实验二移相键控

合集下载

移相键控实验报告

移相键控实验报告

一、实验目的1. 了解移相键控(PSK)调制解调原理,掌握其调制和解调方法。

2. 掌握M序列的性能、实现方法及其在通信系统中的应用。

3. 学习使用移相键控实验设备,验证实验原理和实验方法。

4. 掌握2PSK系统主要性能指标的测试方法。

二、实验原理移相键控(PSK)是一种数字调制方式,通过改变载波的相位来传输数字信息。

PSK 调制和解调原理如下:1. 调制:将数字信息映射到载波的相位上,实现数字信息的传输。

常用的PSK调制方式有BPSK、QPSK、8PSK等。

2. 解调:对接收到的信号进行相位检测,恢复出原始数字信息。

常用的解调方法有相干解调和非相干解调。

M序列是一种具有良好自相关特性的伪随机序列,广泛应用于通信系统中的同步、码分复用等场合。

三、实验仪器1. 移相键控实验设备:包括M序列发生器、调制器、解调器、示波器等。

2. 直流稳压电源、信号发生器、频率计等。

四、实验内容1. M序列性能测试(1)观察M序列发生器输出波形,记录M序列的周期、自相关特性等。

(2)使用示波器观察M序列与参考信号之间的相位差,验证M序列的自相关特性。

2. 2PSK调制解调实验(1)将M序列信号作为输入,通过调制器实现2PSK调制。

(2)使用示波器观察调制后的信号波形,记录信号的主要参数。

(3)将调制后的信号作为输入,通过解调器实现2PSK解调。

(4)使用示波器观察解调后的信号波形,记录信号的主要参数。

3. 同相正交环实验(1)观察同相正交环电路的组成,了解其工作原理。

(2)将调制后的信号作为输入,通过同相正交环电路实现相位检测。

(3)使用示波器观察同相正交环电路输出波形,记录信号的主要参数。

4. 性能指标测试(1)测量调制信号的频率、幅度等参数。

(2)测量解调信号的频率、幅度等参数。

(3)计算调制信号和解调信号的误码率。

五、实验结果与分析1. M序列性能测试实验结果表明,M序列发生器输出波形符合预期,周期、自相关特性等参数符合理论分析。

振幅键控、移频键控、移相键控调制实验

振幅键控、移频键控、移相键控调制实验

实验十五振幅键控、移频键控、移相键控调制实验一、实验目的1、掌握用键控法产生2ASK、2FSK、2DPSK信号的方法。

2、掌握相对码波形与2PSK信号波形之间的关系、绝对波形与2DSPK信号波形之间的关系3、掌握掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

4、2ASK、2FSK、2DPSK信号的频谱特性。

二、实验内容1、观察绝对码、相对码波形。

2、观察2ASK、2FSK、2DPSK信号波形3、观察2ASK、2FSK、2DPSK信号频谱三、实验器材信号源模块数字调制模块频谱分析模块20M双踪示波器频率计四、实验原理1、2ASK调制原理控制下通或段,即用载波幅度的有无来代表信号中的“1”或“0”,这样就可以得到2ASK信号,这种二进制振幅键控方式称为通——段键控(OOK)。

2ASK 信号典型的时域波形如图所示,其时在振幅键控中载波幅度是随着基带信号而变化的。

将载波在二进制基带信号1或0的域数学表达式为S2ASK(t)=a n*Acos c t则S(t)的功率谱密度表达式为P S (f)=f s P(1-P)G(f)2+f s 2(1-p)2)0(G 2()f ς2ASK 信号的双边功率谱密度表达式为()()()[]()()[]22222222ASK )0()1(41)1(41P c c s c c s f f f f G p p f f f G f f G p p f f -++-+-++-=ςς上式表明2ASK 信号的功率谱密度由两个部分组成:(1)由g (t )经线性幅度调制所形成的双边带连续谱;(2)由被调载波分量确定的载频离散谱。

2ASK 信号的普零点带宽为B 2PSK =(f c +R s )-(f c -R s )=2R s =2/T s2ASK 的原理框图2、2FSK 调制原理2FSK 信号时用载波频率的变化来表征被传信息上网状态的,被调载波的频率随二进制序列0、1状态而变化,即载波为f 0时代表传0,载波为f 1是代表1。

