2016年数学考研最后常考公式集锦-高等数学篇

合集下载

考研数学高数重要公式总结

考研数学高数重要公式总结

考研数学高数重要公式总结高等数学是考研数学中的重要科目之一,公式的掌握对于解题非常重要。

下面是高等数学中一些重要的公式总结:1.导数公式:(1)基本公式:若y=f(x)是可导函数,则有:f'(x)=lim(h→0)[f(x+h)-f(x)]/h(2)常见函数的导数:(仅列举部分)常数函数k'(x)=0幂函数x^n的导数[nx^(n-1)]指数函数a^x的导数[a^x×ln⁡(a)]对数函数log⁡(a)x的导数[1/x×ln(a)](3)导数运算公式:[cf(x)]'=cf'(x)[f(x)+g(x)]'=f'(x)+g'(x)[f(x)×g(x)]'=f'(x)g(x)+f(x)g'(x)[f(g(x))]'=f'[g(x)]×g'(x)2.泰勒公式:设在x=a处进行n阶导数的计算,则:f(x)=f(a)+(x-a)f'(a)+(x-a)^2/2!×f''(a)+⋯+(x-a)^n/n!×f^(n)(a)3.不定积分公式:(1)基本公式:∫f'(x)dx=f(x)+C(2)常见函数的不定积分:(仅列举部分)∫c dx=cx+C∫x^(n)dx=x^(n+1)/(n+1)+C (n≠-1)∫a^xdx=a^x/ln⁡(a)+C∫du/u=ln⁡,u,+C(3)积分运算公式:∫[cf(x)+g(x)]dx=c∫f(x)dx+∫g(x)dx∫f(g(x))g'(x)dx=F(g(x))+C4.定积分公式:(1)基本公式:∫[a, b]f(x)dx=F(b)-F(a)(2)常见函数的定积分:(仅列举部分)∫[a, b]dx=b-a∫[a, b]x^(n)dx=(b^(n+1)-a^(n+1))/(n+1) (n≠-1)∫[a, b]e^xdx=e^b-e^a∫[a, b]sinθdθ=-cosθ,^b_a(3)积分运算公式:∫[a, b][cf(x)+g(x)]dx=c∫[a, b]f(x)dx+∫[a, b]g(x)dx∫[a, b]f(g(x))g'(x)dx=∫[g(a), g(b)]f(u)du (令u=g(x))以上仅是高等数学中的一部分重要公式总结,实际上还有许多其他公式和定理。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

高等数学公式篇导数公式: 基本积分表:C kx dx k +=⎰)1a (,C x 1a 1dx x 1a a-≠++=+⎰C x ln dx x 1+=⎰ C e dx e xx +=⎰C a ln a dx a xx+=⎰(1a ,0a ≠>) C x cos xdx sin +-=⎰C x sin dx x cos +=⎰ C x arctan dx x 112+=+⎰C axarcsin x a dx C x a xa ln a 21x a dx C a x ax ln a 21a x dx C a xarctan a 1x a dx Cx cot x csc ln xdx csc C x tan x sec ln xdx sec Cx sin ln xdx cot C x cos ln xdx tan 22222222+=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==C)a x x ln(a x dx C shx chxdx C chx shxdx Ca ln a dx a Cx csc xdx cot x csc C x sec dx x tan x sec Cx cot xdx csc x sin dx C x tan xdx sec x cos dx 2222x x2222aln x 1)x (log a ln a )a (x cot x csc )x (csc x tan x sec )x (sec x csc )x (cot x sec )x (tan x cos )x (sin aX )X (0)C (a x x 221a a ='='⋅-='⋅='-='='='='='-2222xx x 11)x cot arc (x 11)x (arctan x 11)x (arccos x 11)x (arcsin x 1)x (ln e )e (x sin )x (cos +-='+='--='-='='='-='C x sin d x cos c ln B Ax dx x sin d x cos c xsin b x cos a +++=++⎰其中,)x sin d x cos c (B )x sin d x cos c (A x sin b x cos a +++=+ a Bd Ac =+B ,A b Bc Ad ⇒=-三角函数的有理式积分:2222u1du2dx 2x tan u u 1u 1x cos u 1u 2x sin +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·和差角公式: ·和差化积公式:·倍角公式:·半角公式:α-α=αα+=α-α+±=αα+α=αα-=α+α-±=αα+±=αα-±=αcos 1sin sin cos 1cos 1cos 12cot cos 1sin sin cos 1cos 1cos 12tan2cos 12cos 2cos 12sin ·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+= ·反三角函数性质:x cot arc 2x arctan x arccos 2x arcsin -π=-π= 高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+α±ββ⋅α=β±αβ⋅αβ±α=β±αβαβα=β±αβα±βα=β±αcot cot 1cot cot )cot(tan tan 1tan tan )tan(sin sin cos cos )cos(sin cos cos sin )sin( α-α-α=αα-α=αα-α=α2333tan 31tan tan 33tan cos 3cos 43cos sin 4sin 33sin α-α=αα-α=αα-α=α-=-α=ααα=α222222tan 1tan 22tan cot 21cot 2cot sin cos sin 211cos 22cos cos sin 22sin中值定理与导数应用:拉格朗日中值定理。

