP和UDP都位于OSI模型的第四层。
(3)源IP地址许多应用都是通过其源IP地址进行识别的。
由于服务器有时是专门针对单一应用而配置的,如电子邮件服务器,所以分析数据包的源IP地址可以识别该数据包是由什么应用产生的。
当识别交换机与应用服务器不直接相连,而且许多不同服务器的数据流都到达该交换机时,这种方法就非常有用。
(4)物理端口号码与源IP地址类似,物理端口号码可以指示哪个服务器正在发送数据。
什么是QoS- 去中心化存储QoS的作用是什么
什么是QoS? 去中心化存储QoS的作用是什么
什么是QoS?
提到QoS,就要先了解QoE
QoE是应用程序或服务的用户的喜悦程度或烦恼程度。
它是用户体验的期望或享受期望,根据用户的个性和当前状态而不同。
简单来说,就是QoE=用户感觉到的“质量”或“性能”或“舒适度”)
QoS
QoS是关于将底层网络服务提供给应用层服务的保证。
QoS机制提供了用于确保应用程序在交付时所需的网络资源以实现用户QoE(体验质量)的预期水平的手段。
去中心化存储作为一个未来基本底层应用网络平台之一,必须能够提供优质的QoS。
开发者才能基于可靠的去中心化存储平台,提供出优质的QoE。
基本的存储平台,应该有哪些关键QoS
去中心化存储平台也是存储平台,如果想要做到能够商用,首先就要达做到基本的存储平台所具有的QoS。
那么基础的存储平台,应该有哪些QoS呢?
1.高可用
高可用性是系统的一个特征,目的在确保达到一致的运营绩效水平,通常是正常运行时间,高于正常水平。
衡量高可用最重要的就是SLA,也就是Service-Level Agreement,一般用9的个数来表述,99.9%就是3个9,99.99%就是4个9。
这个一般是指对于每一个存储的内容而言,有百分之多少的时间是可以正常工作提供服务的,下面这个表可以直观感受一下SLA。
在去中化存储中,SLA里的Downtime计算指用户的请求服务在指定的时间内没有得到回复。
环形网络的QoS保证机制
环形网络的QoS 保证机制环形网络的QoS保证机制环形网络是一种常见的网络拓扑结构,它由一系列节点以环形的方式连接起来。
在环形网络中,每个节点都与其相邻的节点直接相连,数据可以在环形路径上进行传输。
然而,由于环形网络的特殊结构,QoS(Quality of Service)保证成为了一个重要的问题。
QoS保证机制可以确保网络在传输数据时满足一定的服务质量要求,例如低延迟、高带宽等。
在环形网络中,QoS保证机制可以通过以下步骤来实现:第一步,定义QoS目标:确定所需的服务质量目标,例如最大延迟、最小带宽等。
这些目标将指导后续的QoS保证机制设计。
第二步,流量管理:在环形网络中,流量管理是实现QoS保证的关键。
通过合理的流量管理,可以控制网络流量的传输速度和优先级,以确保满足QoS目标。
第三步,拥塞控制:拥塞是环形网络中常见的问题,当网络中的数据流量超过网络资源的处理能力时,就会发生拥塞。
拥塞会导致延迟增加、丢包率增加等问题,因此需要采取拥塞控制策略来保证QoS。
第四步,优先级调度:在环形网络中,不同的数据流可能有不同的QoS要求。
通过为不同的数据流分配不同的优先级,可以确保高优先级的数据流能够在网络中得到优先传输,从而满足其QoS要求。
第五步,错误处理:在环形网络中,可能会出现各种错误,例如数据丢失、错误的路由选择等。
为了保证QoS,需要采取相应的错误处理策略,例如重新传输数据、重新选择路由等,以确保数据能够正确地传输。
第六步,性能监测与调优:QoS保证机制的实施并不是一次性的过程,需要不断地监测网络性能并进行调优。
通过对网络性能的实时监测和分析,可以及时发现问题并采取相应的措施来提高网络的QoS。
综上所述,QoS保证机制在环形网络中是非常重要的。
通过合理的流量管理、拥塞控制、优先级调度、错误处理以及性能监测与调优等步骤,可以有效地实现对网络服务质量的保证。
只有确保QoS,才能满足用户对网络的要求,提高网络的可靠性和稳定性。
POD为什么会OOM
POD为什么会OOM应⽤运⾏在k8s平台上,有时候会发现POD⾃动重启造成业务影响,通过kubectl describe pod可以看到POD重启的原因,如果是OOM killed,则是因为应⽤使⽤内存超过了limit,被OOM killed了。
其实,应⽤被OOM killed应该分为两种情况:1. POD OOM killed;2. 宿主机内存不⾜,跑在宿主机上的进程被OOM killed;这篇⽂章只讨论第⼀种情况。
其实我们在定义POD的时候,可以通过resource requests及limits值,定义POD的资源需求。
根据requests和limits值,POD的QoS分为三种类型:Guaranteed - 如果POD中所有容器的所有resource的limit等于request且不为0,则这个POD的QoS class就是Guaranteed;Best-Effort - 如果POD中所有容器的所有resource的request和limit都没有赋值,则这个POD的QoS class就是Best-Effort;Burstable - 以上两种情况之外就是Burstable了,通常也是毕竟普遍的配置;这三种QoS分别会有什么待遇呢?因为cpu不是⼀种hard limit,cpu到达上限之后会被限制,但不会引起进程被杀;这⾥我们主要看Memory,可以简单这样理解:Guaranteed - 优先级最⾼,它能够确保不达到容器设置的Limit⼀定不会被杀。
当然,如果连宿主机都OOM的话,宿主机也是会根据评分选择性杀进程;Best-Effort - 优先级最低,如果系统内存耗尽,该类型的POD中的进程最先被杀;Burstable - 在系统存在内存瓶颈时,⼀旦内存超过他们的request值并且没有Best-Effort类型的容器存在,这些容器就先被杀掉,当然,内存到达limit时也会被杀;不管是哪种QoS的POD,如果内存使⽤量持续上涨,都是有可能被OOM killed的。
网络优化中的QoS技术解析
网络优化中的QoS技术解析随着互联网的迅猛发展,越来越多的用户对于网络质量的要求也越来越高。
为了满足用户对于网络性能的需求,运营商和企业往往采用QoS(Quality of Service)技术来对网络进行优化。
QoS技术是一种能够保证网络服务质量的技术,本文将对QoS技术进行深入解析。
一、什么是QoS技术QoS(Quality of Service)技术,是指在网络中对网络性能的一种保证机制。
通过在网络中进行数据包分类、优先级排队、带宽分配等操作,QoS技术可以实现对不同类型的网络数据流的优化。
在传统的网络中,数据包是以先到先得的方式进行传输的,无法做到对不同类型的数据包进行差异化处理。
而QoS技术通过给数据包分配优先级,可以保证重要数据的传输效果,提高用户体验。
二、QoS技术的主要特点1. 带宽保证:QoS技术可以通过分配带宽资源来保证网络中的重要数据包能够得到足够的带宽进行传输,从而避免网络拥塞导致的延迟问题。
