电动车锂电池充电器毕业设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要
电动自行车是绿色节能的交通工具,在节能环保的发展进程中电动自行车满足了消费者出行半径增大的需求。
另外,电动车电瓶采用锂电池越来越多。
利用开关电源实现对锂电池高效率充电是目前的发展趋势。
本设计通过认真调查锂电池充电注意事项,电动车用锂电池充电过程和充电曲线,综合运用了反激式开关电源技术,对电动车用锂电池充电器做了具体设计。
电路主要包括整流滤波电路、功率变换电路、稳压电路、恒流电路,充电指示电路,实现对锂电池分四个阶段高效率安全充电。
充电过程分微弱电流调节充电阶段,恒流充电阶段,恒压充电。
主电源部分采用线性光耦改变电流型PWM控制集成芯片UC3842中误差放大器的输入误差电压,实现稳压充电。
恒流电路实现对锂电池恒流充电。
电路设计满足客户要求,成本低廉。
关键词:反激式开关电源;锂电池充电器;UC3842;恒流充电
Abstract
Electric bike is a green energy-saving means of transport, energy-saving environmental protection in the process of development of electric bike to meet the consumer demand for travel radius.
In addition, the electric bike battery using lithium batteries is increasing. Use of switching power supply to achieve high efficiency on the lithium battery charge is the current trend.The rechargeable lithium battery design through careful investigation note, lithium batteries for electric vehicle charging process and charge curves of the integrated use of a flyback switching power supply technology, lithium battery charger for electric vehicles to do a specific design.
Circuit includes a rectifier filter circuit, power converter, voltage regulator circuit, the current circuit, the charging indicator circuit, charging in four phases of the lithium batteries safely and efficiently. Charging process comprises weak charge current regulation phase, constant current charging phase, constant voltage charging. The main power to change the input error voltage of the error amplifier in Current-mode PWM control IC UC3842 to achieve voltage regulation. Constant current circuit of the constant current charging lithium batteries. Circuit design meet customer requirements, and low cost.