考研高数公式

考研高数公式

考研高数公式在考研数学中,高等数学是一个重要的科目。

而在高等数学中,高数公式是备考考研的关键因素之一。

掌握高数公式不仅有助于解题,还能提升解题效率。

本文将介绍一些考研高数中常用的公式,并对其应用进行简单说明。

一、导数的基本公式1. 基本导数公式(1) 常数导数公式:常数c的导数为0,即d(c)/dx = 0。

(2) 幂函数导数公式:对于 y = x^n,其中n为常数,导数为 dy/dx =n*x^(n-1)。

(3) 指数函数导数公式:对于 y = a^x,其中a为常数且不等于1,导数为 dy/dx = a^x * ln(a)。

(4) 对数函数导数公式:对于 y = log_a(x),其中a为常数且不等于1,导数为 dy/dx = 1 / (x * ln(a))。

(5) 三角函数导数公式:- 正弦函数导数:d(sin(x))/dx = cos(x)。

- 余弦函数导数:d(cos(x))/dx = -sin(x)。

- 正切函数导数:d(tan(x))/dx = sec^2(x)。

(6) 反三角函数导数公式:- 反正弦函数导数:d(arcsin(x))/dx = 1 / sqrt(1 - x^2)。

- 反余弦函数导数:d(arccos(x))/dx = -1 / sqrt(1 - x^2)。

- 反正切函数导数:d(arctan(x))/dx = 1 / (1 + x^2)。

2. 基本函数导数运算法则(1) 线性运算法则:对于函数 f(x) 和 g(x),以及常数 c1 和 c2,有以下公式:- d(c1*f(x) ± c2*g(x))/dx = c1*df(x)/dx ± c2*dg(x)/dx- d(c*f(x))/dx = c*df(x)/dx (其中c为常数)(2) 乘积法则:对于函数 f(x) 和 g(x),有以下公式:- d(f(x) * g(x))/dx = f(x) * dg(x)/dx + g(x) * df(x)/dx(3) 商积法则:对于函数 f(x) 和 g(x),有以下公式:- d(f(x) / g(x))/dx = (g(x) * df(x)/dx - f(x) * dg(x)/dx) / g(x)^2(4) 链式法则:对于复合函数 y = f(g(x)),有以下公式:- dy/dx = df(g(x))/dg(x) * dg(x)/dx二、积分的基本公式1. 基本积分公式(1) 幂函数的积分公式:对于 y = x^n,其中n不等于-1,积分为∫x^n dx = (1 / (n+1)) * x^(n+1) + C。

考研数学公式大全(考研必备)

考研数学公式大全(考研必备)

(sin (tan (cot x )x )x )cos xsec 2 x(ln x )x(arcsin x )1(sec x ) (csc x ) ( a x )cscsec x2 xtan x1(arccos x )x121 x 2a xa x )csc xln a1x ln acot x(arctan x )11 x 21(log ( arc cot x )1 x 2kdx kx C x a dx11 dx x ln x C e x d xae x1x a 1 C, (a 1)Ca x dx a xln aC ( a 0, a 1) sin xdx cosx Ccosxdx sin x C1 tanxdx ln cosx C 1x 2dxdx arctanx Csec2 xdx tan x Ccot xdx ln sin x C secxdx ln secx tan x C cos2 xdxsin 2 xcsc2 xdx cot x Ccscxdxdx ln cscx cot x C secx tanxdx secx Ccscx cot xdx cscx Ca 2 x 2 1 arctan adx xaaaxxCa x dxx 2 a 21lnx2a x1lnaCshxdxa xln achxCCdxa2 x 2dx 2a aCa2 x 2 arcsinxaCchxdxdxx 2shx Ca 2ln(x 2x 2 a ) C导数公式:基本积分表:高等数学公式篇( C ) 0 (cos x )( e x ) e xsin x( X a ) aX a 1 1xa cos x bsin x dx AxB ln c cos xd sin x Cc cos xd sin x其中, a cos xb sin x A (c cos xd sin x) B(c cos x d sin x )AcBd aAd Bc bA ,B三角函数的有理式积分:2u1 u 2x2du sin x1 u 2,cos x 1 u 2, u tan , dx 21 u 2一些初等函数:两个重要极限:双曲正弦 : shxe e lim sin x 1 2 e x e x x 0x 1 x双曲余弦双曲正切 : chx: thx2shx e x e xchx e x e xlim (1 ) xxe 2.718281828459045... arshx archxarthx ln( x ln( x1 ln 1 x2 1) x 2 1)x2 1 x三角函数公式: ·诱导公式:函数 sincostancot角 A-α-sin α cos α -tan α -cot α90 °-α cos α sin α cot α tan α 90 °+α cos α -sin α -cot α -tan α 180 °-α sin α -cos α -tan α -cot α 180 °+α -sin α -cos α tan α cot α 270 °-α -cos α -sin α cot α tan α 270 °+α -cos α sin α -cot α -tan α 360 °-α -sin α cos α -tan α -cot α 360 °+αsin α cos α tan α cot αxn·和差角公式:·和差化积公式:sin( cos() ) sin cos cos cos cos sin sin sinsin sin 2 s in2 cos2tan() tan 1 tan tan tansin sin 2 cos2 sin2cot(·倍角公式:)cot cotcot 1cotcos coscos cos2 c os 2 2 sin2cos 2 sin2sin 2 cos22sin 2cos cos 1 1 2sincossinsin 33 s in 34 sin 3cot 2tan 2cot2 12 cot 2 tan2cos3 tan34 cos 3 tan1 3 c os 3tan3 tan 21 tan·半角公式:sin1 2 tan121 cos2 cos cos1 cos sinsin 1 coscos2cot21 cos21 cos 1 cos1 cos sinsin 1 cos·正弦定理:a sin Ab sin B c2Rsin C ·余弦定理:c 2a 2b 22 a b cosC·反三角函数性质:arcsin xarccos x2arctan xarc cot x 2高阶导数公式——莱布尼兹( Leibniz )公式:n(uv)( n)C k u( n k 0k) v( k )u ( n )v nu ( n 1) vn(n 2!1) u( n2)vn( n 1)nk k!1) u(nk ) v ( k )uv(n)2222中值定理与导数应用:拉格朗日中值定理:f (b)f (a)f ( )( b a)柯西中值定理: f (b) f (a)f ( ) F (b) F (a)F ( )当F( x) 曲率:x 时,柯西中值定理就是 拉格朗日中值定理。