2. 优先级排队:QoS技术可以对数据包进行优先级排队,以确保重要数据包在网络中的传输过程中能够得到更高的优先级,从而减少丢包和延迟。
3. 流量分析和分类:QoS技术可以对网络中的数据流进行分析和分类,根据不同的特征对其进行差异化处理,以满足用户的不同服务需求。
4. 终端协商:QoS技术可以通过与终端进行协商,根据终端的网络条件和QoS策略,实时调整网络传输的参数,以实现网络性能的优化。
三、QoS技术的实现方式1. DiffServ(Differentiated Services):DiffServ是一种基于分类和标记的QoS技术,它通过对数据包进行分类和打标记,从而对不同的流量进行差异化处理。
DiffServ技术可以在网络中的路由器上对数据包进行处理,实现流量的优先级排队和带宽分配。
2. MPLS(Multi-Protocol Label Switching):MPLS是一种通过标签交换来传输数据包的技术。
qos基本原理
qos基本原理QoS大揭秘:网络服务质量的奥义与实战在当今这个数字化时代,信息如同湍急的洪流,穿越在光纤与电磁波之间。
而在这浩渺的数据海洋中,有一种力量犹如舵手,精准调控着数据传输的质量和效率,这便是我们今天要揭开神秘面纱的主角——QoS(Quality of Service),即网络服务质量。
想象一下,你正在家中舒适地享受一场高清无卡顿的在线电影盛宴,或者在游戏中畅快淋漓地与队友并肩作战,这一切的背后,都离不开QoS这位默默无闻的幕后英雄。
它就像一位公正无私的裁判员,确保每一比特数据都能按时按量、有序高效地送达目的地,从而保障了我们各类网络应用的流畅体验。
那么,QoS的基本原理究竟是什么呢?说来也简单,就如同繁忙的城市交通需要有合理的调度机制以保证道路畅通,QoS在网络世界中承担的就是这样的角色。
它通过对不同类型的网络流量进行分类、标记,并根据不同业务对带宽、时延、丢包率等关键性能指标的需求,实施差异化的服务策略,实现网络资源的合理分配。
举个例子,就仿佛VIP客户能享受银行快速通道一样,在网络中,实时性要求高的语音通话或视频会议这类“VIP”流量,就能通过QoS得到优先级更高的传输待遇,避免被普通文件传输等“普通客户”流量所阻塞。
这就是QoS中的优先级控制,也是其核心机制之一。
同时,QoS还采用流量整形、带宽限制、拥塞管理等多种手段,像一位灵活应对各种情况的智能管家,无论网络负载如何变化,都能确保重要业务不被打扰,有效防止网络拥塞的发生。
再者,QoS还能帮助我们在多用户共享网络资源的场景下,化解“僧多粥少”的尴尬局面。
比如在企业内部网中,员工们同时使用邮件系统、ERP系统以及进行远程视频会议,QoS就能根据预先设定的服务等级协议(SLA),合理调配有限的带宽资源,让每一个应用各得其所,实现和谐共生。
总之,QoS以其独特的策略和服务机制,构建了一套完善且动态适应的网络管理体系,使得宝贵的网络资源得以最大限度地发挥效用,满足不同用户、不同业务的多元化需求。
互联网行业的网络QoS保障技术
互联网行业的网络QoS保障技术在互联网行业快速发展的背景下,网络服务质量(Quality of Service, QoS)保障成为了网络运营商和企业用户关注的重要问题。
QoS是指在网络传输中保证特定网络应用(如VoIP、视频流媒体等)能够满足一定的服务质量需求,例如延迟、带宽、丢包率等。
本文将重点介绍互联网行业常用的网络QoS保障技术。
一、差异化服务(Differentiated Services, Diffserv)差异化服务是一种应用广泛的QoS保障技术,通过在IP数据报头中标记不同的服务等级,实现网络资源的优先分配。
Diffserv采用了一种分层的服务模型,网络流量被划分为不同的类别,每个类别对应一组特定的服务质量要求。
路由器根据数据报头中的服务分类,对不同优先级的流量进行优先处理,从而保证重要流量的传输质量。
二、积极队列管理(Active Queue Management, AQM)AQM技术是保证网络QoS的重要手段之一。
传统网络中常用的队列管理算法是DropTail,当队列溢出时会直接丢弃数据包,导致网络拥塞。
AQM技术通过改进队列管理算法,例如Random Early Detection (RED)、Random Early Detection with In and Out(RED/INOUT)等,能够在队列即将溢出之前就开始丢弃部分数据包,有效避免了网络拥塞的发生。
三、流量整形(Traffic Shaping)流量整形是一种控制网络流量速率的技术,通过限制传输速率来保证网络传输的平稳性和稳定性。
在互联网行业中,流量整形主要应用于消除网络拥塞和保证关键应用的传输质量。
通过使用流量整形技术,网络运营商可以根据用户需求和网络资源状况,对流入或流出的网络流量进行限制和调整,以达到更好的网络QoS保障效果。
四、多路径路由(Multipath Routing)多路径路由是一种通过同时使用多个路径传输数据的技术,能够提高网络传输的可靠性和吞吐量。
qos协议原理
qos协议原理宝子!今天咱们来唠唠QoS协议原理,这就像是网络世界里超级有趣又超级重要的事儿呢。
你想啊,网络就像是一个超级大的城市,里面各种各样的数据就像是来来往往的车辆和行人。
有时候啊,这个城市里的数据流量特别大,就像上下班高峰期的大马路,堵得一塌糊涂。
这时候QoS协议就闪亮登场啦。
QoS,也就是Quality of Service,服务质量的意思。
它的基本原理呢,就是要给网络里的数据分分类。
比如说,有些数据就像是救护车、消防车一样,是非常紧急的。
像视频通话的数据,要是延迟太高,你在屏幕这边就只能看到对方嘴巴动,声音却半天传不过来,或者声音和画面完全对不上,那多尴尬呀。
所以这种实时性要求很高的数据,QoS协议就会把它们当成“特权车辆”,优先让它们在网络这个“道路”上通行。
那QoS是怎么知道哪些数据是紧急的,哪些是不那么着急的呢?这就靠给数据打标记啦。
就好像给每个要出门的人或者车都贴上一个小标签,上面写着“我很着急”或者“我不着急,慢慢走也行”。
在网络里,这个标记的方式有很多种哦。
有一种常见的是根据端口号来标记。
你可以把某些端口号对应的服务当成是重要的。
比如说,80端口通常是用来做网页浏览的,那这个数据可能就被标记为比较重要的普通数据。
而像语音通话可能用的是另外的端口,这个端口的数据就会被标记为超级紧急的那种。
还有呢,QoS协议会去管理网络的带宽。
这就好比城市里的道路宽窄一样。
网络的带宽是有限的,就像道路的宽度是固定的。
QoS协议就像是一个聪明的交通管理员,它会根据数据的重要性,合理分配这个带宽。
比如说,对于那些紧急的视频通话数据,它就会给多分配一些带宽,让这些数据可以快速地通过网络,就像给救护车专门开辟一条宽敞的车道一样。
而对于那些不是那么紧急的,像下载个文件这种,就可以少分一点带宽,让它慢慢走。
宝子,你再想象一下,如果没有QoS协议会怎么样呢?那网络就完全乱套啦。
