吉林市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吉林市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 过抛物线2
2(0)y px p =>焦点F 的直线与双曲线2
2
18
-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )
A .2y x =
B .22y x =
C .24y x =
D .2
3y x =
【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.
2. 设集合A ={1,2,3},B ={4,5},M ={x|x =a +b ,a ∈A ,b ∈B},则M 中元素的个数为( )。
A3 B4 C5 D6
3. 已知向量(,2)a m =,(1,)b n =-(0n >),且0a b ⋅=,点(,)P m n 在圆2
2
5x y +=上,则
|2|a b +=( )
A B . C . D .
4. 已知||=3,||=1,与的夹角为
,那么|﹣4|等于( )
A .2
B .
C .
D .13
5. 函数()log 1x
a f x a x =-有两个不同的零点,则实数的取值范围是( )
A .()1,10
B .()1,+∞
C .()0,1
D .()10,+∞ 6. 二项式(1)(N )n
x n *
+?的展开式中3
x 项的系数为10,则n =( ) A .5 B .6 C .8 D .10 【命题意图】本题考查二项式定理等基础知识,意在考查基本运算能力.
7. 设a ,b 为正实数,11a b
+≤23
()4()a b ab -=,则log a b =( )
A.0
B.1-
C.1 D .1-或0
【命题意图】本题考查基本不等式与对数的运算性质等基础知识,意在考查代数变形能与运算求解能力. 8. 已知函数()x
F x e =满足()()()F x g x h x =+,且()g x ,()h x 分别是R 上的偶函数和奇函数, 若(0,2]x ∀∈使得不等式(2)()0g x ah x -≥恒成立,则实数的取值范围是( )
A .(-∞
B .(-∞
C .
D .)+∞ 9. “1ab >”是“1
0b a
>
>”( ) A .充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 10.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,
.若
,f(x-1)≤f(x),则实数a 的取值范围为
A[] B[]
C[]
D[
] 11.函数f (x )=sin (ωx +φ)(ω>0,-π2≤φ≤π2)的部分图象如图所示,则φ
ω
的值为( )
A.1
8 B .14
C.12
D .1
12.某几何体的三视图如图所示,且该几何体的体积是,则正视图中的x 的值是( )
A .2
B .
C .
D .3
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.平面内两定点M (0,一2)和N (0,2),动点P (x ,y )满足,动点P 的轨迹
为曲线E ,给出以下命题: ①∃m ,使曲线E 过坐标原点; ②对∀m ,曲线E 与x 轴有三个交点;
③曲线E 只关于y 轴对称,但不关于x 轴对称;
④若P 、M 、N 三点不共线,则△ PMN 周长的最小值为
+4;
⑤曲线E 上与M,N 不共线的任意一点G 关于原点对称的另外一点为H ,则四边形GMHN 的面积不大于m 。
其中真命题的序号是 .(填上所有真命题的序号)
14.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分 别是AC ,BD
的中点,MN =m 与n 所成角的余弦值是
______________.
【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.
15.如图,在棱长为的正方体1111D ABC A B C D -中,点,E F 分别是棱1,BC CC 的中点,P 是侧
面11BCC B 内一点,若1AP 平行于平面
AEF ,则线段1A P 长度的取值范围是
_________.
16.定义在R 上的可导函数()f x ,已知()
f x y
e
=′的图象如图所示,则()y f x =的增区间是 ▲ .
70分。
解答应写出文字说明、证明过程或演算步骤。
)
5:不等式选讲
m ≤)成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:31
3b a
+≥.
18.(本小题满分12分)
已知圆M 与圆N :2
22)35()35(r y x =++-关于直线x y =对称,且点)3
5,31(-D 在圆M 上.
(1)判断圆M 与圆N 的位置关系;
(2)设P 为圆M 上任意一点,)35,1(-A ,)3
5,1(B ,B A P 、、三点不共线,PG 为APB ∠的平分线,且交
AB 于G . 求证:PBG ∆与APG ∆的面积之比为定值.
