苏科版八年级上册数学期末复习试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
苏科版八年级上册数学期末复习试卷
一、选择题
1.低碳环保理念深入人心,共享单车已经成为出行新方式下列共享单车图标中,是轴对称图形的是( )
A .
B .
C .
D .
2.在平面直角坐标系中,下列各点在第二象限的是( ) A .(3,1) B .(3,-1) C .(-3,1) D .(-3,-1)
3.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( ) A .(﹣5,3) B .(1,﹣3) C .(2,2) D .(5,﹣1) 4.已知点P (1+m ,3)在第二象限,则m 的取值范围是( )
A .1m <-
B .1m >-
C .1m ≤-
D .1m ≥-
5.一次函数1
12
y x =-+的图像不经过的象限是:( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 6.在下列黑体大写英文字母中,不是轴对称图形的是( )
A .
B .
C .
D .
7.已知A (a ,b ),B (c ,d )是一次函数y =kx ﹣3x +2图象上的不同两个点,m =(a ﹣c )(b ﹣d ),则当m <0时,k 的取值范围是( ) A .k <3 B .k >3 C .k <2 D .k >2 8.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CD B .AD =2CD C .AD =3BD D .AB =2BC 9.下列一次函数中,y 随x 增大而增大的是( ) A .y=﹣3x
B .y=x ﹣2
C .y=﹣2x+3
D .y=3﹣x
10.下列四个图案中,不是轴对称图案的是( ) A .
B .
C .
D .
二、填空题
11.关于x 的分式方程
211
x a
x +=+的解为负数,则a 的取值范围是_________. 12.3-的绝对值是 .
13.如图,将边长为8cm 的正方形ABCD 折叠,使点D 落在BC 边的中点E 处,点A 落在F 处,折痕为MN .连接FN ,并求FN 的长__________.
14.计算
222m
m m
+--的结果是___________ 15.已知一次函数y =mx -3的图像与x 轴的交点坐标为(x 0,0),且2≤x 0≤3,则m 的取值范围是________.
16.如图,已知点M (-1,0),点N (5m ,3m +2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.
17.将一次函数y =2x 的图象向上平移1个单位,所得图象对应的函数表达式为__________.
18.如图是某足球队全年比赛情况统计图:
根据图中信息,该队全年胜了_______场.
19.将一次函数y =2x +2的图象向下平移2个单位长度,得到相应的函数表达式为____. 20.将矩形纸片ABCD 按如图所示的方式折叠,恰好得到菱形AECF .若AB=6,则菱形AECF 的面积为__________.
三、解答题
21.(1)0451) (2)解方程:23(1)120x --=
22.已知:如图,点E 在ABC ∆的边AC 上,且AEB ABC ∠=∠.
(1)求证:ABE C ∠=∠;
(2)若BAE ∠的平分线AF 交BE 于点F ,FD BC 交AC 于点D ,设8AB =,
10AC =,求DC 的长.
23.如图,∠AOB =90°,OA =12cm ,OB =8cm ,一机器人在点B 处看见一个小球从点A 出发沿着AO 方向匀速滚向点O ,机器人立即从点B 出发,沿BC 方向匀速前进拦截小球,恰好在点C 处截住了小球.如果小球滚动的速度与机器人行走的速度相等,并且它们的运动时间也相等.
(1)请用直尺和圆规作出C 处的位置,不必叙述作图过程,保留作图痕迹; (2)求线段OC 的长.
24.求下列各式中x 的值: (1)4x 2﹣12=0 (2)48﹣3(x ﹣2)2=0
25.已知:如图点A 、B 、C 、D 在一条直线上,EA ∥FB ,EC ∥FD ,AB=CD ,求证:EA=FB .
四、压轴题
26.如图,以直角三角形AOC 的直角顶点O 为原点,以OC ,OA 所在直线为轴和轴建立平面直角坐标系,点A (0,a ),C (b ,0a 6b 80--=. (1)a = ;b = ;直角三角形AOC 的面积为 .