所有的数据都在网络这个大锅里乱炖,紧急的数据被堵在那里,不紧急的数据却占着大量的资源。
qos原理
qos原理QoS原理QoS,全称Quality of Service,即服务质量。
它是指在计算机网络中为不同类型的数据流提供不同的服务质量保证机制,以保障网络传输的稳定性和可靠性。
QoS原理是网络通信中的重要概念,它通过管理网络资源,对网络流量进行控制和调度,以保证不同应用和用户的网络传输需求得到满足。
一、QoS的重要性在现代互联网时代,人们对网络的需求越来越高,各种应用场景对网络传输的要求也越来越复杂。
例如,实时音视频通信、在线游戏、远程医疗等应用对网络传输的时延、带宽、丢包率等有着较高的要求。
而一些非实时的应用,如电子邮件、文件传输等则对上述指标的要求相对较低。
如果网络无法提供适当的服务质量,就会出现网络拥塞、丢包、延迟大等问题。
这不仅会影响用户体验,还可能导致关键应用无法正常运行。
因此,QoS的引入对于保障网络性能和用户体验至关重要。
二、QoS的实现原理QoS的实现主要基于三个关键技术:流量控制、拥塞控制和优先级队列。
1. 流量控制流量控制是指通过限制网络中的数据流量,防止网络过载和拥塞。
常见的流量控制技术包括令牌桶算法和 Leaky Bucket 算法。
令牌桶算法中,网络中的数据流量以令牌的形式进行控制。
发送端在发送数据之前需要从令牌桶中获取令牌,而令牌桶的速率决定了网络的传输速率。
如果令牌桶中没有足够的令牌,发送端就无法发送数据,从而实现了流量的控制。
Leaky Bucket 算法则是通过一个漏桶来控制数据的传输速率。
发送端将数据放入漏桶中,而接收端以固定的速率从漏桶中取出数据。
当漏桶满了时,发送端就无法再向其中放入数据,从而实现了流量的控制。
2. 拥塞控制拥塞控制是指通过监测网络中的拥塞情况,并采取相应的措施来降低拥塞程度。
常见的拥塞控制技术包括拥塞避免、拥塞检测和拥塞恢复。
拥塞避免是指通过动态调整发送速率,避免网络拥塞的发生。
TCP 协议中的拥塞避免算法就是一个典型的例子。
它根据网络的拥塞程度来调整发送端的发送速率,以避免网络拥塞。
Qos是什么
Qos是什么?QoS(Quality of Service)服务质量,是网络的一种安全机制,是用来解决网络延迟和阻塞等问题的一种技术。
在正常情况下,如果网络只用于特定的无时间限制的应用系统,并不需要QoS,比如Web应用,或E-mail设置等。
但是对关键应用和多媒体应用就十分必要。
当网络过载或拥塞时,QoS 能确保重要业务量不受延迟或丢弃,同时保证网络的高效运行。
背景在因特网创建初期,没有意识到QoS应用的需要。
因此,整个因特网运作如一个“竭尽全力”的系统。
每段信息都有4个“服务类别”位和3个“优先级”位,但是他们完全没有派上用场。
依发送和接收者看来,数据包从起点到终点的传输过程中会发生许多事情,并产生如下有问题的结果:·丢失数据包- 当数据包到达一个缓冲器(buffer)已满的路由器时,则代表此次的发送失败,路由器会依网络的状况决定要丢弃、不丢弃一部份或者是所有的数据包,而且这不可能在预先就知道,接收端的应用程序在这时必须请求重新传送,而这同时可能造成总体传输严重的延迟。
·延迟- 或许需要很长时间才能将数据包传送到终点,因为它会被漫长的队列迟滞,或需要运用间接路由以避免阻塞;也许能找到快速、直接的路由。
总之,延迟非常难以预料。
·传输顺序出错- 当一群相关的数据包被路由经过因特网时,不同的数据包可能选择不同的路由器,这会导致每个数据包有不同的延迟时间。
最后数据包到达目的地的顺序会和数据包从发送端发送出去的顺序不一致,这个问题必须要有特殊额外的协议负责刷新失序的数据包。
·出错- 有些时候,数据包在被运送的途中会发生跑错路径、被合并甚至是毁坏的情况,这时接收端必须要能侦测出这些情况,并将它们统统判别为已遗失的数据包,再请求发送端再送一份同样的数据包。
QoS简介参数QoS是通过给定的虚连接描述传输质量的A TM性能参数术语。
这些参数包括:CTD、CDV、CER、CLR、CMR和SECBR、ALL service classes、Qos Classes、trafficcontract、traffic control。
qos目标
qos目标QoS(Quality of Service)是一种网络管理技术,其目标是通过授权和限制网络资源的使用,以实现对网络中各种类型的数据流的不同服务质量的支持和保证。
QoS的目标是实现网络中的服务质量与用户需求之间的匹配,从而提供更高效、更可靠、更高质量的网络服务。
QoS的主要目标可以概括如下:1. 延迟和延迟变化率:QoS的目标是减少延迟并降低其变化率。
延迟是指数据从发送到接收所需的时间,延迟变化率是指延迟在时间上的波动。
对于实时应用程序,如VoIP(Voice over IP)和视频通信,低延迟和延迟变化率非常重要,以避免数据流中的丢包和抖动。
2. 带宽利用率:QoS的目标是合理利用网络带宽,确保每个数据流都能得到所需的带宽。
不同的应用程序对带宽的需求不同,通过QoS可以根据应用程序的需求进行带宽分配,以保证关键应用程序的正常运行。
3. 安全性和保密性:QoS的目标是确保网络中的数据安全和保密性。
通过配置QoS规则和策略,可以有效地限制对敏感数据的访问,并提供加密和身份验证等安全机制,以保护数据免受攻击和泄露。
4. 可靠性和可用性:QoS的目标是提高网络的可靠性和可用性。
通过QoS管理网络资源的使用,可以有效地预防和处理网络故障,提供快速的故障恢复和容错机制,以确保网络的连续性和可用性。
5. 优先级和分类:QoS的目标是基于应用程序的需求和用户的优先级,对网络流量进行分类和优先处理。
通过配置QoS规则和策略,可以为关键应用程序分配更高的优先级,以保证其数据流的实时性和稳定性。
总之,QoS的目标是提供优质的网络服务,满足用户对不同类型应用程序的需求,提高用户体验和满意度。
通过合理管理网络资源的使用,以及采用适当的调度和控制策略,可以实现QoS的目标,并为用户提供更高效、更可靠的网络服务。
qos的控制策略
qos的控制策略QoS的控制策略QoS(Quality of Service)是一种网络管理和控制的技术,用于保证网络的性能和服务质量。
在网络中,不同的应用和服务对网络性能要求不同,通过QoS的控制策略可以根据不同的需求对网络资源进行合理分配和调度,从而保证网络的稳定性和可靠性。
QoS的控制策略主要包括流量控制、拥塞控制和差错控制。
流量控制是指通过限制数据流量的速率,以防止网络拥塞和资源浪费。
拥塞控制是为了保证网络的畅通,当网络中出现拥塞时,通过调整数据传输速率和重传机制来降低拥塞程度。
而差错控制则是为了保证数据传输的可靠性,通过纠错码、重传和确认机制来提高数据传输的正确性。
流量控制是QoS中的重要一环,通过限制数据的传输速率来控制网络中的流量。
常见的流量控制策略有令牌桶算法和Leaky Bucket算法。
令牌桶算法是一种基于令牌的流量控制算法,网络中的数据传输需要消耗令牌,当令牌不足时,数据传输将会被限制。
