第2篇 第10讲 导数的概念及运算
导数的定义与计算
导数的定义与计算导数是微积分中的重要概念,它用于描述函数在某一点处的变化率。
本文将介绍导数的定义和计算方法。
一、导数的定义在数学中,导数可以通过极限的方法来定义。
设函数y=f(x),若函数在点x处的导数存在且有限,则导数表示为f'(x),它表示函数f(x)在点x处的变化率。
导数可以理解为函数在某一点的瞬时变化率。
通过导数,我们可以研究函数的变化趋势、拐点、极值等重要性质。
二、导数的计算方法导数的计算方法有多种,下面将介绍一些常见的计算方法。
1. 函数可导情况下的基本运算法则(1)常数法则:若c为常数,则导数(常数)=0。
(2)幂函数法则:若f(x)=x^n,其中n为常数,则导数f'(x)=nx^(n-1)。
(3)指数函数法则:若f(x)=a^x,其中a为常数,则导数f'(x)=a^x*ln(a)。
(4)对数函数法则:若f(x)=log_a(x),其中a为常数,则导数f'(x)=1/(x*ln(a))。
(5)三角函数法则:若f(x)=sin(x),则导数f'(x)=cos(x)。
2. 导数的基本运算法则(1)和差法则:若f(x)=u(x)+v(x),则导数f'(x)=u'(x)+v'(x)。
(2)积法则:若f(x)=u(x)v(x),则导数f'(x)=u'(x)v(x)+u(x)v'(x)。
(3)商法则:若f(x)=u(x)/v(x),则导数f'(x)=(u'(x)v(x)-u(x)v'(x))/[v(x)]^2。
(4)复合函数法则:若f(x)=g(h(x)),则导数f'(x)=g'(h(x))*h'(x)。
3. 使用导数计算函数的极值为了找到函数的极值点,我们可以先求得函数的导数,然后解方程f'(x)=0。
解得的x值即为函数的极值点。
三、导数的应用导数是微积分的基本工具,它在许多实际问题中具有广泛的应用。
2019版数学(理)高分计划一轮高分讲义:第2章 函数、导数及其应用 2.10 导数的概念及运算
2.10导数的概念及运算[知识梳理]1.变化率与导数(1)平均变化率(2)导数2.导数的运算[诊断自测] 1.概念思辨(1)f ′(x 0)与(f (x 0))′表示的意义相同.( )(2)f ′(x 0)是函数y =f (x )在x =x 0附近的平均变化率.( ) (3)与曲线只有一个公共点的直线一定是曲线的切线.( ) (4)曲线y =f (x )在点P (x 0,y 0)处的切线与过点P (x 0,y 0)的切线相同.( )答案 (1)× (2)× (3)× (4)×2.教材衍化(1)(选修A2-2P 6例1)若函数f (x )=2x 2-1的图象上一点(1,1)及邻近一点(1+Δx,1+Δy ),则Δy Δx 等于( )A .4B .4xC .4+2ΔxD .4+2(Δx )2答案 C解析 Δy =(1+Δy )-1=f (1+Δx )-f (1)=2(1+Δx )2-1-1=2(Δx )2+4Δx ,∴错误!=2Δx +4,故选C.(2)(选修A2-2P 18T 7)f (x )=cos x 在错误!处的切线的倾斜角为________. 答案错误!解析 f ′(x )=(cos x )′=-sin x ,f ′错误!=-1, tan α=-1,所以α=3π4. 3.小题热身(1)(2014·全国卷Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1 C.2 D.3答案D解析y′=a-错误!,当x=0时,y′=a-1=2,∴a=3,故选D.(2)(2017·太原模拟)函数f(x)=x e x的图象在点(1,f(1))处的切线方程是________.答案y=2e x-e解析∵f(x)=x e x,∴f(1)=e,f′(x)=e x+x e x,∴f′(1)=2e,∴f(x)的图象在点(1,f(1))处的切线方程为y -e=2e(x-1),即y=2e x-e.题型1导数的定义及应用错误!已知函数f(x)=错误!+1,则错误!错误!的值为()A.-错误! B.错误! C.错误!D.0用定义法.答案A解析由导数定义,错误!错误!=-错误!错误!=-f′(1),而f′(1)=错误!,故选A。
导数的概念及运算(详解)——精品文档
导数的概念及运算【知识梳理】1.用定义求函数的导数的步骤. (1)求函数的改变量Δy ; (2)求平均变化率xy ∆∆. (3)取极限,得导数f '(x 0)=0lim→∆x xy ∆∆. 2.导数的几何意义和物理意义:几何意义:曲线f (x )在某一点(x 0,y 0)处的导数是过点(x 0,y 0)的切线的 。
物理意义:若物体运动方程是s =s (t ),在点P (i 0,s (t 0))处导数的意义是t =t 0处的 。
3. 几种常见函数的导数'c =0(c 为常数);()n x '=1n nx -(R n ∈);'(sin )x = ;'(cos )x = ;(ln )x '=1x ; (log )a x '=1log a e x; '()x e =x e ;'()x a =ln x a a .4.运算法则①求导数的四则运算法则:'()u v ±=''u v ±;'()uv = ;'u v ⎛⎫= ⎪⎝⎭(0)v ≠.②复合函数的求导法则:'(())x f x ϕ=''()()f u x ϕ或x u x u y y '''⋅=【典型例题——重难点】(1)平均变化率的实际含义是改变量与自变量的改变量的比。
问题1.比较函数()2x f x =与()3x g x =,当[1,2]x ∈时,平均增长率的大小。
问题2. 已知2)2cos 1(x y +=,则='y .问题3. 求322+=x y 在点)5,1(P 和)9,2(Q 处的切线方程。
【典型例题——考点归纳】考点1: 导数概念题型1.求函数在某一点的导函数值 [例1] 设函数()f x 在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于( )A .)('0x fB .0'()f x -C .0()f xD .0()f x - 考点2.求曲线的切线方程[例2] 如图,函数)(x f y =的图像在点P 处的切线方程是 8+-=x y ,则)5()5(f f '+= .题型3.求计算连续函数()y f x =在点0x x =处的瞬时变化率[例3]一球沿一斜面从停止开始自由滚下,10 s 内其运动方程是s =s (t )=t 2(位移单位:m ,时间单位:s ),求小球在t =5时的加速度.考点2 导数的运算 题型1:求导运算[例1] 求下列函数的导数:(1) cos x y e x = (2)2tan y x x =+ (3)ln(1)y x =+题型2:求导运算后求切线方程例2.已知函数).(3232)(23R ∈+-=x x ax x x f(1)若1=a ,点P 为曲线)(x f y =上的一个动点,求以点P 为切点的切线斜率取最小值时的切线方程;(2)若函数),0()(+∞=在x f y 上为单调增函数,试求满足条件的最大整数a .变式训练:与曲线21y x e =相切于P (,)e e 处的切线方程是( )A . 2y ex =-B . 2y ex =+C . 2y x e =+D . 2y x e =- 题型3:求导运算后的小应用题例 3. 某市在一次降雨过程中,降雨量()y mm 与时间(min)t 的函数关系可近似地表示为()y f t ==则在时刻40min t =的降雨强度为 ( ) A.20mm B. 400mm C. 1/min 2mm D. 1/min 4mm【课堂练习】1. 曲线1y x=和2y x =在它们交点处的两条切线与x 轴所围成的三角形面积是 .2. 某质点的运动方程是2)12(--=t t S ,则在t=1s 时的瞬时速度为 ( )A .-1B .-3C .7D .133. 已知曲线C 1:y =x 2与C 2:y =-(x -2)2,直线l 与C 1、C 2都相切,求直线l 的方程.4. 设函数()()(2)(3)f x x x k x k x k =++-,且(0)6f '=,则 ( )A .0B .-1C .3D .-6 5. 设函数()()()()f x x a x b x c =---,(a 、b 、c 是两两不等的常数),则='+'+')()()(c f cb f b a f a . 6. 质量为10kg 的物体按2()34s t t t =++的规律作直线运动,动能212E mv =,则物体在运动4s 后的动能是 。
导数的概念及运算
导数的概念及运算导数是微积分中的重要概念之一,它描述了函数在某一点上的变化率。
导数的概念在数学和物理学中都有广泛的应用,是解决问题和研究现象的重要工具。
导数的定义可以通过极限来进行解释。
对于函数f(x),如果存在一个常数a,使得当x趋近于a时,函数f(x)与直线L的斜率趋近于一个确定的值,那么这个确定的值就是函数f(x)在点a处的导数。
导数通常用f'(a)或者dy/dx|_(x=a)来表示。
导数的运算规则是微积分中的重要内容之一,它可以帮助我们求解复杂函数的导数。
常见的导数运算规则包括常数法则、幂法则、和法则、差法则、乘法法则、除法法则、复合函数法则等。
常数法则指出,对于任意常数c,其导数为0,即d/dx(c) = 0。
这是因为常数不随x的变化而变化,所以其变化率为0。
幂法则指出,对于任意正整数n和常数c,有d/dx(x^n) =nx^(n-1)。
这是因为幂函数的导数与幂指数有关,且指数减1。
和法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)+g(x)) = d/dx(f(x)) + d/dx(g(x))。
这是因为求导是一个线性运算,可以对每一项分别求导。
差法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)-g(x)) = d/dx(f(x)) - d/dx(g(x))。
这也是因为求导是一个线性运算。
乘法法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)g(x)) = f'(x)g(x) + f(x)g'(x)。
这是因为乘法的导数可以通过对每一项分别求导得到。
除法法则指出,对于任意两个函数f(x)和g(x),有d/dx(f(x)/g(x)) = (f'(x)g(x) - f(x)g'(x))/[g(x)]^2。
这是因为除法的导数可以通过乘法和差法则得到。
复合函数法则指出,对于复合函数y = f(g(x)),其导数可以通过链式法则求得。
导数的概念导数公式与应用
导数的概念导数公式与应用导数是微积分中的一个重要概念,用于描述函数的变化率。
导数的概念在不同领域都有广泛应用,例如物理学、经济学和工程学等。
本文将介绍导数的概念、导数公式以及导数在实际应用中的一些例子。
导数的概念可以理解为函数在其中一点处的变化率。
具体来说,如果函数在其中一点处具有导数,那么导数等于函数在该点处的斜率。
直观地说,如果一个函数在其中一点的导数为正,意味着函数在该点附近的值在增加;如果导数为负,意味着函数在该点附近的值在减小。
如果导数等于零,在该点附近的值则没有变化。
导数的计算可以使用导数公式来简化。
对于一些常见的函数,我们可以使用已知的导数公式来得到它们的导数。
例如,对于多项式函数,如果f(x) = ax^n ,其中a和n为常数,那么它的导数为f'(x) = nax^(n-1)。
而对于指数函数f(x) = e^x ,它的导数等于它自身,即f'(x) = e^x。
通过使用这些已知的导数公式,我们可以计算更复杂函数的导数。
导数在实际应用中有着广泛的应用。
一个常见的应用是在物理学中,用于描述物体的运动。
例如,我们可以通过计算一个物体的位移函数的导数来得到它的速度函数。
同样地,计算速度函数的导数可以得到加速度函数。
通过这样的导数计算,我们可以更好地理解物体的运动规律。
另一个应用是在经济学中,用于描述供需关系。
导数可以提供给我们有关价格和数量之间关系的更多信息。
如果一个函数表示价格对其中一变量的依赖关系,那么它的导数可以告诉我们,当这个变量改变一个单位时,价格将会如何改变。
这种信息对于制定合理的价格策略和优化资源配置非常重要。
除了物理学和经济学,导数在工程学和计算机科学中也有许多应用。
在工程学中,导数可以用于解决建筑结构的优化问题,确保建筑物的稳定性。
在计算机科学中,导数可以用于图像处理和机器学习等领域,提供对图像和数据的更深入的理解。
总结起来,导数是微积分中的一个重要概念,用于描述函数的变化率。
新课程2021高考数学一轮复习第二章第10讲导数的概念及运算课件
[考向预测] 从近三年高考情况来看,本讲是高考中的必考内容.预测 2021 年高考将会涉及导数的运算及几何意义.以客观题的形式考查导数的定 义,求曲线的切线方程.导数的几何意义也可能会作为解答题中的一问进行 考查,试题难度属中低档.