Keywords: flyback switching power supply; lithium battery charger; UC3842; constant current charging
目录
摘要 (I)
Abstract......................................................................................................................................................... I I
1 绪论 (1)
1.1 电动车的发展概况 (1)
1.2 锂电池简述 (1)
1.3开关电源的产生与发展 (2)
1.4 设计目的和要求 (3)
1.5 主要设计内容 (3)
2 开关电源概述 (4)
2.1 隔离式高频开关电源 (4)
2.2 本设计所用术语 (5)
2.3 开关电源与线性电源 (5)
2.4 开关电源能量损耗和寿命 (6)
2.5 开关电源分类 (7)
3 反激式开关电源 (8)
3.1 反激式开关电源原理 (8)
3.2 主要器件简介 (11)
3.2.1 UC3842芯片简介 (11)
3.2.2 TL431简介 (15)
3.2.3 PC817光耦简介 (16)
3.3 UC3842常用的电压反馈电路 (16)
3.3.1 输出电压直接分压作为误差放大器的输入 (16)
3.3.2 辅助电源输出电压分压作为误差放大器的输入 (18)
3.3.3 采用线性光耦改变误差放大器的输入误差电压 (19)
4 总体设计 (21)
4.1电路组成 (21)
4.2系统实现功能 (22)
5 主电源部分设计 (23)
5.1 输入电路 (23)
5.1.1 输入浪涌电流保护 (23)
5.1.2 输入尖峰电压保护 (24)
5.2 输入滤波电路 (25)
5.2.1 差模干扰和共模干扰概念 (25)
5.2.2 滤除干扰信号 (25)
5.3 变压器设计 (26)
5.3.1变压器功能 (26)
5.3.2磁芯饱和问题 (26)
5.3.3 变压器设计步骤 (28)
5.4 RCD箝位电路设计 (32)
5.4.1 RCD箝位电路意义 (32)
5.4.2 RCD箝位电路设计步骤 (33)
5.5开关管选择 (34)
5.6输出滤波器 (34)
6控制电路设计 (35)
6.1低电流调节控制电路 (35)
6.2恒流电路 (36)
6.3充电指示电路 (37)
总结 (38)
致谢 (39)
参考文献 (40)
附录1 本设计电路原理图 (41)
附录2 本设计PCB图 (42)
1 绪论
1.1 电动车的发展概况
电动自行车是绿色节能的交通工具,在城市化发展的进程中电动自行车满足了消费者出行半径增大的需求。
经过15年的快速发展,电动自行车产业已经进入了成熟期,产品的质量不断提高,技术创新成果普遍应用。
中国已成为全球电动自行车的制造、消费大国,目前中国市场年产销量超过2000万辆,整个产业链的经济规模达到1000亿以上,从业人员近500万人。
整车企业1000余家、6000余家相关联配套企业、100000家经销商、市场保有量达 1.2亿辆,电动自行车成为中国一个重要的产业,也是中国老百姓主要的交通工具。
目前平均每四户居民家庭中就有一辆电动自行车,电动自行车已经成为城乡人民生活中的一种重要的消费品。
2009年以来,面对世界金融危机的挑战,电动自行车产业依然保持了平稳发展。
中国自行车协会助力车专业委员会的统计,50家主要生产电动自行车的企业,1-8月份累计总产量为656万辆,同比增长13%。
另外,根据国家统计局的统计,1-8月份行业规模以上企业电动自行车产量累计生产为445.5万辆,同比增长8.7%。
两个不同口径的统计数字均说明,电动车的发展前景可期。
1.2 锂电池简述
锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。