(2)已知坐标轴上有两动点P ,Q 同时出发,P 点从C 点出发以每秒2个单位长度的速度向点O 匀速移动,Q 点从O 点出发以每秒1个单位长度的速度向点A 匀速移动,点P 到达O 点整个运动随之结束.AC 的中点D 的坐标是(4,3),设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.
(3)在(2)的条件下,若∠DOC =∠D CO ,点G 是第二象限中一点,并且y 轴平分∠GOD .点E 是线段OA 上一动点,连接接CE 交OD 于点H ,当点E 在线段OA 上运动的过
程中,探究∠GOD ,∠OHC ,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180).
27.已知,在平面直角坐标系中,(42,0)A ,(0,42)B ,C 为AB 的中点,P 是线段AB 上一动点,D 是线段OA 上一点,且PO PD =,DE AB ⊥于E .
(1)求OAB ∠的度数;
(2)当点P 运动时,PE 的值是否变化?若变化,说明理由;若不变,请求PE 的值. (3)若45OPD ∠=︒,求点D 的坐标.
28.如图,四边形ABCD 是直角梯形,AD ∥BC ,AB ⊥AD ,且AB =AD +BC ,E 是DC 的中点,连结BE 并延长交AD 的延长线于G .
(1)求证:DG =BC ;
(2)F 是AB 边上的动点,当F 点在什么位置时,FD ∥BG ;说明理由.
(3)在(2)的条件下,连结AE 交FD 于H ,FH 与HD 长度关系如何?说明理由. 29.定义:若两个三角形,有两边相等且其中一组等边所对的角对应相等,但不是全等三角形,我们就称这两个三角形为偏差三角形.
(1)如图1,已知A (3,2),B (4,0),请在x 轴上找一个C ,使得△OAB 与△OAC 是偏差三角形.你找到的C 点的坐标是______,直接写出∠OBA 和∠OCA 的数量关系______.
(2)如图2,在四边形ABCD 中,AC 平分∠BAD ,∠D+∠B=180°,问△ABC 与△ACD 是偏差三角形吗?请说明理由.
(3)如图3,在四边形ABCD 中,AB=DC ,AC 与BD 交于点P ,BD+AC=9,
∠BAC+∠BDC=180°,其中∠BDC<90°,且点C到直线BD的距离是3,求△ABC与△BCD 的面积之和.
30.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.
(1)求证:∠ACN=∠AMC;
(2)记△ANC得面积为5,记△ABC得面积为5.求证:1
2
S AC
S AB
;
(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
根据轴对称图形的概念求解.
【详解】
A、是轴对称图形.故选项正确;
B、不是轴对称图形.故选项错误;
C、不是轴对称图形.故选项错误;
D、不是轴对称图形.故选项错误.
故选:A.
【点睛】
此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,两边图象折叠后可重合.
2.C
解析:C
【解析】
【分析】
由第二象限中坐标特点为,横坐标为负,纵坐标为正,由此即可判断.
【详解】
A. (3,1)位于第一象限;
B. (3,-1)位于第四象限;
C. (-3,1)位于第二象限;
D. (-3,-1)位于第三象限;
故选C.
【点睛】
此题主要考察直角坐标系的各象限坐标特点.
3.C
解析:C
【解析】
【分析】根据函数图象的性质判断系数k>0,则该函数图象经过第一、三象限,由函数图象与y轴交于负半轴,则该函数图象经过第一、三、四象限,由此得到结论.
【详解】∵一次函数y=kx﹣1的图象的y的值随x值的增大而增大,
∴k>0,
A、把点(﹣5,3)代入y=kx﹣1得到:k=﹣4
5
<0,不符合题意;
B、把点(1,﹣3)代入y=kx﹣1得到:k=﹣2<0,不符合题意;
C、把点(2,2)代入y=kx﹣1得到:k=3
2
>0,符合题意;
D、把点(5,﹣1)代入y=kx﹣1得到:k=0,不符合题意,
故选C.