通原实验2 PSK实验

通原实验2  PSK实验
1 , 以 P S 2 ASK ( t ) a n g( t nTs ) cos c t an 0 , 以 1 P n 1 , 以 P S 2 PSK ( t ) a n g( t nTs ) cos c t an 1 , 以 1 P n
厚德博学 追求卓越
(1)同一调制方式不同检测方法的比较 可以看出,对于同一调制方式不同检测方法,相干检测的抗噪声性能优于 非相干检测。但是,随着信噪比
的增大,相干与非相干误码性能的相对差别越不明显。另 的设备比非相干的要复杂。 (2)同一检测方法不同调制方式的比较 1)相干检测时,在相同误码率条件下,对信噪比 的要求是:2PSK比2FSK小3dB,2FSK比2ASK小3dB; 2)非相干检测时,在相同误码率条件下,对信噪比 的要求是:2DPSK比2FSK小3dB,2FSK比2ASK小3dB。 反过来,若信噪比 一定,2PSK系统的误码率低于2FSK系统,2FSK系统的误码率低于2ASK系统。 因此,从抗加性白噪声上讲,相干2PSK性能最好,2FSK次之,2ASK最差。
厚德博学 追求卓越
通信原理实验
第二单元
数字调制与解调系统实验
数字调制与解调技术的重点是:数字基带信号与数字频带信号之 间的转换,实验的目的是掌握实现这种转换的技术。目前采用最多 的方法是键控法,它是用数字基带信号控制高频载波的可控参数。 实际工程中常应用的数字调制方式有:ASK、FSK与PSK。 厚德博学 追求卓越

绝对码 1
0
0
1
1
1
0
2 P S K
载波 0相位 2DPSK

0
厚德博学 追求卓越
1、5
相对移相信号的产生原理

幅度键控、频移键控和相移键控调制解调实验.doc

幅度键控、频移键控和相移键控调制解调实验.doc

幅度键控、频移键控和相移键控调制解调实验.实验四。

振幅移位键控、频率移位键控、相移键控调制和解调实验一、实验目的1。

掌握绝对码和相对码的概念及其转换关系和转换方法。

掌握键控产生2ASK和2FSK信号的方法,以及2ASK相干解调和2FSK过零检测解调的原理。

掌握相对码波形和2FSK信号波形4之间的关系。

掌握2ASK和2FSK信号的频谱特征2.实验内容(包括技术指标)1。

观察绝对代码和相对代码2的波形。

观察2ASK和2FSK信号3的波形。

观察2ASK和2FSK信号4的频谱。

观察2ASK和2FSK解调信号5的波形。

观察2FSK过零检测解调器在所有点的波形三、实验设备信号源模块、数字调制模块、频谱分析模块、数字解调模块、同步信号提取模块、数字示波器、若干连接线4.实验原理当调制信号是二进制序列时,数字波段调制称为二进制数字调制。

由于调制载波具有幅度、频率和相位三个独立的可控参数,当这三个参数分别被二进制信号调制时,形成三个基本的数字带调制信号,即二进制幅度键控(2ASK)、二进制频移键控(2FSK)和二进制相移键控(2PSK),而每个调制信号的受控参数只有两个离散的变换状态。

1.2 ASK调制原理。

在幅度键控中,载波幅度随着基带信号的变就是说,载波幅度的存在或不存在表示信号中的“1”或“0”,从而获得2ASK信号。

这种二进制幅度键控方法称为开关键控(OOK)。

2 2ASK 信号的典型时域波形如图15-一、实验目的1。

掌握绝对码和相对码的概念及其转换关系和转换方法。

掌握键控产生2ASK和2FSK信号的方法,以及2ASK相干解调和2FSK过零检测解调的原理。

掌握相对码波形和2FSK信号波形4之间的关系。

掌握2ASK和2FSK信号的频谱特征2.实验内容(包括技术指标)1。

观察绝对代码和相对代码2的波形。

观察2ASK和2FSK信号3的波形。

观察2ASK和2FSK信号4的频谱。

观察2ASK和2FSK解调信号5的波形。

无线通信原理实验报告

无线通信原理实验报告

无线通信原理实验报告摘要:BPSK(Binary Phase Shift Keying )即双相频移键控,是把模拟信号转换成数据值的转换方式之一。

利用偏离相位的复数波浪组合来表现信息键控移相方式的一种。

本实验将简要介绍BPSK调制方式的特点,调制解调方法,以及在Matlab中在AWGN信道中的误码性能。

在载波相位调制中,通信信道传输的信息寄寓在载波相位中,于二进制相位调制而言,两个载波的相位即θ =0和θ =π,用以代表二进制“1”和“0”,而载波振幅和频率保持不变。

基于MATLAB 的Monte Carlo仿真可用于分析BPSK调制在AWGN信道中的误码性能。

OFDM技术是一种多载波传输技术,其主要特点是把高速的信息分割到多个正交子载波上并进行低速传送;由于子载波互相交叠和正交,它们可以独立并行传送信息符号而不互相干扰,同时保持较高频谱利用率。

OFDM系统一方面提高了对时域脉冲噪声的鲁棒性;另一方面,基于块传输技术的OFDM技术在每个OFDM信息符号之间加上保护间隔(Time Interval Guard, TGI ),只要保护间隔的长度大于信道冲激响应(Channel Impulse Response, CIR)的最大时延扩展,系统的所有子载波之间的正交性在通过信道之后就能够得到保持。

OFDM 这种基于块传输的正交多载波传送方式使它具有抗符号间串扰(Inter-symbol Interference, ISI)能力,同时也可以将信道均衡从复杂的时域处理转化到简单易行的频域处理。