最早出现的锂电池来自于伟大的发明家爱迪生,使用以下反应:Li+MnO2=LiMnO2该反应为氧化还原反应,放电。
由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高,所以锂电池长期没有得到应用。
现在锂电池已经成为了主流。
随着数码产品如手机、笔记本电脑等产品的广泛使用,锂离子电池以优异的性能在这类产品中得到广泛应用,并在近年逐步向其他产品应用领域发展。
1998年,天津电源研究所开始商业化生产锂离子电池。
习惯上人们把锂离子电池也称为锂电池,现在锂离子电池已经成为了主流。
锂离子电池主要优点表现在:
⑴比能量高。
具有高储存能量密度,目前已达到460-600Wh/kg,是铅酸电池的约6-7倍;
⑵使用寿命长,使用寿命可达到6年以上,磷酸亚铁锂为正极的电池用1CDOD 充放,有可以使用10,000次的记录;
⑶额定电压高(单体工作电压为3.7V或3.2V),约等于3只镍镉或镍氢充电
电池的串联电压,便于组成电池电源组;
⑷具备高功率承受力,其中电动汽车用的磷酸亚铁锂锂离子电池可以达到15-30C充放电的能力,便于高强度的启动加速;
⑸自放电率很低,这是该电池最突出的优越性之一;
⑹重量轻,相同体积下重量约为铅酸产品的1/5;
⑺高低温适应型强,可以在-20℃--60℃的环境下使用,经过工艺上的处理,可以在-45℃环境下使用;
⑻绿色环保,不论生产、使用和报废,都不含有、也不产生任何铅、汞、镉等有毒有害重金属元素和物质;
⑼生产基本不消耗水,对缺水的我国来说,十分有利。
锂电池的缺点:
⑴锂原电池均存在安全性差,有发生爆炸的危险;
⑵钴酸锂的锂离子电池不能大电流放电,安全性较差;
⑶锂离子电池均需保护线路,防止电池被过充过放电;
⑷生产要求条件高,成本高。
锂电池广泛应用于水力、火力、风力和太阳能电站等储能电源系统,邮电通讯的不间断电源,以及电动工具、电动自行车、电动摩托车、电动汽车、军事装备、航空航天等多个领域。
随着能源的紧缺和世界的环保方面的压力,锂电现在被广泛应用于电动车行业,特别是磷酸铁锂材料电池的出现,更推动了锂电池产业的发展和应用。
1.3开关电源的产生与发展
随着大规模和超大规模集成电路的快速发展,特别是微处理器和半导体存储器的开发利用,孕育了电子系统的新一代产品。
显然,那种体积大而笨重的使用工频变压器的线性调节稳压电源已经过时。
取而代之的是小型化、重量轻、效率高的隔离式开关电源。
隔离式开关电源的核心是一种高频电源变换电路。
它使交流电源高效率地产生一路或多路经调整的稳定直流电压。
早在70年代,随着电子技术的不断发展,集成化的开关电源就已被广泛地应用于电子计算机、彩色电视机、卫星通信设备、程控交换机、精密仪表等电子设备。
这是由于开关电源能够满足现代电子设备对多种电压和电流的需求。
随着半导体技术的高度发展,高反压快速开关晶体管使无工频变压器的开关电源迅速实用化。
而半导体集成电路技术的迅速发展又为开关电源控制电路的集成化奠定了基础,适应各类开关电源控制要求的集成开关稳压器应运而生,其功能不断完善,集成化
水平也不断提高,外接元件越来越少,使得开关电源的设计、生产和调整工作日益简化,成本也不断下降。
目前己形成了各类功能完善的集成开关稳压器系列。
近年来高反压MOS 大功率管的迅速发展,又将开关电源的工作频率从20kHz提高到150-200kHz,其结果是使整个开关电源的体积更小,重量更轻,效率更高。
开关电源的性能价格比达到了前所未有的水平,使它在与线性电源的竞争中具有先导之势。
当然开关电源能被工业所接受,首先是它在体积、重量和效率上的优势。
在70年代后期,功率在100w以上的开关电源是有竞争力的。
到1980年,功率在50w以上就具有竞争力了。
随着开关电源性能的改善,到80年代后期,电子设备的消耗功率在20W以上,就要考虑使用开关电源了。
过去,开关电源在小功率范围内成本较高,但进入90年代后,其成本下降非常显著‘当然这包括了功率元件,控制元件和磁性元件成本的大幅度下降。
此外,能源成本的提高也是促进开关电源发展的因素之一[1]。