1
PART ONE
基础知识过关
1.变化率与导数 (1)平均变化率
① ②
由①知 x0≠0,故②可化为 1+x20+ax0=0,
所以 ax0=-1-x20,代入①得 3x20+2(-1-x20)=-1,即 x20=1,解得 x0=±1. 当 x0=1 时,a=-2,f(x0)=x30+ax20=-1;当 x0=-1 时,a=2,f(x0)=x30+ ax20=1,所以点 P 的坐标为(1,-1)或(-1,1).
2.小题热身 (1)下列函数求导运算正确的个数为( ) ①(3x)′=3xlog3e;②(log2x)′=x·l1n 2; ③(e1-x)′=e1-x;④ln1x′=x. A.1 B.2 C.3 D.4
答案 A
解析 ①中,(3x)′=3xln 3,错误;②中,(log2x)′=x·l1n 2,正确;③ 中,(e1-x)′=-e1-x,错误;④中,ln1x′=0·llnnxx-2 1x=-xln1 x2,错误, 因此求导运算正确的个数为 1.
2.(2019·全国卷Ⅰ)曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 __y_=__3_x __.
解析 y′=3(2x+1)ex+3(x2+x)ex=ex(3x2+9x+3),∴斜率 k=e0×3 =3,∴切线方程为 y=3x.
角度 2 求切点坐标
3.(2019·广州模拟)设函数 f(x)=x3+ax2,若曲线 y=f(x)在点 P(x0,f(x0))
导数的定义和基本规则
导数的定义和基本规则1. 导数的定义导数是数学分析中的一个核心概念,主要用于研究函数在某一点处的局部性质。
具体来说,导数反映了函数在某一点处的变化率,即自变量发生微小变化时,因变量的变化量与自变量变化量的比值。
设函数f(x)在点x0处有极限,则函数f(x)在点x0处的导数定义为:f′(x0)=limΔx→0f(x0+Δx)−f(x0)Δx如果上述极限存在,则称函数f(x)在点x0处可导。
2. 基本导数公式(1)常数函数的导数:对于常数c,有f(x)=c,则f′(x)=0。
(2)幂函数的导数:对于幂函数f(x)=x n(n为实数),有f′(x)=nx n−1。
(3)指数函数的导数:对于指数函数f(x)=a x(a为常数,a≠0),有f′(x)=a x lna。
(4)对数函数的导数:对于对数函数f(x)=log a x(a为常数,a>0,a≠1),有f′(x)=1xlna。
(5)三角函数的导数:•对于正弦函数f(x)=sinx,有f′(x)=cosx。
•对于余弦函数f(x)=cosx,有f′(x)=−sinx。
•对于正切函数f(x)=tanx,有f′(x)=sec2x。
(6)反三角函数的导数:•对于反正弦函数f(x)=arcsinx,有f′(x)=√1−x2(−1≤x≤1)。
•对于反余弦函数f(x)=arccosx,有f′(x)=√1−x2−1≤x≤1)。
•对于反正切函数f(x)=arctanx,有f′(x)=11+x2。
(7)链式法则:若函数f(x)=g(ℎ(x)),则f′(x)=g′(ℎ(x))⋅ℎ′(x)。
(8)乘积法则:若函数f(x)=g(x)⋅ℎ(x),则f′(x)=g′(x)⋅ℎ(x)+g(x)⋅ℎ′(x)。
(9)商法则:若函数f(x)=g(x)ℎ(x)(h(x)≠0),则f′(x)=g′(x)⋅ℎ(x)−g(x)⋅ℎ′(x)[ℎ(x)]2。
(10)和差法则:若函数f(x)=g(x)+ℎ(x),则f′(x)=g′(x)+ℎ′(x);若函数f(x)=g(x)−ℎ(x),则f′(x)=g′(x)−ℎ′(x)。
2-10导数的概念及运算
[填一填]
2 9 x (1)y=3x +2x -3x的导数y′= +4x-3 .
3
2
x (2)曲线y= 在点(-1,-1)处的切线方程为 y=2x+1 . x+2 2 (3)设点P是曲线y=x - 3 x+ 3 上的任意一点,曲线在P点 π 2 [0,2)∪[3π,π) 处的切线的倾斜角为α,则角α的取值范围是 .
[学以致用] 4. [2014· 海淀模拟]已知定义域为R的函数f(x)满足:f(4)=- 3,且对任意x∈R总有f′(x)<3,则不等式f(x)<3x-15的解集为 ( ) A. (-∞,4) B. (-∞,-4) C. (-∞,-4)∪(4,+∞) D. (4,+∞)
解析:令g(x)=f(x)-3x+15,则g′(x)=f′(x)-3<0,所以 g(x)在R上是减函数,又因为g(4)=f(4)-3×4+15=0,所以 f(x)<3x-15的解集为(4,+∞).
1 1 x0 ,∴2x0- x0 =1,∴
1 x0=1或x0=-2(舍去). |1-1-2| ∴P(1,1),∴d= = 2. 1+1
[答案] 3 (1) (2)B 6-4π
[易错点拨]
π 本例(1)中对函数f(x)求导,应把f′( )视为常 3
π π π 数,注意f′(3 )与[f(3 )]′不同,前者表示导函数在x= 3 处的导函 π π π 数值,后者表示对f( )求导,由于f( )是一个常数,所以[f( )]′ 3 3 3 =0.
0 0
y-f(x0)=f′(x0)(x-x0) s(t)对时间t的导数).相应地,切线方程为 .
[想一想]
f′(x)与f′(x0)有何区别与联系?
提示:f′(x)是一个函数,f′(x0)是函数值,f′(x0)是函数 f′(x)在点x0处的函数值.