【点睛】考查了一次函数图象上点的坐标特征,一次函数的性质,根据题意求得k>0是解题的关键.
4.A
解析:A
【解析】
【分析】
令点P的横坐标小于0,列不等式求解即可.
【详解】
解:∵点P P(1+m,3)在第二象限,
∴1+m<0,
解得: m<-1.
故选:A.
【点睛】
本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点.四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.C
解析:C
【解析】
试题分析:根据一次函数y=kx+b(k≠0,k、b为常数)的图像与性质可知:当k>0,b>0时,图像过一二三象限;当k>0,b<0时,图像过一三四象限;当k<0,b>0时,图像
过一二四象限;当k<0,b<0,图像过二三四象限.这个一次函数的k=
1
2
<0与b=1>
0,因此不经过第三象限.
答案为C
考点:一次函数的图像
6.C
解析:C
【解析】
【分析】
根据轴对称图形的概念对各个大写字母判断即可得解.
【详解】
A.“E”是轴对称图形,故本选项不合题意;
B.“M”是轴对称图形,故本选项不合题意;
C.“N”不是轴对称图形,故本选项符合题意;
D.“H”是轴对称图形,故本选项不合题意.
故选:C.
【点睛】
本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
7.A
解析:A
【解析】
【分析】
将点A,点B坐标代入解析式可求k−3=b d
a c
-
-
,即可求解.
【详解】
∵A(a,b),B(c,d)是一次函数y=kx﹣3x+2图象上的不同两个点,∴b=ka﹣3a+2,d=kc﹣3c+2,且a≠c,
∴k﹣3=b d
a c -
-
.
∵m=(a﹣c)(b﹣d)<0,∴k<3.
故选:A.
【点睛】
本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,求出k−3=b d a c --
是关键,是一道基础题.
8.B
解析:B
【解析】
【分析】
在Rt△ABC中,由∠A的度数求出∠B的度数,在Rt△BCD中,可得出∠BCD度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD,由BD的长求出BC 的长,在Rt△ABC中,同理得到AB=2BC,于是得到结论.
【详解】
解:∵△ABC中,∠ACB=90°,∠A=30°,
∴AB=2BC;
∵CD⊥AB,
∴AC=2CD,
∴∠B=60°,又CD⊥AB,
∴∠BCD=30°,
在Rt△BCD中,∠BCD=30°,CD3,
在Rt△ABC中,∠A=30°,AD3=3BD,
故选:B.
【点睛】
此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.
9.B
解析:B
【解析】
【分析】
根据一次函数的性质对各选项进行逐一分析即可.
【详解】
解:A、∵一次函数y=﹣3x中,k=﹣3<0,∴此函数中y随x增大而减小,故本选项错误;
B、∵正比例函数y=x﹣2中,k=1>0,∴此函数中y随x增大而增大,故本选项正确;
C、∵正比例函数y=﹣2x+3中,k=﹣2<0,∴此函数中y随x增大而减小,故本选项错误;
D、正比例函数y=3﹣x中,k=﹣1<0,∴此函数中y随x增大而减小,故本选项错误.故选B.
【点睛】
本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x
的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.10.B
解析:B
【解析】
【分析】
根据轴对称的概念对各选项分析判断利用排除法求解.
【详解】
解:A.此图案是轴对称图形,不符合题意;
B.此图案不是轴对称图形,符合题意;
C.此图案是轴对称图形,不符合题意;
D.此图案是轴对称图形,不符合题意;
故选:B.
【点睛】
本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
二、填空题
11.【解析】
【分析】
分式方程去分母转化为整式方程,由分式方程的解为负数,求出a的范围即可【详解】
分式方程去分母得:2x+a=x+1
解得:x=1-a,
由分式方程解为负数,得到1-a<0,且1 解析:12a a >≠且
【解析】 【分析】
分式方程去分母转化为整式方程,由分式方程的解为负数,求出a 的范围即可 【详解】
分式方程去分母得:2x+a=x+1 解得:x=1-a,
由分式方程解为负数,得到1-a<0,且1-a≠-1 解得:a >1且a≠2, 故答案为: a >1且a≠2 【点睛】
此题考查分式方程的解,解题关键在于求出x 的值再进行分析
12.. 【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以的绝对值是.