19.某城市100户居民的月平均用电量(单位:度),以[)160,180,[)180,200,[)200,220,
[)220,240,[)240,260,[)260,280,[]280,300分组的频率分布直方图如图.
(1)求直方图中的值;
(2)求月平均用电量的众数和中位数.
1111]
20.(本小题满分12分)
如图,在四棱锥ABCD S -中,底面ABCD 为菱形,Q P E 、、分别是棱AB SC AD 、、的中点,且⊥SE 平面ABCD .
(1)求证://PQ 平面SAD ; (2)求证:平面⊥SAC 平面SEQ .
21.(本小题满分12分)已知函数1
()ln (42)()f x m x m x m x
=+-+∈R . (1)当2m >时,求函数()f x 的单调区间; (2)设[],1,3t s ∈,不等式|()()|(ln3)(2)2ln3f t f s a m -<+--对任意的()4,6m ∈恒成立,求实数a 的
取值范围.
【命题意图】本题考查函数单调性与导数的关系、不等式的性质与解法等基础知识,意在考查逻辑思维能力、等价转化能力、分析与解决问题的能力、运算求解能力.
22.数列{a n }满足a 1=
,a n ∈(﹣
,
),且tana n+1•cosa n =1(n ∈N *
).
(Ⅰ)证明数列{tan 2a n }是等差数列,并求数列{tan 2
a n }的前n 项和;
(Ⅱ)求正整数m ,使得11sina 1•sina 2•…•sina m =1.
吉林市第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案(参考答案) 一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)
1. 【答案】C
【解析】
由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x
,所以0
002
002322ì=ï
ï-ïïïï
+=íï
ï=ïïïïî
y p x p x y px ,
解得2=p 或4=p ,因为322
->p p
,故03p <<,故2=p ,所以抛物线方程为24y x . 2. 【答案】B
【解析】由题意知x =a +b ,a ∈A ,b ∈B ,则x 的可能取值为5,6,7,8.
因此集合M 共有4
个元素,故选B
3.
【答案】
A 【解析】
考点:1、向量的模及平面向量数量积的运算;
2
、点和圆的位置关系.
4.
【答案】C
【解析】解:||=3
,|
|=1,与的夹角为,
可得
=|
|||cos
<,>=3×1×=,
即有|﹣4|=
=
=
.
故选:C .
【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.
5. 【答案】B
【解析】
试题分析:函数()f x 有两个零点等价于1x
y a ⎛⎫
= ⎪⎝⎭
与log a y x =的图象有两个交点,当01a <<时同一坐标
系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a >时同一坐标系中做出两函数图象如图
(1),由图知有两个交点,不符合题意,故选B.
x
(1) (2)
考点:1、指数函数与对数函数的图象;2、函数的零点与函数交点之间的关系.
【方法点睛】本题主要考查指数函数与对数函数的图象、函数的零点与函数交点之间的关系.属于难题.判断方程()y f x =零点个数的常用方法:①直接法:可利用判别式的正负直接判定一元二次方程根的个数;②转化法:函数()y f x =零点个数就是方程()0f x =根的个数,结合函数的图象与性质(如单调性、奇偶性、周期性、对称性) 可确定函数的零点个数;③数形结合法:一是转化为两个函数()(),y g x y h x ==的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为(),y a y g x =
=的交点个数的图象的交点个数问题.本题的解答就利用了方法③.
6. 【答案】B
【解析】因为(1)(N )n x n *+?的展开式中3
x 项系数是3C n ,所以3
C 10n =,解得
5n =,故选A . 7. 【答案】B.
【解析】2
3
2
3
()4()()44()a b ab a b ab ab -=⇒+=+
,故
11a b
a b ab
++≤⇒≤2322()44()11
84()82
()()a b ab ab ab ab ab ab ab ab
++⇒≤⇒=+≤⇒+≤,而事实上12ab ab +≥=, ∴1ab =,∴log 1a b =-,故选B.
