2018年武钢实验学校九年级数学试卷
武钢实验学校2018-2019学年度下学期开学考九年级数学试卷(word版)
E DC BA1武钢实验2018-2019学年度下学期开学考九年级数学试卷一、选择题(每小题3分,共30分)1.. 长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2050000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( )A. 205万B. 420510⨯ C. 62.0510⨯ D. 72.0510⨯ 2. 在平面直角坐标系xOy 中,函数31y x =+的图象经过第( )象限。
A.一、二、三B.一、二、四C. 一、三、四D. 二、三、四 3. 在平面直角坐标系xOy 中,若点P (3,4)在⊙O 内,则⊙O 的半径r 的取值范围是( ) A. 0r <<3 B. r >4 C. 0r <<5 D. r >54.如图,ABC △中,90A ∠=︒,点D 在AC 边上,DE ∥BC ,若135∠=︒,则B ∠的度数为 A .25︒ B .35︒ C .55︒ D .65︒5.已知3x y =,则22x xyy +的值为( ).A .12B .9C .6D .36.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘,再从鱼塘中打捞200条鱼,如果在这200条鱼中有5条鱼是有记号的,则鱼塘中鱼的可估计为( ). A .3000条B .2200条C .1200条D .600条7.下列关于统计与概率的知识说法正确的是( )A.武大靖在2018年平昌冬奥会短道速滑500米项目上获得金牌是必然事件B.检测100只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是0.16,乙组数据的方差是0.24,说明甲组数据的平均数大于乙组数据的平均数8.为了测量被池塘隔开的A ,B 两点之间的距离, 根据实际情况, 作出如图图形, 其中AB BE ⊥, EF BE ⊥,AF 交BE 于D ,C 在BD 上.有四位同学分别测量出以下四组数据:①BC ,ACB ∠;②CD , ACB ∠,ADB ∠;③EF ,DE ,BD ;④DE ,DC ,BC .能根据所测数据,求出A ,B 间距离的有( ). A .1组B .2组C .3组D .4组E D C BA123456789第15题图 第16题图第13题图第9题图9. 如图,矩形ABCD 中,AB =4,BC =3,F 是AB 中点,以点A 为圆心,AD 为半径作弧交AB 于点E ,以点B 为圆心,BF 为半径作弧交BC 于点G ,则图中阴影部分面积的差S 1-S 2为( A ) A. 41312π- B. 4912π- C.4136π+ D. 610.已知二次函数22y x m =+,如图,此二次函数的图象经过点(0,4)-,正方形ABCD 的顶点C 、D 在x 轴上,A 、B 恰好在二次函数的图象上,求图中阴影部分的面积之和( ).A .2B .4C .8D .18二填空题(每小题3分,共18分)。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷(含答案)
2018~2019学年度武汉市部分学校九年级调研测试数学试卷考试时间:2019年1月17日14:00~16:00一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( )A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-24.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( )A .两枚骰子向上一面的点数之和大于1B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于125.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( ) A .AC 的长 B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________.12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____.13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个.14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________.15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m .16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________.三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=0.18.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD .19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率.20.(本题8分)如图,在边长为1的正方形网格中,A (1,7)、B (5,5)、C (7,5)、D (5,1).(1) 将线段AB 绕点B 逆时针旋转,得到对应线段BE .当BE 与CD 第一次平行时,画出点A 运动的路径,并直接写出点A 运动的路径长;(2) 线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标.21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线;(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G.①求证:AG=BG;②若AD=2,CD=3,求FG的长.22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件.(1) 求出y与x的函数关系式;(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润.23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,AB=CE =62,连接BE,P为BE的中点,连接PD、AD.(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系;(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 如图3,若∠ACD=45°,求△P AD的面积.24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C.(1) 如图1,m=3.①直接写出A、B、C三点的坐标;②若抛物线上有一点D,∠ACD=45°,求点D的坐标.(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N两点,求证:OM·ON是一个定值.。
武钢实验学校2015~2016学年度九年级下学期周考数学试卷四
武钢实验学校2015~2016学年度九年级下学期周考数学试卷四一、选择题(共10小题,每小题3分,共30分)1.无理数7介于两个相邻的整数之间,下列说法正确的是( ) A .1与2之间B .2与3之间C .3与4之间D .4与5之间2.若分式21+-x x 的值为0则x 的取值是( ) A .x =1B .x ≠1C .x =-2D .x ≠-2 3.计算:(x -3)(x +3)=( ) A .x 2-6x +9B .x 2+9C .x 2-9D .x 2-3x +94.下列事件是必然事件的是( ) A .抛掷一枚硬币四次,有二次正面朝上 B .打开电视频道,正在播放《火星情报局》 C .射击运动员射击以此,命中十环D .方程x 2-2x -1=0必有实数根 5.下列运算正确的是( ) A .x 2+x 3=x 5B .x 8÷x 2=x 4C .3x -2x =1D .(x 2)3=x 6 6.在平面直角坐标系中,点A (-2,3),绕原点O 逆时针旋转90°得到点A 1,则A 1的坐标为( )A .(2,3)B .(3,2)C .(-3,-2)D .(-2,-3)7.由5个相同的正方体组成的几何体如图所示,则它的主视图是( )8.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是( ) A .平均数是6.5 B .中位数是6.5 C .众数是7D .平均每周锻炼超过6小时的人占总数的一半9.观察下列等式:2212212112213⨯-⨯=⨯⨯=a ,32322312212324⨯-⨯=⨯⨯=a ,=⨯⨯=432435a 43241231⨯-⨯,54542512412546⨯-⨯=⨯⨯=a ,……,按以上规律写出了a 5、a 6、a 7、……、a 20,则a 1+a 2+a 3+……+a 20=( )A .20220121⨯-B .201922012191⨯-⨯C .212211201⨯- D .21221121⨯- 10.如图,在直角坐标系中,直线AB 经点P (3,4),与坐标轴正半轴相 交于A 、B 两点.当△AOB 的面积最小时,△AOB 的内切圆的半径是( ) A .2B .2.5C .5D .6二、填空题(本大题共6个小题,每小题3分,共18分) 11.计算2-(-3)的结果为__________12.数据14 000 000 000,用科学记数法可表示为__________13.袋中装有大小相同的2个红球和3个绿球,从袋中摸出1个球摸到绿球的概率为_______ 14.如图,将三角形的直角顶点放在直尺的一边上.若∠1=65°,则∠2=__________15.在边长为5正方形ABCD 中,点E 是BC 上,且BE =2,点M 、N 是对角线BD 上两点,且MN =2.当四边形CEMN 周长最小时,则cos ∠BCN 的值__________16.对于三个数a 、b 、c 用max {a ,b ,c }这三个数中最大的数,例如:max {-1,2,32}=2.若直线k x y +-=21与函数y =max {x +1,3-x ,-x 2+2x +3}的图象有且只有2个交点,则k 的取值条件为__________ 三、解答题(共8题,共72分) 17.(本题8分)解方程:4)1(3321-=-x x18.(本题8分)已知如图,点D 在AB 上,点E 在AC 上,AB =AC ,∠B =∠C ,求证:AD =AE19.(本题8分)某区八年级有3000名学生参加“爱我中华”知识竞赛活动,为了了解本次知识竞赛的成绩分布情况,从中抽取了部分学生的得分进行统计成绩x (分) 频数 频率 50≤x <60 10 a 60≤x <70 16 0.08 70≤x <80 b0.20(1) 补全不完整的统计图表(2) 样本中成绩的中位数落在哪一组(3) 若将得分转化为等级,规定:50≤x <60评为D ,60≤x <70评为C ,70≤x <90评为B ,90≤x <100评为A .这次全区八年级参加竞赛的学生约有多少学生参赛成绩被评为“B ”?20.(本题8分)如图,已知双曲线xy 12=与直线y =x +1交于点A 、B 两点 (1) 求点A 、B 两点的坐标(2) 双曲线的图象上有三点M (x 1,y 1)、N (x 2,y 2)、P (x 3,y 3),且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是______________(用“<”号连接)21.(本题8分)已知AB 是半⊙O 的直径,点C 为半圆弧的中点,点D 是弧AC 上一点,连接BD 交AC 于E 点 (1) 如图1,若点D 是弧AC 的中点,连接AD ,求证:BE =2AD(2) 如图2,若点E 是AC 的中点,作CF ⊥BD 于F ,连接AF ,求tan ∠CAF 的值22.(本题10分)某小区在一块矩形ABCD 的空地上划一块四边形MNPQ 进行绿化,为了绿化环境又节省成本.如图,已知矩形的边BC =200 m ,边AB =a m (a 为不大于200的常数),四边形MNPQ 的顶点在矩形的边上,且AM =BN =CP =DQ =x m ,设四边形MNPQ 的面积为S m 2 (1) 求S 关于x 的函数关系式,并直接写出自变量x 的取值范围 (2) 若a =120,求S 的最小值,并求出此时x 的值(3) 若a =200,且每平方米绿化费用需50元,则此时绿化最低费用为_________万元23.(本题10分)如图,在△ABC 中,∠A =2∠B ,且∠A 、∠B 、∠C 的对边分别为a 、b 、c (1) 若∠B =36°,b =1,则c =__________ (2) 如图1,若a =6,b =4,则c 的值 (3) 如图2,若∠A =2∠B =4∠C .若c =3,求abba +的值24.(本题12分)已知抛物线y =-x 2+2mx -m 2+3m +1的顶点为M ,不论m 为何值,顶点M 均在某一直线l 上 (1) 求此直线l 的函数解析式(2) 当m =1时,点N (1,0),抛物线与y 轴交于点C ,点P 是第一象限抛物线上一点,使得线段OP 与直线CN 的夹角为45°,求点P 的坐标(3) 是否存在直线y =kx -3与抛物线交于A 、B 两点(A 点在B 点的下方),使AB 为定长?若存在,求出k 的值和AB 的长;若不存在,请说明武钢实验学校2015~2016学年度九年级下学期周考数学试卷四参考答案一、选择题(共10小题,每小题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案BDCDDCBADA10.提示:最好理解的还是均值不等式二、填空题(共6小题,每小题3分,共18分) 11.5 12.1.4×101013.5314.25°15.4316.3<k <4或k >167315.提示:平移类最值,先将固定的长度走完如图,过点E 作EF ∥BD ,且使EF =MN =2 只要使NF +NC 取得最小值即可 ∵NC =AN NF +NC =NF +AN 连结AF 交BD 即为N 点 以B 为原点建立平面直角坐标系 直线BD 的解析式为y =x 直线AF 的解析式为534+-=x y ∴N (715,715)三、解答题(共8题,共72分)17.解:x =-9 18.解:略19.解:(2) 80≤x <70;(3) 1530人 20.解:(1) A (-4,-3)、B (3,4)(2) y 2<y 1<y 321.证明:(1) 延长AD 、BC 交于点F∴△ACF ≌△BCE ∴BE =AF =2AD (2) ∵E 为AC 的中点 ∴BC =2CE根据射影定理:CF =2EF ,BF =2EF设EF =1,则CF =2,BF =4,AE =CE =5,BC =52 连接AD∴AD ⊥BD ,△ADE ≌△CFE (AAS ) ∴AD =CF =2方法1:∵S △AFC =S △ABC -S △BCF -S △ABF∴S △AFC =224212421525221=⨯⨯-⨯⨯-⨯⨯过点F 作FG ⊥AC 于G∴S △AFC =25221=⨯⨯FG ,552=FG ,554=CG∴tan ∠CAF =31=AG FG 方法2:∵5==AEBEFE AE ,∠AEF =∠BEA ∴△AEF ∽△BEA ∴∠CAF =∠ABF ∴tan ∠CAF =tan ∠ABD =3162==BD AD 22.解:(1) S =2x 2-(a +200)x +200a (0<x <a )(2) 当x =80时,S 有最小值为5600(3) 当x =100时,S 有最小值为20000,最低费用为100万元 23.解:(1) 经典的36°、72°、72°215+=c (2) 过点A 作∠BAC 的平分线交BC 于D 设BD =x ,则CD =6-x ∵△CAD ∽△CBA∴6446=-x ,x =310∵AD 平分∠BAC∴点D 到AB 、AC 的距离相等 ∴45==CD BD AC AB ∴c =5(3) 过点A 作AD 平分∠BAC 交BC 于D ,过点A 作∠DAC 的平分线交CD 于E 设DB =DA =x ,AB =AC =EC =c ∴DE =a -c -x ∵ADE ∽CAB ∴AC ADAB DE =即bxc x c a =-- 同理:根据角平分线定理CEDEAC AD =即bxa c x -=联立得:31111==+=+c ab b a b a。