. 【解析】
根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的
,所以
13.【解析】 【分析】
设,则,由翻折的性质可知,在Rt △ENC 中,由勾股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可. 【详解】
【解析】 【分析】 设NC x =,则8DN
x ,由翻折的性质可知8EN DN x ==-,在Rt △ENC 中,由勾
股定理列方程求解即可求出DN ,连接AN ,由翻折的性质可知FN=AN ,然后在Rt △ADN 中由勾股定理求得AN 的长即可. 【详解】
解:如图所示,连接AN ,
设NC x =,则8DN
x , 由翻折的性质可知:8EN DN x ==-,
在Rt ENC 中, 有222EN EC NC =+,()22284x x -=+,
解得:3x =,
即5DN cm .
在Rt 三角形ADN 中, 2222
8589AN AD ND , 由翻折的性质可知89FN
AN .
【点睛】 本题主要考查的是翻折的性质、勾股定理,利用勾股定理的到关于x 的方程是解题的关键.
14.-1.
【解析】
【分析】
原式变形后,利用同分母分式的减法法则计算即可得到结果.
【详解】
=
故答案为-1.
【点睛】
此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分
解析:-1.
【解析】
【分析】
原式变形后,利用同分母分式的减法法则计算即可得到结果.
【详解】 222m m m +--=222 1.2222
m m m m m m m ---==-=----- 故答案为-1.
【点睛】
此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出最简公分母. 15.1≤m≤
【解析】
【分析】
根据题意求得x0,结合已知2≤x0≤3,即可求得m 的取值范围.
【详解】
当时,,
∴,
当时,,,
当时,,,
m 的取值范围为:1≤m≤
故答案为:1≤m≤
【点睛】
解析:1≤m ≤
32 【解析】
【分析】
根据题意求得x 0,结合已知2≤x 0≤3,即可求得m 的取值范围.
【详解】
当0y =时,3x m =
, ∴03x m
=, 当03x =时,33m
=,1m =, 当02x =时,32m =,32
m =, m 的取值范围为:1≤m ≤
32 故答案为:1≤m ≤
32
【点睛】 本题考查了一次函数与坐标轴的交点以及不等式的求法,根据与x 轴的交点横坐标的范围求得m 的取值范围是解题的关键.
16.【解析】
【分析】
在x 轴上取一点P (1,0),连接BP ,作PQ⊥PB 交直线BN 于Q ,作QR⊥x 轴
于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(
解析:
5
,3 3
⎛⎫ ⎪⎝⎭
【解析】
【分析】
在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q (5,1),易得直线BQ的解析式,所以将点N代入该解析式来求m的值即可.
【详解】
解:在x轴上取一点P(1,0),连接BP,
作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,
∴∠BOP=∠BPQ=∠PRQ=90°,
∴∠BPO=∠PQR,
∵OA=OB=4,
∴∠OBA=∠OAB=45°,
∵M(-1,0),
∴OP=OM=1,
∴BP=BM,
∴∠OBP=∠OBM=∠ABN,
∴∠PBQ=∠OBA=45°,
∴PB=PQ,
∴△OBP≌△RPQ(AAS),
∴RQ=OP=1,PR=OB=4,
∴OR=5,
∴Q(5,1),
∴直线BN的解析式为y=−3
5
x+4,
将N(5m,3m+2)代入y=−3
5
x+4,得3m+2=﹣
3
5
×5m+4
解得 m=1
3
,
∴N
5
,3
3
⎛⎫ ⎪⎝⎭
.
故答案为:
5
,3 3
⎛⎫ ⎪⎝⎭
【点睛】
本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.