导数的概念及其运算
导数的概念及其运算一、课程标准1.了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵.2.通过函数图象直观地理解导数的几何意义.3.能根据导数定义,求函数y =c ,y =x ,y =x 2,y =1x的导数.4.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 二、基础知识回顾 1. 导数的概念设函数y =f(x)在区间(a ,b)上有定义,且x 0∈(a ,b),若Δx 无限趋近于0时,比值Δy Δx =f (x 0+Δx )-f (x 0)Δx无限趋近于一个常数A ,则称f(x)在x =x 0处可导,并称该常数A 为函数f(x)在x =x 0处的导数,记作f′(x 0). 若函数y =f(x)在区间(a ,b)内任意一点都可导,则f(x)在各点的导数也随着x 的变化而变化,因而是自变量x 的函数,该函数称作f(x)的导函数,记作f′(x). 2. 导数的几何意义函数y =f(x)在点x 0处的导数的几何意义,就是曲线y =f(x)在点P(x 0,f(x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f′(x 0)(x -x 0). 3. 基本初等函数的导数公式续表4. 导数的运算法则 若f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x); (3)⎣⎢⎡⎦⎥⎤f (x )g (x )=f′(x )g (x )-f (x )g′(x )g 2(x )(g(x)≠0).5. 复合函数的求导法则(1)一般地,对于两个函数y =f(u)和u =g(x),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f(u)和u =g(x)的复合函数,记作y =f(g(x)).(2)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u ·u′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 三、自主热身、归纳总结1、知函数f (x )=xx +2,则函数在x =-1处的切线方程是( )A.2x -y +1=0B.x -2y +2=0C.2x -y -1=0D.x +2y -2=02、 函数f(x)=2x +cos x 在点(π2,f(π2))处的切线方程为( )A . 3x -y -π2=0B . x -y +π2=0C . 3x -y -3π2=0D . x -y -π2=03、 设M 为曲线C :y =2x 2+3x +3上的点,且曲线C 在点M 处切线倾斜角的取值范围为⎣⎡⎭⎫3π4,π,则点M 横坐标的取值范围为(D )A . [)-1,+∞B . ⎝⎛⎭⎫-∞,-34C . ⎝⎛⎦⎤-1,-34D . ⎣⎡⎭⎫-1,-34 4、.设f(x)=x ln x ,若f′(x 0)=0,则x 0等于(A ) A . 1e B . e C . e 2 D . 1 5、(多选)下列求导数运算正确的有( ) A .(sin x )′=cos x B.⎝⎛⎭⎫1x ′=1x 2 C .(log 3x )′=13ln xD .(ln x )′=1x6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( ) A .f (x )=x 2 B .f (x )=e -x C .f (x )=ln xD .f (x )=tan x7、已知曲线f(x)=x sin x +1在点(π2,f(π2))处的切线与直线ax -y +1=0互相垂直,那么实数a 的值为____.8、在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =________ m/s 2.9、(2019南通、泰州一调) 若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________. 10、(2019常州期末) 已知函数f(x)=bx +ln x ,其中b ∈R .若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________.11、(2019苏州期末) 曲线y =x +2e x 在x =0处的切线与两坐标轴围成的三角形面积为________.四、例题选讲考点一、基本函数的导数 例1、求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x e x .变式、求下列函数的导数: (1)f (x )=x 2+xex ;(2)f (x )=x 3+2x -x 2ln x -1x 2;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2.变式2、已知f(x)=ln 2x-12x+1,则f′(x)=________.方法总结:求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元考点二求导数的切线方程例2、(1)已知曲线S:y=-23x3+x2+4x及点P(0,0),那么过点P的曲线S的切线方程为____.(2)已知函数f(x)=x ln x,过点A(-1e2,0)作函数y=f(x)图像的切线,那么切线的方程为____.变式1、已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)若直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;(3)如果曲线y=f(x)的某一切线与直线y=-14x+3垂直,求切点坐标与切线方程.方法总结:利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.考点三、与切线有关的参数问题例3、(2019常州期末) 若直线kx -y -k =0与曲线y =e x (e 是自然对数的底数)相切,则实数k =________.变式1、(2017苏州一调)若直线2y x b =+为曲线e x y x =+的一条切线,则实数b 的值是 .变式2、(2016苏州暑假测试) 已知函数f (x )=x -1+1e x ,若直线l :y =kx -1与曲线y =f (x )相切,则实数k=________.变式3、(2018常州期末) 已知函数f(x)=bx +ln x ,其中b ∈R.若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________.变式4、若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-b 的值为 .方法总结:1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.五、优化提升与真题演练1、(2019·全国Ⅱ高考(文))曲线y =2sin x +cos x 在点(π,-1)处的切线方程为(C ) A . x -y -π-1=0 B . 2x -y -2π-1=0 C . 2x +y -2π+1=0 D . x +y -π+1=02、(2019·全国卷Ⅱ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( ) A .a =e ,b =-1 B .a =e ,b =1 C .a =e -1,b =1D .a =e -1,b =-13、(2019·全国Ⅱ卷)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________.4、(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________.5、(2019苏锡常镇调研(二))已知点P 在曲线C :212y x =上,曲线C 在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线C 的另一交点为Q ,O 为坐标原点,若OP ⊥OQ ,则点P 的纵坐标为 .6、(2019年江苏卷).在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____.7、(2018南京、盐城、连云港二模) 在平面直角坐标系xOy 中,已知曲线y =mx +1(m >0)在x =1处的切线为l ,则点(2,-1) 到直线l 的距离的最大值为________. 参考答案1、知函数f (x )=xx +2,则函数在x =-1处的切线方程是( )A.2x -y +1=0B.x -2y +2=0C.2x -y -1=0D.x +2y -2=0【答案】A【解析】、 由f (x )=x x +2,得f ′(x )=2(x +2)2,又f (-1)=-1,f ′(-1)=2.因此函数在x =-1处的切线方程为y +1=2(x +1),即2x -y +1=0. 2、 函数f(x)=2x +cos x 在点(π2,f(π2))处的切线方程为( )A . 3x -y -π2=0B . x -y +π2=0C . 3x -y -3π2=0D . x -y -π2=0【答案】B .【解析】 f(x)=2x +cos x ,f(π2)=π,f′(x)=2-sin x ,f′(π2)=1,在点(π2,f(π2))处的切线方程为y -π=x -π2,即为x -y +π2=0.故选B .3、 设M 为曲线C :y =2x 2+3x +3上的点,且曲线C 在点M 处切线倾斜角的取值范围为⎣⎡⎭⎫3π4,π,则点M 横坐标的取值范围为(D ) A . [)-1,+∞ B . ⎝⎛⎭⎫-∞,-34 C . ⎝⎛⎦⎤-1,-34 D . ⎣⎡⎭⎫-1,-34 【答案】D【解析】、 由题意y′=4x +3,切线倾斜角的范围是⎣⎡⎭⎫34π,π,则切线的斜率k 的范围是[)-1,0,∴-1≤4x +3<0,解得-1≤x<-34. 故选D .4、.设f(x)=x ln x ,若f′(x 0)=0,则x 0等于(A ) A . 1e B . e C . e 2 D . 1 【答案】A .【解析】 f′(x)=ln x +1,由f′(x 0)=0,得ln x 0+1=0,∴ln x 0=-1,即x 0=1e . 故选A .5、(多选)下列求导数运算正确的有( ) A .(sin x )′=cos x B.⎝⎛⎭⎫1x ′=1x 2 C .(log 3x )′=13ln xD .(ln x )′=1x【答案】AD【解析】 因为(sin x )′=cos x ,⎝⎛⎭⎫1x ′=-1x 2,(log 3x )′=1x ln 3,(ln x )′=1x,所以A 、D 正确. 6.(多选)已知函数f (x )及其导函数f ′(x ),若存在x 0使得f (x 0)=f ′(x 0),则称x 0是f (x )的一个“巧值点”.下列选项中有“巧值点”的函数是( ) A .f (x )=x 2 B .f (x )=e -x C .f (x )=ln x D .f (x )=tan x【答案】AC【解析】选 若f (x )=x 2,则f ′(x )=2x ,令x 2=2x ,得x =0或x =2,方程显然有解,故A 符合要求;若f (x )=e -x ;则f ′(x )=-e -x ,令e -x =-e -x ,此方程无解,故B 不符合要求;若f (x )=ln x ,则f ′(x )=1x ,令ln x =1x ,在同一直角坐标系内作出函数y =ln x 与y =1x 的图象(作图略),可得两函数的图象有一个交点,所以方程f (x )=f ′(x )存在实数解,故C 符合要求;若f (x )=tan x ,则f ′(x )=⎝⎛⎭⎫sin x cos x ′=1cos 2x ,令tan x =1cos 2x ,化简得sin x cos x =1,变形可得sin 2x =2,无解,故D 不符合要求.故选A 、C.7、已知曲线f(x)=x sin x +1在点(π2,f(π2))处的切线与直线ax -y +1=0互相垂直,那么实数a 的值为____.【答案】-1【解析】 f′(x)=sin x +x cos x ,当x =π2时, f′(x)=1,∴a =-1.8、在高台跳水运动中,t s 时运动员相对于水面的高度(单位:m)是h (t )=-4.9t 2+6.5t +10,则运动员的速度v =________ m/s ,加速度a =________ m/s 2. 【答案】-9.8t +6.5 -9.8【解析】、v =h ′(t )=-9.8t +6.5,a =v ′(t )=-9.8.9、(2019南通、泰州一调) 若曲线y =x ln x 在x =1与x =t 处的切线互相垂直,则正数t 的值为________. 【答案】 e -2【解析】、y′=ln x +1,由题意得(ln 1+1)·(ln t +1)=-1,所以t =e -2.10、(2019常州期末) 已知函数f(x)=bx +ln x ,其中b ∈R .若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________. 