高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理万有引力定律的应用的技巧及练习题及练习题(含答案)
一、高中物理精讲专题测试万有引力定律的应用
1.2018年是中国航天里程碑式的高速发展年,是属于中国航天的“超级2018”.例如,我国将进行北斗组网卫星的高密度发射,全年发射18颗北斗三号卫星,为“一带一路”沿线及周边国家提供服务.北斗三号卫星导航系统由静止轨道卫星(同步卫星)、中轨道卫星和倾斜同步卫星组成.图为其中一颗静止轨道卫星绕地球飞行的示意图.已知该卫星做匀速圆周运动的周期为T ,地球质量为M 、半径为R ,引力常量为G .
(1)求静止轨道卫星的角速度ω; (2)求静止轨道卫星距离地面的高度h 1;
(3)北斗系统中的倾斜同步卫星,其运转轨道面与地球赤道面有一定夹角,它的周期也是T ,距离地面的高度为h 2.视地球为质量分布均匀的正球体,请比较h 1和h 2的大小,并说出你的理由.
【答案】(1)2π=T ω;(2)2
3124GMT h R π
(3)h 1= h 2 【解析】 【分析】
(1)根据角速度与周期的关系可以求出静止轨道的角速度; (2)根据万有引力提供向心力可以求出静止轨道到地面的高度; (3)根据万有引力提供向心力可以求出倾斜轨道到地面的高度; 【详解】
(1)根据角速度和周期之间的关系可知:静止轨道卫星的角速度2π=T
ω (2)静止轨道卫星做圆周运动,由牛顿运动定律有:2
1
212π=()()()Mm G
m R h R h T
++ 解得:2
312
=4π
GMT
h R
(3)如图所示,同步卫星的运转轨道面与地球赤道共面,倾斜同步轨道卫星的运转轨道面与地球赤道面有夹角,但是都绕地球做圆周运动,轨道的圆心均为地心.由于它的周期也是T ,根据牛顿运动定律,2
2
222=()()()Mm G
m R h R h T
π++ 解得:2
322
4GMT
h R π
因此h 1= h 2.
故本题答案是:(1)2π=T ω;(2)2312=4GMT h R π
(3)h 1= h 2 【点睛】
对于围绕中心天体做圆周运动的卫星来说,都借助于万有引力提供向心力即可求出要求的物理量.
2.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M
(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 22hR
【解析】
(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t
(2)小球做平抛运动时在竖直方向上有:h=12
gt 2
, 解得该星球表面的重力加速度为:g=2h/t 2;
(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2
Mm
G
R 所以该星球的质量为:M=2
gR G
= 2hR 2/(Gt 2);
(4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,
由牛顿第二定律得: 2
2Mm v G m R R
=
重力等于万有引力,即mg=2Mm
G
R
, 解得该星球的第一宇宙速度为:2hR
v gR =
=
3.探索浩瀚宇宙,发展航天事业,建设航天强国,是我国不懈追求的航天梦,我国航天事业向更深更远的太空迈进。
(1)2018年12月27日中国北斗卫星导航系统开始提供全球服务,标志着北斗系统正式迈入全球时代。
覆盖全球的北斗卫星导航系统由静止轨道卫星(即地球同步卫星)和非静止轨道卫星共35颗组成的。
卫星绕地球近似做匀速圆周运动。
已知其中一颗地球同步卫星距离地球表面的高度为h ,地球质量为M e ,地球半径为R ,引力常量为G 。
a.求该同步卫星绕地球运动的速度v 的大小;
b.如图所示,O 点为地球的球心,P 点处有一颗地球同步卫星,P 点所在的虚线圆轨道为同步卫星绕地球运动的轨道。
已知h = 5.6R 。
忽略大气等一切影响因素,请论证说明要使卫星通讯覆盖全球,至少需要几颗地球同步卫星?(cos81= 0.15︒,sin810.99︒=)
(2)今年年初上映的中国首部科幻电影《流浪地球》引发全球热议。
根据量子理论,每个光子动量大小h
p λ
=
(h 为普朗克常数,λ为光子的波长)。
当光照射到物体表面时将产
生持续的压力。
设有一质量为m 的飞行器,其帆面始终与太阳光垂直,且光帆能将太阳光全部反射。
已知引力常量为G ,光速为c ,太阳质量为M s ,太阳单位时间辐射的总能量为E 。
若以太阳光对飞行器光帆的撞击力为动力,使飞行器始终朝着远离太阳的方向运动,成为“流浪飞行器”。
请论证:随着飞行器与太阳的距离越来越远,是否需要改变光帆的最小面积s 0。
(忽略其他星体对飞行器的引力) 【答案】(1)a.e
GM v R h
=
+.至少需要3颗地球同步卫星才能覆盖全球(2)随着飞行器与太阳的距离越来越远,不需要改变光帆的最小面积s 0 【解析】 【详解】
(1)a .设卫星的质量为m 。
由牛顿第二定律()
2
e 2
M m
v G