17.y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
解析:y=2x+1.
【解析】
由“上加下减”的原则可知,将函数y=2x的图象向上平移1个单位所得函数的解析式为y=2x+1,
故答案为y=2x+1.
18.22
【解析】
【分析】
【详解】
解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),
∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).
故答案为:22.
【
解析:22
【解析】
【分析】
【详解】
解:用平的场次除以所占的百分比求出全年比赛场次:10÷25%=40(场),
∴胜场:40×(1﹣20%﹣25%)=40×55%=22(场).
故答案为:22.
【点睛】
本题考查1.条形统计图;2.扇形统计图;3.频数、频率和总量的关系.
19.y=2x
【解析】
【分析】
直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.
【详解】
解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y
解析:y=2x
【解析】
【分析】
直接利用一次函数平移规律:左右平移,x左加右减;上下平移,b上加下减,得出答案.【详解】
解:将函数y=2x+2的图象向下平移2个单位长度后,所得图象的函数关系式为y=2x+2﹣2=2x.
故答案为:y=2x.
【点睛】
本题考查的知识点是一次函数图象与几何变换,掌握一次函数图象平移的规律“左右平移,x左加右减;上下平移,b上加下减”是解此题的关键.
20.8
【解析】
【分析】
根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.
【详解】
解:∵四边形
解析:
【解析】
【分析】
根据菱形AECF,得∠FCO=∠ECO,再利用∠ECO=∠ECB,可通过折叠的性质,结合直角三角形勾股定理求得BC的长,则利用菱形的面积公式即可求解.
【详解】
解:∵四边形AECF是菱形,AB=6,
∴设BE=x,则AE=6-x,CE=6-x,
∵四边形AECF是菱形,∴∠FCO=∠ECO,
∵∠ECO=∠ECB,
∴∠ECO=∠ECB=∠FCO=30°,2BE=CE ,
∴CE=2x ,∴2x=6-x ,解得:x=2,
∴CE=AE=4.
利用勾股定理得出:
∴菱形的面积=AE •
故答案为:
【点睛】
此题主要考查了折叠问题以及勾股定理等知识,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.
三、解答题
21.(1)3;(2)3x =或1x =-.
【解析】
【分析】
(1)根据实数的运算法则将每一项进行化简然后计算求解即可.
(2)根据一元二次方程的解法步骤,将12移到等号右边,然后进行开平方运算求出方程的解即可.
【详解】
解:(1)01)
原式21=+
3=
(2)解方程:23(1)120x --=
2(1)4x -=
12x -=±
3x =或1x =-
【点睛】
本题考查了实数的运算和一元二次方程的解法,解决本题的关键是熟练掌握实数的运算法则,掌握一元二次方程的解法步骤,在选择解法时要注意灵活选择合适的方法.
22.(1)详见解析;(2)2.
【解析】
【分析】
(1)在三角形ABE 与三角形ABC 中,由一对公共角相等,以及已知角相等,利用内角和定理即可得证;
(2)由FD 与BC 平行,得到一对同位角相等,再由第一问的结论等量代换得到一对角相等,根据AF 为角平分线得到一对角相等,再由AF=AF ,利用ASA 得到三角形ABE 与三角形ADF 全等,利用全等三角形对应边相等得到AB=AD ,由AC-AD 求出DC 的长即
可.
【详解】
(1)证明:在ABE ∆中,180ABE BAE AEB ∠=-∠-∠︒,
在ABC ∆中,180C BAC ABC ∠=︒-∠-∠,
∵AEB ABC ∠=∠,BAE BAC ∠=∠,
∴ABE C ∠=∠;
(2)解:∵FD BC ,∴ADF C =∠∠,
又ABE C ∠=∠,∴ABE ADF ∠=∠,
∵AF 平分BAE ∠,∴BAF DAF ∠=∠,
在ABE ∆和ADF ∆中,
ABE ADF AF AF
BAF DAF ∠=∠⎧⎪=⎨⎪∠=∠⎩
,∴()ABE ADF ASA ∆∆≌, ∴AB AD =,∵8AB =,10AC =,
∴1082DC AC AD =-=-=.