1.4 设计目的和要求
作为企业,为了赢得电动车电器配套市场,组织设计电动车用锂电池充电器。
本充电器设计要实现对电动车用锂电池高性能地充电。
通过认真调查锂电池充电注意事项,电动车用锂电池充电过程和各个参数,制作出电动车锂电池充电器。
1.5 主要设计内容
根据调研电动车用锂电池充电曲线,设计本充电器电路实现对锂电池分四个阶段充电,实现充电器对电池高效率安全充电。
充电过程分微弱电流调节充电阶段,恒流充电阶段一,恒流充电阶段二,恒压充电。
本充电器电路采用反激式开关电源技术通过电路控制实现了上述过程。
当拿一个很亏的锂电池接上电路后就要经历这四个阶段。
为了保护过分放电的电池首先是微弱电流充电,冲到一定程度后以小电流恒流充电,然后以大电流恒流充电,最后恒压充电到截止。
本设计详细描述如下:当接上的锂电池电压低于3.3V时,首先充电器要以微弱的电路充电到3.3V。
达到3.3V后开始以400mA的小电流充电到5V。
然后就以4.12A的电流恒流充电。
当锂电池两端电压的升高逐渐接近开关电源的输出电压,恒流电路被破坏,电压反馈稳压阶段开始。
2 开关电源概述
2.1 隔离式高频开关电源
隔离式开关电源的变换器具有多种形式。
主要分为半桥式、全桥式、推挽式、单端反激式、单端正激式等等。
在设计电源时,设计者采取那种变换器电路形式,主要根据成本、要达到的性能指标等因素来决定。
各种形式的电源电路的基本功能块是相同的,只是完成这些功能的技术手段有所不同。
隔离式高频开关电源电路的共同特点就是具有高频变压器,直流稳压是从变压器次级绕组约脉冲电压整流滤波而来。
开关电源的基本方框如图2-1所示。
交流输入线路电压来自电网,首先要经过整流、滤波电路变成含有一定脉动电压成分的直流电压,然后进入高频变换部分。
高频变换部分的核心是有一个高频功率开关元件,比如开关晶体管、场效应管等元件,高频变换部分产生高频高压方波,所得到的高压方波送给高频隔离降压变压器的初级,在变压器的次级感应出的电压被整流、滤波后就产生了低压直流。
为了调节输出电压,使得在输入交流和输出负载发生变化时,输出电压能保持稳定,采用脉冲宽度调制电路和脉冲频率调制电路,通过对输出电压采样,并把采样的结果反馈给控制电路,控制电路把它与基准电压进行比较,根据比较结果来控制高频功率开关元件的开关时间比例(占空比),达到调整输出电压的目的。
在方波的上升沿和下降沿。
有很多高次谐波,如果这些高次谐波反馈到输入交流线,就会对其它电子设备产生干扰。
因此,在交流输入端,必须要设置滤波器,把高频干扰减少到可接收的范围。
此外,为了使整个电路安全可靠地工作,还要设计辅助电路,主要包括过压、过流保护电路等。
图2-l 隔离式开关电源方框图
2.2 本设计所用术语
下面列出一些常用的开关电源术语,并给出解释,以备参考。
效率:电源的输出功率与输入功率的百分比。
其测量条件是满负载,输入交流电压为标准值。
ESR:等效串联电阻。
它表示电解电容呈现的电阻值的总合。
一般情况下,ESR值越低的电容,性能越好。
隔离式开关电源:一般指高频开关电源。
它从输入的交流电源直接进行整流和滤波,不使用低频隔离变压器。
软启动:在系统启动时,一种驱动波形从零到正常占空比的方法。
占空比:在高频开关电源中,开关元件的导通时间和变换器的工作周期之比。
低电流调节充电:如果锂电池电压低于设定的电压值,充电周期首先进行低电流充电,当电池电压低于一定值时就要进入低电流充电阶段。
恒流充电:只要锂电池电压高于设定电压值,充电周期进入恒流充电,以一定的电流给电池充电。
恒压充电:当电池在充电过程中,电池电压达到设定值时,充电周期进入恒压充电。
在恒压充电中,电压不变,电流由最大值慢慢减少,当电流减少到设定值时,电池即充满。
2.3 开关电源与线性电源
线性电源稳压器的调整管工作在放大状态,因而发热量大,效率低(35%左右),需
要加体积庞大的散热片,而且还需要同样也是大体积的工频变压器,当要制作多组电压输出时变压器会更庞大。
开关电源的调整管工作在饱和截至状态,因而发热量小,效率高(75%以上)而且省掉了大体积的变压器。