2016考研数学 高等数学三角函数公式总结

2016考研数学 高等数学三角函数公式总结

2016考研数学高等数学三角函数公式总结1.诱导公式口诀:“奇变偶不变,符号看象限”。

在复习的过程中,同学们一定要再温习一遍这些很基本的公式,不要因为公式记忆不牢丢分。

在做题时,要熟练应用这些公式。

2016年考研数学高分规划近几年的考研数学大纲基本没有变化。

对于选择题仍然考查考生的基本计算能力、基本逻辑推导能力等;填空题考查基本计算能力;而计算题考查基本计算能力、简单的应用能力和证明能力等。

我们考生在复习时,一定要以国家考试中心的考试大纲为标准,严格按照规定的考点及层次去复习,至今命题的核心是考察两个层次的问题,一个是基本概念、基本理论、基本方法,也就是“三基”,这些题目占到80%以上;再一个就是知识的运用能力,所以凯程教育数学辅导专家提醒考生考研数学复习的准备也应该从这样两个方面去针对性的复习。

第一个层次——扎实的基础知识。

对于考试大纲中规定的所有考点,一定要系统、完备的理解和掌握,特别要注意课本外的理解和延展,结合一些基础题目去真正理解这些知识点以及了解这些知识点的使用条件等。

第二个层次——知识的灵活运用。

如果仅是依靠教材,很难把这种考试命题的特点归纳总结出来,因此要了解考试必须熟悉历年考试真题,通过真题的分析帮助自己真正的归纳总结一些题型,再针对每一类问题去分析。

根据真题,总结常考的题型及每种题型相应的解决方法有哪些,去总结和归纳,借助于题型再进一步完善知识点的理解和掌握。

不管进行哪个层次的复习,都必须保证一定的题量。

不通过一定的题量练习稳固知识基础,也很难把握知识的灵活运用,所以建议大家找一些典型的题做一些训练,通过这种练习来反馈我们知识的把握情况,同时还能更好的掌握这些相关的知识。

根据命题考核层次及学习的科学规律,我们总的来说把复习规划可以分为三个阶段:第一个阶段是基础阶段。

这个阶段的长短应该根据自己的情况来实施,基础好一点的同学,这个时间可以短一点,基础差一点的同学,这个阶段可以长一点。

考研数学必背公式总结

考研数学必背公式总结

考研数学必背公式总结考研数学是很多考生们的重点科目之一。

为了更好地备考数学,考生们需要掌握并熟记数学中的各种公式。

下面是一些考研数学必背公式的总结:一、高等数学1.极限公式:(1)对数函数极限:lim(log(1+x)/x)=1,当x趋于0时(2)三角函数极限:lim(sin(x)/x)=1,当x趋于0时lim((1-cos(x))/x)=0,当x趋于0时2.牛顿-莱布尼茨公式:∫abf(x)dx=F(b)-F(a),其中F(x)是f(x)的一个原函数3.泰勒公式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+ Rn(x)其中,Rn(x)是余项,有Lagrange余项和Cauchy余项两种形式。

二、线性代数1.向量公式:(1)向量的模:|a|=√(x1^2+x2^2+...+xn^2)(2)向量的点积:a·b=x1y1+x2y2+...+xnyn(3)向量的叉积:a×b=(y1z2-y2z1)i-(x1z2-x2z1)j+(x1y2-x2y1)k2.矩阵公式:(1)矩阵的乘积:C=AB,其中Cij=∑(k=1到n)AikBkj(2)矩阵的逆:若A是可逆矩阵,则A的逆矩阵A^-1满足AA^-1=A^-1A=E(3)矩阵的秩:矩阵的秩是指它的行与列的最大线性无关组数,也就是矩阵中含有的一个最大的非零子式的阶数。

三、概率论与数理统计1.概率公式:(1)全概率公式:P(B)=P(AB)+P(AcBc),其中A和B是两个事件,Ac和Bc是它们的补事件(2)条件概率公式:P(A|B)=P(AB)/P(B),其中A和B是两个事件2.数理统计公式:(1)样本平均数:x=(x1+x2+...+xn)/n(2)样本方差:S^2=[(x1-x)^2+(x2-x)^2+...+(xn-x)^2]/(n-1)(3)样本标准差:S=√[S^2]以上公式是考研数学中一些必背的公式总结。