而Leaky Bucket算法则是基于漏桶的流量控制算法,它通过设置一个固定容量的漏桶,当数据流入漏桶时,如果漏桶已满,则数据将会被丢弃或延迟传输。
拥塞控制是为了保证网络的畅通和稳定,当网络中出现拥塞时,通过调整数据传输速率和重传机制来降低拥塞程度。
常见的拥塞控制策略有TCP的拥塞控制机制和RED(Random Early Detection)算法。
TCP的拥塞控制机制通过动态调整发送窗口和重传超时时间来控制数据的传输速率,当网络中出现拥塞时,TCP会减小发送窗口的大小以降低拥塞程度。
而RED算法则是一种基于随机丢弃的拥塞控制算法,当网络中的数据包超过一定阈值时,RED算法会随机丢弃一部分数据包,以降低网络的拥塞程度。
差错控制是为了保证数据传输的可靠性,通过纠错码、重传和确认机制来提高数据传输的正确性。
常见的差错控制策略有前向纠错码、自动重传请求(ARQ)和确认应答机制。
前向纠错码是一种通过添加冗余信息来纠正数据传输中的错误的编码方式,通过在数据包中添加校验码来实现纠错。
QoS模型术语详
QoS模型术语详解随着数据设备对QoS实现的越来越多,我们也应该更多地去关注QoS方面的知识。
但是在阅读QoS文献的时候,发现太多的QoS术语让我们对相关文档望而却步。
如果要对各种QoS模型做详尽的阐述,限于篇幅不太可能,而且也没有必要,因为关于QoS文献很多。
本文试图对QoS模型及其中的术语做深入浅出的解释,并给出出现该术语的RFC,以便大家做深入的了解,希望对大家的学习有所帮助。
QoSQoS,英文全称Quality of Service,即服务质量。
不同网络的服务质量指标不同,不同的组织对QoS也有不同的定义:电信网的QoS由ITU(国际电信联盟)定义;ATM网络的QoS由ATM论坛定义;IP网络的QoS由IETF定义。
IP QoSIP网络服务质量由RFC 2386定义,具体的服务质量指标可以量化为带宽、延迟、延迟抖动、丢失率和吞吐量等。
以下术语都是与IP QoS相关的术语。
QoS模型目前IETF定义了两种QoS模型:综合服务(IntServ)和区分服务(DiffServ),综合服务是一种基于资源预留的端到端服务质量模型;区分服务是基于每跳PHB的服务质量模型。
IntServ模型RFC1633定义的IntServ模型只是一个基本的体系架构,它规定了在网络上保证QoS 的一些基本要素。
IntServ的基本思想是网络中的每个网络单元,包括主机和路由器,在需要进行数据传输时首先在传输路径上进行资源预留,这种预留是基于流的,相比较DiffServ 来讲,属于精细粒度的预留。
IntServ模型可以用在视频流和音频流应用方面,它可以保证多媒体流在网络拥塞时不受干扰。
在IntServ中,Flow Specs作为资源预留的描述,RSVP 作为资源预留的信令。
Flow Specs中文翻译成流规范,流规范包括两个方面:1、流是什么样子的?在流描述(T-Specs,Traffic Specification)中定义。
QoS基础理论知识详解
QoS基础理论知识详解01、QOS产生的背景网络的普及和业务的多样化使得互联网流量激增,从而产生网络拥塞,增加转发时延,严重时还会产生丢包,导致业务质量下降甚至不可用。
所以,要在网络上开展这些实时性业务,就必须解决网络拥塞问题。
解决网络拥塞的最好的办法是增加网络的带宽,但从运营、维护的成本考虑,这是不现实的,最有效的解决方案就是应用一个“有保证”的策略对网络流量进行管理。
QoS技术就是在这种背景下发展起来的。
QoS( Quality of Service)即服务质量,其目的是针对各种业务的不同需求,为其提供端到端的服务质量保证。
QoS是有效利用网络资源的工具,它允许不同的流量不平等的竞争网络资源,语音、视频和重要的数据应用在网络设备中可以优先得到服务。
QoS技术在当今的互联网中应用越来越多,其作用越来越重要。
02、QoS服务模型1、Best-Effort服务模型Best-Effort (尽力而为)是最简单的QoS服务模型,用户可以在任何时候,发出任意数量的报文,而且不需要通知网络。
提供Best-Effort服务时,网络尽最大的可能来发送报文,但对时延、丢包率等性能不提供任何保证。
Best-Effort服务模型适用于对时延、丢包率等性能要求不高的业务,是现在In ternet的缺省服务模型,它适用于绝大多数网络应用,如FTP E-Mail等。
2、I ntServ服务模型IntServ(综合服务)模型是指用户在发送报文前,需要通过信令(Signaling) 向网络描述自己的流量参数,申请特定的QoS服务。
网络根据流量参数,预留资源以承诺满足该请求。
在收到确认信息,确定网络已经为这个应用程序的报文预留了资源后,用户才开始发送报文用户发送的报文应该控制在流量参数描述的范围内。
网络节点需要为每个流维护一个状态,并基于这个状态执行相应的QoS动作,来满足对用户的承诺。
IntServ模型使用了RSVP(Resource Reservation Protocol 协议作为信令,在一条已知路径的网络拓扑上预留带宽、优先级等资源,路径沿途的各网元必须为每个要求服务质量保证的数据流预留想要的资源,通过RSVP信息的预留,各网元可以判断是否有足够的资源可以使用。
多业务的QOS描述
一、QoS 概述在任何时刻、任何地址和任何人实现任何媒介信息的沟通是人类在通信领域的永久需求,在IP 技术成熟以前,全部的网络都是单一业务网络,如PSTN 只能开业务,有线电视网只能承载电视业务,网只能承载数据业务等。
网络的分别造成业务的分别,降低了沟通的效率。
由于互联网的流行,IP 应用日趋普遍,IP 网络已经渗入各类传统的通信范围,基于IP 构建一个多业务网络成为可能。
可是,不同的业务对网络的要求是不同的,如安在分组化的IP 网络实现多种实时和非实时业务成为一个重要话题,人们提出了QoS〔效劳质量,Quality of Service〕的概念。
IP QoS 是指 IP 网络的一种力量,即在跨越多种底层网络技术〔FR、ATM、Ethernet、SDH 等〕的 IP 网络上,为特定的业务供给其所需要的效劳。
QoS 包括多个方面的内容,如带宽、时延、时延抖动等,每种业务都对 QoS 有特定的要求,有些可能对其中的某些指标要求高一些,有些那么可能对另外一些指标要求高些。
衡量IP QoS 的技术指标包括以下几个。
(1)可用带宽:指网络的两个节点之间特定应用业务流的平均速度,要紧衡量用户从网络取得业务数据的力量,全部的实时业务对带宽都有必定的要求,如关于视频业务,当可用带宽低于视频源的编码速度时,图像质量就无法保证。
(2)时延:指数据包在网络的两个节点之间传送的平均来回时刻,全部实时性业务都对时延有必定要求,如 VoIP 业务,一样要求网络时延小于 200ms,当网络时延大于 400ms 时,通话就会变得无法忍受。
(3)丢包率:指在网络传输进程中丧失报文的百分比,用来衡量网络正确转发用户数据的力量。