但开关电源输出的直流上面会叠加较大的纹波,在输出端并接稳压二极管可以改善,另外由于开关管工作是会产生很大的尖峰脉冲干扰,也需要在电路中串连磁珠加以改善。
相对而言线性电源就没有以上缺陷,它的纹波可以做到5mV以下。
对于电源效率和安装体积有要求的地方用开关电源为佳,对于电磁干扰和电源纯净性有要求的地方(例如电容漏电检测)多选用线性电源。
另外开关电源中用到的高频变压器绕制起来比较麻烦。
开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。
线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。
随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义[2]。
开关电源具备三个条件:
⑴开关:电力电子器件工作在开关状态而不是线性状态。
⑵高频:电力电子器件工作在高频而不是接近工频的低频。
⑶直流:开关电源输出的是直流而不是交流。
2.4 开关电源能量损耗和寿命
降低损耗,遏制温升,提高效率,延长寿命开关电源内部的损耗主要分四个方面:
⑴开关损耗如功率开关,驱动;
⑵导通损耗如输出整流器,电解电容中电阻损耗;
⑶附加损耗如控制IC,反馈电路,启动电路,驱动电路;
⑷电阻损耗如预加负载等;在反激式开关电源中,功率开关和驱动以及输出整流部分占损耗的90%多,磁性元件占5%,其它占5%;损耗直接影响效率,更影响电源的稳定性和工作寿命。
损耗都以发热而表现出来,晶体管和电容和磁性元件都对温度很敏感。
下面列举的是温度对器件的影响:
⑴温度每升高10℃,电解电容的寿命就会减半;
⑵在高温和反向电压接近额定值时,肖特基二极管的漏电很严重,就像阴阳极通路一样;
⑶通用磁性材料,从25℃到100℃饱和磁感应强度下降30%左右;在这里,磁性材料的损耗虽然说占比例很小但是它对整个开关电源的影响非常大。
比如在正常工作时,设计的最大磁通密度偏大,由于温升的原因将使饱和磁感应强度下降,再加上反馈回路的延迟效应而使导通时间加长,极易使磁芯饱和,瞬间开关管损坏。
在此设计时,最好保证铜耗接近于磁耗,初级绕组的铜耗接近于次级绕组的铜耗以达到最优化的设计防止磁芯过渡温升;
⑷MOSFET管,每升高25℃,栅极阀值电压下降5%。
MOSFET管的最大节点温度时150℃,节点温度的理想值为105℃,最高不要超过125℃。
Rds随温度的升高而增大。
所以,在设计时尽可能降低元件本身损耗而造成的温升,也要注意远离热源,不因外界原因而造成温升,更要优化设计减小损耗,提高效率,延长元器件及整个电源的工作寿命。
2.5 开关电源分类
按开关管与负载的连接方式分类,开关电源可分为串联型、并联型和变压器耦合型3种类型。
按开关器件的激励方式,可分为自激式和他激式开关电源。
按调制方式分可分脉冲宽度调制式和脉冲频率调制式开关稳压电源和PWM和PFM的混合方式。
按开关管的连接和工作方式分类,开关稳压电源可分为单端式、推挽式、半桥式和全桥式4种。
3 反激式开关电源
3.1 反激式开关电源原理
单端反激式变换器又称电感储能式变换器,工作原理如图3-l所示,当开关管S1被PWM脉冲激励而导通时,次级整流二极管D1截止,输出电容C给负载供电。
直流输入电压施加到高频变压器T的原边绕组上,此时NP相当于一个纯电感,流过NP的电流线性上升,电源能量以磁能形式存储在电感中:当开关管S1截止时,由于电感电流不能突变,原边绕组两端电压极性反向,副边绕组上的电压极性颠倒使D1导通,原边储存的能量传送到副边,提供负载电流,同时给输出电容充电。
单端反激式开关电源以主开关管的周期性导通和关断为主要特征。
开关管导通时,变压器一次侧线圈内不断储存能量;而开关管关断时,变压器将一次侧线圈内储存的电感能量通过整流二极管给负载供电,直到下一个脉冲到来,开始新的周期[3]。