考研数学公式大全

考研数学公式大全

考研数学公式大全数学是考研的核心科目之一,而掌握必要的数学公式则是取得好成绩的关键。

以下是一份考研数学公式大全,涵盖了高等数学、线性代数和概率论与数理统计中的重要公式,希望能对备考研究生入学考试的同学有所帮助。

一、高等数学1、求导法则本文1)链式法则:f(u)f'(u)=f'(u)du本文2)乘积法则:f(u)g(u)=f'(u)g(u)+f(u)g'(u)本文3)指数法则:f(u)^n=nu'f(u)/(n-1)!2、求极值本文1)极值条件:f'(x)=0本文2)极值定理:f(x)在x=a处取得极值,则f'(a)=03、积分公式本文1)牛顿-莱布尼茨公式:∫f(x)dx=F(b)-F(a),其中F'(x)=f(x)本文2)微分定理:d/dx∫f(x)dx=f(x)本文3)积分中值定理:若f(x)在[a,b]上连续,则至少存在一点c∈[a,b],使得∫f(x)dx=f(c)(b-a)4、不定积分公式本文1)幂函数积分:∫x^n dx=(n+1)/n+1 x^(n+1)/n+1+C本文2)三角函数积分:∫sinx dx=cosx+C,∫cosx dx=-sinx+C 5、定积分公式本文1)矩形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+y^2)/2本文2)梯形法:若a<=x<=b,a<=y<=b,则∫(a,b)(x^2+y^2)dx=∫(a,b)x^2 dx+∫(a,b)y^2 dx=(b-a)(x^2+[by]+[ax])/3二、线性代数6、行列式公式本文1)行列式展开式:D=a11A11+a12A12+...+an1An1,其中Aij为行列式中第i行第j列的代数余子式本文2)范德蒙行列式:V=(∏i=1n[(x-a)(i-1)]^(n-i)) / (∏i=1n[(x-a)(i-1)]),其中ai为行列式中第i行第i列的元素7、矩阵公式本文1)矩阵乘法:C=AB,其中Cij=∑AikBkj,k为矩阵乘法的维数本文2)逆矩阵:A^-1=(1/∣A∣)A,其中∣A∣为矩阵A的行列式值,A为矩阵A的伴随矩阵8、向量公式本文1)向量内积:〈a,b〉=a1b1+a2b2+...1、求导法则本文1)链式法则:若f是一个包含x和函数u=u(x),则f' = f'[u(x)] * u'(x)。

高等数学公式大全,考研必备.

高等数学公式大全,考研必备.

高等数学公式如果不足之处请见谅(公式太多了就慢慢看哦)导数公式:基本积分表:三角函数的有理式积分:一些初等函数:两个重要极限:三角函数公式:·诱导公式:函数sin cos tg ctg角A-α-sinαcosα-tgα-ctgα90°-αcosαsinαctgαtgα90°+αcosα-sinα-ctgα-tgα180°-αsinα-cosα-tgα-ctgα180°+α-sinα-cosαtgαctgα270°-α-cosα-sinαctgαtgα270°+α-cosαsinα-ctgα-tgα360°-α-sinαcosα-tgα-ctgα360°+αsinαcosαtgαctgα·和差角公式:·和差化积公式:·倍角公式:·半角公式:高阶导数公式——莱布尼兹(Leibniz)公式:中值定理与导数应用:曲率:定积分的近似计算:定积分应用相关公式:空间解析几何和向量代数:多元函数微分法及应用微分法在几何上的应用:方向导数与梯度:多元函数的极值及其求法:重积分及其应用:柱面坐标和球面坐标:曲线积分:曲面积分:高斯公式:斯托克斯公式——曲线积分与曲面积分的关系:常数项级数:级数审敛法:绝对收敛与条件收敛:幂级数:函数展开成幂级数:一些函数展开成幂级数:欧拉公式:三角级数:傅立叶级数:周期为的周期函数的傅立叶级数:微分方程的相关概念:一阶线性微分方程:全微分方程:二阶微分方程:二阶常系数齐次线性微分方程及其解法:(*式的通解两个不相等实根两个相等实根一对共轭复根二阶常系数非齐次线性微分方程。