武汉市武钢实验学校九年级上册期中试卷检测题
武汉市武钢实验学校九年级上册期中试卷检测题一、初三数学一元二次方程易错题压轴题(难)1.(1)课本情境:如图,已知矩形AOBC,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动,出发时,点P和点Q之间的距离是10cm;(2)逆向发散:当运动时间为2s时,P,Q两点的距离为多少?当运动时间为4s时,P,Q 两点的距离为多少?(3)拓展应用:若点P沿着AO→OC→CB移动,点P,Q分别从A,C同时出发,点Q从点C移动到点B停止时,点P随点Q的停止而停止移动,求经过多长时间△POQ的面积为12cm2?【答案】(1)85s或245s(2)62cm;213cm(3)4s或6s【解析】【分析】(1)过点P作PE⊥BC于E,得到AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,利用勾股定理得到方程,故可求解;(2)根据运动时间求出EQ、PE,利用勾股定理即可求解;(3) 分当点P在AO上时,当点P在OC上时和当点P在CB上时,根据三角形的面积公式列出方程即可求解.【详解】解:(1)设运动时间为t秒时,如图,过点P作PE⊥BC于E,由运动知,AP=3t,CQ=2t,PE=6,EQ=16﹣3t﹣2t=16﹣5t,∵点P和点Q之间的距离是10 cm,∴62+(16﹣5t)2=100,解得t1=85,t2=245,∴t=85s或245s.故答案为85s或245s(2)t=2时,由运动知AP =3×2=6 cm ,CQ =2×2=4 cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BE =6,∴EQ =BC ﹣BE ﹣CQ =16﹣6﹣4=6, 根据勾股定理得PQ=2262PE EQ +=, ∴当t =2 s 时,P ,Q 两点的距离为62 cm ;当t =4 s 时,由运动知AP =3×4=12 cm ,CQ =2×4=8cm , ∴四边形APEB 是矩形, ∴PE =AB =6,BQ =8,CE=OP=4 ∴EQ =BC ﹣CE ﹣BQ =16﹣4﹣8=4, 根据勾股定理得PQ=22213PE EQ +=, P ,Q 两点的距离为213cm .(3)点Q 从C 点移动到B 点所花的时间为16÷2=8s , 当点P 在AO 上时,S △POQ =2PO CO ⋅=(163)62t -⋅=12, 解得t =4.当点P 在OC 上时,S △POQ =2PO CQ ⋅=(316)22t t-⋅=12, 解得t =6或﹣23(舍弃). 当点P 在CB 上时,S △POQ =2PQ CO ⋅=(2223)62t t +-⨯=12, 解得t =18>8(不符合题意舍弃),综上所述,经过4 s 或6 s 时,△POQ 的面积为12 cm 2. 【点睛】此题主要考查勾股定理的应用、一元二次方程与动点问题,解题的关键是熟知勾股定理的应用,根据三角形的面积公式找到等量关系列出方程求解.2.如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t 秒.(1)当 t 为何值时,△PBQ的面积等于 35cm2?(2)当 t 为何值时,PQ的长度等82cm?(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?【答案】(1)t为5或7;(2)t为45或4;(3)t为4或16【解析】【分析】(1)分别用含t的代数式表示PB,BQ的长,利用面积公式列方程求解即可.(2)分别用含t的代数式表示PB,BQ的长,利用勾股定理列方程求解即可.(3)分段要清楚,,P,Q都没有返回,表示好PB,CQ的长,用面积公式列方程,,P不返回,Q返回,表示好PB,CQ的长,用面积公式列方程,,两点都返回,表示好PB,CQ的长,用面积公式列方程即可得到答案.【详解】解:(1),.根据三角形的面积公式,得,即,整理,得,解得,.故当为5或7时,的面积等于35.(2)根据勾股定理,得,整理,得,解得,.故当为或4时,的长度等于.(3)①当时,,,由题意,得,解得:,(舍去).②当时,,,由题意,得,次方程无解. ③当时,,,由题意,得, 解得:(舍去),.综上所述,当为4或16时,的面积等于. 【点睛】本题考查的是在运动过程中应用一元二次方程解决实际问题,建立正确情境下的几何模型是解决问题的关键,特别是最后一问,关键是弄懂分段的时间界点,才能正确的表示PB ,CQ 的长.3.在等腰三角形△ABC 中,三边分别为a 、b 、c ,其中ɑ=4,若b 、c 是关于x 的方程x 2﹣(2k +1)x +4(k ﹣12)=0的两个实数根,求△ABC 的周长. 【答案】△ABC 的周长为10. 【解析】 【分析】分a 为腰长及底边长两种情况考虑:当a=4为腰长时,将x=4代入原方程可求出k 值,将k 值代入原方程可求出底边长,再利用三角形的周长公式可求出△ABC 的周长;当a=4为底边长时,由根的判别式△=0可求出k 值,将其代入原方程利用根与系数的关系可求出b+c 的值,由b+c=a 可得出此种情况不存在.综上即可得出结论. 【详解】当a =4为腰长时,将x =4代入原方程,得:()214421402k k ⎛⎫-++-= ⎪⎝⎭解得:52k =当52k =时,原方程为x 2﹣6x +8=0, 解得:x 1=2,x 2=4,∴此时△ABC 的周长为4+4+2=10;当a =4为底长时,△=[﹣(2k +1)]2﹣4×1×4(k ﹣12)=(2k ﹣3)2=0, 解得:k =32, ∴b +c =2k +1=4. ∵b +c =4=a ,∴此时,边长为a ,b ,c 的三条线段不能围成三角形. ∴△ABC 的周长为10. 【点睛】本题考查了根的判别式、根与系数的关系、一元二次方程的解、等腰三角形的性质以及三角形的三边关系,分a 为腰长及底边长两种情况考虑是解题的关键.4.已知关于x 的方程230x x a ++=①的两个实数根的倒数和等于3,且关于x 的方程2(1)320k x x a -+-=②有实数根,又k 为正整数,求代数式2216k k k -+-的值.【答案】0. 【解析】 【分析】由于关于x 的方程x 2+3x +a =0的两个实数根的倒数和等于3,利用根与系数的关系可以得到关于a 的方程求出a ,又由于关于x 的方程(k -1)x 2+3x -2a =0有实数根,分两种情况讨论,该方程可能是一次方程、有可能是一元二次方程,又k 为正整数,利用判别式可以求出k ,最后代入所求代数式计算即可求解. 【详解】解:设方程①的两个实数根分别为x 1、x 2则12123940x x x x a a +-⎧⎪⎨⎪-≥⎩=== , 由条件,知12121211x x x x x x ++==3, 即33a -=,且94a ≤, 故a =-1,则方程②为(k -1)x 2+3x +2=0,Ⅰ.当k-1=0时,k=1,x=23-,则2216kk k-=+-.Ⅱ.当k-1≠0时,∆=9-8(k-1)=17-6-8k≥0,则178k≤,又k是正整数,且k≠1,则k=2,但使2216kk k-+-无意义.综上,代数式2216kk k-+-的值为0【点睛】本题综合考查了根的判别式和根与系数的关系,在解方程时一定要注意所求k的值与方程判别式的关系.要注意该方程可能是一次方程、有可能是一元二次方程,5.如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A 匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥BC.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【答案】(1)当BF PC⊥s时,PQ∥BC.(2)不存在某时刻t,使线段PQ恰好把△ABC 的面积平分.(3)存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为137-cm2.【解析】(1)证△APQ∽△ABC,推出APAB=AQAC,代入得出10210t-=28t,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,得出方程-5 6t2+6t=12×12×8×6,求出此方程无解,即可得出答案.(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、OD、和PD的长度;然后在Rt△PQD 中,根据勾股定理列出方程(8-185t )2-(6-65t )2=(2t )2,求得时间t 的值;最后根据菱形的面积等于△AQP 的面积的2倍,进行计算即可. 解:(1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴△APQ∽△ABC, ∴AP AB =AQ AC, 即10210t -=28t, 解得:t=209, ∴当t=209时,PQ∥BC. (2)如答图1所示,过P 点作PD⊥AC 于点D .∴PD∥BC,∴F ,即B ,解得6PD 6-5t =.216625S PD AQ t t =⨯=-, 假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP = C S △ABC ,而S △ABC =12AC•BC=24,∴此时S △AQP =12. 而S △AQP 2665t t =-, ∴266125t t -=,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解, ∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.(3)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC,∴D ,即COD ∆, 解得:OC ,h , ∴QD=AD﹣AQ=t .在Rt△PQD 中,由勾股定理得:QD 2+PD 2=PQ 2, 即h ,化简得:13t 2﹣90t+125=0, 解得:t 1=5,t 2=t ,∵t=5s 时,AQ=10cm >AC ,不符合题意,舍去,∴t=52. 由(2)可知,S △AQP =54∴S 菱形AQPQ′=2S △AQP =2×258337+cm 2. 所以存在时刻t ,使四边形137-cm 2. “点睛”本题考查了三角形的面积,勾股定理的逆定理,相似三角形的性质和判定的应用,主要考查学生综合运用进行推理和计算的能力.解决问题的关键是作辅助线构造相似三角形以及直角三角形,根据相似三角形的对应边成比例以及勾股定理进行列式求解.二、初三数学 二次函数易错题压轴题(难)6.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为113331322⎛+ ⎝⎭或5371533722⎛-+- ⎝⎭. 【解析】 【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】解:()1当0y =时,()210,x a x a -++=解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=-ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a <3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC ∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩11x y ⎧=⎪⎪∴⎨⎪=⎪⎩(舍去),22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点的P坐标为⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称, 则直线'OP 的函数解析式为3,y x =-则23,23,y x y x x =-⎧⎨=+-⎩11x y ⎧=⎪⎪∴⎨⎪=⎪⎩舍去),22x y ⎧=⎪⎪⎨⎪=⎪⎩∴点P'的坐标为⎝⎭综上可得,点P的坐标为⎝⎭或⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.7.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+a∴0<﹣b ≤4,∴﹣4≤b <0,即b b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.8.