开关电源中的变压器起着非常重要的作用:一是通过它实现电场-磁场-电场能量的转换,为负载提供稳定的直流电压;二是可以实现变压器功能,通过脉冲变压器的初级绕组和多个次级绕组可以输出多路不同的直流电压值,为不同的电路单元提供直流电量;三是可以实现传统电源变压器的电隔离作用,将热地与冷地隔离,避免触电事故,保证用户端的安全。
T
图3-1 反激式开关电源原理图
在开关管S1关断的Toff期间,变压器铁心中的磁通主要由变压器次级线圈回路中的电流来决定,这就相当于流过变压器次级线圈中的电流所产生的磁场可以使变压器的铁心退磁,使变压器铁心中的磁场强度恢复到初始状态。
由于控制开关突然关断,流过变压器初级线圈的励磁电流突然为0,此时,流过变压器次级线圈中的电流就正好接替原来变压器初级线圈中励磁电流的作用,使变压器铁心中的磁感应强度由最大值Bm返回到剩磁所对应的磁感应强度Br位置,即流过次级绕组电流是由最大值逐步变化到0的。
由此可知,反激式变压器开关电源在输出功率的同时,流过次级线圈回路中的电流也在对变压器铁心进行退磁。
Is次级电流波形
Ip初级电流波形
Ton Toff
反激式变压器开关电源工作于临界连续电流状态时,次级整流输入电压Uo 、负载电流Io ,变压器铁芯的磁通,以及变压器初、次级电流等波形图如图3-2所示。
变压器次级线圈输出电压Uo 是一个带正负极性的脉冲波形,一般负半周是一个很规整的矩形波;而正半周,由于输出脉冲被整流二极管限幅,当开关电源工作于连续电流或临界连续电流状态时,输出波形基本也是矩形波。
因此,整流二极管的输入电压Uo 的正半周幅度与储能滤波电容的两端电压基本相同。
因此,整流二极管的输入电压Uo 的幅值Up 与整流输出电压基本相等。
在控制开关接通期间,变压器铁芯被磁化;在控制开关关断期间,变压器铁芯被退磁。
因此,在Ton 期间,变压器铁芯中的磁通量是由剩磁SBr 向最大磁通SBm 方向变化;而在Toff 期间,变压器铁芯中的磁通量是由最大磁通SBm 向剩磁SBr 方向变化。
i 波形是反激式变压器开关电源工作于临界电流状态时,变压器初、次级线圈的电流波形。
其中,i1为流过变压器初级线圈中的电流,i2为流过变压器次级线圈中的电流(虚线所示),Io 是流过负载的电流(虚线所示)。
在控制开关接通期间,变压器铁芯被初级线圈电流磁化;在控制开关关断期间,变压器铁芯被被次级线圈电流退磁,并
/ SB m
SBr
Io
i/A
图3-2 临界连续电流状态时波形
向负载输出电流。
还可以看出,流过变压器初、次级线圈中的电流是可以突跳的。
在控制开关关断的一瞬间,流过变压器初级线圈的电流由最大值跳变到0,而在同一时刻,流过变压器次级线圈的电流由0跳变到最大值。
并且,变压器初级线圈电流的最大值正好等于变压器次级线圈电流最大值的n倍(n为变压器次级电压与初级电压比)。
3.2 主要器件简介
3.2.1 UC3842芯片简介
UC3842 是开关电源用电流控制方式的脉宽调制集成电路。
与电压控制方式相比在负载响应和线性调整度等方面有很多优越之处。
该电路主要特点有:
●内含欠电压锁定电路
●低起动电流(典型值为0.12mA)
●稳定的内部基准电压源
●大电流推挽输出(驱动电流达1A)
●工作频率可到500kHz
●自动负反馈补偿电路
●双脉冲抑制
●较强的负载响应特性
UC3842 内部结构如图3-3所示,UC3842 采用固定工作频率脉冲宽度可控调制方式,共有8 个引脚,各脚功能如下:
1脚是误差放大器的输出端,外接阻容元件用于改善误差放大器的增益和频率特性;
2脚是反馈电压输入端,此脚电压与误差放大器同相端的2.5V 基准电压进行比较,产生误差电压,从而控制脉冲宽度;
3脚为电流检测输入端,当检测电压超过1V时缩小脉冲宽度使电源处于间歇工作状态;
4脚为定时端,内部振荡器的工作频率由外接的阻容时间常数决定,f=1.8/(R
T ×C
T
);
5脚为公共地端;
6脚为推挽输出端,内部为图腾柱式,上升、下降时间仅为50ns 驱动能力为±1A;7脚是直流电源供电端,具有欠、过压锁定功能,芯片功耗为15mW;
8脚为5V 基准电压输出端,有50mA 的负载能力。