考研高数必备公式

考研高数必备公式

考研高数必备公式高等数学是考研数学的重点和难点之一,掌握和熟练运用高数公式可以帮助考生更好地解题。

下面是一些考研高等数学必备的重要公式,供考生参考。

导数公式:1. 常数函数的导数为零:d/dx (c) = 02. x^n的导数为nx^(n-1):d/dx (x^n) = nx^(n-1)3. e^x的导数为e^x:d/dx (e^x) = e^x4. ln(x)的导数为1/x:d/dx (ln(x)) = 1/x5. sin(x)的导数为cos(x):d/dx (sin(x)) = cos(x)6. cos(x)的导数为-sin(x):d/dx (cos(x)) = -sin(x)7. tan(x)的导数为sec^2(x):d/dx (tan(x)) = sec^2(x)8. cot(x)的导数为-csc^2(x):d/dx (cot(x)) = -csc^2(x)9. sec(x)的导数为sec(x)tan(x):d/dx (sec(x)) = sec(x)tan(x)10. csc(x)的导数为-csc(x)cot(x):d/dx (csc(x)) = -csc(x)cot(x)求导法则:1. 和差法则:d/dx (u ± v) = du/dx ± dv/dx2. 乘法法则:d/dx (uv) = u dv/dx + v du/dx3. 除法法则:d/dx (u/v) = (v du/dx - u dv/dx) / v^24. 复合函数法则:若y = f(u),u=g(x),则dy/dx = dy/du *du/dx积分公式:1. 常数函数的积分为常数乘以自变量:∫c dx = cx + C2. x^n的积分为(1/n+1)x^(n+1) + C:∫x^n dx = (1/n+1)x^(n+1) + C3. e^x的积分为e^x + C:∫e^x dx = e^x + C4. 1/x的积分为ln,x, + C:∫1/x dx = ln,x, + C5. sin(x)的积分为-cos(x) + C:∫sin(x) dx = -cos(x) + C6. cos(x)的积分为sin(x) + C:∫cos(x) dx = sin(x) + C7. tan(x)的积分为-ln,cos(x), + C:∫tan(x) dx = -ln,cos(x), + C8. cot(x)的积分为ln,sin(x), + C:∫cot(x) dx = ln,sin(x),+ C9. sec(x)的积分为ln,sec(x) + tan(x), + C:∫sec(x) dx = ln,sec(x) + tan(x), + C10. csc(x)的积分为ln,csc(x) - cot(x), + C:∫csc(x) dx = ln,csc(x) - cot(x), + C广义积分:1. 若函数f(x)在区间[a, b]上连续且非负,则∫f(x) dx是有限的;2. 若f(x)在区间[a, b]上连续,则∫f(x) dx在该区间上是可积的;3. 若f(x)在区间[a, b]上连续,则∫[a, b] f(x) dx = ∫[a, c]f(x) dx + ∫[c, b] f(x) dx (分段积分);导数和微分:1.y=f(x)在(x0,y0)处可导,则f(x)在该点连续;2. 若函数y = f(x)在区间[a, b]上可导,则y的增量Δy可以近似表示为Δy ≈ f'(x) Δx,即dy = f'(x) dx (微分近似);3. 若函数y = f(x)在区间[a, b]上可导,则在该区间上y的微分dy满足dy = f'(x) dx (微分关系);泰勒公式:1.f(x)在x=a处n阶可导,则f(x)可表示为泰勒展开式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x),其中Rn(x)为剩余项;拉格朗日中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b),则存在c∈(a,b)使得f'(c)=[f(b)-f(a)]/(b-a);柯西中值定理:若函数f(x)和g(x)在[a,b]的内部连续,在(a,b)的内部可导且g'(x)≠0,则存在c∈(a,b)使得[f'(c)/g'(c)]=[f(b)-f(a)]/[g(b)-g(a)];罗尔中值定理:若函数f(x)在[a,b]的内部连续,在(a,b)的内部可导,且f(a)=f(b)=0,则存在c∈(a,b)使得f'(c)=0;这只是一部分考研高等数学的重要公式,考生还需根据自己的需求和教材内容进行学习和整理。

高等数学公式大全考研必备

高等数学公式大全考研必备

高等数学公式大全考研必备高等数学是数学的一门重要学科,是理工类考研的一门必备科目。

在考研过程中,了解和掌握一些常用的高等数学公式是非常重要的。

下面是一些考研必备的高等数学公式,具体分类如下:1.极限与连续极限的定义:设函数f(x)在x0的其中一邻域内有定义,如果对于任意给定的正数ε,总存在正数δ,使得对于x0的任意邻域中的不等于x0的点x,当0《,x-x0,《δ时,有,f(x)-A,《ε,则称函数f(x)当x趋于x0时以A为极限,并记为limx—x0 f(x)=A.常用极限公式:- 1)limx—x0 c=A(常数项函数的极限)- 2)limx—x0 x=x0(一次函数x的极限)- 3)limx—x0 x^n = x0^n(幂函数的极限)- 4)limx—x0 sinx = sinx0(三角函数的极限)- 5)limx—x0 lnx = lnx0(对数函数的极限)- 6)limx—∞(1+1/x)^x=e(自然对数的底e的定义)2.导数和微分导数定义:函数y=f(x)在x0点可导的充分必要条件是:当x→x0时,若函数的增量△y与自变量增量△x之比的极限存在,那么这个极限就是函数f(x)在点x0的导数,记作f'(x0),即f'(x0)=lim△x→0 △y/△x常用导数公式:- 1)(x^n)' = nx^(n-1)(多项式函数的导数)-2)(e^x)'=e^x(指数函数的导数)- 3)(sinx)' = cosx(三角函数的导数)- 4)(cosx)' = -sinx(三角函数的导数)- 5)(lnx)' = 1/x(对数函数的导数)- 6)(a^x)' = a^x * ln(a)(幂函数的导数)微分定义:设函数y=f(x)在点x0的一些邻域内有定义,当自变量x 在x0的邻域内以Δx自变量增量,对应的函数的增量为Δy=f(x0+Δx)-f(x0).如果Δy可以表示为Δy=AΔx+o(Δx),其中A是不依赖于Δx 的常数,而o(Δx)为Δx的高阶无穷小,那么称函数f(x)在点x0可微,并把常数A称为函数f(x)在点x0的微商,记为dy/dx,_(x=x0)=d/dxf(x),_(x=x0)=f'(x0).常用微分公式:- 1)d/dx(c) = 0(常数的微分)- 2)d/dx(x^n) = nx^(n-1)dx(幂函数的微分)- 3)d/dx(e^x) = e^xdx(指数函数的微分)- 4)d/dx(sin(x)) = cos(x)dx(三角函数的微分)- 5)d/dx(cos(x)) = -sin(x)dx(三角函数的微分)- 6)d/dx(ln(x)) = 1/x dx(对数函数的微分)3.函数的单调性和极值单调递增定义:函数f(x)在[a,b]上连续,如果对于[a,b]上任意两个不同的数x1<x2,有f(x1)《f(x2),则称函数f(x)在[a,b]上单调递增。