【答案】 1e【解析】、设直线方程为y =kx ,切点为A(x 0,y 0),则有⎩⎪⎨⎪⎧f (x 0)=bx 0+ln x 0=y 0=kx 0,f′(x 0)=b +1x 0=k ,从而有bx 0+ln x 0=kx 0=bx 0+1,解得x 0=e ,所以k -b =1x 0=1e.11、(2019苏州期末) 曲线y =x +2e x 在x =0处的切线与两坐标轴围成的三角形面积为________. 【答案】 23【解析】、由y =x +2e x ,得y′=1+2e x ,切点为(0,2),切线斜率为3,切线方程为y =3x +2.切线与坐标轴的交点为A ⎝⎛⎭⎫23,0,B(0,2),所以S △AOB =12·23·2=23.五、例题选讲考点一、基本函数的导数 例1、求下列函数的导数. (1)y =x 2sin x ; (2)y =ln x +1x ;(3)y =cos x ex .【解析】、(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x . (2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x . 变式、求下列函数的导数: (1)f (x )=x 2+x ex ;(2)f (x )=x 3+2x -x 2ln x -1x 2;(3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2. 【解析】、(1)f ′(x )=(2x +1)e x -(x 2+x )e x (e x )2=1+x -x 2e x .(2)由已知f (x )=x -ln x +2x -1x 2.∴f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3.(3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .变式2、已知f (x )=ln 2x -12x +1,则f ′(x )=________.【答案】44x 2-1. 【解析】、f ′(x )=⎝⎛⎭⎪⎫ln2x -12x +1′=12x -12x +1⎝ ⎛⎭⎪⎫2x -12x +1′ =2x +12x -1·⎣⎢⎡⎦⎥⎤(2x -1)′(2x +1)-(2x -1)(2x +1)′(2x +1)2=44x 2-1.方法总结:求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元 考点二 求导数的切线方程例2、(1)已知曲线S :y =-23x 3+x 2+4x 及点P(0,0),那么过点P 的曲线S 的切线方程为____.(2)已知函数f(x)=x ln x ,过点A(-1e 2,0)作函数y =f(x)图像的切线,那么切线的方程为____.【答案】(1)y =4x 或y =358x (2)x +y +1e2=0【解析】 (1)设过点P 的切线与曲线S 切于点Q(x 0,y 0),则过点Q 的曲线S 的切线斜率为k = y′|x =x 0=-2x 20+2x 0+4,又当x 0≠0时,k PQ =y 0x 0, ∴-2x 20+2x 0+4=y 0x 0. ①∵点Q 在曲线S 上,∴y 0=-23x 30+x 20+4x 0.② 将②代入①得-2x 20+2x 0+4=-23x 30+x 20+4x 0x 0,化简,得43x 30-x 20=0,∴x 0=34或x 0=0,当x 0=34时,则k =358,过点P 的切线方程为y =358x.当x 0=0时,则k =4,过点P 的切线方程为y =4x ,故过点P 的曲线S 的切线方程为y =4x 或y =358x.(2)设切点为T(x 0,y 0),则k AT =f′(x 0), ∴x 0ln x 0x 0+1e2=ln x 0+1,即e 2x 0+ln x 0+1=0. 设h(x)=e 2x +ln x +1,则h′(x)=e 2+1x,当x>0时,h′(x)>0,∴h(x)在(0,+∞)上是单调增函数,∴h(x)=0最多只有一个根. 又h ⎝⎛⎭⎫1e 2=e 2×1e 2+ln 1e 2+1=0, ∴x 0=1e2.由f′(x 0)=-1得切线方程是x +y +1e 2=0.变式1、已知函数f(x)=x 3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)若直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f(x)的某一切线与直线y =-14x +3垂直,求切点坐标与切线方程.【解】 (1)由函数f(x)的解析式可知点(2,-6)在曲线y =f(x)上,∴f′(x)=(x 3+x -16)′=3x 2+1, ∴在点(2,-6)处的切线的斜率为k =f′(2)=13, ∴切线的方程为y -(-6)=13(x -2), 即y =13x -32.(2)(方法1)设切点为(x 0,y 0), 则直线l 的斜率为f′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得x 30=-8,∴x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, f′(-2)=3×(-2)2+1=13,故直线l 的方程为y =13x ,切点坐标为(-2,-26).(方法2)设直线l 的方程为y =kx ,切点坐标为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0.又∵k =f′(x 0)=3x 20+1,∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13,∴直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)∵曲线f(x)的某一切线与直线y =-x4+3垂直,∴该切线的斜率k =4.设切点的坐标为(x 0,y 0), 则f′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.故切线方程为y -(-14)=4(x -1)或y -(-18)=4(x +1),即y =4x -18或y =4x -14.方法总结:利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 考点三、与切线有关的参数问题例3、(2019常州期末) 若直线kx -y -k =0与曲线y =e x (e 是自然对数的底数)相切,则实数k =________. 【答案】、 e 2【解析】、设切点A(x 0,e x 0),由(e x )′=e x ,得切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,所以⎩⎪⎨⎪⎧k =e x 0,-k =(1-x 0)e x 0,解得⎩⎪⎨⎪⎧x 0=2,k =e 2.变式1、(2017苏州一调)若直线2y x b =+为曲线e x y x =+的一条切线,则实数b 的值是 . 【答案】、1【解析】、 设切点的横坐标为0x ,由曲线x y e x =+,得1x y e '=+,所以依题意切线的斜率为012xk e =+=,得00x =,所以切点为(0,1),又因为切线2y x b =+过切点(0,1),故有120b =⨯+,解得1b =.变式2、(2016苏州暑假测试) 已知函数f (x )=x -1+1e x ,若直线l :y =kx -1与曲线y =f (x )相切,则实数k=________. 【答案】、 1-e【解析】、:设切点为(x 0,y 0).因为f ′(x )=1-1e x ,则f ′(x 0)=k ,即1-1e x 0=k 且kx 0-1=x 0-1+1e x 0,所以x 0=-1,所以k =1-1e-1=1-e.变式3、(2018常州期末) 已知函数f(x)=bx +ln x ,其中b ∈R.若过原点且斜率为k 的直线与曲线y =f (x )相切,则k -b 的值为________. 【答案】、 1e【解析】、设直线方程为y =kx ,切点为A(x 0,y 0),则有⎩⎪⎨⎪⎧f (x 0)=bx 0+ln x 0=y 0=kx 0,f′(x 0)=b +1x 0=k ,从而有bx 0+ln x 0=kx 0=bx 0+1,解得x 0=e ,所以k -b =1x 0=1e.解后反思 因为曲线y =ln x 与直线y =1e x 相切,所以曲线y =bx +ln x 与直线y =⎝⎛⎭⎫b +1e x 相切.所以k =b +1e ,得k -b =1e.作为填空题可这样“秒杀”! 命题背景 一般地,若曲线y =f(x)与直线y =kx +b 相切,则曲线y =f(x)+k 1x +b 1与直线y =kx +b +k 1x +b 1也相切.变式4、若函数32()f x x ax bx =++为奇函数,其图象的一条切线方程为3y x =-b 的值为 . 【答案】3-.【解析】因为f (x )是奇函数,所以a =0,f (x )=x 3+bx .设f (x )在点(x 0,y 0)处的切线为:3y x =-30002000333y x bx x by x ⎧=+⎪=+⎨⎪=-⎩,解得b =-3 方法总结:1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围;(2)谨记切点既在切线上又在曲线上.五、优化提升与真题演练1、(2019·全国Ⅱ高考(文))曲线y =2sin x +cos x 在点(π,-1)处的切线方程为(C ) A . x -y -π-1=0 B . 2x -y -2π-1=0 C . 2x +y -2π+1=0 D . x +y -π+1=0 【答案】C【解析】∵y′=2cos x -sin x , ∴y′|x =π=2cosπ-sinπ=-2,则y =2sin x +cos x 在点(π,-1)处的切线方程为y -(-1)=-2(x -π), 即2x +y -2π+1=0. 故选C .2、(2019·全国卷Ⅱ)已知曲线y =a e x +x ln x 在点(1,a e)处的切线方程为y =2x +b ,则( ) A .a =e ,b =-1 B .a =e ,b =1 C .a =e -1,b =1 D .a =e -1,b =-1【答案】D【解析】 (1)y ′=a e x +ln x +1,k =y ′|x =1=a e +1, ∴ 切线方程为y -a e =(a e +1)(x -1), 即y =(a e +1)x -1.又∵ 切线方程为y =2x +b ,∴ ⎩⎪⎨⎪⎧a e +1=2,b =-1,即a =e -1,b =-1.故选D. 3、(2019·全国Ⅱ卷)曲线y =3(x 2+x )e x 在点(0,0)处的切线方程为________. 【答案】 y =3x【解析】 y ′=3(2x +1)e x +3(x 2+x )e x =3e x (x 2+3x +1),所以曲线在点(0,0)处的切线的斜率k =e 0×3=3,所以所求切线方程为y =3x .4、(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是________. 【答案】(e ,1).【解析】 (1)设A (m ,n ),则曲线y =ln x 在点A 处的切线方程为y -n =1m(x -m ).又切线过点(-e ,-1),所以有n +1=1m (m +e).再由n =ln m ,解得m =e ,n =1. 故点A 的坐标为(e ,1).5、(2019苏锡常镇调研(二))已知点P 在曲线C :212y x =上,曲线C 在点P 处的切线为l ,过点P 且与直线l 垂直的直线与曲线C 的另一交点为Q ,O 为坐标原点,若OP ⊥OQ ,则点P 的纵坐标为 .【答案】..1设)21,(2t t P【解析】因为x y =',所以切线l 的斜率t k =,且0≠t ,则直线)(121:2t x tt y PQ --=-,即12112++-=t x t y令⎪⎩⎪⎨⎧=++-=22211211x y t x t y ,消y 得:02232=--+t t x tx ,设),(11y x Q ,则t t x 21-=+,即t t x 21--=,又因为点Q 在曲线C 上,所以2222112221)2(2121t t t t x y ++=--==,故)2221,2(22tt t t Q ++--因为OQ OP ⊥,所以0=⋅,即0)2221(21)2(222=++⨯+--⨯tt t t t t ,化简得44=t ,则22=t ,所以点P 的纵坐标为.16、(2019年江苏卷).在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线x +y =0的距离的最小值是_____. 【答案】4.【解析】当直线0x y +=平移到与曲线4y x x=+相切位置时,切点Q 即为点P 到直线0x y +=的距离最小. 由2411y x'=-=-,得)x =,y =即切点Q ,则切点Q 到直线0x y +=4=,故答案为:4.7、(2018南京、盐城、连云港二模) 在平面直角坐标系xOy 中,已知曲线y =mx +1(m >0)在x =1处的切线为l ,则点(2,-1) 到直线l 的距离的最大值为________. 【答案】 2解法1 由题意,切点坐标为⎝⎛⎭⎫1,m2,因为y′=-m (x +1)2,所以切线l 的斜率k =-m4,故切线l 的方程为y -m 2=-m4(x -1),即l :mx +4y -3m =0,则点(2,-1)到直线l 的距离d =|2m -3m -4|m 2+42=(m +4)2m 2+16=1+8m m 2+16=1+8m +16m,又因为m>0,所以m +16m ≥2m·16m=8(当且仅当m =4时取等号),则d≤2,故点(2,-1)到直线l 的距离的最大值为 2. 解法2 由题意,切点坐标为⎝⎛⎭⎫1,m2,因为y′=-m (x +1)2,所以切线l 的斜率k =-m4,故切线l 的方程为y -m 2=-m4(x -1),则直线l :m(x -3)+4y =0恒过定点(3,0),故当直线l 与两点(3,0),(2,-1)的连线垂直时,点(2,-1)到直线l 的距离的最大,且为 2.。