不同业务对丢包的灵敏性不同,在多媒体业务中,丢包是致使图像质量恶化的最全然原因,少量的丢包就可能使图像显现马赛克现象。
(4)时延抖动:指时延的转变,有些业务,如流媒体业务,能够通过适当的缓存来削减时延抖动对业务的阻碍;而有些业务那么对时延抖动超级灵敏,如语音业务,稍许的时延抖动就会致使语音质量快速下降。
路由器QOS技术
网络拥塞的产生
流量聚合
100Mbps 100Mbps
Data-flow
民族 安全 创新 服务
网络拥塞的后果
尾丢弃(Tail Drop):当发生拥塞时,接口输出队列被占满, 后面要入队的报文被丢弃。 尾丢弃是最普通的丢弃机制,也是系统默认的丢弃机制。 对TCP流来讲,尾丢弃有以下缺陷: (1)TCP全局同步; (2)TCP饿死、延迟、抖动
服务模型,是指一组端到端的Qos功能 Best-Effort service 尽力而为服务 Integrated service (Intserv) 集成服务
Differentiated service (Diffserv) 区分服务
民族 安全 创新 服务
Best-Effort service
民族 安全 创新 服务
QOS技术目标
支持为用户提供专用带宽 减少报文的丢失率 避免和管理网络拥塞 流量整形 设置报文的优先级
民族 安全 创新 服务
课程内容
1
QOS技术概念 QOS服务模型
网络拥塞的产生和避免 拥塞管理技术
2
3 4 5
流量监管与流量整形
民族 安全 创新 服务
QOS服务模型
民族 安全 创新 服务
Differentiated service
Differentiated service 区分服务
Diffserv是一个多服务模型,可以满足不同的Qos维护状态,它根据每个报文指定的QoS,来提供特定的 服务,包括进行报文的分类、流量整形、流量监管和排队。 主要实现技术包括CAR,队列技术。
router1(config)#interface serial 0/0
提高qos服务质量的方法
提高qos服务质量的方法
提高QoS服务质量的方法主要有以下几点:
1. 分类和标记:根据数据包的重要性和优先级进行分类,并为不同的类别或数据流分配不同的优先级。
对于实时的、要求高的通信,应给予最高的优先级类别。
2. 队列管理:根据优先级和服务等级,使用不同的队列管理策略,如FIFO (先入先出)、Priority Queue(优先队列)和Custom Queue(自定义
队列)。
3. 流量整形:通过控制数据包的发送速率,以避免网络拥塞。
这可以降低报文丢包率,调控IP网络流量,为特定用户或业务提供专用带宽。
4. 带宽保证:为特定用户或业务提供专用带宽,确保其所需的带宽得到保证。
5. 拥塞避免:当检测到网络拥塞时,采取措施避免拥塞的发生。
这包括使用拥塞避免算法,如TCP拥塞控制算法。
6. 错误纠正:使用错误纠正技术,如ARQ(自动重传请求),来检测和纠
正数据传输中的错误。
7. 数据包排序:在接收端,对乱序到达的数据包进行重新排序,以确保数据的正确顺序。
8. 流量控制:通过控制发送端的数据发送速率,以防止接收端来不及处理数据而造成数据丢失。
9. 负载均衡:通过将流量分散到多个网络路径或服务器上,以平衡网络负载,提高数据处理能力和响应速度。
10. 用户反馈机制:建立用户反馈机制,收集用户对服务的评价和意见,以
便及时改进服务质量。
这些方法可以根据实际需求和场景选择使用,以提高QoS服务质量。
QoS Guarantees
Link Layer: critical QoS component
Buffering and bandwidth: the scare resources cause of loss and delay packet scheduling discipline, buffer management will determine loss, delay seen by a call FCFS Weighted Fair Queuing (WFQ)
Comparing Internet and ATM service classes: how are guaranteed service and CBR alike/different? how are controlled load and ABR alike/different?
Radical changes required!
Possible token bucket uses: shaping, policing, marking
delay
pkts from entering net (shaping) drop pkts that arrive without tokens (policing function) let all pkts pass thru, mark pkts: those with tokens, those without network drops pkts without tokens in time of congestion (marking)
Q.2931:
ATM call setup protocol sender initiates call setup by passing Call Setup Message across UNI boundary (i.e., into network) network immediately returns Call Proceeding indication back network must:
RTI_DDS_Qos_-_中文
QoS: 底线/截止时间(Deadline)
• 数据发送者承担在每一个数据周期的截止时间内发送数据的责任
• 数据接收者希望在在每一个数据周期的截止时间内接收到数据
• 保证接收者的deadline >= 发送者的deadline,否则产生不兼容错
误
Domain Participant
Failed
Failed
Publisher
Data
D7
Writer
Subscriber
Data
D7
Reader
Repaired Lost
Lost
D7 D7 D6 D5 D4 D3 D2 D1
17
© 2009 Real-Time Innovations, Inc.
QoS: 持久性(Durability)
易失的(VOLATILE)– 发送的数据不被保存 本地临时保存(TRANSIENT_LOCAL)– 数据发送者自己 保存发送过的数据
Web/Enterprise
数据传送 – 时间和命令类型
可用的QOS策略
可靠性(最可靠)+ KEEP_ALL的历史记录,确保所有的 数据均被可靠的传送
存在性(Liveliness)
必须要能及时检测出数据发送者何时失效,那怕是在数据发送者
不发送任何数据的情况下
20
© 2009 Real-Time Innovations, Inc.
8
© 2009 Real-Time Innovations, Inc.