8. 【答案】B 【解析】
试题分析:因为函数()x
F x e =满足()()()F x g x h x =+,且()(),g x h x 分别是R 上的偶函数和奇函
数,()()()()()()(],,,,0,222
x x x x
x
x
e e e e e g x h x e
g x h x g x h x x ---+-∴=+=-∴==∀∈ 使得不等式
()()20g x ah x -≥恒成立, 即
2202
2
x x
x x
e e
e e a
--+--≥恒成立, ()2
222
x
x x x
x x
x x
e e e e a e e e e -----++∴≤
=
--
()2x x x x
e e e e
--=-+
+, 设x x t e e -=-,则函数x x t e e -=-在(]0,2上单调递增,22
0t e e -∴<≤-, 此时不等式2
t t +≥当且仅当2
t t
=,
即t =, 取等号,a ∴≤故选B.
考点:1、函数奇偶性的性质;2、不等式恒成立问题及函数的最值.
【方法点晴】本题主要考查函数奇偶性的性质、不等式恒成立问题及函数的最值,属于难题.不等式恒成立问题常见方法:①分离参数()a f x ≤恒成立(min ()a f x ≤即可)或()a f x ≥恒成立(max ()a f x ≥即可);②数形结合;③讨论最值min ()0f x ≥或max ()0f x ≤恒成立;④讨论参数 .本题是利用方法①求得的最大值的.
9. 【答案】B
【解析】解析:本题考查不等式性质与充分、必要条件的判定. 当0a >时,由1ab >可得10b a >>,当0a <时,由1ab >可得10b a <<;若1
0b a
>>,则有0a >,
1ab >,∴“1ab >”是“1
0b a
>>”的必要不充分条件,选B . 10.【答案】B 【解析】当x ≥0时,
f (x )=,
由f (x )=x ﹣3a 2,x >2a 2,得f (x )>﹣a 2; 当a 2<x <2a 2时,f (x )=﹣a 2;
由f (x )=﹣x ,0≤x ≤a 2,得f (x )≥﹣a 2。
∴当x >0时,。
∵函数f (x )为奇函数, ∴当x <0时,。
∵对∀x ∈R ,都有f (x ﹣1)≤f (x ), ∴2a 2﹣(﹣4a 2)≤1,解得:。
故实数a 的取值范围是。
11.【答案】
【解析】解析:选B.由图象知函数的周期T =2, ∴ω=2π
2
=π,
即f (x )=sin (πx +φ),由f (-1
4)=0得
-π4+φ=k π,k ∈Z ,即φ=k π+π4. 又-π2≤φ≤π2,∴当k =0时,φ=π4,
则φω=1
4,故选B. 12.【答案】C
解析:由三视图可知:原几何体是一个四棱锥,其中底面是一个上、下、高分别为1、2、2的直角梯形,一条长为x 的侧棱垂直于底面.
则体积为=,解得x=.
故选:C .
二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)
13.【答案】①④⑤
解析:∵平面内两定点M (0,﹣2)和N (0,2),动点P (x ,y )满足||•|
|=m (m ≥4),
∴
•
=m
①(0,0)代入,可得m=4,∴①正确;
②令y=0,可得x 2+4=m ,∴对于任意m ,曲线E 与x 轴有三个交点,不正确; ③曲线E 关于x 轴对称,但不关于y 轴对称,故不正确;
④若P 、M 、N 三点不共线,|
|+|
|≥2
=2
,所以△PMN 周长的最小值为2
+4,正确;
⑤曲线E 上与M 、N 不共线的任意一点G 关于原点对称的点为H ,则四边形GMHN 的面积为2S △MNG =|GM||GN|sin ∠MGN ≤m ,∴四边形GMHN 的面积最大为不大于m ,正确. 故答案为:①④⑤. 14.【答案】512
【
解
析
】
15.【答案】4⎡⎢⎣
⎦ 【解析】
考点:点、线、面的距离问题.
【方法点晴】本题主要考查了点、线、面的距离问题,其中解答中涉及到直线与平面平行的判定与性质,三角形的判定以及直角三角形的勾股定理等知识点的综合考查,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,同时考查了学生空间想象能力的训练,试题有一定的难度,属于中档试题. 16.【答案】(﹣∞,2) 【解析】 试题分析:由()
21()0f x x e
f x '≤
≥⇒≥′时,()
21()0f x x e
f x '><⇒<′时,所以()y f x =的
增区间是(﹣∞,2) 考点:函数单调区间
三、解答题(本大共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)
17.【答案】
【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.