导数的定义和求导规则
导数的定义和求导规则一、导数的定义1.1 极限的概念:当自变量x趋近于某一数值a时,函数f(x)趋近于某一数值L,即称f(x)当x趋近于a时的极限为L,记作:lim (x→a) f(x) = L1.2 导数的定义:函数f(x)在点x=a处的导数,记作f’(a)或df/dx|_{x=a},表示函数在某一点的瞬时变化率。
定义如下:二、求导规则2.1 常数倍法则:如果u(x)是可导函数,c是一个常数,则cu(x)也是可导函数,且(cu(x))’ = c*u’(x)。
2.2 幂函数求导法则:如果u(x) = x^n,其中n为常数,则u’(x) = n*x^(n-1)。
2.3 乘积法则:如果u(x)和v(x)都是可导函数,则(u(x)v(x))’ = u’(x)v(x) +u(x)v’(x)。
2.4 商法则:如果u(x)和v(x)都是可导函数,且v(x)≠0,则(u(x)/v(x))’ =(u’(x)v(x) - u(x)v’(x))/(v(x))^2。
2.5 和差法则:如果u(x)和v(x)都是可导函数,则(u(x) + v(x))’ = u’(x) + v’(x),(u(x) - v(x))’ = u’(x) - v’(x)。
2.6 链式法则:如果y = f(u),u = g(x),则y关于x的导数可以表示为dy/dx = (dy/du) * (du/dx)。
2.7 复合函数求导法则:如果y = f(g(x)),则y关于x的导数可以表示为dy/dx = (df/dg) * (dg/dx)。
2.8 高阶导数:如果f’(x)是f(x)的一阶导数,则f’‘(x)是f’(x)的一阶导数,以此类推。
2.9 隐函数求导法则:如果方程F(x,y) = 0表示隐函数,则y关于x的导数可以表示为(dy/dx) = -F_x / F_y,其中F_x和F_y分别是F(x,y)对x和y的偏导数。
三、导数的应用3.1 函数的单调性:如果f’(x) > 0,则f(x)在区间内单调递增;如果f’(x) < 0,则f(x)在区间内单调递减。
10导数的概念及运算
变化率与导数、导数的计算1.导数的概念(1)函数y =f (x )在x =x 0处的导数:如果当Δx →0时,Δy Δx→常数A ,就说函数y =f (x )在x 0处可导,并把A 叫做f (x )在点x 0处的导数,记作f ′(x 0)或y ′|x =x 0.(2)导数的几何意义:函数f (x )在点x 0处的导数f ′(x 0)的几何意义是在曲线y =f (x )上点P (x 0,y 0)处的切线的斜率,相应地,切线方程为y -y 0=f ′(x 0)(x -x 0).(3)函数f (x )的导函数:如果函数f (x )在开区间(a ,b )内每一点都可导,其导数值在(a ,b )内构成一个新的函数,叫做f (x )在开区间(a ,b )内的导函数,记作f ′(x );(4)瞬时速度是位移函数S (t )对时间t 的导数,即v (t )=S ′(t );瞬时加速度是速度函数v (t )对时间t 的导数,即a (t )=v ′(t ).2.基本初等函数的导数公式(sin x )′=cos_x ,(cos x )′=-sin_x ,(a x )′=a x ln_a ,(e x )′=e x ,(log a x )=1x ln a ,(ln x )′=1x. 3.导数的运算法则(1)[f (x )±g (x )]′=f ′(x )±g ′(x );(2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0). 4.简单复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.若y =f (u ),u =ax +b ,则y ′x =f ′(u )·u x ′,即y ′x =f ′(u )·a .1.利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆.2.求曲线切线时,要分清在点P 处的切线与过P 点的切线的区别,前者只有一条,而后者包括了前者.3.曲线的切线与曲线的交点个数不一定只有一个,这和研究直线与二次曲线相切时有差别.[试一试]1.曲线C :y =x ln x 在点M (e ,e)处的切线方程为__________________.解析:因为y ′=ln x +1,故点M (e ,e)处的切线的斜率为2,所求切线方程为y =2x -e.答案:y =2x -e2.过坐标原点作函数y =ln x 图像的切线,则切线斜率为________.解析:设切点为(x 0,y 0),因为y ′=1x ,所以切线方程为y -y 0=1x 0(x -x 0).因为切线过原点,故y 0=1.又y 0=ln x 0,得x 0=e ,所以所求斜率为1e. 答案:1e考点一导数的运算[典例] 求下列函数的导数.(1)y =x 2sin x ;(2)y =e x +1e x -1;(3)y =ln(2x -5). [解] (1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=e x (e x -1)-(e x +1)e x (e x -1)2=-2e x(e x -1)2. (3)令u =2x -5,y =ln u ,则y ′=(ln u )′u ′=12x -5·2=22x -5, 即y ′=22x -5. [类题通法]1.求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少运算量,提高运算速度,减少差错.2.有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导,有时可以避免使用商的求导法则,减少运算量.3.复合函数的求导,要正确分析函数的复合层次,通过设中间变量,确定复合过程,然后求导.[针对训练]已知f (x )=sin 2x ,记f n +1(x )=f n ′(x )(n ∈N *),则f 1⎝⎛⎭⎫π6+f 2⎝⎛⎭⎫π6+…+f 2 013⎝⎛⎭⎫π6+f 2 014⎝⎛⎭⎫π6=________. 解析:由题意,可知f 2(x )=f 1′(x )=(sin 2x )′=2cos 2x ;f 3(x )=f 2′(x )=(2cos 2x )′=-4sin 2x ;f 4(x )=f 3′(x )=(-4sin 2x )′=-8cos 2x ;f 5(x )=f 4′(x )=(-8cos 2x )′=16sin 2x ;…故f 4k +1(x )=24k sin 2x ,f 4k +2(x )=24k +1cos 2x ,f 4k +3(x )=-24k +2sin 2x ,f 4k +4(x )=-24k +3cos 2x (k ∈N ).所以f 1⎝⎛⎭⎫π6+f 2⎝⎛⎭⎫π6+…+f 2 014⎝⎛⎭⎫π6 =20sin ⎝⎛⎭⎫2×π6+21cos ⎝⎛⎭⎫2×π6-22sin ⎝⎛⎭⎫2×π6- 23cos ⎝⎛⎭⎫2×π6+24sin ⎝⎛⎭⎫2×π6+…-22 010sin ⎝⎛⎭⎫2×π6-22 011cos ⎝⎛⎭⎫2×π6+22 012sin ⎝⎛⎭⎫2×π6+22 013cos ⎝⎛⎭⎫2×π6 =(20-22+24-26+…+22 008-22 010+22 012)sin π3+(21-23+25-27+…+22 009-22 011+22 013)cos π3=1×[1-(-22)1 007]1-(-22)×32+2×[1-(-22)1 007]1-(-22)×12 =1+22 0145×32+2×(1+22 014)5×12=(3+2)(1+22 014)10答案:(3+2)(1+22 014)10考点二导数的几何意义导数的几何意义是每年高考的重点,求解时应把握导数的几何意义是切点处切线的斜率,利用这一点可以解决有关导数的几何意义等问题.归纳起来常见的命题角度有:(1)求切线方程;(2)求切点坐标;(3)求参数的值.角度一 求切线方程。
第2篇 第10节 导数的概念与计算课件 理 新人教A版 课件
质疑探究 1:如果 f(x)=ln |x|,则 f′(x)=1x? 提示:正确,分 x>0,x<0 去绝对值,求导数可得.
4.导数的运算法则和复合函数的导数
(1)导数的运算法则 ①[f(x)± g(x)]′=___f_′(_x_)_±__g_′(_x_)_____; ②[f(x)·g(x)]′=_f_′(_x_)g_(_x_)_+__f(_x_)_g_′(_x_) ______;
解析:设过点(1,0)的直线与 y=x3 相切于点(x0,x30), 所以切线方程为 y-x30=3x02(x-x0), 即 y=3x20x-2x30, 又(1,0)在切线上, 则 x0=0 或 x0=32, 当 x0=0 时,由 y=0 与 y=ax2+145x-9 相切可得 a=-2654, 当 x0=32时,
导数,记作 f′(x0)或 y′|x=x0,即 ___Δ_lix_m→_0__f_x_0+__Δ_Δ_xx_-__f_x_0_____.
f′(x0)=Δlixm→0
ΔΔyx=
②几何意义
函数 f(x)在 x=x0 处的导数 f′(x0)的几何意义是在曲线 y= f(x)上点(x0,f(x0))处的 切线的斜率 (瞬时速度就是位移函数 s(t) 对 时 间 t 的 导 数 ) . 相 应 地 , 切 线 方 程 为 ___y_-__f(_x_0_)=__f_′(_x_0_)(_x_-__x_0)__________.
即f′(x+T)=f′(x), 所以导函数为周期函数. 因为y=f(x)是奇函数, 所以f(-x)=-f(x), 两边求导得f′(-x)(-x)′=-f′(x), 即-f′(-x)=-f′(x), 所以f′(-x)=f′(x), 即导函数为偶函数,故选B. 答案:B
导数的概念与导数运算考点及题型全归纳
第三章 导数及其应用第一节 导数的概念与运算基础知识1.导数的概念一般地,函数y =f (x )在x =x 0处的瞬时变化率lim →Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx 为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或y ′|x =x 0,即f ′(x 0)=lim→Δ0x ΔyΔx =lim →Δ0x f (x 0+Δx )-f (x 0)Δx .f ′(x )与f ′(x 0)的区别与联系f ′(x )是一个函数,f ′(x 0)是函数f ′(x )在x 0处的函数值(常数),所以[f ′(x 0)]′=0.2.导数的几何意义函数f (x )在x =x 0处的导数f ′(x 0)的几何意义是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率(瞬时速度就是位移函数s (t )对时间t 的导数).相应地,切线方程为y -f (x 0)=f ′(x 0)(x -x 0).曲线y =f (x )在点P (x 0,f (x 0))处的切线是指以P 为切点,斜率为k =f ′(x 0)的切线,是唯一的一条切线.3.函数f (x )的导函数称函数f ′(x )=lim →Δ0xf (x +Δx )-f (x )Δx为f (x )的导函数.4.导数的运算(1)几种常见函数的导数①(C )′=0(C 为常数);②(x n )′=nx n -1(n ∈Q *); ③(sin x )′=cos_x ;④(cos x )′=-sin_x ;⑤(e x )′=e x ; ⑥(a x )′=a x ln_a (a >0,a ≠1);⑦(ln x )′=1x ;⑧(log a x )′=1x ln a(a >0,a ≠1). (2)导数的四则运算法则 ①[u (x )±v (x )]′=u ′(x )±v ′(x ); ②[u (x )v (x )]′=u ′(x )v (x )+u (x )v ′(x );③⎣⎡⎦⎤u (x )v (x )′=u ′(x )v (x )-u (x )v ′(x )[v (x )]2(v (x )≠0).熟记以下结论: (1)⎝⎛⎭⎫1x ′=-1x 2; (2)⎣⎡⎦⎤1f (x )′=-f ′(x )[f (x )]2(f (x )≠0); (3)[af (x )±bg (x )]′=af ′(x )±bg ′(x );(4)奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数.考点一 导数的运算[典例] 求下列函数的导数.