考研高数公式总结

考研高数公式总结

考研高数公式总结高等数学是考研数学中的一门重要课程,也是考研数学中需要记住大量公式和定理的科目之一、下面是我总结的一些高等数学中常用的公式和定理,希望对考研学子们的备考能有所帮助。

一、极限和连续1.重要的基本极限公式- $\lim\limits_{x\to0}\frac{\sin{x}}{x}=1$- $\lim\limits_{x\to0}\frac{e^x-1}{x}=1$- $\lim\limits_{x\to+\infty}(1+\frac{1}{x})^x=e$2.微分中的基本极限- $\lim\limits_{\Delta x\to0}\frac{\Delta y}{\Deltax}=\frac{dy}{dx}$- $\lim\limits_{\Delta x\to0}\frac{e^{\Delta x}-1}{\Delta x}=1$3.连续性定理-函数$f(x)$在$x_0$处连续的充分必要条件是:- $\lim\limits_{x\to x_0} f(x)=f(x_0)$- $\lim\limits_{x\to x_0^-} f(x)=\lim\limits_{x\to x_0^+} f(x)=f(x_0)$二、导数和微分1.基本导数公式-$(c)'=0$- $(x^n)'=nx^{n-1}$ (n为自然数)-$(e^x)'=e^x$- $(\ln{x})'=\frac{1}{x}$2.常见运算法则-$(u+v)'=u'+v'$- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$ (v≠0)3.高阶导数-若$f'(x)$存在,则$f''(x)=(f'(x))'$4.微分公式- $dy=f'(x)dx$三、积分与微积分基本定理1.基本积分公式- $\int 0dx=C$- $\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (n≠-1)2.基本积分的线性运算- $\int kf(x)dx=k\int f(x)dx$- $\int (f(x)+g(x))dx=\int f(x)dx+\int g(x)dx$3.二次换元法- $\int f(g(x))g'(x)dx=\int f(u)du$4.牛顿-莱布尼茨公式- $\int_a^bf(x)dx=F(b)-F(a)$四、级数1.等差数列-$a_n=a_1+(n-1)d$- $S_n=\frac{n}{2}[2a_1+(n-1)d]$- $a_n=\frac{a_{n-1}+a_{n+1}}{2}$2.等比数列-$a_n=a_1q^{n-1}$(q≠0)- $S_n=\frac{a_1(q^n-1)}{q-1}$ (q≠1)3.幂级数- $S_n=\sum\limits_{k=1}^{n} a_k=a_1+a_2+a_3+...+a_n$五、数列和函数的收敛性1.收敛与极限-数列$\{a_n\}$的收敛定义:当无论取多大的正数$ε$,都存在一个正整数$N$,当$n>N$时,总有$,a_n-A,<ε$成立,则称$\{a_n\}$收敛于$A$。

考研—高数重要公式总结

考研—高数重要公式总结

考研—高数重要公式总结高等数学是考研数学中的一门重要课程,掌握高等数学的重要公式对于考研复习非常重要。

下面是一些高等数学中的重要公式总结。

1.极限与连续①极限的定义:设函数f(x)在点x处的一个邻域内有定义,则如果存在常数A,对于任意给定的正数ε,总存在正数δ,使得对于所有满足0 < ,x - x0,< δ的x都有,f(x) - A,< ε,则称函数f(x)在点x0处极限为A,记为lim┬(x→x0)⁡〖f(x)=A〗。

②极限四则运算:设lim┬(x→x0)⁡〖f(x)=A,lim┬(x→x0)⁡g(x)=B〗,则有lim┬(x→x0)⁡〖[f(x)±g(x)]=A±B〗,lim┬(x→x0)⁡[f(x)g(x)]=AB,lim┬(x→x0)⁡〖[f(x)÷g(x)]=A÷B〗。

③自然对数e的性质:lim┬((n→∞))⁡(1+1/n)^n=e,lim┬(x→∞)⁡(1+1/x)^x=e。

④l'Hopital法则:设函数f(x)、g(x)在点x0的一些邻域内有定义,并且满足lim┬(x→x0)⁡〖f(x)〗=lim┬(x→x0)⁡〖g(x)〗=0或∞。

如果lim┬(x→x0)⁡〖f'(x)/g'(x)〗存在或为∞,则有lim┬(x→x0)⁡〖f(x)/g(x)〗=lim┬(x→x0)⁡〖f'(x)/g'(x)〗。

⑤定义证明巧妙极限:lim┬(x→0)⁡〖(1+x)^(1/x)〗=e。

⑥杨辉三角中的数列极限调整:lim┬((n→∞))⁡〖(1+1/n)^(n(n+1)/2)〗=e。

2.导数与微分①导数定义:设函数y=f(x)在点x0处有定义,如果当自变量x在x0处取得其中一个邻域内时,相应的函数值f(x)的增量与自变量的增量之比的极限存在,那么就称函数y=f(x)在点x0处可导,这个极限称为函数在点x0处的导数,记作f'(x0),即f'(x0)=lim┬(Δx→0)⁡〖(Δy)/(Δx)〗。