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a 则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3y x,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK = ∴431OK OK OQ =-=-= ∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.9.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】 【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案; (2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标. 【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143a b c =-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x =-+-. (2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==,又∵DH//y 轴, ∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°, ∴△CDH 为等腰直角三角形,∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC , ∵∠BAC=∠FAC , ∴∠OAB=∠OFA . ∴△OAB ∽△OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩,∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-,∴E (2,73-). 【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.10.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C 的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4,可得分别为,点P的坐标为(,7)或(,-3)(3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键三、初三数学 旋转易错题压轴题(难)11.已知抛物线y=ax 2+bx-3a-5经过点A(2,5) (1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7) ①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标. 【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(473058,91305-8+),F 1(305-21-8,33305-4+),G 2(47-3058,91-305-8),F 2(305218,33-305-4) 【解析】 【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131305t -4+=,231-305t =,分两类讨论,分别求出G 、F 坐标。
武钢实验学校2015~2016学年度九年级周考数学试卷二(1)
N M BOA C D AB 武钢实验学校2015~2016学年度九年级周考数学试卷二一、选择题(共10小题,每小题3分,共30分)1.下列图形中,为中心对称图形的是( ) 2. 已知关于x 的方程x 2+kx -6=0的一个根为3,则实数k 的值为( ) A . 2 B .-2 C . 1 D .-1 3.二次函数y =x 2-2x +3的对称轴是( ) A .x =1 B .x =2 C .x =-1 D .x =-2 4.若方程x 2-3x -1=0的两根为x 1、x 2,则x 1.x 2的值为( ) A .-3 B .3 C .-1 D .15.某药品经过两次降价,每瓶零售价由168元降为108元,已知两次降价的百分率相同,每次降价的百分率为x ,根据题意列方程得( )A .168(1+x )2=108B .168(1-x )2=108C .168(1-2x )=108D .168(1-x 2)=1086.如图,E 是正方形ABCD 的CD 边上任意一点,把△ADE 绕A 顺时针方向旋转一个角度后得到△ABE ′,则旋转的角度可能是( )A .270° B .180° C .135° D . 90°7.平面内一点P 离⊙O 上的点最近距离为5 cm ,离⊙O 上的点最远距离为13 cm ,则⊙O 的半径为( ) A .4cm B . 4或9cm C .8cm D . 8或18cm 8.关于x 的一元二次方程0132=-+x kx 有实数根,则k 的取值范围是( ) A .49-≤k B .049≠-≤k k 且 C .49-≥k D .049≠-≥k k 且9.抛物线)0(2≠++=a c bx ax y 经过点(-1,1),(3,-3),则方程2(1)0ax b x c +++=(0)a ≠的两根是( )A . x 1=-1、x 2=3 B .x 1=-1、x 2=-3 C .x 1=1、x 2=3 D .x 1=1、x 2=-310.如图,已知△ABC 中,AC=2,BC=4,以AB 为边向形外作正方形ABMN ,若∠ACB 的度数发生变化,连接C N ,则C N 的最大值是( )A .42B .52C .4+22D . 62二、填空题(每小题3分,共18分)11.若方程(m -1)12+m x +2mx -3=0是关于x 的一元二次方程,则m =________. 12.函数y =x 2+bx -c 的图象经过点(1,2),则b -c 的值为________.13.用配方法解2410-+=x x ,此方程配方形式为 .14.将抛物线2=y x 向右平移2个单位,再向下平移1 个单位,得到新解析式是 . 15.甲乙两车从同一地点沿同一路线驶向同一目的地,甲车先行驶了一段时间后,乙车开始行驶,甲车到达终点时,乙车走了全程的九分之四,下图反映的是甲车开始行驶,到乙车到达终点的整个过程中两车之间的距离与时间的函数图像,则a = .16.如图,在△ABC 中,AB=AC=5, ∠BAC=45°, 将BC 绕点B 顺时针旋转90°至BD ,则AD = .三、解答题(共72分)17.(8分)用公式法解方程:2x 2-6x +1=018.(8分)如图,同心⊙O 中,大圆弦AB 与小圆交于点M 、N 。
1_2018~2019学年度武汉市部分学校九年级调研测试数学试卷
2018~2019学年度武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( ) A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-2 4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π- B .623π- C .823π- D .33π-9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( )A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C 、D 、G 、H )这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1) (1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A、B、C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N 两点,求证:OM·ON是一个定值。
2018~2019学年度武汉市部分学校九年级调研测试数学试卷
2018~2019学年度武汉市部分学校九年级调研测试数学试卷一、选择题(共10小题,每小题3分,共30分)1.将下列一元二次方程化成一般形式后,其中二次项系数是3,一次项系数是-6,常数项是1的方程是( )A .3x 2+1=6xB .3x 2-1=6xC .3x 2+6x =1D .3x 2-6x =12.下列图形中,是中心对称图形的是( )3.若将抛物线y =x 2先向右平移1个单位长度,再向上平移2个单位长度,就得到抛物线( ) A .y =(x -1)2+2B .y =(x -1)2-2C .y =(x +1)2+2D .y =(x +1)2-2 4.投掷两枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,则下列事件为随机事件的是( ) A .两枚骰子向上一面的点数之和大于1 B .两枚骰子向上一面的点数之和等于1C .两枚骰子向上一面的点数之和大于12D .两枚骰子向上一面的点数之和等于12 5.已知⊙O 的半径等于8 cm ,圆心O 到直线l 的距离为9 cm ,则直线l 与⊙O 的公共点的个数为( )A .0B .1C .2D .无法确定6.如图,“圆材埋壁”和我国古代著名数学著作《九章算术》中的问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”用几何语言可表述为:CD 为⊙O 的直径,弦AB ⊥CD 于点E ,CE =1寸,AB =10寸,则直径CD 的长为( )A .12.5寸B .13寸C .25寸D .26寸7.假定鸟卵孵化后,雏鸟为雌鸟与雄鸟的概率相同.如果3枚鸟卵全部成功孵化,那么3只雏鸟中恰有2只雄鸟的概率是( )A .61B .83C .85D .32 8.如图,将半径为1,圆心角为120°的扇形OAB 绕点A 逆时针旋转一个角度,使点O 的对应点D 落在弧AB 上,点B 的对应点为C ,连接BC ,则图中CD 、BC 和弧BD 围成的封闭图形面积是( )A .63π-B .623π-C .823π-D .33π- 9.古希腊数学家欧几里得的《几何原本》记载,形如x 2+ax =b 2的方程的图解法是:如图,画Rt △ABC ,∠ACB =90°,BC =2a ,AC =b ,再在斜边AB 上截取BD =2a ,则该方程的一个正根是( )A .AC 的长B .BC 的长 C .AD 的长 D .CD 的长10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有( )A .2个B .3个C .4个D .5个二、填空题(本大题共6个小题,每小题3分,共18分)11.已知3是一元二次方程x 2=p 的一个根,则另一根是___________12.在平面直角坐标系中,点P 的坐标是(-1,-2),则点P 关于原点对称的点的坐标是_____13.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,童威为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色……,不断重复上述过程,童威共摸了100次,其中20次摸到黑球,根据上述数据,可估计口袋中的白球大约有___________个14.第七届世界军人运动会将于2019年10月18日至27日在中国武汉矩形,小郑幸运获得了一张军运会吉祥物“兵兵”的照片.如图,该照片(中间的矩形)长29 cm 、宽为20 cm ,她想为此照片配一个四条边宽度相等的镜框(阴影部分),且镜框所占面积为照片面积的41.为求镜框的宽度,他设镜框的宽度为x cm ,依题意列方程,化成一般式为____________________15.如图是抛物线型拱桥,当拱顶离水面2 m 时,水面宽4 m .水面下降2.5 m ,水面宽度增加___________m16.如图,正方形ABCD 的边长为4,点E 是CD 边上一点,连接AE ,过点B 作BG ⊥AE 于点G ,连接CG 并延长交AD 于点F ,则AF 的最大值是___________三、解答题(共8题,共72分)17.(本题8分)解方程:x 2-3x -1=018.(本题8分)如图,A 、B 、C 、D 是⊙O 上四点,且AD =CB ,求证:AB =CD19.(本题8分)武汉的早点种类丰富,品种繁多,某早餐店供应甲类食品有:“热干面”、“面窝”、“生煎包”、“锅贴饺”(分别记为A 、B 、C 、D );乙类食品有:“米粑粑”、“烧梅”、“欢喜坨”、“发糕”(分别记为E 、F 、G 、H ),共八种美食.小童和小郑同时去品尝美食,小童准备在“热干面”、“面窝”、“米粑粑”、“烧梅”(即A 、B 、E 、F )这四种美食中选择一种,小郑准备在“生煎包”、“锅贴饺”、“欢喜坨”、“发糕”(即C、D、G、H)这四种美食中选择一种,用列举法求小童和小郑同时选择的美食都会甲类食品的概率20.(本题8分)如图,在边长为1的正方形网格中,A(1,7)、B(5,5)、C(7,5)、D(5,1) (1) 将线段AB绕点B逆时针旋转,得到对应线段BE.当BE与CD第一次平行时,画出点A运动的路径,并直接写出点A运动的路径长(2) 线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,直接写出这个旋转中心的坐标21.(本题8分)如图,在四边形ABCD中,AD∥BC,AD⊥CD,AC=AB,⊙O为△ABC的外接圆(1) 如图1,求证:AD是⊙O的切线(2) 如图2,CD交⊙O于点E,过点A作AG⊥BE,垂足为F,交BC于点G①求证:AG=BG②若AD=2,CD=3,求FG的长22.(本题10分)某商家销售一种成本为20元的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=25时,y=550;当x=30时,y=500.物价部门规定,该商品的销售单价不能超过48元/件(1) 求出y与x的函数关系式(2) 问销售单价定为多少元时,商家销售该商品每天获得的利润是8000元?(3) 直接写出商家销售该商品每天获得的最大利润23.(本题10分)如图,等边△ABC与等腰三角形△EDC有公共顶点C,其中∠EDC=120°,2,连接BE,P为BE的中点,连接PD、ADAB=CE=6(1) 为了研究线段AD与PD的数量关系,将图1中的△EDC绕点C旋转一个适当的角度,使CE与CA重合,如图2,请直接写出AD与PD的数量关系(2) 如图1,(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由(3) 如图3,若∠ACD=45°,求△P AD的面积24.(本题12分)如图,在平面直角坐标系中,抛物线y=x2+(1-m)x-m交x轴于A、B两点(点A在点B的左边),交y轴负半轴于点C(1) 如图1,m=3①直接写出A、B、C三点的坐标②若抛物线上有一点D,∠ACD=45°,求点D的坐标(2) 如图2,过点E(m,2)作一直线交抛物线于P、Q两点,连接AP、AQ,分别交y轴于M、N 两点,求证:OM·ON是一个定值。