(1)y =ln x +1x ;(2)y =(2x +1)·e x ; (3)y =1+x 5x 2;(4)y =x -sin x 2cos x2.[解] (1)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x2. (2)y ′=[(2x +1)·e x ]′=(2x +1)′·e x +(2x +1)·(e x )′=2e x +(2x +1)·e x =(2x +3)·e x .(3)∵1+x 5x2=x 35+x -25,∴y ′=⎝ ⎛⎭⎪⎫1+x 5x 2′=(x 35)′+(x -25)′=35x -25-25x -75.(4)∵y =x -sin x 2cos x 2=x -12sin x ,∴y ′=1-12cos x .[题组训练]1.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)=( )A .-eB .-1C .1D .e解析:选B 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x.所以f ′(1)=2f ′(1)+1,则f ′(1)=-1. 2.求下列函数的导数.(1)y =cos x -sin x ; (2)y =(x +1)(x +2)(x +3); (3)y =ln x x 2+1.解:(1)y ′=(cos x )′-(sin x )′=-sin x -cos x .(2)∵y =(x +1)(x +2)(x +3) =(x 2+3x +2)(x +3) =x 3+6x 2+11x +6, ∴y ′=3x 2+12x +11.(3)y ′=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x(x 2+1)-2x ·ln x(x 2+1)2=x 2(1-2ln x )+1x (x 2+1)2.考点二 导数的几何意义考法(一) 求曲线的切线方程[典例] (2018·全国卷Ⅰ)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A .y =-2xB .y =-xC .y =2xD .y =x[解析] ∵f (x )=x 3+(a -1)x 2+ax ,∴f ′(x )=3x 2+2(a -1)x +a .又∵f (x )为奇函数,∴f (-x )=-f (x )恒成立, 即-x 3+(a -1)x 2-ax =-x 3-(a -1)x 2-ax 恒成立, ∴a =1,∴f ′(x )=3x 2+1,∴f ′(0)=1, ∴曲线y =f (x )在点(0,0)处的切线方程为y =x . [答案] D[解题技法]若已知曲线y =f (x )过点P (x 0,y 0),求曲线过点P 的切线方程的方法(1)当点P (x 0,y 0)是切点时,切线方程为y -y 0=f ′(x 0)·(x -x 0). (2)当点P (x 0,y 0)不是切点时,可分以下几步完成: 第一步:设出切点坐标P ′(x 1,f (x 1));第二步:写出过点P ′(x 1,f (x 1))的切线方程y -f (x 1)=f ′(x 1)(x -x 1); 第三步:将点P 的坐标(x 0,y 0)代入切线方程求出x 1;第四步:将x 1的值代入方程y -f (x 1)=f ′(x 1)(x -x 1)可得过点P (x 0,y 0)的切线方程. 考法(二) 求切点坐标[典例] 曲线f (x )=x 3-x +3在点P 处的切线平行于直线y =2x -1,则P 点的坐标为( )A .(1,3)B .(-1,3)C .(1,3)和(-1,3)D .(1,-3)[解析] f ′(x )=3x 2-1,令f ′(x )=2,则3x 2-1=2,解得x =1或x =-1,∴P (1,3)或(-1,3).经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故选C. [答案] C[解题技法] 求切点坐标的思路已知切线方程(或斜率)求切点的一般思路是先求函数的导数,再让导数等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点的纵坐标.考法(三) 求参数的值(范围)[典例] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,则实数a 的取值范围是________.[解析] 函数f (x )=ln x +ax 的图象上存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解,而f ′(x )=1x +a ,即1x +a =2在(0,+∞)上有解,a =2-1x 在(0,+∞)上有解,因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2). [答案] (-∞,2)[解题技法]1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点(1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.[题组训练]1.曲线y =e x 在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( )A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B ∵y ′=e x ,令e x =1,得x =0.当x =0时,y =1,∴点A 的坐标为(0,1). 2.设曲线y =a (x -1)-ln x 在点(1,0)处的切线方程为y =2x -2,则a =( )A .0B .1C .2D .3解析:选D ∵y =a (x -1)-ln x ,∴y ′=a -1x ,∴y ′|x =1=a -1.又∵曲线在点(1,0)处的切线方程为y =2x -2, ∴a -1=2,解得a =3.3.已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A .x +y -1=0B .x -y -1=0C .x +y +1=0D .x -y +1=0 解析:选B 因为点(0,-1)不在曲线y =f (x )上,所以设切点坐标为(x 0,y 0).又因为f ′(x )=1+ln x ,所以⎩⎪⎨⎪⎧ y 0=x 0ln x 0,y 0+1=(1+ln x 0)x 0,解得⎩⎪⎨⎪⎧x 0=1,y 0=0.所以切点坐标为(1,0),所以f ′(1)=1+ln 1=1,所以直线l 的方程为y =x -1,即x -y -1=0.[课时跟踪检测]A 级1.设f (x )=x e x 的导函数为f ′(x ),则f ′(1)的值为( )A .eB .e +1C .2eD .e +2解析:选C 由题意知f (x )=x e x ,所以f ′(x )=e x +x e x ,所以f ′(1)=e +e =2e. 2.曲线y =sin x +e x 在x =0处的切线方程是( )A .x -3y +3=0B .x -2y +2=0C .2x -y +1=0D .3x -y +1=0解析:选C ∵y ′=cos x +e x ,∴当x =0时,y ′=2.又∵当x =0时,y =1,∴所求切线方程为y -1=2x ,即2x -y +1=0.3.设f (x )=x (2 019+ln x ),若f ′(x 0)=2 020,则x 0等于( )A .e 2B .1C .ln 2D .e解析:选B f ′(x )=2 019+ln x +1=2 020+ln x ,由f ′(x 0)=2 020,得2 020+ln x 0=2 020,则ln x 0=0,解得x 0=1.4.已知函数f (x )=a ln x +bx 2的图象在点P (1,1)处的切线与直线x -y +1=0垂直,则a 的值为( )A .-1B .1C .3D .-3解析:选D 由已知可得P (1,1)在函数f (x )的图象上,所以f (1)=1,即a ln 1+b ×12=1,解得b =1, 所以f (x )=a ln x +x 2,故f ′(x )=ax+2x .则函数f (x )的图象在点P (1,1)处的切线的斜率k =f ′(1)=a +2, 因为切线与直线x -y +1=0垂直, 所以a +2=-1,即a =-3.5.(2018·合肥第一次教学质量检测)已知直线2x -y +1=0与曲线y =a e x +x 相切(其中e 为自然对数的底数),则实数a 的值是( )A.12 B .1 C .2D .e解析:选B 由题意知y ′=a e x +1,令a e x +1=2,则a >0,x =-ln a ,代入曲线方程得y =1-ln a ,所以切线方程为y -(1-ln a )=2(x +ln a ),即y =2x +ln a +1=2x +1⇒a =1.6.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( )A .(0,0)B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)解析:选D 因为f ′(x )=3x 2+2ax ,所以f ′(x 0)=3x 20+2ax 0=-1.又因为切点P 的坐标为(x 0,-x 0),所以x 30+ax 20=-x 0.联立两式得⎩⎪⎨⎪⎧ 3x 20+2ax 0=-1,x 30+ax 20=-x 0,解得⎩⎪⎨⎪⎧ a =2,x 0=-1或⎩⎪⎨⎪⎧a =-2,x 0=1.所以点P 的坐标为(-1,1)或(1,-1).7.已知直线y =-x +1是函数f (x )=-1a ·e x图象的切线,则实数a =________.解析:设切点为(x 0,y 0),则f ′(x 0)=-1a·e 0x =-1,∴ex =a ,又-1a·e 0x =-x 0+1,∴x 0=2,a =e 2.答案:e 28.(2019·安徽名校联考)已知函数f (x )=2x -ax 的图象在点(-1,f (-1))处的切线斜率是1,则此切线方程是________.解析:因为f ′(x )=-2x 2-a ,所以f ′(-1)=-2-a =1,所以a =-3,所以f (x )=2x +3x ,所以f (-1)=-5,则所求切线的方程为y +5=x +1,即x -y -4=0. 答案:x -y -4=09.设曲线y =1+cos x sin x在点⎝⎛⎭⎫π2,1处的切线与直线x -ay +1=0平行,则实数a =________. 解析:因为y ′=-1-cos xsin 2x ,所以y ′|=2x π=-1,由条件知1a =-1, 所以a =-1. 答案:-110.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2的最小距离为________.解析:由y =x 2-ln x ,得y ′=2x -1x(x >0),设点P 0(x 0,y 0)是曲线y =x 2-ln x 上到直线y =x -2的距离最小的点, 则y ′|x =x 0=2x 0-1x 0=1,解得x 0=1或x 0=-12(舍去).∴点P 0的坐标为(1,1).∴所求的最小距离为|1-1-2|2= 2.答案: 211.求下列函数的导数.(1)y =(1-x )⎝⎛⎭⎫1+1x ; (2)y =x ·tan x ; (3)y =cos x ex .解:(1)∵y =(1-x )⎝⎛⎭⎫1+1x =1x-x =x -12-x 12,∴y ′=(x-12)′-(x 12)′=-12x -32-12x -12.(2)y ′=(x ·tan x )′=x ′tan x +x (tan x )′ =tan x +x ·⎝⎛⎭⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +xcos 2x. (3)y ′=⎝⎛⎭⎫cos x e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos xe x .12.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程; (2)切线l 的倾斜角α的取值范围. 解:(1)∵y ′=x 2-4x +3=(x -2)2-1,∴当x =2时,y ′min =-1,此时y =53,∴斜率最小时的切点为⎝⎛⎭⎫2,53,斜率k =-1, ∴切线方程为3x +3y -11=0. (2)由(1)得k ≥-1,∴tan α≥-1, 又∵α∈[0,π),∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 故α的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. B 级1.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B 由题图可知切线过点(0,2),(3,1),则曲线y =f (x )在x =3处的切线的斜率为-13,即f ′(3)=-13,又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 2.已知曲线f (x )=x 3+ax +14在x =0处的切线与曲线g (x )=-ln x 相切,则a 的值为________.解析:由f (x )=x 3+ax +14,得f ′(x )=3x 2+a ,f ′(0)=a ,f (0)=14,∴曲线y =f (x )在x =0处的切线方程为y -14=ax .设直线y -14=ax 与曲线g (x )=-ln x 相切于点(x 0,-ln x 0),g ′(x )=-1x,∴⎩⎨⎧-ln x 0-14=ax 0, ①a =-1x 0. ②将②代入①得ln x 0=34,∴x 0=e 34,∴a =-1e34=-e-34.答案:-e-343.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意,得{ f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞.。