在OFDM系统中,系统可以根据子载波的工作环境在子载波间灵活应用自适应调制技术、自适应功率分配技术等,来进一步提高系统的传输效率和传输性能。

[关键词] BPSK;QPSK;OFDM;16QAM; MATLAB; 载波;误码率一引言1. BPSK( Binary Phase Shift Keying),BPSK使用了基准的正弦波和相位反转的波浪,使一方为0,另一方为1,从而可以同时传送接受2值(1比特)的信息。

二相差分移相键控(2DPSK)实验

二相差分移相键控(2DPSK)实验

二相差分移相键控(2DPSK )实验一、实验目的1. 加深理解二相差分移相键控(2DPSK )系统的基本工作原理与电路组成。

2. 学会利用示波器观察基带信号眼图的方法及用眼图来衡量数字传输系统的传输质量。

3. 掌握用误码率测试仪测试误码的方法,熟悉2DPSK 的抗干扰功能。

二、实验仪器COS5020双踪示波器一台; JW —2B 双路稳压电源一台; UZ —3噪声产生器一台;YWS —5210误码率测试仪一台; HFP —1有效值电压表一台; 2DPSK MODEM 实验装置一套。

三、2DPSK MODEM 系统原理方框图和线路图PSK 在数字通信系统中是一种重要的调制方式,其抗噪性能和信道频带利用率均优于ASK 和FSK ,因而在实际的数据传输系统中得到广泛的应用。

2DPSK MODEM 系统的原理框图如图2. 1所示。

2DPSK MODEM 调制器的电原理图如图2. 2所示。

2DPSK MODEM 解调器的电原理图如图2. 3所示。

信码发生器和噪声产生器的电原理图如图2.4所示。

图2.1 2DPSK MODEM 系统的原理框图2DPSK 输出19.2kH z 载波图2.2 2DPSK MODEM 调制器的电原理图出码)1274L S 86图2.3 2DPSK MODEM 解调器的电原理图CP z31位M 序列(a )31位M 序列产生器电原理图(b)噪声产生器电原理图图2.4 信码发生器和噪声产生器的电原理图四、2DPSK MODEM系统基本工作及测试原理⒈ 调制器调制器采用数字调制方式。

它是由晶体振荡器,分频器,差分编码和调相电路组成。

在图2.1 中,晶体振荡器产生11.0592MHZ的方波信号,该信号经÷9,÷64分频电路后分别产生调制器和解调器所需的19.2kHZ载波信号和2.4kHZ时钟信号。

显然,本实验装置的码元速率是2400bit/s。

差分移相是利用前后相邻码元信号的相对载波相位变化来传递数字信息。

实验02(移相器)实验报告

实验02(移相器)实验报告

实验二-移相器、相敏检波器及交流电桥实验实验1:移相器实验:一、实验目的了解运算放大器构成的移相电路的原理及工作情况二、实验原理图三、实验器械移相器、音频振荡器、双线(双踪)示波器、主、副电源四、实验数据记录和数据处理实验数据如下:5Khz时,移相范围为15us7Khz时,移相范围为14us9Khz时,移相范围为15us五、实验思考题根据图2-1,分析本移相器的工作原理,并解释所观察到的现象答:任何传输介质对在其中传导的波动都会引入相移。

实验2:相敏检波器实验一、实验目的了解相敏检波器的原理和工作情况二、实验原理图相敏检波电路如图2-2 所示,图中(1)端为输入信号端,(3)为输出端,(2)为交流参考电压输入端,(4)为直流参考电压输入端。

(5)、(6)为两个观察口。

三、实验器械相敏检波器、移相器、音频振荡器、示波器、直流稳压电源、低通滤波器四、实验数据记录和数据处理实验数据如下:实验数据拟合图像如下:五、思考题1、根据相敏检波器原理图2-2,定性分析此相敏检波器电路的工作原理。

答:模拟PSD:使用乘法器,通过与待测信号频率相同的参考信号与待测信号相乘,其结果通过低通滤波器得到与待测信号幅度和相位相关的直流信号。

2、根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?答:相敏检波器鉴别调制信号相位和选频,移相器对波的相位进行调整实验3:交流全桥的测重实验一、实验目的了解交流供电的四臂应变电桥的原理和工作情况二、实验原理交流全桥侧重原理与直流电桥一样,也是利用箔式应变片的电阻应变效应来完成的。

将R1、R2、R3、R4 四个箔式应变片按它们的受力方向接入组成全桥,从音频振荡器的LV 端给全桥电路一个音频信号,当电桥对应两边的阻抗乘积相等时,电桥达到平衡,输出为零。

交流电桥工作时增大相角差可以提高灵敏度,传感器最好是纯电阻性或纯电抗性的。

交流电桥只有在满足输出电压的实部和虚部均为零的条件下才会平衡。

实验指导书 第5节 2DPSK调制与相干解调

实验指导书 第5节 2DPSK调制与相干解调

2DPSK调制与相干解调一、实验目的1、了解2DPSK的调制原理;2、掌握绝对码、相对码相互变换方法;二、实验内容1、用示波器观察2DPSK调制器信号波形与绝对码比较是否符合调制规律;2、用示波器观察2DPSK信号频谱;3、用示波器观察2DPSK信号解调器信号波形;4、观察相位含糊所产生的后果;三、预习要求:1、复习教材有关2DPSK的调制与解调的理论。