武汉市武钢实验学校2017~2018学年度初二数学入学测试试题(word版)
武钢实验学校2017~2018学年度初二数学入学测试一、选择题(共10小题,每小题3分,共30分) 1.下列图形中轴对称图形是( )2.下列各组线段中,能组成三角形的是( ) A .5、11、6 B .8、8、16 C .10、5、4 D .6、9、14 3.点(2,3)关于x 轴对称的点的坐标是( ) A .(-3,-2)B .(2,-3)C .(-2,3)D .(-2,-3)4.下列条件中一定能判定△ABC ≌△DEF 的是( ) A .∠A =∠D ,∠B =∠E ,∠C =∠F B .∠A =∠D ,AB =DE ,BC =EF C .AB =DE ,AC =DF ,BC =EFD .AB =DE ,∠A =∠E ,∠B =∠F5.如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,图中有( )对全等三角形 A .4B .3C .2D .16.下列命题中:① 形状相同的两个三角形是全等形;② 在两个三角形中,相等的角是对应角,相等的边是对应边;③ 全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命题的个数有( ) A .3个B .2个C .1个D .0个7.如图,在△ABC 中,BC =8,线段AB 的垂直平分线交BC 于点D ,线段AC 的垂直平分线交BC 于点F ,则△ADE 的周长等于( ) A .8B .4C .12D .168.在△ABC 内有一点P 满足P A =PB =PC ,则点P 一定是△ABC 的( ) A .三边垂直平分线的交点 B .三条角平分线的交点 C .三条高的交点D .三条中线的交点9.如图,点A 在∠MON 的角平分线上一点,过A 任作一直线分别与∠MON 的两边交于B 、C 两点,P 为BC 中点,过P 作BC 的垂线交OA 于点D ,∠MON =130°,则∠BDC ( ) A .50°B .60°C .70°D .不确定10.(2015秋·武昌区期中)如图,等腰Rt △ABC 中,∠BAC =90°,AD ⊥BC 于点D ,∠ABC 的平分线分别交AC 、AD 于E 、F 两点,M 为EF 的中点,AM 的延长线交BC 于点N ,连接DM ,下列结论:① DF =DN ;② △DMN 为等腰三角形;③ DM 平分∠BMN ;③ AE =32EC ;④ AE =NC ,其中正确结论的个数是( ) A .5个 B .4个C .3个D .2个二、填空题(本大题共6个小题,每小题3分,共18分)11.若一个多边形的每个外角都为60°,则它的内角和为___________12.一个汽车牌在水中的倒影为,则该车牌照号码为___________13.如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,则∠B=________14.等腰三角形一个内角是80°,它的顶角等于___________15.如图,AD是的高,AE、BF分别平分∠BAC、∠ABC,且相交于点G,AD与BF相交于点H,∠C=70°,∠AEC=85°,则∠AHB=___________16.如图,∠AOB=30°,点P为∠AOB内一点,OP=8,点M、N分别在OA、OB上,则△PMN 周长的最小值为___________三、解答题(共8题,共72分)17.(本题8分)若等腰三角形一腰上的中线分周长为6 cm和9 cm两部分,求这个等腰三角形的底边和腰的长18.(本题8分)已知如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:AB∥ED19.(本题8分)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别为EF,且BE=CF,求证:AD是∠BAC的角平分线20.(本题8分)如图所示,在平面直角坐标系中,A (-1,4)、B (-3,3)、C (-2,1),直线m 上每个点的横坐标都为1(1) 画出△ABC 关于x 轴对称的△A 1B 1C 1 (2) 画出△ABC 关于直线m 对称的△A 2B 2C 2(3) 直线写出点M (a ,b )关于直线m 的对称点M 1的坐标21.(2015秋·武珞路期中)如图,四边形ABCD 中,AD ∥CB ,点E 是CD 上一点,AE 平分∠BAD ,AE ⊥BE ,求证:(1) DE =CE ;(2) AB =AD +BC22.(2015秋·武昌区期中)(本题10分)如图,在等边△ABC 中,AE =CD ,AD 、BE 交于P 点,BQ ⊥AD 于Q (1) 求证:BP =2PQ (2) 连PC ,若BP ⊥PC ,求PQAP的值23.(2016秋·粮道街期中)如图,Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F (1) 求证:CE =CF(2) 将上图中的△ADE 沿AB 向右平移到△A ′D ′E ′的位置,使点E ′落在BC 边上,其它条件不变,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论24.(2016秋·武昌C 组联盟期中)(本题12分)在平面直角坐标系中,A (3,0)、B (0,3),点P 为线段AB 上一点,且21BP AP ,连接OP (1) 如图1,求S △AOP(2) 如图2,作直线AM ⊥x 轴,作PC ⊥OP 交AM 于点C ,求证:PC =OP(3) 如图3,在(2)的条件下,在直线AM 上一动点N ,连接ON 并在x 轴下方作OQ ⊥ON 且OQ =ON ,连接点D (3,3)与点Q 的线段交x 轴于点E .当OE =2,则Q 点坐标为___________(请同学们自己画图,并直接写出结果)。
2018-2019学年度湖北省武汉市武钢实验中学九年级2月开学考数学试卷(Word版)
2018-2019 学年下学期武钢实验九年级数学试卷一、选择题(每小题 3 分,共 30 分)1.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州 等 11 省市,面积约 2 050 000 平方公里,约占全国面积的 21% .将 2 050 000 用科学记数法表示应为( )A . 205 万B . 205 ⨯104C . 2.05 ⨯106D . 2.05 ⨯107 2. 在平面直角坐标系 xOy 中,函数 y = 3x +1的图象经过第()象限 A .一、二、三 B .一、二、四 C . 一、三、四 D . 二、三、四3. 在平面直角坐标系 xOy 中,若点 P (3,4)在⊙O 内,则⊙O 的半径 r 的取值范围是() A . 0<r <3 B . r >4 C . 0<r <5 D . r >54.如图, △ABC 中, ∠A = 90︒,点 D 在 AC 边上, DE ‖BC ,若∠1 = 35︒ ,则∠B 的度数为( )A . 25︒B . 35︒C . 55︒D . 65︒第 4 题图 第 8 题图 第 9 题图 第 10 题图 5.已知 x = y 3,则 x 2 + xy y 2 的值为( ) A .12 B . 9 C . 6 D .3 6.为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获30 条鱼,在每条鱼身上做好记号后, 把这些鱼放归鱼塘,再从鱼塘中打捞 200 条鱼,如果在这 200 条鱼中有5 条鱼是有记号的,则鱼塘中鱼的可估计为( )A . 3000 条B . 2200 条C .1200 条D . 600 条 7.下列关于统计与概率的知识说法正确的是() A.武大靖在 2018 年平昌冬奥会短道速滑 500 米项目上获得金牌是必然事件B.检测 100 只灯泡的质量情况适宜采用抽样调查C.了解北京市人均月收入的大致情况,适宜采用全面普查D.甲组数据的方差是 0.16,乙组数据的方差是 0.24,说明甲组数据的平均数大于乙组数据的平均数 8.为了测量被池塘隔开的 A , B 两点之间的距离, 根据实际情况, 作出如图图形, 其中 AB ⊥ BE , EF ⊥ BE , AF 交 BE 于 D , C 在 BD 上.有四位同学分别测量出以下四组数据:① BC ,∠ACB ;② CD , ∠ACB , ∠ADB ;③ EF , DE , BD ;④ DE , DC , BC .能根据所测数据,求出 A , B 间距离的有( )A .1组B . 2 组C . 3组D . 4 组9. 如图,矩形 ABCD 中,AB =4,BC =3,F 是 AB 中点,以点 A 为圆心,AD 为半径作弧交 AB 于点 E ,以点 B 为圆心,BF 为半径作弧交 BC 于点 G ,则图中阴影部分面积的差S 1-S 2 为 ( )A. 12 - 13π4 B. 12 - 9π4 C. 6 + 13π4 D. 610.已知二次函数 y = 2x 2 + m ,如图,此二次函数的图象经过点(0, -4) ,正方形 ABCD 的顶点C 、 D 在 x 轴上, A 、 B 恰好在二次函数的图象上,求图中阴影部分的面积之和() A . 2B . 4C . 8D .18 二、填空题(每小题 3 分,共 18 分)11. 写出一个比 大且比5 小的整数 .12.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架,其中方程术是重要的数学成就.书中有一个方程问题今有醉酒一斗,直钱五十;行酒一斗,直 钱一 十。
【初中数学】2015-2016学年湖北省武汉市武钢实验学校九年级(下)周考数学试卷(1)(解析版) 人教版
2015-2016学年湖北省武汉市武钢实验学校九年级(下)周考数学试卷(1)一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±22.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥34.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2 D.x(x+3)(x﹣3)5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣47.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.110.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y 关于x的函数关系的图象大致是()A.B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm 时,这条边上的高为cm.15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是分钟.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天的已知该商品的进价为每件元,设销售该商品的每天利润为元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.2015-2016学年湖北省武汉市武钢实验学校九年级(下)周考数学试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±2【考点】算术平方根.【分析】利用算术平方根定义计算即可得到结果.【解答】解:2的算术平方根是,故选B2.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3+a3=2a3,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、应为a2•a4=a2+4=a6,故本选项错误;D、a4÷a3=a4﹣3=a,正确.故选D.3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故选D.4.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2 D.x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.【考点】概率公式.【分析】看有食物的情况占总情况的多少即可.【解答】解:共有6条路径,有食物的有2条,所以概率是,故选B.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣4【考点】根与系数的关系.【分析】根据韦达定理即可得.【解答】解:∵x1、x2是方程2x2﹣3x﹣4=0的两根,∴x1x2==﹣2,故选:C.7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选C.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,再利用连接另两个对应点,得出相交于P 点,即可得出P为两图形位似中心,故选:D.9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.1【考点】翻折变换(折叠问题).【分析】先由图形翻折变换的性质得出AE=A′E,再根据A′为CE的中点可知AE=A′E=CE,故AE=AC,=,再由∠C=90°,DE⊥AC可知DE∥BC,故可得出△ADE∽△ABC,由相似三角形的性质可知==,故可得出结论.【解答】解:∵△A′DE△ADE翻折而成,∴AE=A′E,∵A′为CE的中点,∴AE=A′E=CE,∴AE=AC,=,∵∠C=90°,DE⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴==,=,解得DE=1.故选D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y 关于x的函数关系的图象大致是()A.B. C. D.【考点】动点问题的函数图象;相似三角形的应用.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示,∵AP=x,AB=5,∴BP=5﹣x,又cosB=,∵△ABC∽QBP,∴PQ=BP=∴S△APQ=AP•PQ=x•=﹣x2+x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为8,8.【考点】众数;中位数.【分析】根据中位数和众数的定义求解.