QoS: 可靠性(Reliability)
• 最高效 –不保证数据是否能被接收到(但是可以确保数据到达的先后
顺序)
• 确保最后N个数据 – 发送所有数据,但仅仅确保最后N个数据被收到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Quality of Service (QoS) Guaranteed Network Resource Allocation via Software Defined Networking (SDN)Anand V Akella2 and Kaiqi Xiong11College of Computing and Information Sciences 2Cisco Systems, IncRochester Institute of Technology 170 W Tasman Dr.Rochester, NY14623 USA San Jose, CA 95134 USAAbstract - Quality of Service (QoS) – based bandwidth allocation plays a key role in real-time computing systems and applications such as voice IP, teleconferencing, and gaming. Likewise, customer services often need to be distinguished according to their service priorities and requirements. In this paper, we consider bandwidth allocation in the networks of a cloud carrier in which cloud users’ requests are processed and transferred by a cloud provider subject to QoS requirements. We present a QoS-guaranteed approach for bandwidth allocation that satisfies QoS requirements for all priority cloud users by using Open vSwitch, based on software defined networking (SDN). We implement and test the proposed approach on the Global Environment for Networking Innovations (GENI). Experimental results show the effectiveness of the proposed approach.I.I NTRODUCTIONCloud computing has been one of the emerging technologies in the field of computer science and engineering. Cloud computing has varied offerings in terms of computing and data storage services [1, 2]. As per the NIST National Institute of Standards and Technology, there are different types of service models defined for the cloud: Infrastructure as a Service (IaaS), Software as a Service (SaaS) and Platform as a Service (PaaS) [3]. Cloud service providers allow cloud users to access their infrastructures without owning physical servers and data storage devices. Moreover, with the rapid growth of Internet and high-speed network devices, cloud users can access their data on the cloud from any geographical location. The benefits of cloud computing are resource sharing through virtualized infrastructures, increased storage, the high availability of resources, and the ease of resource management [4]. A typical cloud service model is shown in Figure 1.The use of multimedia applications has increased tremendously over the past few years. Internet users share the multimedia data on the cloud. Such multimedia data may come from the applications: voice over IP, video conferencing, and online gaming [5]. These multimedia applications need high computation power since the data is accessed by millions of users [5]. Cloud providers encounter several grand challenges in processing the multimedia applications [5]. One of the most important is to meet QoS requirements for each multimedia user or each user application. A multimedia application can be identified and distinguished from others based on its common characteristics such as protocol type TCP/UDP and well-known source destination port numbers [6]. However, multimedia applications are subjected to variable delays and packet drops [6]. Hence, a cloud service provider should allocate enough resources to meet QoS requirements.Figure 1. A Typical Cloud Service ModelVarious techniques have been proposed to enhance the overall QoS of multimedia applications in data centers. The proposed solutions for the QoS for multimedia applications include QoS routing algorithms [7-8]. They can be classified in the following two types: dynamic routing algorithms in which a routing path selection is done based on network link characteristics such as available bandwidth and link utilization, and static routing algorithms in which real-time link characteristics is not considered in packet routing. In both cases, very few studies have been done for end-to-end QoS guaranteed routing. In this research, we propose an approach for ensuring the end-to-end QoS guarantee of each cloud user services. The approach sufficiently considers the service characteristics of each user. It requires us to compute the end-to-end delay of each user’s service requests for the dynamic change of bandwidth allocation. We realize and test the proposed approach via Open vSwitch that is a software-based OpenFlow switch based on SDN. The resulting solutions of our approach are applicable to a variety of cloud applications and services including multimedia applications.The paper is organized in the following manner. Section 2 gives an introduction to Open vSwitch and the two queueing techniques supported by Linux and Open vSwitch. It also describes an overview of the Global Environment for Networking Innovations (GENI) testbed used in our test experiments. Related work is given in Section 3. Section 4 presents our new QoS-guaranteed routing approach. In Sections 5 and 6, we briefly discuss the methodology for our experiment design and validation based on the proposed routing approach. We finally conclude our discussion and givefuture work.2014 IEEE 12th International Conference on Dependable, Autonomic and Secure ComputingII.B ACKGROUND I NFORMATIONA. Open vSwitchThe Open vSwitch is an OpenFlow enabled software-based switch. It is open source multilayer switch software and ideally suitable for virtual environments [9]. The Open vSwitch has three main components consisting of ovsdbserver, ovs-vswitchd and openvswitch_mod.ko. The ovsdbserver is a database that contains all the switch configurations. The ovs-vswitchd is a daemon used for querying the ovsdbserver to obtain a switch configuration and interact with openvswitch_mod.ko, a kernel module. As shown in Figure 2, the ovs-vswitchd is responsible for flow lookup, port mirroring, and VLAN. The openvswitch_mod.ko is responsible for packet lookup, flow modification and forwarding. The openvswitch_mod.ko is the kernel module to perform task tunneling encapsulation and decapsulation [9]. Open vSwitch supports different features such as VLAN trunking 802.1Q, Link Aggregation Control Protocol (LACP) 802.3ad, QoS, and Netflow. Furthermore, Open vSwitch also supports limited QoS features, the Hierarchical Token Based (HTB) queueing technique, and the Hierarchical Fair Sequence Curve (HFSC) queueing technique.Figure 2. The Components of Open vSwitchB. The Hierarchical Token Based (HTB) Queueing Technique HTB [10] is a replacement for the Class-Based Queueing (CBQ) technique. Both CBQ and HTB are used to control the outbound traffic of a switch on a network link. In both of them, the lower bound and upper bound of available bandwidth is fixed in every queue. In this way, it avoids the monopolization of bandwidth by a single cloud service. HTB ensures us to allocate minimum bandwidth to every service queue and permits us to allocation the rest of bandwidth to each user’s queue based on the priority of each cloud user. For the presentation purpose, we assume that the smaller index a cloud user, the higher priority the user service. That is, a queue with the lower priority value will get the less chunk of the remaining bandwidth and vice-a-versa. The total bandwidth allocated to a queue should be within the defined bandwidth boundary.C. Hierarchical Fair Sequence Curve (HFSC) Queueing TechniqueHFSC [11] is very similar to HTB, except for the process of allocating excess bandwidth differently. It permits the proportional distribution of bandwidth as well as controls latency. The priority-type bandwidth allocation scheme in HTB is not supported in HFSC. D. Global Environment for Networking Environment (GENI) GENI is a virtual laboratory that allows researchers to conduct experiments on at-scale networks [12]. As per the cloud service model, GENI is an Infrastructure as a Service (IaaS). It allows researchers to allocate resources such as servers and storage from different geographical locations. ProtoGENI is part of the GENI implementation that allows researchers to allocate all the supported GENI resources [13]. Flack tool is a graphical user interface (GUI) framework that allows users to allocate resources from ProtoGENI. The INSTOOLS is used to monitor the network traffic of cloud services.III.R ELATED W ORKIn the network of a cloud service provider, multiple paths exist to reach a particular destination. Some paths may be underutilized. In order to meet the desired QoS requirements [7, 8, 13], we hope that the routers along the path should be able to decide whether the path is highly congested so as to efficiently utilize all available network resources in the path. The QoS routing algorithm in [7] is used to make a decision based on following two criteria: (a) Select a path with a minimal cost and, (2) perform load balancing based for available bandwidth in the routers along the path. In [8], the congestion of a network path is identified based on the end-to-end delay and Round-Trip Time (RTT) calculation of the path.A router switches network traffic onto an alternate path in case of congestion in which RTT is more than a predefined threshold.Moreover, the best QoS routing algorithms should be based on the type of application requests and the routing