2、复习绝/相、相/绝变换的原理。

四、实验原理1、2DPSK调制二进制差分相移键控常简称为二相相对调相,记作2DPSK。

它不是利用载波相位的绝对数值传送数字信息,而是用前后码元的相对载波相位值传送数字信息。

所谓相对载波相位是指本码元初相与前一码元初相之差。

假设相对载波相位值用相位偏移表示,并规定数字信息序列与之间的关系为则按照该规定可画出2DPSK信号的波形如图1所示。

由于初始参考相位有两种可能,因此2DPSK信号的波形可以有两种(另一种相位完全相反,图中未画出)。

为便于比较,图中还给出了2PSK信号的波形。

由图1可以看出:(1)与2PSK的波形不同,2DPSK波形的同一相位并不对应相同的数字信息符号,而前后码元的相对相位才能唯一确定信息符号。

这说明解调2DPSK信号时,并不依赖于某一固定的载波相位参考值,只要前后码元的相对相位关系不破坏,则鉴别这个相位关系就可正确恢复数字信息。

这就避免了2PSK方式中的“倒π”现象发生。

由于相对移相调制无“反问工作”问题,因此得到广泛的应用。

(2)单从波形上看,2DPSK与2PSK是无法分辩的,比如图1中2DPSK也可以是另一符号序列(见图中下部的序列,称为相对码,而将原符号序列称为绝对码)经绝对移相而形成的。

这说明,一方面,只有已知移相键控方式是绝对的还是相对的,才能正确判定原信息;另一方面,相对移相信号可以看作是把数字信息序列(绝对码)变换成相对码,然后再根据相对码进行绝对移相而形成。

这就为2DPSK信号的调制与解调指出了一种借助绝对移相途径实现的方法。

QPSK 调制解调

QPSK 调制解调
四相绝对相移键控 QPSK是属于多进制数字相位调制,它是利用载波的四种不同相 位来表征输入的数字信息。目前广泛应用于数字微波通信系统,数字卫星通信系统,宽 带接入与移动通信,以及有线电视的上行传输。但四相相移键控信号,在码元交替处的 载波相位往往是突变的,当相邻的两个码元同时转换时,会出现±π的相位跳变,这会 使调相波的包络上出现零(交)点,其信号功率谱上将产生很强的旁瓣分量。因此从 QPSK方式派生出一种新的相位调制方式,交错四相相移键控(OQPSK)。即在 QPSK调 制的正交支路上引入一个比特(半个码元)的时延,使得两个支路的数据不会同时发生 变化,从而不可能产生±π的相位跳变,仅产±π/2的相位跳变。
关键词: 相移键控 四相移键控 QPSK调制 相干解调
I
×××大学本科毕业设计
QPSK Demodulation Experimental Design
Abstract:Indigitalcommunication,weoftenmodulatanddemodulat digital
signalbyFSKandPSKtotransmitdigitalinformation。 Nowadays,PSKoftenuse QPSK and NPSK. Any digital modulation scheme uses a finite number of distinct signals to represent digital data. PSK uses a finite number of phases, each assigned a unique pattern of binary digits. Usually, each phase encodes an equal number of bits. Each pattern of bits forms the symbol that is represented by the particular phase. The demodulator, which is designed specifically for the symbol-set used by the modulator, determines the phase of the received signal and maps it back to the symbol it represents, thus recovering the original data. This requires the receiver to be able to compare the phase of the received signal toareferencesignal— suchasystemistermedcoherent(andreferredtoas CPSK). This text is detailed on the concept,implement and principle of QPSK. It also detailed introduces the designedand realize of QPSK.

振幅键控、移频键控、移相键控调制与解调实验

振幅键控、移频键控、移相键控调制与解调实验

实验四. 振幅键控、移频键控、移相键控调制和解调实验一、实验目的1.掌握绝对码、相对码概念以及它们之间的变换关系和变换方法2.掌握用键控法产生2ASK、2FSK信号的方法,以及2ASK相干解调、2FSK过零检测解调的原理3.掌握相对码波形与2FSK信号波形之间的关系4.掌握2ASK、2FSK信号的频谱特性二、实验内容(含技术指标)1.观察绝对码和相对码的波形2.观察2ASK、2FSK信号波形3.观察2ASK、2FSK信号频谱4.观察2ASK、2FSK解调信号波形5.观察2FSK过零检测解调器各点波形三、实验器材信号源模块数字调制模块频谱分析模块数字解调模块同步信号提取模块数字示波器一台连接线若干四、实验原理调制信号为二进制序列时的数字频带调制称为二进制数字调制。

由于被调载波有幅度、频率、相位三个独立的可控参量,当用二进制信号分别调制这三种参量时,就形成了二进制振幅键控(2ASK)、二进制移频键控(2FSK )、二进制移相键控(2PSK)三种最基本的数字频带调制信号,而每种调制信号的受控参量只有两种离散变换状态。