【解答】解:在这一组数据中8是出现次数最多的,故众数是8;而将这组数据从小到大的顺序排列7,8,8,8,8,9,10,10,处于中间位置的2个数是8,8,那么由中位数的定义可知,这组数据的中位数是(8+8)÷2=8,所以这组数据的众数与中位数分别为8与8.故答案为8,8.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=8.【考点】概率公式.【分析】根据黄球的概率公式列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n 个,根据古典型概率公式知:P(黄球)==.解得n=8.故答案为:8.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm时,这条边上的高为cm.【考点】平行四边形的性质.【分析】由平行四边形的面积=底×高即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴ah=20,当a=25cm时,h==cm;故答案为:15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是20分钟.【考点】一次函数的应用.【分析】用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在邮局停留2分钟,即x﹣2分钟所走的路程减去小亮从家到邮局相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来【解答】解:小亮骑自行车的速度是2400÷10=240m/min;先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:(x﹣2)×240﹣2400=96x240x﹣240×2﹣2400=96x240x﹣2880﹣96x=96x﹣96x144x﹣2880+2880=2880144x÷144=2880÷144x=20.答:小亮从家出发,经过20分钟,在返回途中追上爸爸.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值4.【考点】切线的性质;翻折变换(折叠问题).【分析】当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,利用折叠的性质,易得OE=AO=×4=2,利用勾股定理得CE,易得AD.【解答】解:当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,∴OE=AO=×4=2,CE=DE=CD,∵AB=8,∴CE===2,∴CD=4,故答案为:4.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把点A(1,m),B(n,2)分别代入y=可求出m、n的值,确定A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)观察函数图象得到当0<x<1或x>3,反比例函数的图象在一次函数图象上方.【解答】解:(1)把点A(1,m),B(n,2)分别代入y=得m=6,2n=6,解得n=3,∴A点坐标为(1,6),B点坐标为(3,2),把A(1,6),B(3,2)分别代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x+8;(2)反比例函数的值大于一次函数的值的x的取值范围是0<x<1或x>3.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.【考点】全等三角形的判定与性质.【分析】(1)由∠BAF=∠CAE,等式两边同时减去∠CAF,可得出∠BAC=∠DAE,再由AB=AD,∠B=∠D,理由ASA得出△ABC≌△ADE,利用全等三角形的对应边相等可得证;(2)由∠B=∠D,以及一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形ABF 与三角形DGF相似,由相似三角形的对应角相等得到∠DGB=∠BAD,在三角形AFB中,由∠B 及∠AFB的度数,利用三角形的内角和定理求出∠BAD的度数,进而得到∠DGB的度数.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.【考点】作图-旋转变换;作图-平移变换;旋转的性质.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.【考点】切线的性质.【分析】(1)连接OC,由BC∥OP,∠1=∠2,∠3=∠4,而∠1=∠3,得到∠2=∠4,易证得△POC≌△POA,则∠PCO=∠PAO,由PA切⊙O于点A,根据切线的性质得到∠PAO=90°,则有∠PCO=90°,根据切线的判定得到PC与⊙O相切;(2)连接AC,交OP于M,由切线长定理得出PA=PC,设OC=OA=x,则PA=PC=3x,由勾股定理得出OP==x,AC⊥OP,由射影定理求出PM=x,得出OM=OP﹣PM=x,由射影定理求出CM=x,得出AC=2CM=x,由△APC的面积求出AD,即可得出AD:PA的值.【解答】解:(1)PC与⊙O相切;理由如下:连接OC,如图1所示:∵BC∥OP,∴∠1=∠2,∠3=∠4.∵OB=OC,∴∠1=∠3.∴∠2=∠4.在△POC和△POA中,,∴△POC≌△POA(SAS),∴∠PCO=∠PAO.∵PA切⊙O于点A,∴∠PAO=90°,∴∠PCO=90°,∴PC与⊙O相切;(2)连接AC,交OP于M,如图2所示:∵PA、PC是⊙O的切线,∴PA=PC,∵OA:PC=1:3,设OC=OA=x,则PA=PC=3x,∴OP==x,AC⊥OP,由射影定理得:PC2=PM•OP,∴PM==x,∴OM=OP﹣PM=x,∵CM2=OM•PM=x•x,∴CM=x,∴AC=2CM=x,∵△APC的面积=PC•AD=AC•PM,∴AD==x,∴==.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天的(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于3250,一次函数值大于或等于3250,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<40时,y=(x+45﹣30)=﹣2x2+120x+2250,当40≤x≤70时,y=(85﹣30)=﹣110x+8250,综上所述:y=;(2)当1≤x<40时,二次函数开口向下,二次函数对称轴为x=30,=﹣2×302+120×30+2250=4050,当x=30时,y最大当40≤x≤70时,y随x的增大而减小,=3850,当x=40时,y最大综上所述,该商品第30天时,当天销售利润最大,最大利润是4050元;(3)当1≤x<40时,y=﹣2x2+120x+2250≥3250,解得10≤x≤50,因此利润不低于3250元的天数是10≤x<40,共30天;当40≤x≤70时,y=﹣110x+8250≥3250,解得x≤45,因此利润不低于3250元的天数是40≤x≤45,共6天,所以该商品在销售过程中,共36天每天销售利润不低于3250元.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.【考点】四边形综合题.【分析】(1)连接OE、0F,由四边形ABCD是菱形,得出AC⊥BD,BD平分∠ADC,AD=DC=BC,又由E、F分别为DC、CB中点,证得0E=OF=OA,则可得点O即为△AEF的外心;(2)①连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,求出∠IPJ的度数,又由点P是等边△AEF的外心,易证得△PIE≌△PJA,可得PI=PJ,即点P在∠ADC的平分线上,即点P 落在直线DB上;②连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,先利用AAS证明△GBP≌△MDP,得出BG=DM=x,CG=1﹣x,再由BC∥DA,得出△NCG∽△NDM,根据相似三角形对应边成比例得出=,进而求出为定值2.【解答】(1)证明:如图1,连接OE、0F,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ADC,AD=DC=BC,∴∠COD=∠COB=∠AOD=90°.∠ADO=∠ADC=×60°=30°,又∵E、F分别为DC、CB中点,∴OE=CD,OF=BC,AO=AD,∴0E=OF=OA,∴点O即为△AEF的外心;(2)解:①猜想:外心P一定落在直线DB上.理由如下:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,∴∠PIE=∠PJD=90°,∵∠ADC=60°,∴∠IPJ=360°﹣∠PIE﹣∠PJD﹣∠JDI=120°,∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA,∴∠IPJ=∠EPA,∴∠IPE=∠JPA,∴△PIE≌△PJA,∴PI=PJ,∴点P在∠ADC的平分线上,即点P落在直线DB上;②为定值2.连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.如图3,设MN交BC于点G,设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,∵BC∥DA,∴∠GBP=∠MDP,∠BGP=∠DMP,又由(1)知BP=DP,∴△GBP≌△MDP(AAS),∴BG=DM=x,∴CG=1﹣x.∵BC∥DA,∴△NCG∽△NDM,∴=,∴=,∴x+y=2xy,∴+=2,即=2.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.【考点】二次函数综合题.【分析】(1)抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,即在解析式中令y=0,得到一个一元二次方程,这个方程有两个不同的解,根据一元二次方程的根的判别式即可求解;(2)首先求抛物线与x轴的交点坐标,根据OA:OB=1:3,即可得到关于m的方程,从而求解;(3)首先求得抛物线与x轴的交点坐标,以及函数当y=7时,函数的横坐标,则根据图象可以得到:直线在过C的直线与过D的直线之间,或在与抛物线只有一个交点的直线的下边,以及根的判别式即可求得m的范围.【解答】解:(1)∵抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,∴由①得m≠1,由②得m≠0,∴m的取值范围是m≠0且m≠1.(2)∵点A、B是抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴的交点,∴令y=0,即(m﹣1)x2+(m﹣2)x﹣1=0.解得x1=﹣1,.∵m>1,∴.∵点A在点B左侧,∴点A的坐标为(﹣1,0),点B的坐标为.∴OA=1,OB=.∵OA:OB=1:3,∴.∴.∴抛物线的解析式为.(3)∵点C是抛物线与y轴的交点,∴点C的坐标为(0,﹣1).依题意翻折后的图象如图所示.令y=7,即.解得x1=6,x2=﹣4.∴新图象经过点D(6,7).当直线经过D点时,可得b=5.当直线经过C点时,可得b=﹣1.当直线与函数的图象仅有一个公共点P(x0,y0)时,得.整理得.由△=(﹣3)2﹣4(﹣3b﹣3)=12b+21=0,得.结合图象可知,符合题意的b的取值范围为﹣1<b≤5或.2016年10月21日。
武汉市武钢实验学校九年级数学下册第一单元《反比例函数》检测卷(有答案解析)
一、选择题1.在同一平面直角坐标系中,函数y =kx +1(k ≠0)和ky x=(k ≠0)的图象大致是( )A .B .C .D .2.一次函数y kx b =+和反比例函数xby k =的部分图象在同一坐标系中可能为( ) A . B . C . D .3.在同一坐标系中,y kx k =-与()0ky k x=≠的图象大致是( ) A . B .C .D .4.已知:点A(1,y 1)、B (2,y 2)、C(-3,y 3)都在反比例函数ky x=图象上(k>0),则y 1、y 2、y 3的关系是( ) A .y 3<y 1<y 2B .y 1<y 2<y 3C .y 2<y 1<y 3D .y 3<y 2<y 15.如图,OABC 是平行四边形,对角线OB 在轴正半轴上,位于第一象限的点A 和第二象限的点C 分别在双曲线y=1k x和y =2k x 的一支上,分别过点A 、C 作x 轴的垂线,垂足分别为M 和N ,则有以下的结论:①12||AM CN ||k k =;②阴影部分面积是12(k 1+k 2);③当∠AOC =90°时,|k 1|=|k 2|;④若OABC 是菱形,则两双曲线既关于x 轴对称,也关于y 轴对称.其中正确的结论是( )A .①②B .①④C .③④D .①②③6.如图,函数ky x=-与1y kx =+(0k ≠)在同一平面直角坐标系中的图像大致( ) A . B .C .D .7.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<8.如图,已知点A ,B 分别在反比例函数12y x =-和2ky x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-9.函数ky x=与y kx k =-(0k ≠)在同一平面直角坐标系中的大致图象是( ) A . B . C . D .10.已知点()1,3M -在双曲线ky x=上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,111.如图, O 为坐标原点,点B 在x 轴的正半轴上,四边形OBCA 是平行四边形,45sin AOB ∠=,反比例函数()0m y m x=>在第一象限内的图像经过点A ,与BC 交于点F ,若点F 为BC 的中点,且AOF 的面积为12,则m 的值为( )A .16B .24C .36D .4812.如图,正方形ABCD 的顶点A ,B 分别在x 轴和y 轴上与双曲线18y x=恰好交于BC 的中点E ,若2OB OA ,则ABO S △的值为( )A .6B .8C .12D .16第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.在直角坐标系中,已知A (0,4)、B (2,4),C 为x 轴正半轴上一点,且OB 平分∠ABC ,过B 的反比例函数y =kx交线段BC 于点D ,E 为OC 的中点,BE 与OD 交于点F ,若记△BDF 的面积为S 1,△OEF的面积为S 2,则12S S =_____.14.