optimal path selection should be done such that the number of packet drops as less as possible [14]. In order for us to achieve better QoS for multimedia applications such as scalable video coding (SVC) [15], the application requests of users called layers can be split and sent through selected paths on multiple path networks. The SVC consists of two layers: base and enhancement. The enhancement layers can be sent on the network path with minimal packet drops. The base layers can be sent on the path with no packet drops. In [16], the authors suggest a QoS routing scheme for those applications that have QoS requirement without affecting the performance of the best effort traffic. The proposed approach in [14] keeps polling each and every resource to check the percentage utilization of links. Hence, this approach leads to excessive use of available resources. In our approach, we present an efficient QoS routing algorithm by taking into consideration the congestion level for the entire path such as delay, available bandwidth and a number of hops.IV.T HE P ROPOSED Q O S-GUARANTEED A PPROACHWe present the mathematical expression for a path election so as to meet QoS requirements in the cloud that serves multiple cloud users. Current studies focus on a single cloud user’s service applications. Instead, in this research we consider multiple cloud users’ service applications.Theproposed QoS-guaranteed approach consists of the following two components: (1) introduce a new metric based on bandwidth, path length or the number of hops, and RTT, and (2) the queueing techniques or policies for multiple cloud users.IV-1. The Metric for Path SelectionLet B0 be the minimum bandwidth allocated to serve a cloud user’s services and B the measured bandwidth that is actually allocated to the user. Furthermore, let T0 be the minimal RTT of cloud services and T the real-time measured RTT of a cloud service. Moreover, denote L0 the minimal length of the path to reach the destination of a cloud service from the source of a user and L the real-time measured length of the path in terms of the number of hops in the path whose value can be determined by using traceroute.We propose a new QoS-guaranteed approach for path selection by introducing the following metric:r = a * (B0 / B) + b * (T / T0 ) + c * (L / L0 ) (1) where a, b and c are constants and their range is between 0 and 1, and a + b + c = 1. The values a, b, and c are determined depending on each cloud service application. For example, for time-sensitive applications, b may be chosen as 1, and a and c may be chosen as 0. Conversely, for multimedia applications, bandwidth becomes very important. Thus, a, b, and c may be chosen as 1, 0, and 0, respectively.IV-2. Queueing Techniques and PoliciesEach cloud user may have different needs. Thus, each router need treat the network packet of each cloud user differently for ensuring the QoS guarantee of all cloud users. Thus, we propose queueing techniques or policies to consider each cloud application type, protocol type, and network ports. We classify cloud user service traffic flows as the two types: QoS service flow and best-effort service flow (simply referred as QoS flow and best-effort flow). We distinguish the best-effort flow from QoS-flow since the best-effort flow is served as the best-effort basis rather than any QoS requirement. Furthermore, QoS flow can be classified as three sub-types in this research, QoS flow-1, QoS flow-2, and QoS flow-3 that represent cloud users to make different levels of payments for their QoS requirement. We assume that the larger number, the higher priority the QoS flow is. For example, QoS flow-3 has a higher priority than QoS flows 1 and 2. At every hop, a router/switch assigns available bandwidth to serve each cloud user’s service according to the queueing techniques in Section II and the user’s network flow priority policies inside a technique by applying them at ingress ports [6]. Most existing studies focus on hop-by-hop bandwidth allocation due to the complexity of end-to-end bandwidth allocation. However, they cannot ensure end-to-end performance guarantee for cloud users. In this research, we use Open vSwitch to control and monitor the end-to-end performance of cloud user services. Therefore, our approach can dynamically adjust and allocate available bandwidth to meet the need of each cloud user. Our performance metrics include bandwidth, end-to-end delay, and the number of hops. When at least one of them does not meet predefined values in the SLA, an alternative path should be calculated via Open vSwitch. Subsequently, the cloud user’s QoS flow should be switched into the alternative feasible path where the cloud user‘s QoS can be guaranteed. In the next section, we shall investigate the performance of the proposed approach.Figure 3. Network Topology. Path 1: nodes 1, 2, 3, 4, and 6, and Path 2: nodes 1, 2, 5, and 6. This paper focuses on the research studies of Open vSwitch for resource allocation rather than a network topology. A complex topology can be similarly discussed by using the proposed approach here.A sample network topology is shown in Figure 3 where Node 1 is considered as a sender and Node 6 as a receiver. The intermediate nodes, Nodes 2, 3, 4, and 5, are switches running Open vSwitch software. There are two paths that connect the sender with the receiver. Path-1 consists of Nodes 1-2-3-4-6, and Path-2 consists of Nodes 1-2-5-6. These two paths are configured with each link speed of 100 Mbps. Generally speaking, in cloud service provider networks, network paths are often highly congested due to a large number of cloud users. The cloud service provider applies policy based on the service requested by the user and accordingly allocates resources within the network. The cloud service provider can allocate minimum amount of bandwidth to certain groups of users. If the user is willing to pay more for the service, the cloud service provider allocates the excess bandwidth. Hence, the above mentioned equation (1) checks whether the QoS flow gets the minimum assured bandwidth by generating traffic using Iperf and Netperf [16, 17] traffic generator, using ping to measure the congestion in the path and finally measures the length of the path using traceroute.V.E XPERIMENT V ALIDATIONSThe goal of this section is to implement and test our approach presented in Section IV. As shown in Figure 3, a six nodes testbed was set up to evaluate performance of the proposed QoS-guaranteed routing approach. We conducted our experiments in the Utah Emulab that is a part of GENI program [12, 13]. As shown in Figure 4, Open vSwitch, a software-based OpenFlow switch, was installed at intermediate nodes. We used Linux based traffic generators Iperf, and Netperf to write a Perl script for catching traffic performance characteristics in the experiments. We implemented a framework called flow monitor consisting of flow controller and flow client. The basic functionality of the flow controller is to fetch data from the flow client. Based onthe data received from the flow client, the flow controller will decide whether to switch a particular QoS flow on to a feasible path or not. A feasible path is such a path that sufficient bandwidth along the path is available to serve the particular QoS flow. The Flow controller selects the path using a greedy algorithm. In our experiments, we continue to search a new path until the path satisfies the QoS requirement of the QoS flow.The purpose of the flow client is to measure the bandwidth used in the particular QoS flow, congestion level and length of the entire path. That is, measured values are fed into equation (1). Based on the final value of (r), the flow controller makes a decision whether the QoS flow should use either the same service path or a new service path.Figure 4. Flow Monitor Consisting of Flow Controller andFlow ClientThe flow controller and flow client code/program are running on the Open vSwitch (OVS1) node and sender node as shown in Figure 4. The flow controller is the acting as the server waits for the flow client to connect onto the TCP port 9000. We conducted experiments to measure the performance of Open vSwitch for the testbed shown in Figures 3 and 4. Initially, we implemented three different QoS flows denoted as QoS flows 1-3 (refer to Section IV-2 for detail) for clients 1 to 3 on Nodes OVS1, OVS2 and OVS3. On intermediate nodes that are running the Open vSwitch, flows were matched with IP destination addresses and associated with certain queues id’s. Below is the command to be added to a flow. ovs-ofctl add-flow br0priority=65500,in_port=LOCAL,dl_type=0x0800,nw_proto=6 ,nw_src=ANY,nw_dst=30.0.0.13,actions=enqueue:1:2 (3) The ovs-ofctl [19] uses a default priority 65500 to match the flow. The field, in_port, represents that port where packets are ingress. Furthermore, a physical interface is part of the virtual bridge interface that is br0. The field, dl_type, matches the ether type and nw_proto matches the protocol id. In this case, TCP packet is matched. Finally, the action field indicates