1. 2ASK 调制原理。

在振幅键控中载波幅度是随着基带信号的变化而变化的。

使载波在二进制基带信号1或0的控制下通或断,即用载波幅度的有或无来代表信号中的“1”或“0”,这样就可以得到2ASK 信号,这种二进制振幅键控方式称为通—断键控(OOK )。

2ASK 信号典型的时域波形如图15-1所示,其时域数学表达式为:2()cos ASK n c S t a A t ω=⋅(15-1)式中,A 为未调载波幅度,c ω为载波角频率,n a 为符合下列关系的二进制序列的第n 个码元:⎩⎨⎧=P P a n -出现概率为出现概率为110(15-2)综合式15-1和式15-2,令A =1,则2ASK 信号的一般时域表达式为:t t S c ωcos )(=(15-3)式中,T s 为码元间隔,()g t 为持续时间 [-T s /2,T s /2] 内任意波形形状的脉冲(分析时一般设为归一化矩形脉冲),而()S t 就是代表二进制信息的随机单极性脉冲序列。

通信原理实验实验3-4 2ASK2FSK2PSK2DPSK实验

通信原理实验实验3-4 2ASK2FSK2PSK2DPSK实验

模拟开关电路2 (CD4066)
PSK信号输出 13
2PSK解调原理框图 科斯塔斯环(Costas环)
输入 信号
载频 输出
VCO
90°移相
低通
环路 滤波器
低通
解调 输出
14
2DPSK
绝对码转换为相对码: 时钟与基带数据发生模块
相对码转换为绝对码: 复接/解复接、同步技术模块
注意:本实验只做2DPSK,不做2PSK
9
10
2PSK信号波形
1
0
0
TB
S2PSK(t)
A
1
1
2TB
3TB
4TB
t
0
t
-A
11
2DPSK信号波形
数字信息(绝对码)
00
1
110 0 1
PSK波形
DPSK波形
相对码
0
0
0
1
0
1
1
1
0
12
2PSK调制原理框图
相位选择法
模拟开关电路1 (CD4066)
PSK基带输入
PSK载波输入
反相器
载波反相器
15
各测量点作用
37TP02:同相1024KHz载波(正弦波)信号; 37TP03:反相1024KHz载波(正弦波)信号; 37P01:数字基带信号输入; 37P02:2PSK已调信号输出;
38P01: 2PSK信号; 38P02:2PSK解调输出。
39P07:相对码到绝对码转换后的输出信号。
17
实验报告要求
按照指导书中“实验总结”的要求写实验报告; 每个波形图要清楚注明是什么信号,要注意波形的
时间对应关系。

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

通信原理实验,码型变换,移相键控调制与解调,眼图,抽样定理,.

实验一码型变换实验一、基本原理在数字通信中, 不使用载波调制装置而直接传送基带信号的系统, 我们称它为基带传输系统,基本结构如图所示。

干扰基带传输系统的基本结构基带信号是代码的一种电表示形式。

在实际的基带传输系统中, 并不是所有的基带电波形都能在信道中传输。

对传输用的基带信号的主要要求有两点:(1对各种代码的要求,期望将原始信息符号编制成适合于传输用的码型; (2 对所选码型的电波形要求, 期望电波形适宜于在信道中传输。

AMI :AMI 码的全称是传号交替反转码。

这是一种将信息代码 0(空号和 1(传号按如下方式进行编码的码:代码的 0仍变换为传输码的 0, 而把代码中的 1交替地变换为传输码的 +1, -1, +1, -1,……。

HDB3:HDB 3码是对 AMI 码的一种改进码,它的全称是三阶高密度双极性码。

其编码规则如下:先检察消息代码(二进制的连 0情况,当没有 4个或 4个以上连 0串时,按照 AMI 码的编码规则对信息代码进行编码; 当出现 4个或 4个以上连 0串时, 则将每 4个连 0小段的第 4个 0变换成与前一非 0符号 (+1或 -1 同极性的符号, 用V 表示 (即 +1记为 +V, -1记为 -V ,为使附加 V 符号后的序列不破坏“极性交替反转”造成的无直流特性,还必须保证相邻 V 符号也应极性交替。

当两个相邻 V 符号之间有奇数个非 0符号时,用取代节“ 000V ” 取代 4连 0信息码; 当两个相邻 V 符号间有偶数个非 0符号时, 用取代节“ B00V ” 取代 4连 0信息码。

CMI :CMI 码是传号反转码的简称,其编码规则为:“ 1”码交替用“ 11”和“ 00”表示; “ 0”码用“ 01”表示。

BPH :BPH 码的全称是数字双相码,又称 Manchester 码,即曼彻斯特码。

它是对每个二进制码分别利用两个具有 2个不同相位的二进制新码去取代的码,编码规则之一是: 0→ 01(零相位的一个周期的方波1→ 10(π相位的一个周期的方波二、实验结果CMIBPHHDB3 AMI三、结果分析各码型波形如上所示, 我们发现许多波形产生了不同程度的畸变, 表现是幅值不是单一的水平线, 而成了曲线。