如图,B(2,﹣2),C(3,0),以OC ,CB 为边作平行四边形OABC ,则经过点A 的反比例函数的解析式为_____.15.如果正比例函数()0y ax a =≠与反比例函数()0by b x=≠的图象有两个交点,其中一个交点的坐标为(-1,2),那么另一个交点的坐标为____.16.点(),A a b 是一次函数3y x =-+与反比例函数2y x =的交点,则11a b +的值__________.17.已知,点P (a ,b )为直线3y x =-与双曲线2y x=-的交点,则11b a -的值等于__.18.如图,在平面直角坐标系中,菱形ABCD 的顶点A 、B 在反比例函数y kx=(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴,若菱形ABCD 的面积为9.则k 的值为____.19.已知点(,)P a b 为直线2y x =-与双曲线1y x=-的交点,则11b a -的值等于__________.20.如图,点A 在反比例函数ky x=的图象上,AB 垂直x 轴于B ,若AOB S ∆=2,则这个反比例函数的解析式为_______________.三、解答题21.如图,一次函数3y x =-+的图像与反比例函数(0)ky k x=≠在第一象限的图像交于()1,A a 和B 两点,与x 轴交于点C .(1)求反比例函数的解析式;(2)求出另一个交点B 的坐标,并直接写出当0x >时,不等式3kx x-+<的解集; (3)若点P 在x 轴上,且APC △的面积为5,求点P 的坐标.22.如图(1),点A 是反比例函数4y x=的图象在第一象限内一动点,过A 作AC x ⊥轴于点C ,连接OA 并延长到点B ,过点B 作BD x ⊥轴于点D ,交双曲线于点E ,连结OE .(1)若6OBE S =△,求经过点B 的反比例函数解析式. (2)如图(2),过点B 作BF y ⊥轴于点F ,交双曲线于点G .①延长OA 到点B ,当AB OA =时,请判断FG 与BG 之间的数量关系,并说明理由. ②当AB nOA =时,请直接写出FG 与BG 之间的数量关系. 23.如图,已知函数()0ky x x=>的图象经过点,,A B 点A 的坐标为()1,2.过点A 作//AC y 轴,1AC =(点C 位于点A 的下方),过点C 作//CD x 轴,与函数的图象交于点D ,过点B 作BE CD ⊥,垂足E 在线段CD 上,连接,OC OD .()1求OCD ∆的面积;()2当12BE AC =时,求CE 的长.24.如图,直线y =12x 与双曲线y =k x(k >0)交于A 、B 两点,且点A 的横坐标为4. (1)求k 的值; (2)若双曲线y =kx(k >0)上一点C 的纵坐标为8,求△AOC 的面积.25.小芳从家骑自行车去学校,所需时间y (min )与骑车速度x (/m min )之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少? (2)写出y 与x 的函数表达式;(3)若小芳7点20分从家出发,预计到校时间不超过7点28分,请你用函数的性质说明小芳的骑车速度至少为多少? 26.如图,点A 在双曲线23y =(x >0)上,点B 在双曲线k y x =(x >0)上(点B 在点A 的右侧),且AB ∥x 轴,若四边形OABC 是菱形,且∠AOC =60°.(1)求k 的值;(2)求菱形OABC 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分两种情况讨论,当k>0时,分析出一次函数和反比例函数所过象限;再分析出k<0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】①当k> 0时,y=kx+1过第一、二、三象限,kyx=过第一、三象限;②当k<0时,y= kx+1过第一、二、四象限,kyx=过第二、四象限,观察图形可知,只有C选项符合题意,故选:C.【点睛】此题考查了依据一次函数与反比例函数的图象,正确掌握各函数的图象与字母系数的关系是解题的关键.2.C解析:C【分析】运用一次函数和反比例函数的图象性质逐项分析即可.先观察反比函数看k、b是同号还是异号,再由一次函数图象判断k、b是同号还是异号,如果两者相一致就是正确选项,否则是错误选项.【详解】【点睛】此题考查反比例函数和一次函数的图象特点.其关键是要弄清图象特点与关系式中k 、b 同号还是异号.3.D解析:D 【分析】根据一次函数和反比例函数的图象与性质即可得. 【详解】对于一次函数y kx k =-, 当1x =时,0y k k =-=, 则直线y kx k =-经过定点(1,0),A 、由一次函数的图象得:0k <,由反比例函数的图象得:0k >,两者不一致,此项不符题意;B 、由一次函数的图象得:0k >,由反比例函数的图象得:0k <,两者不一致,此项不符题意;C 、一次函数的图象不经过定点(1,0),此项不符题意;D 、由一次函数的图象得:0k <,且经过定点(1,0),由反比例函数的图象得:0k <,两者一致,此项符合题意; 故选:D . 【点睛】本题考查了反比例函数与一次函数的综合,熟练掌握一次函数和反比例函数的图象与性质是解题关键.4.D解析:D 【分析】先根据反比例函数中k <0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论. 【详解】 ∵反比例函数ky x=(k>0), ∴函数图象的两个分式分别位于一、三象限,且在每一象限内y 随x 的增大而减小, ∵-3<0,∴点C (-3,y 3)位于第三象限, ∴y 3<0; ∵2>1>0,∴A (1,y 2)、B (2,y 3)在第一象限, ∵2>1, ∴0<y 2<y 1, ∴y 3<y 2<y 1.故选D【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.B解析:B【分析】作AE⊥y轴于点E,CF⊥y轴于点F,根据平行四边形的性质得S△AOB=S△COB,利用三角形面积公式得到AE=CF,则有OM=ON,再利用反比例函数k的几何意义和三角形面积公式得到S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,所以有12kAMCN k=;由S△AOM=12|k1|,S△CON=12|k2|,得到S阴影部分=S△AOM+S△CON=12(|k1|+|k2|)=12(k1-k2);当∠AOC=90°,得到四边形OABC是矩形,由于不能确定OA与OC相等,则不能判断△AOM≌△CNO,所以不能判断AM=CN,则不能确定|k1|=|k2|;若OABC是菱形,根据菱形的性质得OA=OC,可判断Rt△AOM≌Rt△CNO,则AM=CN,所以|k1|=|k2|,即k1=-k2,根据反比例函数的性质得两双曲线既关于x轴对称,也关于y轴对称.【详解】作AE⊥y轴于E,CF⊥y轴于F,如图,∵四边形OABC是平行四边形,∴S△AOB=S△COB,∴AE=CF,∴OM=ON,∵S△AOM=12|k1|=12OM•AM,S△CON=12|k2|=12ON•CN,∴12kAMCN k=,故①正确;∵S△AOM=12|k1|,S△CON=12|k2|,∴S阴影部分=S△AOM+S△CON=12(|k1|+|k2|),而k1>0,k2<0,∴S 阴影部分=12(k 1-k 2),故②错误; 当∠AOC=90°,∴四边形OABC 是矩形,∴不能确定OA 与OC 相等,而OM=ON ,∴不能判断△AOM ≌△CNO ,∴不能判断AM=CN ,∴不能确定|k 1|=|k 2|,故③错误;若OABC 是菱形,则OA=OC ,而OM=ON ,∴Rt △AOM ≌Rt △CNO ,∴AM=CN ,∴|k 1|=|k 2|,∴k 1=-k 2,∴两双曲线既关于x 轴对称,也关于y 轴对称,故④正确.故选:B .【点睛】本题属于反比例函数的综合题,考查了反比例函数的图象、反比例函数k 的几何意义、平行四边形的性质、矩形的性质和菱形的性质.注意准确作出辅助线是解此题的关键. 6.B解析:B【分析】分k >0和k <0两种情况分类讨论即可确定正确的选项.【详解】解:当k >0时,函数1y kx =+的图象经过一、二、三象限,反比例函数k y x =-的图象分布在二、四象限,没有选项符合题意;当0k <时,函数1y kx =+的图象经过一、二、四象限,反比例函数k y x =-的图象分布在一、三象限,B 选项正确,故选:B.【点睛】考查了反比例函数和一次函数的性质,解题的关键是能够分类讨论,难度不大. 7.B解析:B【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可.解:(0)k y k x=<的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点, 11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-, 而k 0<,132y y y ∴<<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数k y x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.8.A解析:A【分析】设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x =-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x=的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k . 9.C解析:C【分析】分k>0和k<0两种情况确定正确的选项即可.【详解】当k:>0时,反比例函数的图象位于第一、三象限,一次函数的图象交 y 轴于负半轴,y 随着x 的增大而增大,A 选项错误,C 选项符合;当k<0时,反比例函数的图象位于第二、四象限,一次函数的图象交y 轴于正半轴,y 随着x 的增大而增减小,B. D 均错误,故选:C.此题考查反比例函数的图象,一次函数的图象,熟记函数的性质是解题的关键. 10.A解析:A【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键. 11.A解析:A【分析】过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,,设OA=5k ,通过解直角三角形得出AM=4k,OM=3k,m=12k 2,,再根据S 四边形OAFN =S 梯形AMNF +S △AOM =S △AOF +S △OFN 得到S 梯形AMNF =S △AOF =12,得出12(4k+2k)⋅3k=12,得到k 2的值,再求m 得值即可. 【详解】解:过点A 作AM ⊥OB 于M ,FN ⊥OB 于N ,设OA=5k ,∵45sin AOB ∠= ∴AM=4k,OM=3k,m=12k 2,∵四边形OACB 是平行四边形,F 为BC 的中点,∴FN=2k ,ON=6k ,∵S△AOM=S△OFN,S四边形OAFN=S梯形AMNF+S△AOM=S△AOF+S△OFN,∴S梯形AMNF=S△AOF=12,∴12(4k+2k)⋅3k=12,∴k2=43,∴m=12k2=16.故选A.【点睛】本题考查反比例函数的性质、平行四边形的性质、三角形的面积、梯形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.12.C解析:C【分析】过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,证明△ABM≌△BCN,可得BN=AM=2a,CN=BM=a,所以点C坐标为(2a,a),BC的中点E的坐标为(a,1.5a),把点E代入双曲线18yx可得a的值,进而得出S△ABO的值.【详解】如图,过点B作x轴的平行线,过点A,C分别作y轴的平行线,两线相交于M,N,∵四边形ABCD为正方形,∴∠ABC=90°,AB=BC,∴∠ABM=90°-∠CBN=∠BCN,∵∠M=∠N=90°,∴△ABM≌△BCN(AAS),∵OB=2OA,∴设OA=a,OB=2a,则BN=AM=2a,CN=BM=a,∴点C坐标为(2a,a),∵E为BC的中点,B(0,2a),∴E(a,1.5a),把点E代入双曲线18yx=得1.5a2=18,a2=12,∴S△ABO=12a•2a=12,故选:C.【点睛】此题考查反比例函数k的几何意义,三角形全等的判定和性质,解题的关键是构造全等三角形表示出点E的坐标.二、填空题13.【分析】过点B作BH⊥OC于H构造出矩形利用矩形的性质进而求解出CDEF的坐标最终分别计算出S1S2即可求出结果【详解】如图过点B作BH⊥OC 于H∵A(04)B(24)∴OA=4AB=2AB∥OC∴解析:23 60【分析】过点B作BH⊥OC于H,构造出矩形,利用矩形的性质,进而求解出C、D、E、F的坐标,最终分别计算出S1,S2,即可求出结果.【详解】如图,过点B作BH⊥OC于H.∵A(0,4)、B(2,4),∴OA=4,AB=2,AB∥OC,∴∠ABO=∠BOC,∵OB平分∠ABC,∴∠ABO=∠OBC,∴∠BOC=∠OBC,∴CB=OC,设BC=OC=m,∵BH⊥OC,AB∥OC,∴∠AOH=∠OHB=∠ABH=90°,∴四边形ABHO是矩形,∴BH=OA=4,AB=OH=2,在Rt△BCH中,则有m2=42+(m﹣2)2,∴m=5,∴C(5,0),∴直线B C的解析式为42033=-+y x,∵反比例函数kyx=经过点B(2,4),∴k=8,由842033yxy x⎧=⎪⎪⎨⎪=-+⎪⎩,解得24xy=⎧⎨=⎩或383xy=⎧⎪⎨=⎪⎩,∴D(3,83),∴直线OD的解析式为89y x=,∵OE=EC,∴E(52,0),∴直线BE的解析式为y=﹣8x+20,由82089y xy x=-+⎧⎪⎨=⎪⎩,解得942xy⎧=⎪⎨⎪=⎩,∴F(94,2),∴S1=2×1﹣12×1×43﹣12×1×14﹣12×34×23=2324,S2=12×52×2=52,∴122323245602SS==,故答案为:2360.【点睛】本题考查了反比例函数与一次函数的综合问题,能够熟练的做出辅助线,通过矩形的性质进行分析,是解决问题的关键.14.y=【分析】设A坐标为(xy)根据四边形OABC为平行四边形利用平移性质确定出A的坐标利用待定系数法确定出解析式即可【详解】解:设A坐标为(xy)∵B(2﹣2)C(30)以OCCB为边作平行四边形O解析:y =2x【分析】 设A 坐标为(x ,y ),根据四边形OABC 为平行四边形,利用平移性质确定出A 的坐标,利用待定系数法确定出解析式即可.