m R h
R h =++,
得e
GM v R h
=
+ b .如答图所示,设P 点处地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ,至少需要N 颗地球同步卫星才能覆盖全球。
由直角三角形函数关系cos R
R h
θ=
+,h = 5.6 R ,得θ= 81°。
所以1颗地球同步卫星可以覆盖地球赤道的范围对应地心的角度为2θ = 162°
360=2.22N θ
︒
≥
所以,N = 3,即至少需要3颗地球同步卫星才能覆盖全球
(2)若使飞行器始终朝着远离太阳的方向运动,当飞行器与太阳距离为r 时,光帆受到太阳光的压力F 与太阳对飞行器的引力大小关系,有s 2
M m
F G r ≥ 设光帆对太阳光子的力为F ',根据牛顿第三定律F ' =F
设t ∆时间内太阳光照射到光帆的光子数为n ,根据动量定理:'2h
F t n
λ
∆=
设t ∆时间内太阳辐射的光子数为N ,则
E t N c h
λ
∆=
设光帆面积为s ,2
4n s N r π= 当s 2
=M m F G
r 时,得最小面积s 02cGM m
s E
π= 由上式可知,s 0和飞行器与太阳距离r 无关,所以随着飞行器与太阳的距离越来越远,不
需要改变光帆的最小面积s 0。
4.2019年3月3日,中国探月工程总设计师吴伟仁宣布中国探月工程“三步走”即将收官,我国对月球的探索将进人新的征程。
若近似认为月球绕地球作匀速圆周运动,地球绕太阳也作匀速圆周运动,它们的绕行方向一致且轨道在同一平面内。
(1)已知地球表面处的重力加速度为g ,地球半径为R ,月心地心间的距离为r ,求月球绕地球一周的时间T m ;
(2)如图是相继两次满月时,月球、地球和太阳相对位置的示意图。
已知月球绕地球运动一周的时间T m =27.4d ,地球绕太阳运动的周期T e =365d ,求地球上的观察者相继两次看到满月满月的时间间隔t 。
【答案】(1) 3
2
2m r T gR
= (2)29.6 【解析】 【详解】
(1)设地球的质量为M ,月球的质量为m ,地球对月球的万有引力提供月球的向心力,则
2
22m Mm
G mr r T π⎛⎫=⋅ ⎪⎝⎭
地球表面的物体受到的万有引力约等于重力,则
02
GMm m g R
= 解得 3
2
2m r T gR
=(2)相继两次满月有,月球绕地心转过的弧度比地球绕日心转过的弧度多2π,即
2m e t t ωπω=+
而2m m
T πω=
2e e
T πω=
解得 29.6t =天
5.木星的卫星之一叫艾奥,它上面的珞珈火山喷出的岩块初速度为v 0时,上升的最大高度可达h .已知艾奥的半径为R ,引力常量为G ,忽略艾奥的自转及岩块运动过程中受到稀薄气体的阻力,求:
(1)艾奥表面的重力加速度大小g 和艾奥的质量M ; (2)距艾奥表面高度为2R 处的重力加速度大小g '; (3)艾奥的第一宇宙速度v .
【答案】(1)2202R v M hG =;(2)2018v g h
'=;(3)2R
v v h =【解析】
【分析】 【详解】
(1)岩块做竖直上抛运动有20
02v gh -=-,解得20
2v g h
=
忽略艾奥的自转有
2
GMm mg R =,解得22
2R v M hG
= (2)距艾奥表面高度为2R 处有2(2)GMm m g R R '''=+,解得20'18v g h
=
(3)某卫星在艾奥表面绕其做圆周运动时2
v mg m R
=,解得02R v v h =
【点睛】
在万有引力这一块,涉及的公式和物理量非常多,掌握公式
222
224Mm v G m m r m r ma r r T
πω====在做题的时候,首先明确过程中的向心力,然后
弄清楚各个物理量表示的含义,最后选择合适的公式分析解题,另外这一块的计算量一是非常大的,所以需要细心计算
6.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tana
v R t
;(4)02tan Rt v α【解析】 【分析】 【详解】
(1) 小球落在斜面上,根据平抛运动的规律可得:
2
00
12tan α2gt y gt x v t v ===
解得该星球表面的重力加速度:
02tan α
v g t
=
(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:
2
GMm
mg R
= 则该星球的质量:
G
gR M 2
= 该星球的密度:
33tan α34423
v M g
GR GRt R ρπππ=
=
=
(3)根据万有引力提供向心力得:
22Mm v G m R R
= 该星球的第一宙速度为:
02tana v R GM
v gR R t
=
==
(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:
2R
T v
π=
所以:
0022tan αtan t Rt
T R
v R v ππα
==
点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.