【点睛】
此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.
23.(1)详见解析;(2)
103
cm . 【解析】
【分析】
(1)作AB 的垂直平分线,交OA 于点C ,则点C 即为所求;
(2)设BC =xcm ,根据题意用x 表示出AC 和OC ,根据勾股定理列出方程,解方程即可.
【详解】
解:(1)如图所示,作AB 的垂直平分线,交OA 于点C ,则点C 即为所求;
(2)由作图可得:BC =AC ,
设BC =xcm ,则AC =xcm ,OC =(12﹣x )cm ,
由勾股定理得,BC 2=OB 2+OC 2,
即x 2=82+(12﹣x )2,
解得x=26
3
.
∴OC=12﹣26
3
=
10
3
答:线段OC的长是10
3
cm.
【点睛】
本题考查的是勾股定理的应用和基本作图:线段的垂直平分线,掌握直角三角形中,两条直角边的平方和等于斜边的平方是解题的关键.
24.(1)x2)x=6或x=﹣2
【解析】
【分析】
(1)根据平方根,即可解答;
(2)根据平方根,即可解答.
【详解】
(1)4x2﹣12=0,
4x2=12,
x2=3,
x
(2)48﹣3(x﹣2)2=0,
3(x﹣2)2=48,
(x﹣2)2=16,
x﹣2=±4,
x=6或x=﹣2.
【点睛】
此题主要考查利用开平方法求方程的解,熟练掌握,即可解题.
25.用ASA证明△EAC≌△FBD即可.
【解析】
【分析】
首先利用平行线的性质得出,∠A=∠FBD,∠D=∠ECA,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD.
【详解】
证明:∵EA∥FB,
∴∠A=∠FBD,
∵EC∥FD,
∴∠D=∠ECA,
∵AB=CD,
∴AC=BD,
在△EAC和△FBD中,
ECA D A FBD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩
, ∴△EAC ≌△FBD (AAS),
∴EA =FB .
【点睛】
考查全等三角形的判定与性质,平行线的性质,熟练掌握全等三角形的判定方法是解题的关键.
四、压轴题
26.(1)6;8;24;(2)存在 2.4t =时,使得△ODP 与△ODQ 的面积相等;(3)∠GOD+∠ACE=∠OHC ,见解析
【解析】
【分析】
(1)利用非负性即可求出a ,b 即可得出结论,即可求出△ABC 的面积;
(2)先表示出OQ ,OP ,利用那个面积相等,建立方程求解即可得出结论;
(3)先判断出∠OAC=∠AOD ,进而判断出OG ∥AC ,即可判断出∠FHC=∠ACE ,同理∠FHO=∠GOD ,即可得出结论.
【详解】
解:(1) 解:(1
)∵
b 80-=, ∴a-6=0,b-8=0,
∴a=6,b=8,
∴A (0,6),C (8,0);
∴S △ABC=6×8÷2=24,
故答案为(0,6),(8,0); 6;8;24
(2) ∵114222ODQ D S OQ x t t ∆=⋅=⋅⋅= 11(82)312322
ODP D S OP y t t ∆=⋅=⋅-⋅=- 由2123t t =-时, 2.4t =
∴存在 2.4t =时,使得△ODP 与△ODQ 的面积相等
(3) )∴2∠GOA+∠ACE=∠OHC ,理由如下:
∵x 轴⊥y 轴,
∴∠AOC=∠DOC+∠AOD=90°
∴∠OAC+∠ACO=90°
又∵∠DOC=∠DCO
∴∠OAC=∠AOD
∵y 轴平分∠GOD
∴∠GOA=∠AOD
∴∠GOA=∠OAC
∴OG ∥AC ,
如图,过点H 作HF ∥OG 交x 轴于F ,
∴HF ∥AC
∴∠FHC=∠ACE
同理∠FHO=∠GOD ,
∵OG ∥FH ,
∴∠GOD=∠FHO ,
∴∠GOD+∠ACE=∠FHO+∠FHC
即∠GOD+∠ACE=∠OHC ,
∴2∠GOA+∠ACE=∠OHC .