【详解】解:设A 坐标为(x ,y ),∵B (2,﹣2),C (3,0),以OC ,CB 为边作平行四边形OABC ,∴x+3=0+2,y+0=0﹣2,解得:x =﹣1,y =﹣2,即A (﹣1,﹣2),设过点A 的反比例解析式为y =k x, 把A (﹣1,﹣2)代入得:k =2, 则过点A 的反比例函数解析式为y =2x , 故答案为:y =2x. 【点睛】此题考查了待定系数法求反比例函数解析式,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键. 15.(1-2)【分析】将交点坐标(-12)代入解析式中求出ab 的值然后再联立方程组求另一个交点坐标【详解】解:将(-12)代入中即∴正比例函数为:将(-12)代入中即∴反比例函数为:联立方程组:即:整理解析:(1,-2)【分析】将交点坐标(-1,2)代入解析式中,求出a ,b 的值,然后再联立方程组求另一个交点坐标.【详解】解:将(-1,2)代入y ax =中,即2=-a ,∴正比例函数为:2y x =-,将(-1,2)代入(0)b y b x =≠中,即2=-a ,∴反比例函数为:2y x=-, 联立方程组:22=-⎧⎪⎨=-⎪⎩y x y x ,即:22-=-x x ,整理得:2220-+=x 解之得:121,1x x ==-.将11x =代入正比例函数2y x =-中,解得12y =-∴另一个交点的坐标为(1,-2).故答案为:(1,-2).【点睛】本题考查一次函数和反比例函数的交点坐标的求法,求得解析式后再联立方程组即可求出交点坐标.16.【分析】联立两函数构成方程组解方程组即可【详解】解:由解得或或故答案为:【点睛】本题考查了反比例函数与一次函数的交点坐标解题的关键是学会利用方程组求两个函数的交点坐标属于基础题 解析:32【分析】联立两函数构成方程组,解方程组即可.【详解】 解:由23y x y x ⎧=⎪⎨⎪=-+⎩解得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ()1,2A ∴或()2,1,1132a b ∴+=, 故答案为:32. 【点睛】本题考查了反比例函数与一次函数的交点坐标,解题的关键是学会利用方程组求两个函数的交点坐标,属于基础题. 17.-【分析】将点P 分别代入两函数解析式得到:b =a ﹣3b =﹣进而得到a ﹣b =3ab =﹣2将其代入求值即可【详解】∵点P (ab )为直线y =x ﹣3与双曲线y =﹣的交点∴b =a ﹣3b =﹣∴a ﹣b =3ab =﹣解析:-32【分析】 将点P 分别代入两函数解析式得到:b =a ﹣3,b =﹣2a ,进而得到a ﹣b =3,ab =﹣2.将其代入求值即可.【详解】∵点P (a ,b )为直线y =x ﹣3与双曲线y =﹣2x的交点, ∴b =a ﹣3,b =﹣2a, ∴a ﹣b =3,ab =﹣2. ∴1b ﹣1a =a b ab -=32-=﹣32.故答案是:﹣32. 【点睛】 考查了反比例函数与一次函数的交点,解题关键是是得到a ﹣b =3,ab =﹣2. 18.2【分析】根据题意利用面积法求出AE 设出点B 坐标表示点A 的坐标应用反比例函数上点的横纵坐标乘积为k 构造方程求k 【详解】连接AC 分别交BDx 轴于点EF 由已知AB 横坐标分别为14∴BE=3∵四边形ABC解析:2.【分析】根据题意,利用面积法求出AE ,设出点B 坐标,表示点A 的坐标.应用反比例函数上点的横纵坐标乘积为k 构造方程求k .【详解】连接AC 分别交BD 、x 轴于点E 、F .由已知,A 、B 横坐标分别为1,4, ∴BE =3.∵四边形ABCD 为菱形,AC 、BD 为对角线,∴S 菱形ABCD =412⨯AE •BE =9, ∴AE 32=,设点B 的坐标为(4,y ),则A 点坐标为(1,y 32+) ∵点A 、B 同在y k x =图象上, ∴4y =1•(y 32+), ∴y 12=, ∴B 点坐标为(4,12), ∴k =2故答案为:2.【点睛】 此题考查菱形的性质,反比例函数图象上点的坐标与k 之间的关系,解题关键在于掌握其性质定义.19.-2【分析】将点P 分别代入两函数解析式得到:b=a-2b=-进而得到a-b=2ab=-1将其代入求值即可【详解】∵点P (ab )为直线y=x-2与双曲线的交点∴b=a-2b=-∴a-b=2ab=-1∴解析:-2【分析】将点P 分别代入两函数解析式得到:b=a-2,b=-1a ,进而得到a-b=2,ab=-1.将其代入求值即可.【详解】∵点P (a ,b )为直线y=x-2与双曲线1y x=-的交点, ∴b=a-2,b=-1a , ∴a-b=2,ab=-1. ∴11b a -=2-1a b ab -==-2. 故答案是:-2.【点睛】 此题考查反比例函数与一次函数的交点,解题关键是得到a-b=2,ab=-1.20.【分析】因为过双曲线上任意一点引x 轴y 轴垂线所得矩形面积S 是个定值|k|△AOB 的面积为矩形面积的一半即|k|【详解】由于点A 在反比例函数的图象上则S △AOB=|k|=2∴k=±4;又由于函数的图象 解析:4y x=- 【分析】因为过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积S 是个定值|k|,△AOB 的面积为矩形面积的一半,即12|k|. 【详解】由于点A 在反比例函数k y x =的图象上, 则S △AOB =12|k|=2, ∴k=±4;又由于函数的图象在第二象限,k <0,∴k=-4,∴反比例函数的解析式为4y x =-;故答案为:4y x=-. 【点睛】 此题主要考查了反比例函数k y x=中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.三、解答题21.(1)y =2x ;(2)B (2,1),0<x <1或x >2;(3)(﹣2,0)或(8,0) 【分析】(1)先把点A (1,a )代入y =﹣x +3中求出a 得到A (1,2)然后把A 点坐标代入y =k x中求出k 得到反比例函数的表达式; (2)先解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得B (2,1),然后在第一象限内写出一次函数图象在反比例函数图象下方所对应的自变量的范围即可;(3)先确定C (3,0),设P (x ,0),利用三角形面积公式得到12×|3﹣x |×2=5,解方程可得到P 的坐标.【详解】解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =k x , ∴k =1×2=2;∴反比例函数的表达式为y =2x; (2)解方程组23y x y x ⎧=⎪⎨⎪=-+⎩得12x y =⎧⎨=⎩或21x y =⎧⎨=⎩, ∴B (2,1),∴当x >0时,不等式3k x x-+<的解集为0<x <1或x >2; (3)当y =0时,﹣x +3=0,解得x =3,∴C (3,0),设P (x ,0),∴PC =|3﹣x |,∴S △APC =12×|3﹣x |×2=5, ∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.22.(1)16y x =;(2)①13FG BG =,理由见解析;②(21)FG n BG =+ 【分析】(1)根据题意求出OBD S △,根据反比例函数k 的几何意义求出过点B 的反比例函数解析式;(2)①设OC a =,用a 表示出点A 的坐标,根据相似三角形的性质表示出点B 的坐标,求出FG 和BG ,计算即可;②用与①相似的方法分别求出FG 和BG ,计算即可.【详解】解:(1)设点E 的坐标为(,)x y ,∵点E 在反比例函数4y x =的图象上, ∴4xy =, 则122xy =, ∴2ODE S =△,又6OBE S =△,∴8OBD S =△,∴过点B 的反比例函数解析式为:16y x=; (2)①设OC a =,则点A 的坐标为4,a a ⎛⎫ ⎪⎝⎭, ∵AB OA =,∴点B 的坐标为82,a a ⎛⎫ ⎪⎝⎭, ∵84a x =,2a x =,∴2a FG =,又2FB a =, ∴32BG a =, ∴13FG BG =; ②设OC b =,则点A 的坐标为4,b b ⎛⎫ ⎪⎝⎭,∵AB nOA =, ∴11OA OB n =+, ∴点B 的坐标为4(1)(1),n n b b +⎛⎫+ ⎪⎝⎭, ∵4(1)4n b x +=,1b x n =+, ∴1b FG n =+,又2FB b =, ∴211n BG b n +=+, ∴(21)FG n BG =+.【点睛】本题考查的是反比例函数知识的综合运用,掌握待定系数法求反比例函数解析式、反比例函数k 的几何意义是解题的关键.23.(1)12;(2)13 【分析】(1)根据点A 坐标求出函数表达式及点C 坐标,再求出点D 坐标,然后根据坐标计算面积即可;(2)先求出BE 得到点B 的纵坐标,再利用表达式求出横坐标,从而计算即可.【详解】解:(1)∵函数()0k y x x =>的图象经过点A(1,2), ∴21k =,即2k =, ∴2y x=, ∵//AC y 轴,1AC =,∴点C 的坐标为(1,1),∵//CD x 轴,点D 在函数图象上,∴点D 的坐标为(2,1),∴CD=1, ∴111122OCD S =⨯⨯=△; (2)∵12BE AC =, ∴12BE =, ∵BE CD ⊥,∴点B 的纵坐标是32, ∴点B 的横坐标是43, ∴41133CE =-=. 【点睛】本题考查了反比例函数的应用,熟练掌握待定系数法求表达式及特殊点的坐标特征是解题的关键.24.(1)8;(2)15.【详解】解:(1)∵点A 的横坐标为4,点A 在直线y =12x 上, ∴点A 的纵坐标为y =12×4=2,即A(4,2). 又∵点A(4,2)在双曲线y =k x 上, ∴k =2×4=8;(2)∵点C 在双曲线y =8x上,且点C 纵坐标为8, ∴C(1,8). 如图,过点C 作CM ⊥x 轴于M ,过点A 作AN ⊥x 轴于N.∵S △COM =S △AON =82=4, ∴S △AOC =S 四边形CMNA =12×(|y A |+|y C |)×(|x A |-|x c |)=15. 【点睛】主要考查了待定系数法求反比例函数的解析式和反比例函数y =k x中k 的几何意义.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.25.(1)1400m ;(2)1400y x=;(3)小芳的骑车速度至少为175/m min . 【分析】 (1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【详解】(1)小芳家与学校之间的距离是:101401400⨯=(m );(2)设k y x=,当140x =时,10y =, 解得:1400k =, 故y 与x 的函数表达式为:1400y x=; (3)当8y =时,175x =, 0k >,∴在第一象限内y 随x 的增大而减小,∴小芳的骑车速度至少为175/m min .【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.26.(1)2)2.【分析】(1)首先根据点A 在双曲线y x =(x >0)上,设A 点坐标为(a ,a),再利用含30°直角三角形的性质算出OA=2a ,再利用菱形的性质进而得到B 点坐标,即可求出k 的值;(2)先求出菱形OABC 的高,再根据菱形的面积公式求菱形OABC 的面积.【详解】解:(1)解:因为点A 在双曲线y =x >0)上,设A 点坐标为(a ,a ), 因为四边形OABC 是菱形,且∠AOC=60°,所以OA=2a ,可得B 点坐标为(3a ),可得:=故答案为:(2)由 (1)得OA=2a ,而∠AOC=60°,∴菱形OABC 的高h=2a·sin60°,∴222323OABC S a h a a a =⋅=⋅=菱形 .【点睛】本题考查了待定系数法求反比例函数及菱形的面积,关键是根据菱形的性质求出B 点坐标,即可算出反比例函数解析式.。
湖北省武汉市武钢实验学校20182019学年度10月月考九年级数学试卷 Word
湖北省武汉市武钢实验学校20182019学年度10月月考九年级数学试卷 Word7.8.米的环形跑道上进行,下图反映了跑得最快与最慢的两位选手的之间的距离 y (米)与最快的选手全程的跑步时间 x (′″)之间的函数关系,下列说法不合理的是( )A. 出发后最快的选手与最慢的选手相遇了两次;B. 出发后最快的选手与最慢的选手第一次相遇比第二次相遇的用时短;C. 最快的选手到达终点时,最慢的选手还有 415 米未跑;D. 跑的最慢的选手用46″. 9. 如图,OA ⊥OB ,等腰 Rt △CDE 的腰 CD 在 OB 上,∠ECD =45°,将△CDE 绕点 C 逆时针旋转 75°, 点 E 的对应点 N 恰好落在 OA 上,则 OC 的值为( ) CD9.关于 x 的方程-x 2-2x +2-t =0 在-3≤x <2 上有两个不同的实数根,则 t 的取值范围为( ) A .-1≤t <3 B .-3≤t <2 C .-1≤t <2 D .-2≤t <310.(教材 P63 习题改编)如图,在正△ABC 中,点 P 是形外一点,且 PA =6,PC =2,∠APC =60°,则 PB =A .4B .5C .2D .2 ANPB C二、填空题(每小题 3 分,共18 分)11.已知关于x 的一元二次方程x2 +bx+4 = 0 有两个相等的实数根,则b 的值是.12.如图,将△ABC 绕点C 按顺时针方向旋转至△A′B′C,使点A′落在BC 的延长线上.已知∠A=27°,∠B=40°,则∠ACB′=°。
13.(教材P52 习题改编)飞机着陆后滑行的距离S(单位:m)关于滑行的时间t (单位:s)的函数式是S=60t-1.5t2,飞机着陆后滑行s 才能停下来。
14.(教材P22 习题改编)如图,长为1 的线段AB 上的点P1满足关系式P1A2=P1B·AB,称点P1为线段AB上的黄金分割点,依次点P2是线段P1A,点P3是线段P2A 上,…点P n是线段P n-1A 上的黄金分割点,则P n A 的长为。
湖北省武汉市武钢实验中学2023-2024学年九年级上学期月考数学试题(含答案)