移相键控实验_实验报告

移相键控实验_实验报告

一、实验模块移相键控实验二、实验标题移相键控技术及其应用三、实验目的1. 了解移相键控技术的基本原理和实现方法;2. 掌握移相键控信号的调制与解调过程;3. 分析移相键控技术的优缺点及其在实际通信系统中的应用。

四、实验原理移相键控(Phase Shift Keying,PSK)是一种数字调制技术,通过改变载波的相位来表示数字信息。

根据相位变化的不同,PSK可以分为绝对移相键控(APSK)和相对移相键控(DPSK)。

1. 绝对移相键控(APSK):在APSK中,载波的相位变化与数字信息直接相关。

当数字信息为“0”时,载波的相位保持不变;当数字信息为“1”时,载波的相位发生跳变。

2. 相对移相键控(DPSK):在DPSK中,载波的相位变化与数字信息之间的相对关系有关。

即,载波的相位变化取决于前后码元的相位差。

移相键控技术具有以下优点:1. 频谱利用率高;2. 抗干扰能力强;3. 信号传输速率高。

五、实验内容1. 实验器材:示波器、数字信号发生器、功率计、计算机等。

2. 实验步骤:(1)设置数字信号发生器,产生一个包含数字信息(0和1)的信号。

(2)使用示波器观察数字信号发生器输出的数字信号。

(3)设置数字信号发生器,产生一个载波信号。

(4)使用示波器观察数字信号发生器输出的载波信号。

(5)将数字信号和载波信号输入到调制器中,实现移相键控调制。

(6)使用示波器观察调制器输出的移相键控信号。

(7)将移相键控信号输入到解调器中,实现移相键控解调。

(8)使用示波器观察解调器输出的解调信号。

(9)分析移相键控信号的调制与解调过程,评估移相键控技术的性能。

六、实验结果与分析1. 实验结果(1)通过示波器观察到数字信号发生器输出的数字信号。

(2)通过示波器观察到数字信号发生器输出的载波信号。

(3)通过示波器观察到调制器输出的移相键控信号。

(4)通过示波器观察到解调器输出的解调信号。

2. 实验分析(1)移相键控信号的调制过程:数字信号与载波信号经过调制器进行相位调制,实现数字信息的传输。

本科毕业设计论文--通信原理课程设计报告2psk系统仿真

本科毕业设计论文--通信原理课程设计报告2psk系统仿真

华南理工大学通信原理课程设计报告题目:2PSK系统仿真专业:班级:姓名:学号:日期:20XX年XX月一、实验需要材料MATLAB 软件二、实验要求完成规定系统的MATLAB 编程以及simulink 的仿真,基本内容包括:输入信号,系统中各个关键模块的输出情况。

并调整仿真的参数得到不同的仿真结果。

三、设计原理2PSK 汉语全称:二进制相移键控。

2PSK 是相移键控的最简单的一种形式,它用两个初相相隔为180的载波来传递二进制信息。

所以也被称为BPSK 。

Simulink 简介:Simulink 是Mathworks 公司推出的基于Matlab 平台的著名仿真环境Simulin 作为一种专业和功能强大且操作简单的仿真工具,目前已被越来越多的工程技术人员所青睐,它搭建积木式的建模仿真方式既简单又直观,而且已经在各个领域得到了广泛的应用。

数字信号的传输方式分为基带传输和带通传输,在实际应用中,大多数信道具有带通特性而不能直接传输基带信号。

为了使数字信号在带通信道中传输,必须使用数字基带信号对载波进行调制,以使信号与信道的特性相匹配。

这种用数字基带信号控制载波,把数字基带信号变换为数字带通信号的过程称为数字调制。

数字调制技术的两种方法:①利用模拟调制的方法去实现数字式调制,即把数字调制看成是模拟调制的一个特例,把数字基带信号当做模拟信号的特殊情况处理。

②利用数字信号的离散取值特点通过开关键控载波,从而实现数字调制。

这种方法通常称为键控法,比如对载波的相位进行键控,便可获得相移键控(PSK )基本的调制方式。

图1 相应的信号波形的示例1 0 1调制原理:在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散变化时,则产生二进制移相键控(2PSK)信号。

2PSK 信号调制有两种方法,即模拟调制法和键控法。

通常用已调信号载波的 0°和 180°分别表示二进制数字基带信号的 1 和 0,模拟调制法用两个反相的载波信号进行调制。

相移键控

相移键控

1、实验目的(1)通过本次实验学习相移键控的工作原理。

(2)加强学习matlab 的使用方法。

2、实验内容(1)二进制相移键控(Binary Phase Shift Keying ,缩写为2PSK )是载波的相位随着二进制数字基带信号而变化,而振幅和频率保持不变。

在2PSK 中,通常用初始香味0或π分别表示二进制“0”和“1”,因此2PSK 信号的时域表达式为)(cos ])([)(2t nT t g a t s c ns n PSK ω∑-=若)(t g 是幅度为1持续时间为s T 的矩形脉冲,则在一个码元间隔内有πϕϕωωω或概率为概率为0),cos(1cos ,cos )(2=+=⎩⎨⎧--=n n c c c PSK t P tP t t s式中,n ϕ表示第n 个二进制符号对应的相位。