∴∠GOD+∠ACE=∠OHC .
【点睛】
此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键.
27.(1)45°;(2)PE 的值不变,PE=4,理由见详解;(3)D(828 ,0).
【解析】
【分析】
(1)根据(42,0)A ,(0,2)B ,得△AOB 为等腰直角三角形,根据等腰直角三角形的性质,即可求出∠OAB 的度数;
(2)根据等腰直角三角形的性质得到∠AOC=∠BOC=45°,OC ⊥AB ,再证明
△POC ≌△DPE ,根据全等三角形的性质得到OC=PE ,即可得到答案;
(3)证明△POB ≌△DPA ,得到PA=OB=2,DA=PB ,进而得OD 的值,即可求出点D 的坐标.
【详解】
(1)(42,0)A ,(0,42)B ,
∴OA=OB=2
∵∠AOB=90°,
∴△AOB 为等腰直角三角形,
∴∠OAB=45°;
(2)PE 的值不变,理由如下:
∵△AOB 为等腰直角三角形,C 为AB 的中点,
∴∠AOC=∠BOC=45°,OC ⊥AB ,
∵PO=PD ,
∴∠POD=∠PDO ,
∵D 是线段OA 上一点,
∴点P 在线段BC 上,
∵∠POD=45°+∠POC ,∠PDO=45°+∠DPE ,
∴∠POC=∠DPE ,
在△POC 和△DPE 中,
90POC DPE OCP PED PO PD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩
,
∴△POC ≅△DPE(AAS),
∴OC=PE ,
∵OC=12AB=12
×
×=4, ∴PE=4;
(3)∵OP=PD ,
∴∠POD=∠PDO=(180°−45°)÷2=67.5°,
∴∠APD=∠PDO−∠A=22.5°,∠BOP=90°−∠POD=22.5°,
∴∠APD=∠BOP ,
在△POB 和△DPA 中,
OBP PAD BOP APD OP PD ∠=∠⎧⎪∠=∠⎨⎪=⎩
∴△POB ≌△DPA(AAS),
∴
PA=OB=DA=PB ,
∴
DA=PB=
-
,
∴
OD=OA−DA=
8-,
∴点D 的坐标为
(8,0).
【点睛】
本题主要考查等腰直角三角形的性质,三角形全等的判定与性质定理,图形与坐标,掌握等腰直角三角形的性质,是解题的关键.
28.(1)见解析;(2)当F 运动到AF =AD 时,FD ∥BG ,理由见解析;(3)FH =HD ,理由见解析
【解析】
【分析】
(1)证明△DEG ≌△CEB (AAS )即可解决问题.
(2)想办法证明∠AFD =∠ABG =45°可得结论.
(3)结论:FH =HD .利用等腰直角三角形的性质即可解决问题.
【详解】
(1)证明:∵AD ∥BC ,
∴∠DGE=∠CBE,∠GDE=∠BCE,
∵E是DC的中点,即DE=CE,
∴△DEG≌△CEB(AAS),
∴DG=BC;
(2)解:当F运动到AF=AD时,FD∥BG.
理由:由(1)知DG=BC,
∵AB=AD+BC,AF=AD,
∴BF=BC=DG,
∴AB=AG,
∵∠BAG=90°,
∴∠AFD=∠ABG=45°,
∴FD∥BG,
故答案为:F运动到AF=AD时,FD∥BG;
(3)解:结论:FH=HD.
理由:由(1)知GE=BE,又由(2)知△ABG为等腰直角三角形,所以AE⊥BG,
∵FD∥BG,
∴AE⊥FD,
∵△AFD为等腰直角三角形,
∴FH=HD,
故答案为:FH=HD.