7.宇航员在某星球表面以初速度2.0m/s 水平抛出一小球,通过传感器得到如图所示的运动轨迹,图中O 为抛出点。
若该星球半径为4000km ,引力常量G =6.67×10﹣11N•m 2•kg ﹣
2
.试求:
(1)该行星表面处的重力加速度的大小g 行; (2)该行星的第一宇宙速度的大小v ;
(3)该行星的质量M 的大小(保留1位有效数字)。
【答案】(1)4m/s 2(2)4km/s(3)1×1024kg
【解析】 【详解】
(1)由平抛运动的分位移公式,有:
x =v 0t y =
1
2
g 行t 2 联立解得:
t =1s g 行=4m/s 2;
(2)第一宇宙速度是近地卫星的运行速度,在星球表面重力与万有引力相等,据万有引力提供向心力有:
22mM v G mg m R R
行== 可得第一宇宙速度为:
4.0km/s v ==
(3)据
2
mM
G
mg R 行= 可得:
23224
11
4400010kg 110kg 6(.)6710
g R M G -⨯⨯==≈⨯⨯行
8.2016年2月11日,美国“激光干涉引力波天文台”(LIGO )团队向全世界宣布发现了引力波,这个引力波来自于距离地球13亿光年之外一个双黑洞系统的合并.已知光在真空中传播的速度为c ,太阳的质量为M 0,万有引力常量为G .
(1)两个黑洞的质量分别为太阳质量的26倍和39倍,合并后为太阳质量的62倍.利用所学知识,求此次合并所释放的能量.
(2)黑洞密度极大,质量极大,半径很小,以最快速度传播的光都不能逃离它的引力,因此我们无法通过光学观测直接确定黑洞的存在.假定黑洞为一个质量分布均匀的球形天体.
a .因为黑洞对其他天体具有强大的引力影响,我们可以通过其他天体的运动来推测黑洞的存在.天文学家观测到,有一质量很小的恒星独自在宇宙中做周期为T ,半径为r 0的匀速圆周运动.由此推测,圆周轨道的中心可能有个黑洞.利用所学知识求此黑洞的质量M ;
b .严格解决黑洞问题需要利用广义相对论的知识,但早在相对论提出之前就有人利用牛顿力学体系预言过黑洞的存在.我们知道,在牛顿体系中,当两个质量分别为m 1、m 2的质点相距为r 时也会具有势能,称之为引力势能,其大小为12
p m m E G
r
=-(规定无穷远处势能为零).请你利用所学知识,推测质量为M′的黑洞,之所以能够成为“黑”洞,其半径
R最大不能超过多少?
【答案】(1)3M0c2(2)
23
2
4r M
GT
π
=
;
2
2GM
R
c
'
=
【解析】
【分析】
【详解】
(1)合并后的质量亏损
000
(2639)623
m M M M
∆=+-=
根据爱因斯坦质能方程
2
E mc
∆=∆
得合并所释放的能量
2
3
E M c
∆=
(2)a.小恒星绕黑洞做匀速圆周运动,设小恒星质量为m
根据万有引力定律和牛顿第二定律
2
2
2
Mm
G m r
r T
π
⎛⎫
= ⎪
⎝⎭
解得
23
2
4r
M
GT
π
=
b.设质量为m的物体,从黑洞表面至无穷远处;根据能量守恒定律
2
1
2
Mm
mv G
R
⎛⎫
+-=
⎪
⎝⎭
解得
2
2GM
R
v
'
=
因为连光都不能逃离,有v =c所以黑洞的半径最大不能超过
2
2GM
R
c
'
=
9.今年6月13日,我国首颗地球同步轨道高分辨率对地观测卫星高分四号正式投入使用,这也是世界上地球同步轨道分辨率最高的对地观测卫星.如图所示,A是地球的同步卫星,已知地球半径为R,地球自转的周期为T,地球表面的重力加速度为g,求:
(1)同步卫星离地面高度h
(2)地球的密度ρ(已知引力常量为G )
【答案】(1
R
(2)34g GR π 【解析】 【分析】 【详解】
(1)设地球质量为M ,卫星质量为m ,地球同步卫星到地面的高度为h ,同步卫星所受万有引力等于向心力为
()222
4()R h mM
G m R h T
π+=+ 在地球表面上引力等于重力为
2Mm
G
mg R
= 故地球同步卫星离地面的高度为
h R =
(2)根据在地球表面上引力等于重力
2
Mm
G
mg R = 结合密度公式为
2
33443
gR M g G V GR R ρππ===
10.已知地球质量为M ,万有引力常量为G 。
将地球视为半径为R 、质量均匀分布的球体。
忽略地球自转影响。
(1)求地面附近的重力加速度g ; (2)求地球的第一宇宙速度v ;
(3)若要利用地球绕太阳的运动估算太阳的质量,需要知道哪些相关数据?请分析说明。
【答案】(1)2GM g R =
(2
)v =3)若要利用地球绕太阳的运动估算太阳的质量,需要知道地球绕太阳运动的轨道半径、周期和万有引力常量。
【解析】 【详解】
(1)设地球表面的物体质量为m , 有
2Mm
G
mg R
=
解得
2GM g R
=
(2)设地球的近地卫星质量为m ',有 2
2Mm G m R R
''=v 解得
v =(3)若要利用地球绕太阳的运动估算太阳的质量,需要知道地球绕太阳运动的轨道半径、周期和万有引力常量。
设太阳质量为M ',地球绕太阳运动的轨道半径为r 、周期为T ,根据2
224M M G M r r T
π'=可知若知道地球绕太阳运动的轨道半径、周期和万有引力常量可求得太阳的质量。