考研高数必背公式

考研高数必背公式

对于考研高等数学,以下是一些常见的必背公式:1. 导数公式:- $(c)'=0$(常数的导数为零)- $(x^n)'=nx^{n-1}$(幂函数的导数)- $(e^x)'=e^x$(指数函数的导数)- $(\ln x)'=\frac{1}{x}$(自然对数函数的导数)- $(\sin x)'=\cos x$(正弦函数的导数)- $(\cos x)'=-\sin x$(余弦函数的导数)- $(\tan x)'=\sec^2 x$(正切函数的导数)2. 积分公式:- $\int k \,dx=kx+C$(常数的积分)- $\int x^n \,dx=\frac{1}{n+1}x^{n+1}+C$(幂函数的积分)- $\int e^x \,dx=e^x+C$(指数函数的积分)- $\int \frac{1}{x} \,dx=\ln |x|+C$(倒数函数的积分)- $\int \sin x \,dx=-\cos x+C$(正弦函数的积分)- $\int \cos x \,dx=\sin x+C$(余弦函数的积分)- $\int \sec^2 x \,dx=\tan x+C$(正切函数的积分)3. 三角函数关系:- $\sin^2 x + \cos^2 x = 1$(三角恒等式)- $\sin (2x) = 2\sin x \cos x$(双角正弦公式)- $\cos (2x) = \cos^2 x - \sin^2 x$(双角余弦公式)- $\tan x = \frac{\sin x}{\cos x}$(正切的定义)这些是考研高等数学中的一些常见公式,但并非全部。

在复习过程中,建议根据自己的教材和课程重点,对相关公式进行系统性的整理和复习。

不仅要记住公式,还要了解其推导和应用方法,以便在解题过程中能够熟练运用。

同时,还要注重理解概念和原理,培养灵活的思维和解题能力。

考研高等数学公式(word版,全面)

考研高等数学公式(word版,全面)

高等数学公式导数公式:基本积分表:三角函数的有理式积分:ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xxx x x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

(完整版)考研高数必备公式

(完整版)考研高数必备公式

考研高数部分公式222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , 4一些初等函数: 两个重要极限:5三角函数公式: ·诱导公式:xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x xxx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ8中值定理与导数应用:拉格朗日中值定理。

时,柯西中值定理就是当柯西中值定理:拉格朗日中值定理:x x F f a F b F a f b f a b f a f b f =''=---'=-)(F )()()()()()())(()()(ξξξ曲率:αααααααααα23333133cos 3cos 43cos sin 4sin 33sin tg tg tg tg --=-=-=αααααααααααααα222222122212sin cos sin 211cos 22cos cos sin 22sin tg tg tg ctg ctg ctg -=-=-=-=-==.1;0.)1(lim M s M M :.,13202aK a K y y ds d s K M M sK tg y dx y ds s =='+''==∆∆='∆'∆∆∆==''+=→∆的圆:半径为直线:点的曲率:弧长。

高数考研重要公式

高数考研重要公式

高数考研重要公式一、导数公式1. 常数的导数公式:若y=k (k为常数),则dy/dx=0。

2. 幂函数的导数公式:若y=x^n(n为正整数),则dy/dx=nx^(n-1)。

3. 指数函数的导数公式:若y=a^x(a>0且a≠1),则dy/dx=a^x * ln(a)。

4. 对数函数的导数公式:若y=log_a(x)(a>0且a≠1),则dy/dx=1/(x * ln(a))。

5. 三角函数的导数公式:若y=sin(x),则dy/dx=cos(x)。

若y=cos(x),则dy/dx=-sin(x)。

若y=tan(x),则dy/dx=sec^2(x)。

若y=cot(x),则dy/dx=-csc^2(x)。

若y=sec(x),则dy/dx=sec(x) * tan(x)。

若y=csc(x),则dy/dx=-csc(x) * cot(x)。

二、积分公式1. 常数的积分公式:∫k dx=kx+C (C为积分常数)。

2. 幂函数的积分公式:∫x^n dx = x^(n+1)/(n+1) + C (n≠-1,C为积分常数)。

3. 指数函数与对数函数的积分公式:∫a^x dx = a^x / ln(a) + C (a>0且a≠1,C为积分常数)。

∫1/x dx = ln|x| + C (C为积分常数)。

4. 三角函数的积分公式:∫sin(x) dx = -cos(x) + C (C为积分常数)。

∫cos(x) dx = sin(x) + C (C为积分常数)。

三、极限公式1. 基本极限:lim(x→∞) [1+1/x]^x = elim(x→0) sin(x)/x = 1lim(x→0) (cos(x) - 1)/x = 02. 已知极限的运算法则:lim(x→a) [f(x)±g(x)] = lim(x→a) f(x) ± lim(x→a) g(x)lim(x→a) [f(x)g(x)] = lim(x→a) f(x) * lim(x→a) g(x)lim(x→a) [f(x)/g(x)] = lim(x→a) f(x) / lim(x→a) g(x) (其中lim(x→a) g(x) ≠ 0)3. 其他常用极限:lim(x→∞) [1 + 1/n]^n = elim(x→0) (e^x - 1)/x = 1l im(x→0) (a^x - 1)/x = ln(a) (a>0且a≠1)四、级数公式1. 等比级数求和公式:若|q|<1,∑(n=0→∞) ar^n=a/(1-r),其中a为首项,r为公比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6) y xa
y(n) a(a 1)...(a n 1)xan
4、五个常用的麦克劳林公式
ex 1 x x2 ... xn e xn1 , 在 x 与 0 之间.
2!
n! (n 1)!
sin x x x3 ... (1)n x2n1 (1)n1 cos x2n3, 在 x 与 0 之间.
z Ax By o x2 y2 ,
其中 A 、 B 仅依赖于 (x, y) 而与 x 、 y 无关,则称函数 z f (x, y) 在点 (x, y) 可微,其
中 Ax By 称为函数 z f (x, y) 在点 (x, y) 的全微分,记作 dz ,即 dz Ax By .
y