导数定义运算知识点总结
导数定义运算知识点总结一、导数的定义在微积分中,导数是描述函数变化率的一个重要概念。
具体来说,如果一个函数在某一点处的导数存在,那么这个导数就描述了函数在该点处的变化速率。
导数的定义可以通过极限的概念来给出,具体来说,对于函数y=f(x),如果在某一点x处函数f(x)的变化率为:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示函数f(x)在x处的导数,lim表示极限运算,h表示自变量x的增加量。
上面的定义是导数的一般形式,通过这个定义可以得到一些常用的导数计算方法。
比如对于幂函数、指数函数、对数函数、三角函数等一些基本函数,我们可以通过导数的定义来计算它们在某一点处的导数。
另外,还可以通过导数的定义来证明某一函数在某一点处的导数的存在性和计算导数的值。
二、导数的基本运算法则导数的基本运算法则是微积分中的一个重要内容,它包括导数的四则运算法则、复合函数的导数、反函数的导数、隐函数的导数等方面的内容。
1. 导数的四则运算法则对于两个函数y=f(x)和y=g(x),它们的导数满足一些基本运算法则。
具体来说,如果函数f(x)和函数g(x)分别在某一点x处的导数存在,那么它们的和、差、积、商的导数可以通过以下公式求得:- (f(x) ± g(x))' = f'(x) ± g'(x)- (f(x)g(x))' = f'(x)g(x) + f(x)g'(x)- (f(x)/g(x))' = (f'(x)g(x) - f(x)g'(x)) / [g(x)]^2这些公式可以帮助我们在实际计算中求解复合函数的导数、隐函数的导数等问题。
2. 复合函数的导数复合函数是指一个函数中包含了另一个函数。
如果函数y=f(g(x))是一个复合函数,那么它的导数可以通过链式法则来求解。
导数的基本概念和计算
导数的基本概念和计算导数是微积分学中的重要概念,用于描述函数在某一点的变化率。
它具有广泛的应用,例如在物理学、工程学和经济学等领域。
本文将介绍导数的基本概念和计算方法,旨在帮助读者更好地理解和运用导数。
一、导数的定义导数描述了函数在某一点的瞬时变化率。
对于函数f(x),在某一点x处的导数记作f'(x)或者dy/dx,可以用以下极限定义表示:f'(x) = lim(h→0) (f(x+h) - f(x))/h其中,h表示自变量x的增量。
导数的几何意义是函数曲线在该点的切线斜率。
二、导数的计算根据导数的定义,我们可以通过求极限的方法来计算导数。
下面是一些常用的导数计算规则。
1. 常数法则:对于常数c,导数为0,即d(c)/dx = 0。
2. 幂函数法则:对于函数f(x) = x^n,其中n是常数,导数为d(x^n)/dx = n*x^(n-1)。
这是求导数的基本法则之一。
3. 和差法则:对于两个函数u(x)和v(x),其导数满足(d(u+v)/dx) = du/dx + dv/dx。
4. 乘法法则:对于两个函数u(x)和v(x),其导数满足(d(uv)/dx) = u * dv/dx + v * du/dx。
5. 除法法则:对于两个函数u(x)和v(x),其导数满足(d(u/v)/dx) = (v * du/dx - u * dv/dx)/(v^2)。
6. 复合函数法则:对于复合函数f(g(x)),其导数满足(d(f(g(x)))/dx) = (df/dg) * (dg/dx),其中df/dg表示f对于g的导数,dg/dx表示g对于x的导数。
三、导数的应用导数在数学和实际应用中具有广泛的用途。
下面是一些常见的导数应用示例。
1. 函数极值:函数的极值点对应于函数曲线的斜率为零的点。
通过求函数的导数,我们可以确定函数的极值点。
2. 切线和法线:导数也可以用来求函数曲线在某一点的切线和法线方程。
导数概念课件
02
导数的性质
函数单调性与导数的关系
总结词
函数单调性与导数正负有关
详细描述
如果函数在某区间的导数大于0,则函数在此区间单调递增;如果导数小于0, 则函数在此区间单调递减。
极值与导数的关系
总结词
极值点导数为0或不存在
详细描述
函数在极值点处的导数为0或不存在,即一阶导数为0或不可导点。
曲线的切线与导数的关系
导数概念ppt课件
• 导数的基本概念 • 导数的性质 • 导数的计算 • 导数的应用 • 导数的历史与发展
01
导数的基本概念
导数的定义
总结词
导数是描述函数在某一点附近的变化 率的重要工具 斜率,它描述了函数在该点附近的局 部变化趋势。通过求导,可以找到函 数值随自变量变化的速率和方向。
导数的几何意义
总结词
导数的几何意义是切线斜率,它 反映了函数图像在该点的切线状 态。
详细描述
在几何上,导数表示函数图像在 某一点的切线斜率。这个切线与x 轴的夹角即为该点的导数值,表 示函数在该点附近的变化趋势。
导数的物理意义
总结词
导数的物理意义在于描述物理量随时间或空间的变化率。
详细描述
在物理学中,许多物理量都可以表示为函数形式,如速度、加速度、密度等。导 数可以帮助我们理解这些物理量如何随时间或空间变化,从而揭示物理现象的本 质。例如,速度是位移函数的导数,加速度是速度函数的导数等。
对于两个函数的乘积,其导数 为第一个函数的导数乘以第二 个函数加上第一个函数乘以第 二个函数的导数。即,若 $u(x)$ 和 $v(x)$ 可导,则 $(uv)' = u'v + uv'$。
对于两个函数的商,其导数为 被除函数的导数除以除函数的 导数。即,若 $u(x)$ 和 $v(x)$ 可导且 $v(x) neq 0$, 则 $frac{u'}{v'} = frac{u'v}{uv'}$。
(word完整版)导数的概念、导数公式与应用
导数的概念及运算知识点一:函数的平均变化率(1)概念:+△x)函数中,如果自变量在处有增量,那么函数值y也相应的有增量△y=f(x—f(x),其比值叫做函数从到+△x的平均变化率,即。
若,,则平均变化率可表示为,称为函数从到的平均变化率。
注意:①事物的变化率是相关的两个量的“增量的比值”。
如气球的平均膨胀率是半径的增量与体积增量的比值;②函数的平均变化率表现函数的变化趋势,当取值越小,越能准确体现函数的变化情况。
③是自变量在处的改变量,;而是函数值的改变量,可以是0。
函数的平均变化率是0,并不一定说明函数没有变化,应取更小考虑。
(2)平均变化率的几何意义函数的平均变化率的几何意义是表示连接函数图像上两点割线的斜率。
如图所示,函数的平均变化率的几何意义是:直线AB的斜率。
事实上,.作用:根据平均变化率的几何意义,可求解有关曲线割线的斜率。
知识点二:导数的概念: 1.导数的定义: 对函数,在点处给自变量x 以增量,函数y 相应有增量。
若极限存在,则此极限称为在点处的导数,记作或,此时也称在点处可导。
即:(或)注意: ①增量可以是正数,也可以是负数;②导数的本质就是函数的平均变化率在某点处的极限,即瞬时变化率。
2.导函数: 如果函数在开区间内的每点处都有导数,此时对于每一个,都对应着一个确定的导数,从而构成了一个新的函数, 称这个函数为函数在开区间内的导函数,简称导数.注意:函数的导数与在点处的导数不是同一概念,是常数,是函数在处的函数值,反映函数在附近的变化情况。
3.导数几何意义: (1)曲线的切线曲线上一点P(x 0,y 0)及其附近一点Q (x 0+△x ,y 0+△y),经过点P 、Q 作曲线的割线PQ ,其倾斜角为当点Q(x 0+△x,y 0+△y)沿曲线无限接近于点P(x 0,y 0),即△x →0时,割线PQ 的极限位置直线PT 叫做曲线在点P 处的切线。
若切线的倾斜角为,则当△x→0时,割线PQ斜率的极限,就是切线的斜率。
导数的定义与基本运算法则
导数的定义与基本运算法则导数是微积分中的重要概念,它描述了函数变化的速度。
在本文中,将介绍导数的定义以及导数的基本运算法则。
一、导数的定义在数学中,导数描述了函数在某一点的变化率。
假设有一个函数f(x),它在点x处的导数记为f'(x)或dy/dx。
导数的定义如下:f'(x) = lim(Δx→0) [f(x+Δx) - f(x)] / Δx上述定义表示当Δx趋近于0时,函数f(x)在点x处的变化率。
如果该极限存在,那么函数在该点处是可导的。
二、导数的基本运算法则导数的基本运算法则是对导数进行运算的规则,它包括常数倍法则、和差法则、乘积法则和商法则。
1. 常数倍法则对于函数f(x)和常数k,有以下结果:(f(x)·k)' = f'(x)·k这意味着在函数中乘以一个常数时,导数等于常数倍的导数。
2. 和差法则对于函数f(x)和g(x),有以下结果:(f(x) + g(x))' = f'(x) + g'(x)(f(x) - g(x))' = f'(x) - g'(x)这意味着对于两个函数的和或差,它们的导数等于各自函数的导数之和或差。
3. 乘积法则对于函数f(x)和g(x),有以下结果:(f(x) · g(x))' = f'(x) · g(x) + f(x) · g'(x)这意味着对于两个函数的乘积,其导数等于第一个函数的导数乘以第二个函数加上第一个函数乘以第二个函数的导数。
4. 商法则对于函数f(x)和g(x),有以下结果:(f(x) / g(x))' = (f'(x) · g(x) - f(x) · g'(x)) / g(x)^2这意味着对于两个函数的商,其导数等于分子的导数乘以分母减去分子乘以分母的导数,再除以分母的平方。
导数的概念与基本运算
导数的概念与基本运算导数是微积分学中的重要概念,用以描述函数在某一点的变化率。
导数的概念和基本运算是学习微积分的基础,本文将介绍导数的定义、求导法则以及一些常见函数的导数,帮助读者掌握导数的概念与基本运算。
一、导数的定义函数的导数描述了函数在某一点附近的变化率,可以用数学符号表示为f'(x)。
在微积分中,导数的定义是:f'(x) = lim[∆x→0] (f(x+∆x) - f(x))/∆x其中,∆x表示自变量x的一个增量。
这个定义意味着当∆x无限趋近于0时,函数f(x)在点x处的变化率就可用导数f'(x)来表示。
二、求导法则对于常见的函数形式,可以利用求导法则来求导。
以下是一些常见的求导法则:1. 常数法则:如果f(x)是一个常数,那么它的导数f'(x)等于0。
2. 幂函数法则:如果f(x) = x^n (n为实数),那么它的导数f'(x) =nx^(n-1)。
3. 指数函数法则:如果f(x) = a^x (a>0, a≠1),那么它的导数f'(x) =a^x ln(a)。
4. 对数函数法则:如果f(x) = ln(x),那么它的导数f'(x) = 1/x。
5. 三角函数法则:如果f(x) = sin(x),那么它的导数f'(x) = cos(x),同样适用于cos(x)和tan(x)等三角函数。
6. 反函数法则:如果g(x)是函数f(x)的反函数,那么g'(x) =1/f'(g(x))。
以上是一些常见的求导法则,通过应用这些法则,可以求得更复杂函数的导数。
三、常见函数的导数除了常见的求导法则,还有一些特殊函数的导数需要记住。
以下列举了一些常见函数及其导数:1. 多项式函数:- f(x) = a0 + a1x + a2x^2 + ... + anx^n,其中a0, a1, ..., an为常数。
- f'(x) = a1 + 2a2x + 3a3x^2 + ... + nanx^(n-1)2. 指数函数:- f(x) = e^x- f'(x) = e^x3. 对数函数:- f(x) = ln(x)- f'(x) = 1/x4. 三角函数:- f(x) = sin(x)- f'(x) = cos(x)- f(x) = cos(x)- f'(x) = -sin(x)- f(x) = tan(x)- f'(x) = sec^2(x)通过记住这些函数的导数公式,可以简化函数的求导过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x
x
诊断基础知识
突破高频考点
培养解题能力
[感悟·提升]
1 . 一个区别
曲线 y = f(x)“ 在点 P(x0 , y0) 处的切线” 与 “ 过
点P(x0,y0)的切线”的区别:曲线y=f(x)在点P(x0,y0)处的 切线是指P为切点,切线唯一,若斜率存在时,切线的斜率 k=f′(x0);曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P 点,点P可以是切点,也可以不是切点,而且这样的直线可
(5)曲线y=f(x)在点P(x0,y0)处的切线与过点P(x0,y0)的切线
3.导数运算问题 (6)若f(x)=a3+2ax-x)=x ln x的导函数为f′(x)=2x· x=2.