that the packet should be associated with a specified queue and outgoing. We generated service traffic to simulate the real-time environments for three different cloud clients with QoS flows 1, 2, and 3 and a cloud user with the best-effort service traffic. In QoS queueing policies given in Section IV-2, the minimum bandwidth of each client should be less than the overall total bandwidth of the capacity of the link along the service path, and its maximum bandwidth should be more than the capacity of the link. The link capacity of our experiments is 100 Mbps. In our experiments, the minimum bandwidth for Clients 1, 2, and 3 is chosen as 50 Mbps, 30 Mbps, and 10 Mbps, and the maximum bandwidth for Clients 1, 2, and 3 is chosen as 70 Mbps, 50 Mbps, and 20 Mbps. In Figure 3 and 4, Path 1 is highly congested with the three different QoS flows and the best-effort service traffic. Iperf [16] is used to generate service traffic.In what follows, we present a comparison of our experiment results by using the proposed approach with the ones without a use of the proposed approach. As shown in (1), our proposed approach can be realized through either delay or hop information. While the results in Figures 10 and 14 were obtained using delay as a metric or path selection, Figures 6, 9, 13, and 16 are based on per-hop information. Figures 5 and 6 show how much bandwidth is allocated to each client without and with a use of our proposed algorithm, respectively. As shown in Figure 5, the allocated bandwidth to each client except Client 2 is less than its minimum bandwidth when the proposed algorithm is not used. In this case, no QoS can be guaranteed for all clients except Client 2. We further generated TCP and UDP streams by using Netperf [17] to confirm the accuracy of the result.There are a large number of routers between cloud users and cloud providers. It is necessary to measure the per hop bandwidth of each intermediate router/hop instead of measuring the bandwidth of an entire path from client to server to ensure QoS guarantees. Measuring the bandwidth of each hop helps us to find a network bottleneck at an intermediate router. There are two open-source tools called Pathnek and STAB [20, 21] to measure per-hop bandwidth. In our experiments, we used Pathnek to measures the RTT and bandwidth at each node. Figure 6 shows the bandwidth measured at each hop for Path 1 including the intermediate nodes of OVS1, OVS2, and OVS3 between the sender and the receiver. The total bandwidth of link between sender and the OVS1 is 100 Mbps, so each client should have the same bandwidth of 100 Mbps at OVS1 node. From Node OVS1 to OVS2, different flow policies given in Section IV-2 are applied to different QoS flows. Similarly, these QoS flows policies are applied to the link from OVS2 to OVS3. As shown in Figure 6, higher bandwidth is allocated to a higher priority flow. We also conducted the experiments for Path 2. Per-hop bandwidth is shown in Figure 9.Furthermore, we measured the number of packets (i.e., throughput) that each node can achieve at a given point. Both TCP and UDP traffic are generated to represent different user applications in a real-world environment. Figure 7 shows the number of packets per second for Clients 1, 2, and 3 with different TCP flows and the client with the best-effort traffic. In the experiment, Iperf is used to generate TCP traffic for different clients in a duration of 120 seconds. The proposed algorithm is used to automatically switch available path to those clients with higher priority clients to ensuretheguarantee of QoS including bandwidth, RTT, and the number of hop. Figure 10 gives the throughputs of different TCP flows in which our proposed approach is used. For Client 1, the average number of packets per seconds was increased from 5000 in Figure 7 to 8200 in Figure 10. Similar results for other flows are observed in Figures 7 and 10. Allocated bandwidth to each client is shown in Figure 8. Furthermore, Figures 12 and 15 present the end-to-end delay of the transfer of a frame with varied sizes on TCP and UDP without and with a use of our proposed approach, respectively.Moreover, we also perform UDP traffic for Client 1 and TCP traffic for the rest of clients. As shown in Figure 13 without a use of our proposed approach, minimum bandwidth is not ensured for Clients 2 and 3 while Client 1, it is not for Client 1. Figure 11 further shows throughputs for Flows 1, 2, and 3, and best effort traffic. It clearly indicates that the average number of packets per second for Client 1 with UDP traffic was around 8000 with a frame size of about 1024 bytes. In the scenario, we also used the proposed algorithm to monitor bandwidth, RTT, and length for Flows 2 and 3 that permits us to switch Client 2 to Path 2 while Flow 1 is still kept in Path 1. Figure 14 gives a comparison of throughputs for UDP and TCP flows. As shown in Figure 14, the number of packets per second for Client 2 is increased from 1500 to 6000 when a frame size is 1514. As depicted in Figure 16, the bandwidth allocated to Clients 2 and 3 are increased as well.VI.C ONCLUSION &F UTURE W ORKIn this paper, we have studied QoS-guaranteed bandwidth allocation by using Open vSwitch. Such studies are necessary to a variety of cloud applications including voice IP, teleconferencing, and gaming. Cloud services are usually priced on a pay-per-use basis. Thus, customer services often need to be distinguished according to their service priorities and requirements. In this research, we have proposed QoS guaranteed approach to allocating bandwidth for all cloud users by introducing queueing techniques and considering the performance metrics of response time and the number of hops. We have implemented and tested our approach on GENI via Open vSwitch. The proposed approach permits us to select a path to ensure end-to-end QoS guarantees. Experimental results have shown the effectiveness of our approach. In our further study, we will implement and test our approach by using OpenFlow physical switch in at-scale networks.A CKNOWLEDGMENTWe gratefully acknowledge the partial support from National Science Foundation under grants #10656665 and #1303382 and NSF/BBN under grants #1125515 for project #1895 and #1346688 for project #1936. We are also thankful to Praveen Iyengar from RIT, Niky Riga in the GPO at BBN, and Robert Ricci at University of Utah for their helps.R EFERENCES1.R. Buyya, C. S. Yeo, and S. Venugopal, “Market- OrientedCloud Computing: Vision, Hype, and Reality for delivering IT Services” Proceedings of the 10th IEEEInternational Conference on High Performance Computing and Communications Computing Utilities, (HPCC), 2008, pp. 5 –13.2. C. N. Hoefer and G. Karagiannis, “Taxonomy of cloudcomputing services,” Proceedings of GLOBECOM Workshops (GC Workshops), IEEE, 2010, pp. 1345 –1350.3.P. Mell and T. Grance, “The NIST definition of cloudcomputing (v15),” National Institute of Standards and Technology, Technical Report, 2009.4.Craig A. Lee. “A perspective on scientific cloudcomputing” Proceedings of the 19th ACM International Symposium on High Performance Distributed Computing (HPDC). ACM, New York, NY, USA, 451-459.5.W. Zhu, C. Luo, J. Wang, and S. Li, “Multimedia CloudComputing,” Signal Processing Magazine, IEEE, vol. 28, no. 3, pp. 59 –69, May 2011.6.R. Braden, D. Clark, et.al. “Integrated services in theInternet architecture: an overview,” RFC 1633, Jun. 1994.7.J. L. Marzo, E. Calle, C. Scoglio, and T. Anjah, “QoSonline routing and MPLS multilevel protection: a survey,”IEEE Communications Magazine, vol. 41, no. 10, pp. 126 – 132, Oct. 2003.8.S. Fowler, S. Zeadally, and F. Siddiqui, “QoS pathselection exploiting minimum link delays in MPLS-based networks,” Proceedings,of Systems Communications, 2005, pp. 27 – 32.9. “Openvswitch.” [Online]. Available:/10.M. Devera, “HTB Linux queuing discipline manual - userguide.” [Online]. Available: http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm11.K. Rechert, P. McHardy, M. Brown “HFSC Schedulingwith Linux.” [Online]. Available: /articles/hfsc.en/12.“GENI” [Online]. Available: /13.“ProtoGENI” [Online]. Available:/trac/protogeni14.S. Civanlar, M. Parlakisik, A. M. Tekalp, B. Gorkemli, B.Kaytaz, and E. Onem, “A QoS-enabled OpenFlow environment for Scalable Video streaming,”Proceedings,of GLOBECOM Workshops (GC Workshops), 2010, pp. 351 –356.15.H. E. Egilmez, B. Gorkemli, A. M. Tekalp, and S.Civanlar, “Scalable video streaming over OpenFlow networks: An optimization framework for QoS routing,”Proceedings of the 18th IEEE International Conference on Image Processing (ICIP), 2011, pp. 2241 –2244.16.S. L. Spitler and D. C. Lee, “Integration of ExplicitEffective-Bandwidth-Based QoS Routing With Best-Effort Routing,” IEEE/ACM Transactions on Networking, vol.16, no. 4, pp. 957 –969, Aug. 2008.17.“Iperf ” [Online]. Available: /18.“Netperf” [Online]. Available:/netperf/19. “ovs-ofctl manual page” [Online]. Available:/cgi-bin/ovsman.cgi?page=utilities%2Fovs-ofctl.820. N. Hu, L. Li, Z. Mao, P. Steenkiste, and J. Wang.“Locating Internet bottlenecks: Algorithms, measurements,。