18.【答案】(1)圆与圆相离;(2)定值为2.
【解析】
试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M 的圆心,
DM r =,然后根据圆心距MN 与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G 到AP 和
BP 的距离相等,所以两个三角形的面积比值PA
PB
S S APG PBG =
∆∆,根据点P 在圆M 上,代入两点间距离公式求PB 和PA ,最后得到其比值.
试题解析:(1) ∵圆N 的圆心)3
5,35(-N 关于直线x y =的对称点为)3
5
,35(-M , ∴9
16)3
4(||2
2
2
=
-==MD r , ∴圆M 的方程为9
16
)35()35(22=
-++y x .
∵3
8
23210)310()310(||22=>=+=r MN ,∴圆M 与圆N 相离.
考点:1.圆与圆的位置关系;2.点与圆的位置关系.1
19.【答案】(1)0.0075x =;(2)众数是230,中位数为224. 【解析】
试题分析:(1)利用频率之和为一可求得的值;(2)众数为最高小矩形底边中点的横坐标;中位数左边和右边的直方图的面积相等可求得中位数.1
试题解析:(1)由直方图的性质可得(0.0020.00950.0110.01250.0050.0025)201x ++++++⨯=, ∴0.0075x =.
考点:频率分布直方图;中位数;众数. 20.【答案】(1)详见解析;(2)详见解析. 【解析】
试题分析:(1)根据线面平行的判定定理,可先证明PQ 与平面内的直线平行,则线面平行,所以取SD 中点F ,连结PF AF ,,可证明AF PQ //,那就满足了线面平行的判定定理了;(2)要证明面面垂直,可先证明线面垂直,根据所给的条件证明⊥AC 平面SEQ ,即平面⊥SAC 平面SEQ . 试题解析:证明:(1)取SD 中点F ,连结PF AF ,. ∵F P 、分别是棱SD SC 、的中点,∴CD FP //,且CD FP 2
1
=. ∵在菱形ABCD 中,Q 是AB 的中点,
∴CD AQ //,且CD AQ 2
1
=
,即AQ FP //且AQ FP =. ∴AQPF 为平行四边形,则AF PQ //.
∵⊄PQ 平面SAD ,⊂AF 平面SAD ,∴//PQ 平面SAD .
考点:1.线线,线面平行关系;2.线线,线面,面面垂直关系.
【易错点睛】本题考查了立体几何中的线与面的关系,属于基础题型,重点说说垂直关系,当证明线线垂直时,一般要转化为线面垂直,证明线与面垂直时,即证明线与平面内的两条相交直线垂直,证明面面垂直时,转化为证明线面垂直,所以线与线的证明是基础,这里经常会搞错两个问题,一是,线与平面内的两条相交直线垂直,线与平面垂直,很多同学会记成一条,二是,面面垂直时,平面内的线与交线垂直,才与平面垂直,很多同学会理解为两个平面垂直,平面内的线都与另一个平面垂直,需熟练掌握判定定理以及性质定理. 21.【答案】
请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.
22.【答案】
【解析】(Ⅰ)证明:∵对任意正整数n,a n∈(﹣,),且tana n+1•cosa n=1(n∈N*).
故tan2a n+1==1+tan2a n,
∴数列{tan2a n}是等差数列,首项tan2a1=,以1为公差.
∴=.
∴数列{tan2a n}的前n项和=+=.
(Ⅱ)解:∵cosa n>0,∴tana n+1>0,.
∴tana n=,,
∴sina1•sina2•…•sina m=(tana1cosa1)•(tana2•cosa2)•…•(tana m•cosa m)
=(tana2•cosa1)•(tana3cosa2)•…•(tana m•cosa m﹣1)•(tana1•cosa m)
=(tana1•cosa m)==,
由,得m=40.
【点评】本题考查了等差数列的通项公式及其前n项和公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于难题.。