2
(× ) (× ) (× )
xe +e ex (8)函数y= 的导数是y′= . x x2
常量,其导数一定为0,即(f(x0))′=0.
2 .对于函数求导,一般要遵循先化简再求导的基本原 则.求导时,不但要重视求导法则的应用,而且要特别注意 求导法则对求导的制约作用,在实施化简时,首先必须注意 变换的等价性,避免不必要的运算失误.
诊断基础知识
突破高频考点
培养解题能力
易错辨析3——求曲线切线方程考虑不周 【典例】 (2014· 杭州质检)若存在过点O(0,0)的直线l与曲线f(x) =x3-3x2+2x和y=x2+a都相切,则a的值是 A.1 1 C.1或 64 1 B. 64 1 D.1或- 64 ( ).
第10讲 导数的概念及运算
[最新考纲] 1.了解导数概念的实际背景. 2.理解导数的几何意义. 3.能根据导数的定义求函数y=C(C为常数),y=x,y=x2,y= 1 的导数. x 4.能利用给出的基本初等函数的导数公式和导数的四则运算法 则求简单函数的导数.
诊断基础知识
突破高频考点
培养解题能力
知识梳理 1.导数与导函数的概念 (1)函数y=f(x)在x=x0处的瞬时变化率是 Δ lim x→0 Δy = Δ lim x→0 Δx
能有多条.
诊断基础知识
突破高频考点
培养解题能力
2.三个防范
一是并不是所有的函数在其定义域上的每一点
处都有导数,如函数y=|x|在x=0处就没有导数.
二是曲线的切线与曲线的交点个数不一定只有一个,这和 研究直线与二次曲线相切时有差别,如(3). 三是对函数求导要看准自变量,是对自变量的求导,而不 是对其它参数的求导,如(6).
诊断基础知识
突破高频考点
培养解题能力
规律方法
已知曲线在某点处的切线方程求参数,是利用
导数的几何意义求曲线的切线方程的逆用,解题的关键是
这个点不仅在曲线上也在切线上.
诊断基础知识
突破高频考点
培养解题能力
【训练3】
a (2013· 福建卷改编)设函数f(x)=x-1+ x (a∈R,e为 e
自然对数的底数).曲线y=f(x)在点(1,f(1))处的切线平行于 x轴,求a的值.
突破高频考点
培养解题能力
[ 错因 ]
培养解题能力
(2)如果函数y=f(x)在开区间(a,b)内的每一点处都有导数, 其导数值在 (a,b) 内构成一个新函数,这个函数称为函数 y
=f(x)在开区间内的导函数.记作f′(x)或y′.
2.导数的几何意义 函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在 f′(x0) . 点P(x0,f(x0))处的切线的斜率k,即k=________
答案 (1)A (2)1
诊断基础知识
突破高频考点
培养解题能力
考点二 利用导数的几何意义求曲线的切线方程 【例2】 已知函数f(x)=x3-4x2+5x-4.
(1)求曲线f(x)在点(2,f(2))处的切线方程;
(2)求经过点A(2,-2)的曲线f(x)的切线方程. 审题路线 程. (2)设切点P(x0,y0)⇒求f′(x0)⇒由点斜式写出过点A的切线方 (1)求f′(x)⇒求f′(2)⇒求f(2)⇒由点斜式写出切线方
f′xgx-fxg′x fx 2 [ g x ] (3) ′=____________________ (g(x)≠0). gx
诊断基础知识
突破高频考点
培养解题能力
辨析感悟 1.对导数概念的理解
(1)f′(x0)是函数y=f(x)在x=x0附近的平均变化率.
诊断基础知识
突破高频考点
培养解题能力
考点一
导数的运算
【例 1】 (1)求下列函数的导数: ①y=x sin x;
2
ln x ②y= ex .
(2)(2014· 济宁模拟)已知 f(x)=x(2 012+ln x),f′(x0)=2 013, 则 x0 = A.e2 C.ln 2 B.1 D.e ( ).
诊断基础知识
突破高频考点
培养解题能力
[错解] ∵点O(0,0)在曲线f(x)=x3-3x2+2x上, ∴直线l与曲线y=f(x)相切于点O.
则k=f′(0)=2,直线l的方程为y=2x.
又直线l与曲线y=x2+a相切, ∴x2+a-2x=0满足Δ=4-4a=0,a=1,选A. [答案] A
诊断基础知识
(2)f′(x0)与[f(x0)]′表示的意义相同. 2.对导数的几何和物理意义的理解 (3)曲线的切线不一定与曲线只有一个公共点.
(× )
(× ) (√ )
(4) 物体的运动方程是 s =- 4t2 + 16t ,在某一时刻的速度为
0,则相应时刻t=0.
相同.
(× )
( ×)
诊断基础知识 突破高频考点 培养解题能力
诊断基础知识 突破高频考点 培养解题能力
π (2)f′(x)=-f′4sin
x+cos x, 2 2 2+2,
π π 所以f′4=-f′4× π 解得f′4=
2-1, π π 4+sin 4=1.
π π 故f4=f′4cos
a a 解 由f(x)=x-1+ ex ,得f′(x)=1- ex .又曲线y=f(x)在点 a (1,f(1))处的切线平行于x轴,得f′(1)=0,即1- e =0,解 得a=e.
诊断基础知识
突破高频考点
培养解题能力
1 . 在 对 导 数 的 概 念 进 行 理 解 时 , 特 别 要 注 意 f′(x0) 与 (f(x0))′是不一样的,f′(x0)代表函数f(x)在x=x0处的导数值,不 一定为0;而(f(x0))′是函数值f(x0)的导数,而函数值f(x0)是一个
程⇒把点P代入切线方程⇒求x0⇒再代入求得切线方程.
诊断基础知识
突破高频考点
培养解题能力
解 (1)∵f′(x)=3x2-8x+5,
∴f′(2)=1,
又f(2)=-2, ∴曲线在点(2,f(2))处的切线方程为y+2=x-2, 即x-y-4=0.
诊断基础知识
突破高频考点
培养解题能力
(2)设曲线与经过点A(2,-2)的切线相切于点
2 2 P(x0,x3 0-4x0+5x0-4),∵f′(x0)=3x0-8x0+5, 2 ∴切线方程为y-(-2)=(3x0 -8x0+5)(x-2), 2 又切线过点P(x0,x3 - 4 x 0 0+5x0-4), 2 2 ∴x3 - 4 x + 5 x - 2 = (3 x 0 0 0 0-8x0+5)(x0-2),
π (2)已知函数f(x)=f′4cos
(
).
1 B.ln 2 D.-ln 2 x+sin
π x,则f4的值为________.
ln x′x2+1-x2+1′ln x 解析 (1)f′(x)= x2+1′ 1 2 x +1-2xln x x 2 1 = ,则f′(1)=4=2. x2+12
诊断基础知识
突破高频考点
培养解题能力
【训练2】
(1)(2014·德州期末)设a为实数,函数f(x)=x3+ax2 ( B.y=-3x D.y=3x-3 ).
+(a-3)x的导函数为f′(x),且f′(x)是偶函数,则曲线y=f(x)
在原点处的切线方程为 A.y=3x+1 C.y=-3x+1
(2)曲线y=x(3ln x+1)在点(1,1)处的切线方程为________.
答案 B
诊断基础知识 突破高频考点 培养解题能力
规律方法
(1)进行导数运算时,要牢记导数公式和导数的
四则运算法则,切忌记错记混.
(2)求导前应利用代数、三角恒等变形将函数先化简,然后 求导,这样可以减少运算量,提高运算速度,减少差错.
诊断基础知识
突破高频考点
培养解题能力
ln x 【训练1】 (1)已知f(x)= 2 ,则f′(1)= x +1 1 A.2 C.ln 2
诊断基础知识
突破高频考点
培养解题能力
3.基本初等函数的导数公式 基本初等函数 f(x)=C(C为常数) 导函数 f′(x)=___ 0 nxn-1 f′(x)=_______ cos x f′(x)=_______ -sin x f′(x)=_______ ex f′(x)=_______
f(x)=xn(n∈Q*) f(x)=sin x f(x)=cos x f(x)=ex f(x)=ax(a>0,a≠1) f(x)=ln x
诊断基础知识
突破高频考点
培养解题能力
解析
(1)f′(x)=3x2+2ax+(a-3),
又f′(x)为偶函数,则a=0, 所以f(x)=x3-3x,f′(x)=3x2-3,故f′(0)=-3, 故所求的切线方程为y=-3x. 3 (2)函数的导数为f′(x)=3ln x+1+x× =3ln x+4,所以在 x (1,1)的切线斜率为k=4, 所以切线方程为y-1=4(x-1),即y=4x-3.