这种以载波的不同相位直接表示相应二进制数字信号的调制方式,通常称为绝对相移方式。

(2)2PSK 调制器可以采用相乘器,也可以用相位选择器来实现,两种产生方法及波形示例如图5-8所示。

图中假设示例波形的数字信号传输速率与载波频率之间有确定的倍数关系。

(3)2PSK 的解调需要采用相干解调法,相干解调器的原理框图和各点时间波形如图5-9所示。

在相干解调过程中,如何得到与接收到的2PSK 信号同频同相的相干载波是问题的关键。

这一问题将在第六章讨论载波同步问题时介绍。

正确解调的前提是假设相干载波的基准相位与2PSK 信号的调制载波的基准相位一致。

但是,由于在2PSK 信号的载波恢复过程中存在着π的相位模糊(phase ambiguity )(原因详见第六章),即恢复的本地载波和所需的相干载波可能同相,也可能反相,这种相位关系的不确定性将会造成解调出的数字基带信号和发送的数字基带信号可能正好相反,即“0”变为“1”,“1”变为“0”,从而导致错误的恢复。

这种现象常称为“倒π”现象或“反向工作”现象。

3、实验程序(仿真图)和结果2DPSK典型的波形4、实验心得体会通过本次实验使我更加了解DPSk的工作工程及其工作原理,也让我明白了simulink的使用方法,同时还增强了自己对问题的分析能力、解决能力,为今后的学习奠定了理论基础。

SystemView相移键控PSK

SystemView相移键控PSK

)(0t e )(ˆn a 例六:相移键控PSK一、实验原理二进制相移键控中,载波的振幅和频率都是不变的,只有载波的相位随基带脉冲的变化而取相应的离散值。

通常用相位0 °和180°来分别表示1或0。

这种PSK 波形在抗噪声性能方面比ASK 和FSK 都好,而且频带利用率也高,所以在中高速数传中得到广泛的应用。

如果被调制的数字基带信号是双极性不归零信号,则调制后的频带信号可用下式表示其中,+1 概率为Pa (n)=-1 概率为1-P由此可以看出,2PSK 与双边带抑制载波调幅(DSB )是完全等效的。

这种以载波的不同相位去直接表示相应的数字信息的相位键控通常被称为绝对移相方式。

1.调制部分:将信号源产生的双极性不归零信号直接同正弦载波相乘便可得到2PSK 调制信号。

其原理框图如下:基带信号a (n ) 调制信号载波A ·cos(ωt )调制信号的表达式为:2.解调部分:2PSK 信号采用相干解调。

解调部分框图为:调制信号 解调信号本地同步载波A ·cos(ωt )二、实验步骤1.根据原理图在SYSTEM VIEW 下建立仿真电路,信道中加入了高斯噪声。

)cos()()(00θω+⋅⋅=t n a A t e )(0t e )cos()()(00θω+⋅⋅=t n a A t e 低通滤波器图 2PSK 仿真系统电路参数设置Token 0:基带信号-PN码序列(频率=30Hz,电平=2Level,偏移=0V)Token 1:乘法器Token 2:载波-正弦波发生器,频率=600HzToken 3:观察窗Token 4:观察窗Token 5:乘法器Token 6:载波-正弦波发生器,频率=600HzToken 7:模拟低通滤波器(频率=225Hz,极点个数=3)Token 8:观察窗Token 9:加法器Token 10:高斯噪声发生器2.运行时间的设置运行时间=1s 采样频率=10000Hz3.运行系统在System View系统窗内运行电路后,观察各信号接收器的波形。

二相移相键控实验报告.

二相移相键控实验报告.

二相移相键控实验报告.
本次实验是关于二相移相键控的研究,该技术通常应用于无线电设备中,通过改变载
波相位差来实现信息传输。

二相移相键控技术的应用广泛,包括在通信、雷达、测距仪以
及无线电干扰等方面。

实验装置主要由信号发生器、相移键控器、示波器以及二相激光器等组成。

在实验前,我们首先对实验器材进行了一定的了解,了解了信号发生器可以输出不同频率和振幅的信号,相移键控器可以对信号的相位进行调制,而二相激光器则可以将两个频率相同、相位
差可调的激光穿过被测物体,通过处理两种激光交叉后得到的图像,来获得物体的物理参数。

在实验中,我们首先对信号发生器进行设置,利用函数生成器产生两个频率相同的正
弦信号分别作为二相激光器的输入信号,并对信号的电压、频率和相位进行调整,并将两
个激光束合并后照射到被测物体上。

接下来,我们使用相移键控器来改变其中一个激光束的相位,通过改变相位差的大小,可以观察到获得的交叉图像发生了相位位移。

这时,通过调整相移键控器的相位差,我们
可以观察到信号波形图的相位发生了改变,从而实现了相位调制。

最后,我们将激光照射到一块具有不同折射率的玻璃板上,观察到了两个光束在过程
中的相互干扰,形成了明暗交替的干涉图样,通过处理干涉图样,我们可以得到玻璃板的
折射率。