【点睛】
本题考查了全等三角形的判定和性质,平行线的判定,等腰直角三角形的性质,掌握三角形全等的判定和性质是解题的关键.
29.(1)(2,0),∠OBA+∠OCA=180°;(2)△ABC与△ACD是偏差三角形,理由见解
析;(3)27 2
【解析】
【分析】
(1)根据偏差三角形的定义,即可得到C的坐标,根据等腰三角形的性质和平角的定义,即可得到结论;
(2)在AD上取一点H,使得AH=AB,易证△CAH≌△CAB,进而可得∠D=∠CHD,根据偏差三角形的定义,即可得到结论;
(3)延长CA至点E,使AE=BD,连接BE,由SAS可证∆BDC≅∆EAB,得EA=BD,点B到直
线EA的距离是3,根据三角形的面积公式,即可求解.
【详解】
(1)∵当AC=AB时,△OAB与△OAC是偏差三角形,A(3,2),B(4,0),
∴点C的坐标为(2,0),如图1,
∵AC=AB,
∴∠ACB=∠ABC,
∵∠OCA+∠ACB=180°,
∴∠OBA+∠OCA=180°,
故答案为:(2,0),∠OBA+∠OCA=180°;
(2)△ABC与△ACD是偏差三角形,理由如下:
如图2中,在AD上取一点H,使得AH=AB.
∵AC平分∠BAD,
∴∠CAH=∠CAB,
又∵ AC=AC,
∴△CAH≌△CAB(SAS),
∴CH=CB,∠B=∠AHC,
∵∠B+∠D=180°,∠AHC+∠CHD=180°,
∴∠D=∠CHD,
∴CH=CD,
∴CB=CD,
∵△ACD和△ABC中,AC=AC,∠CAD=∠CAB,BC=CD,△ADC与△ABC不全等,∴△ABC与△ACD是偏差三角形;
(3)如图3中,延长CA至点E,使AE=BD,连接BE,
∵∠BAC+∠BDC=180°,∠BAC+∠BAE=180°,
∴∠BDC=∠BAE,
又∵AB=CD,
∴∆BDC≅∆EAB(SAS),
∴EA=BD,
∵点C到直线BD的距离是3,
∴点B到直线EA的距离是3,
∴S△ABC+S△BCD=S△ABC+S△EAB= S△BCE=1
2
∙(AC+EA)×3 =
1
2
∙(AC+BD)×3 =
1
2
×9×3=
27
2
.
【点睛】
本题主要考查等腰三角形的性质,三角形全等的判定和性质,添加辅助线,构造全等三角形,是解题的关键.
30.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.
【解析】
【分析】
(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM;
(2)过点N作NE⊥AC于E,由“AAS”可证△NEC≌△CDM,可得NE=CD,由三角形面积公式可求解;
(3)过点N作NE⊥AC于E,由“SAS”可证△NEA≌△CDP,可得AN=CP.
【详解】
(1)∵∠BAC=45°,
∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM.
∵∠NCM=135°,
∴∠ACN=135°﹣∠ACM,∴∠ACN=∠AMC;
(2)过点N作NE⊥AC于E,
∵∠CEN=∠CDM=90°,∠ACN=∠AMC,CM=CN,
∴△NEC≌△CDM(AAS),
∴NE=CD,CE=DM;
∵S11
2
=AC•NE,S2
1
2
=AB•CD,
∴1
2
S AC
S AB
=;
(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,
理由如下:过点N作NE⊥AC于E,
由(2)可得NE=CD,CE=DM.
∵AC=2BD,BP=BM,CE=DM,
∴AC﹣CE=BD+BD﹣DM,
∴AE=BD+BP=DP.
∵NE=CD,∠NEA=∠CDP=90°,AE=DP,
∴△NEA≌△CDP(SAS),
∴AN=PC.
【点睛】
本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。