武钢实验学校2022—2023初三第一次数学学业水平调研(满分120分,时间120分钟)第I 卷(选择题 共30分)一、选择题(共10小题,每小题3分,共30分)1.下列不是方程的根是( )A.0B.1C.2D.32.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性.下列汉字是轴对称图形的是()A. B.C.D.3.用配方法将二次三项式变形,结果是( )A. B. C. D.4.将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )A. B. C. D. 5.若抛物线的顶点在轴上,则( )A. B. C. D. 6.设、、是抛物线上的三点,则、、的大小关系为()A. B. C. D. 7.杨倩在东京奥运会女子10米气步枪决赛中夺得冠军,为中国代表团揽入首枚金牌,随后杨倩同款“小黄鸭”发卡在电商平台上爆单.该款发卡在某电商平台上7月24日的销量为5000个,7月25日和7月26日的总销量是30000个.若7月25日和26日较前一天的增长率均为,则可列方程为()32320x x x -+=245a a -+()221a -+()221a +-()221a ++()221a --22y x =()2223y x =++()2223y x =-+()2223y x =--()2223y x =+-28y x bx =-+x b=±--±()12,A y -()21,B y ()32,C y ()21y x k =-++1y 2y 3y 123y y y <<231y y y <<312y y y <<321y y y <<xA. B. C. D. 8.若关于的一元二次方程有两个实数根,,且,则()A.2或6B.2或8C.2D.69.如图,是抛物线形拱桥,当拱顶高离水面2m 时,水面宽4m ,若水面上升1m ,则水面宽为()A. B.2m C. D. 10.已知抛物线,直线,若对于任意的x 的值,恒成立,则m 的值为( )A.0B.2C.-2D.-4第Ⅱ卷(填空题 共18分)二、填空题(共6小题,每小题3分,共18分)11.若是关于x 的二次函数,则_________.12.抛物线的顶点坐标是___________.13.某种植物的主干长出若干树木的支干,每个支干又长出同样树木的小分支,主干、支干、和小分支的总数是91,每个支干长出x 个小分支,则_________.14.已知二次函数,当时,函数的最小值为_________.15.已知抛物线(a ,b ,c 是常数)开口向下,过,两点,且,下列四个结论:①;②若,则;③若点,在抛物线上,,且,则;()25000130000x +=()()25000500015000130000x x ++++=()25000130000x -=()()2500015*********x x +++=x 222410x mx m m -+--=1x 2x ()()121222217x x x x ++-=m=()2122y x m x m =-++224y x =-12y y ≥()133a y a xx -=++a =()232y x =-+-x =()251y x =--+16x -≤≤2y ax bx c =++()1,0A -(),0B m 12m <<0c >53m =530a c +<()11,M x y ()22,N x y 12x x <121x x +>12y y >④当时,关于的一元二次方程必有两个不相等的实数根.其中正确的是__________(填写序号).16.如图,矩形ABCD 中,,.E 为直线BC 上的动点,以AE 为边,A 点为直角顶点构造等腰,O 为EF 中点,CO 的最小值为__________.(用a ,b 表示)第Ⅲ卷(解答题共72分)三、解答题(共8小题,共72分)17.解方程:.18.已知,y 与x 的部分对应值如下表:…-2-102……-3-4-35…(1)求二次函数的表达式;(2)求该函数图象与x 轴的交点坐标;(3)直接写出不等式的解集.19.如图,利用一面墙(墙的长度为20米),用34米长的篱笆围成两个鸡场.中间用一道篱笆隔开,每个鸡场均留一道1米宽的门,若两个鸡场总面积为96平方米,求AB 的长.20.已知关于x 的方程.(1)求证:无论m 取什么值,这个方程总有两个相异的实数根.(2)若这个方程的两个实根满足,求m 的值及相应的两根.21.已知二次函数图象顶点,且过.(1)求该二次函数解析式;1a ≤-x 21ax bx c ++=AB a =BC b =Rt AEF △22530x x -+=()20y ax bx c a =++≠xy230ax bx c +++>()22204m x m x ---=122x x =+()2,3A -()3,1B(2)P 为该抛物线对称轴上一点,且为等腰三角形,直接写出P 点的所有可能坐标.22.在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A 处开始减速,此时白球在黑球前面70cm 处.小聪测量黑球减速后的运动速度(单位:cm/s )、运动距离(单位:cm )随运动时间(单位:S )变化的数据,整理得下表.运动时间t /s 01234运动速度y /cm/s 109.598.58运动距离y /cm9.751927.736小聪探究发现,黑球的运动速度v 与运动时间t 之间成一次函数关系,运动距离y 与运动时间t 之间成二次函数关系.(1)直接写出v 关于t 的函数解析式和y 关于t 的函数解析式(不要求写出自变量的取值范围)(2)当黑球减速后运动距离为64cm 时,求它此时的运动速度;(3)若白球一直以2cm/s 的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.23.四边形ABCD ,GFED 都是正方形.(1)当正方形GFED 绕D 旋转到如图1的位置时,直接写出AE 和CG 的关系:__________;(2)当正方形GFED 绕D 旋转到如图2时,连接CG ,AE .①求证:,;②如图3,,直线AE 与CG 交于P 点,求在旋转过程中BP 的最大值.24.如图,抛物线顶点D 在x 轴上,且经过(0,-3)和(4,-3)两点,抛物线与直线交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若,且,求直线解析式;ABP △v y t AE CG =AE CG ⊥4AD =l ()0,3A -94ABD S =△l(3)如图2,若,求证:直线经过定点,并求出定点坐标.答案一、选择题1-10DDABA DDACA二、填空题11.3 12.(-3,-2) 13.9 14.-35 15.①③④ 16.三、解答题17. ,18.【详解】(1)依题意有:将(-2,-3),(-1,-4),(0,-3)代入得:,解得:,∴二次函数的解析式为:;(2)令时,则有:,解得,,∴该函数图象与x 轴两个交点的坐标分别是(-3,0),(1,0);(3)由表格可知,,即的解为或0,∵,抛物线开口向上,∴不等式的解集是:或.19.【详解】解:设AB 的长为x 米,则边BC 的长为米,由题意,得,90ADB ∠=︒l11x =232x =2y ax bx c=++42343a b c a b c c -+=-⎧⎪-+=-⎨⎪=-⎩123a b c =⎧⎪=⎨⎪=-⎩223y x x =+-0y =2230x x +-=13x =-21x =23ax bx c ++=-230ax bx c +++=2x =-10a =>230ax bx c +++>0x >2x <-()3432x -+()343296x x -+=解得:,,∵当时,,∴不符合题意,舍去,∴当时,,∴符合题意,答:AB 的长为8米.20.【小问1详解】证明:∵,∵无论m 为什么实数时,总有,∴,∴无论m 取什么值,这个方程总有两个相异的实数根;【小问2详解】解:∵,∴,∴,即,又,,∴,解得或,∵,∴当时,解得,;当时,解得,.21.【小问1详解】解:∵二次函数图象顶点,且过,设抛物线的表达式为:,将点的坐标代入得:,,∴,∴;【小问2详解】∵,对称轴为直线,设,∵,,∴,14x =28x =4x =34322420x -+=>14x =8x =34321220x -+=<28x =()()2222242442124m m m m m ⎛⎫=---⨯-=-+=-+⎡⎤ ⎪⎣⎦⎝⎭△()2210m -≥()22120m -+>122x x =+122x x -=()2124x x -=()()221212124x x x x x x -=+-122x x m +=-2124m x x ⋅=-()2224m m -+=0m =2m =122x x -=0m =10x =22x =-2m =11x =21x =-()2,3A -()3,1B ()223y a x =--B 13a =-4a =()()222423444341613y x x x x x =--=-+-=-+241613y x x =-+()2423y x =--2x =()2,P m ()2,3A -()3,1B ()()222321317AB =-++=,,①当时,,解得或,∴或,当时,,解得(与点A 重合,舍去)或,∴,当时,,解得,∴,综上所述,点P 的坐标为:或或或.22.【小问1详解】根据黑球的运动速度v 与运动时间t 之间成一次函数关系,设表达式为,代入,得,,解得,∴,根据运动距离y 与运动时间t 之间成二次函数关系,设表达式为,代入,,,得,解得,∴;【小问2详解】依题意,得,∴,解得,,;当时,;当时,(舍);答:黑球减速后运动64cm 时的速度为6cm/s.()23PA m =+()()222232122PB m m m =-+-=-+AB AP =()2173m =+3m =-3m =-(2,3P -+(2,3-BP BA =21722m m =-+3m =-5m =()2,5P PA PB =()22322m m m +=-+78m =-72,8P ⎛⎫- ⎪⎝⎭(2,3P -+(2,3-()2,572,8⎛⎫- ⎪⎝⎭v kt b =+()0,10()1,9.5109.5b k b =⎧⎨=+⎩1210k b ⎧=-⎪⎨⎪=⎩1102v t =-+2y at bt c =++()0,0()1,9.75()2,1909.751942c a ba b=⎧⎪=+⎨⎪=+⎩14100a b c ⎧=-⎪⎪=⎨⎪=⎪⎩21104y t t =-+2110644t t -+=2402560t t -+=18t =232t =18t =6v =232t =6v =-【小问3详解】设黑白两球的距离为,,∵,当时,w 的值最小为6.∴黑、白两球的最小距离为6cm ,大于0,黑球不会碰到白球.23.【小问1详解】解:由图可得:,,∵,,∴,∵,∴;故答案为:,;【小问2详解】证明:①如图2,延长CG 交AE 于点H ,交AD 于点M ,∵四边形ABCD ,GFED 都是正方形∴,,,∴,在和中,,∴,∴,,∵,∴,∴;②如图3,连接AC ,BD ,cm w ()221170287016644w t y t t t =+-=-+=-+104>16t =AE CG =AE CG ⊥AD CD =ED GD =AE CG =AD CD ⊥AE CG ⊥AE CG =AE CG ⊥90CDG ADG ADE ADG ∠+∠=∠+∠=︒AD CD =DE DG =CDG ADE ∠=∠ADE △CDG △AD CD CDG ADE DE DG =⎧⎪∠=∠⎨⎪=⎩()SAS ADE CDG ≌△△AE CG =EAD GCD ∠=∠AMH CMD ∠=∠90AHM CDM ∠=∠=︒AE CG ⊥由①得,∴,∴点P 是在以AC 为直径的半圆上运动,∴当点P 运动到与点D 重合时,BP 的值最大,四边形ABCD 是正方形,,∴,即BP 的最大值为.24.【小问1详解】解:∵抛物线顶点D 在x 轴上,且经过(0,-3)和(4,-3)两点,设抛物线解析式,∴,解得,∴,∴;【小问2详解】解:如图,过点B 作轴于点C ,∵,AE CG ⊥90APC ∠=︒4AD =BP BD ==()2y a x h =-()22343ah a h ⎧=⎪⎨-=-⎪⎩342a h ⎧=-⎪⎨⎪=⎩()2324y x =--()2,0D BC x ⊥()0,3A -设直线的解析式为,联立,解得或,∴B 的横坐标为,∴,,∵,,,∴,∵,∴,解得或,∴或;【小问3详解】如图,过点A ,B 分别作x 轴的垂线,垂足分别为P ,Q ,l 3y kx =-()23243y x y kx ⎧=--⎪⎨⎪=-⎩03x y =⎧⎨=⎩24434433x k y k k ⎧=-+⎪⎪⎨⎪=-+-⎪⎩443k -+423CD k =-+2244434333BC k k k k ⎛⎫=--+-=-+ ⎪⎝⎭3AO =443OC k =-+2OD =()111222ABD S AO BC OC AO OD CD BC =+⨯-⨯-⨯△2214411443434322432332233k k k k k k ⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-⨯⨯-⨯-+⨯-+ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭24663k k =-+94ABD S =△2496634k k -+=34k =154k =334y x =-1534y x =-∵,∴,又,∴,∴,∴,设直线的解析式为,则,∴,设,为方程的两根,且,则,,∴,,∴,∵,,∴,∵,∴,∴,90ADB ∠=︒90PDA QDB QBD ∠=︒-∠=∠APD DQB ∠=∠APD DQB ∽△△PD AP QB DQ=PD DQ QB AP ⋅=⋅l y mx n =+()2324y x y mx n⎧=--⎪⎨⎪=+⎩()()233304x m x n +-++=1x 2x 12x x <()12433x x m +=-()12433x x n =+12PD x =-22DQ x =-()()()12212112122224224PD DQ x x x x x x x x x x ⋅=--=--+=+--1AP y =-2QB y =-()()12QB AP mx n mx n ⋅=-+⨯-+⎡⎤⎣⎦PD DQ QB AP ⋅=⋅()()221212121224m x x mn x x n x x x x +++=+--()()()2212121240m x x mn x x n ++-+++=∵,,∴,整理得,即,,∴或,当时,过定点,与重合,不符合题意,故舍去,当时,,∴,过定点.()12433x x m +=-()12433x x n =+()()()()224413234033m n mn m n +⨯++-⨯⨯-++=224844033n mn m n m ++++=()()242203n m n m +++=()42203n m n m ⎛⎫+++= ⎪⎝⎭4203n m ++=20n m +=20n m +=()22y mx m m x =-=-()2,0()2,0D 4203n m ++=423n m =--()442233y mx m m x =--=--42,3⎛⎫- ⎪⎝⎭。