通过本次实验,我们深入了解了二相移相键控技术的基本原理和应用,学会了如何使
用信号发生器、相移键控器和二相激光器来实现信号相位的调制,同时了解了如何通过干
涉实验来获得物体的物理参数。

这为以后的科研实践提供了很好的基础。

移相键控(psk-dpsk)-实验报告版

移相键控(psk-dpsk)-实验报告版

移相键控(psk-dpsk)-实验报告版实验目的:通过对移相键控和差分移相键控的理解,了解其基本原理和应用,进一步掌握无线通信原理。

实验原理:移相键控技术是一种数字调制方式,用来传输数字信息。

它的原理是通过对高频载波进行相位调制,实现对数字信号的传输。

常见的移相键控技术包括二进制移相键控(BPSK)、四进制移相键控(QPSK)和八进制移相键控(8PSK)。

其中,BPSK是最简单的移相键控技术,可以通过对载波相位进行0°或180°的调制来传输数字信号。

差分移相键控技术(DPSK)是一种改进的移相键控技术。

它的原理是在相邻的两个符号间,只考虑相邻符号的相对相位差,而不是绝对相位差。

DPSK可以避免BPSK中的相位模糊问题,提高信号的性能和稳定性。

实验步骤:1. 将信源和载波连接到位于信号发生器的输入端和输出端的接口。

2. 在信号发生器中设置载波频率和幅度,并选择需要发送的数字信号。

3. 将信号发生器的输出连接到示波器的输入端,以观察信号的变化。

4. 在信号发生器中选择移相键控或差分移相键控技术,用不同的相位对载波进行调制,生成数字信号。

5. 重复实验步骤2-4,观察不同的移相键控技术对数字信号的影响。

实验结果:通过观察示波器上的输出信号,可以发现不同的移相键控技术会产生不同的相位变化,从而影响数字信号的传输效果。

在BPSK技术下,数字信号的每个比特只有两种相位,即0°和180°。

因此,BPSK技术的传输速率较慢。

在DPSK技术下,相邻符号的相对相位差被用于传递数字信号。

相对相位差的变化只取决于相邻符号的差异,而与绝对相位无关。

因此,DPSK技术能够提高传输速率和信号质量。

实验结论:本实验通过对移相键控技术和差分移相键控技术的理解和实验验证,得出结论如下:1. 移相键控技术通过对高频载波的相位调制来传输数字信号。

2. 常见的移相键控技术包括BPSK、QPSK和8PSK。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二移相键控(PSK/DPSK)调制与解调实验
一、实验目的
1、掌握绝对码、相对码的概念以及它们之间的变换关系和变换方法。

2、掌握用键控法产生PSK/DPSK信号的方法。

3、掌握PSK/DPSK相干解调的原理。

4、掌握绝对码波形与DPSK信号波形之间的关系。

二、实验内容
1、观察绝对码和相对码的波形和转换关系。

2、观察PSK/DPSK调制信号波形。

3、观察PSK/DPSK解调信号波形。

三、实验步骤
(一)PSK/DPSK调制实验
1、将信号源模块和模块3、4、7固定在主机箱上,将黑色塑封螺钉拧紧,确保电源接触
良好。

2、按照下表进行实验连线:
检查连线是否正确,检查无误后打开电源
3、将开关K3拨到“PSK”端,以信号输入点“PSK-NRZ”的信号为内触发源,用双踪示
波器同时观察点“PSK-NRZ”与“PSK-OUT”输出的波形。

4、不改变PSK调制实验连线。

将开关K3拨到“DPSK”端,增加连线:
“PSK-OUT”输出的波形。

5、通过信号源模块上的拨码开关S4改变PN码频率后送出,重复上述实验。

6、实验结束关闭电源。

(二)PSK/DPSK解调实验
1、恢复PSK调制实验的连线,K3拨到“PSK”端,然后增加以下连线:
检查连线是否正确,检查无误后再次打开电源
2、将模块7上的拨码开关S2拨为“0110”,观察模块4上信号输出点“PSK-DOUT”处
的波形。

并调节模块4上的电位器W4(逆时针拧到最大),直到在该点观察到稳定的PN码。

3、用示波器双踪分别观察模块3上的“PSK-NRZ”和模块4上的“OUT3”处的波形,比
较二者波形。

4、通过信号源模块上的拨码开关S4改变PN码频率后送出,重复上述实验。

5、DPSK解调与PSK解调基本相同,它多了一个逆差分变换过程,注意通过开关K1选
择DPSK方式解调,学生可以在老师的指导下自己完成连线观察解调波形。

6、实验结束关闭电源,拆除连线,整理实验数据及波形完成实验报告。

四、实验报告要求
1、分析实验电路的工作原理,叙述其工作过程。

2、根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。

写出完成本次实验后的心得体会以及对本次实验的改进建议。

相关文档
最新文档