dy
b
a

f
(
x)

g
(
x)
dx
d c

(
y)



y


dy
在极坐标系下,由直线 和 和曲线 r ( ) 所围图形的面积为
S 1 2 ( )d .
2
简单几何体的体积 1)平行截面面积已知立体图形的体积
立体在过点 x a, x b 且垂直于 x 轴的两个平面之间,以 S(x) 表示过点 x 且垂直于 x
Born to win
③若 f '' ( x0 ) 0, 则 f (x) 在 x0 处是否取极值未知.
6、基本积分公式
(1)
xadx
1
xa1 C, (a 1) ,
1 dx

ln
x
C,
a 1
x
(2) axdx 1 ax C, exdx ex C
增量 x ,相应的函数有增量 z f (x0 x, y0 ) f (x0 , y0 ) ,若极限
lim f (x0 x, y0 ) f (x0, y0 )
x0
x
存在,则称函数 z f (x, y) 在点 P0 (x0 , y0 ) 处关于 x 的偏导数存在,并定义此极限值为函数
b
f (x)dx 0
a
Born to win
b
b
(2) f (x)dx f (x) dx
a
a
(3)估值定理:
设 M 和m 为 函 数 f (x) 在 区 间 [a,b] 上 的 最 大 值 与 最 小 值 , 则 有 :
b
m(b a) f (x)dx M (b a) a

C
(1)若 AC B2 0 ,则函数 z f (x, y) 在 (x0, y0 ) 点具有极值.当 A 0 时取得极小值; 当 A 0时取得极大值. (2)若 AC B2 0 ,则函数 z f (x, y) 在 (x0, y0 ) 点不能取到极值.
(3)若 AC B2 0 ,则函数 z f (x, y) 在 (x0, y0 ) 点可能有极值,也可能没有极值.
a
b
a
b
2)线性性质
(1)
b f (x) g(x)dx
b
f (x)dx
b
g(x)dx ,
a
a
a
b
b
(2) kf (x)dx k f (x)dx , k 为常数
a
a
b
3) 1dx b a a
b
c
b
4)区间可加性: f (x)dx f (u)du f (t)dt
(6)
1 1 x2
dx

arctan
x

C

(7) 1 dx arcsin x C
1 x2
7、定积分的性质
1)规定:
b
b
b
(1) f (x)dx f (u)du f (t)dt
a
a
a
b
a
a
b
(2) f ( x)dx f ( x)dx, 特例: f ( x)dx 0, f ( x)dx 0


x

0
之间.
(1 x)a 1 ax a(a 1) x2 ... a(a 1)...(a n 1) xn ( 1)...( n) (1 )n1 xn1,
2!
n!
(n 1)!
在 x 与 0 之间.
5、极值
第一充分条件:设函数 f (x) 在 x0 处连续,并在 x0 的某去心邻域 (x0 , x0 ) (x0 , x0 ) 内
轴的截面面积.
Born to win
b
则所求立体的体积为:V S (x)dx a
2)旋转体的体积
由连续曲线 y f (x) 、直线 x a, x b 及 x 轴所围曲边梯形绕 x 轴旋转一周而成的立
体.
该立体的体积为:V b f 2 (x)dx . a
10、偏导数
设函数 z f (x, y) 在点 P0 (x0 , y0 ) D 的某一邻域内有定义,把 y 固定在 y0 而 x 在 x0 处有
ln a
(3) cos xdx sin x C, sin xdx cos x C (4) sec2 xdx tan x C, csc2 xdx cot x C , (5) sec x tan xdx sec x C, csc x cot xdx csc x C ,
lim f (x0 , y0 y) f (x0 , y0 ) ,
y 0
y
Born to win
记作
z y
(
x0
,
y
0
)
,
f y
( x0 , y0 )
,
zy
(
x0
,
y
0
)
,f y(x0 ,
y0 )
.
全微分:若函数 z f (x, y) 在点 (x, y) 的全增量 z f (x x, y y) f (x, y) 可表示为
y(n) ex
(2) y a x (a 0, a 1) y (n) a x (ln a)n
(3) y sin x (4) y cos x
y(n) sin(x n ) 2
y(n) cos(x n ) 2
Born to win
(5) y ln x
y (n) (1)n1 (n 1)!x n
11、极值的充分条件:设函数 z f (x, y) 在 (x0, y0 ) 点的某邻域内具有连续的一阶及二阶偏
导数,又设 fx(x0 , y0 ) 0, f y(x0 , y0 ) 0 .令
f

xx
(
x0
,
y0 )

A,
f

xy
(x0 ,
y0 )

B,
f

yy
(x0 ,
y0 )
(4)积分中值定理:设函数 f (x) 在区间[a,b]上连续,则至少存在一点 [a,b],使得
b f (x)dx f ( )(b a) a
8、微积分基本定理 1)内容:
x
(1)设函数 f (x) 在区间[a,b]上可积,令 (x) f (t)dt, a x b 称为变上限积分(积 a
f (x) g(x) f (x) g(x) ,
f (x)g(x) f (x)g(x) f (x)g(x) ,

f g
(x) (x)


f (x)g(x) f (x)g(x)
.
g 2 ( x)
3、常用函数的 n 阶导数公式
(1) y e x
z

f
(x, y) 在点 P0 (x0 , y0 ) 处对变量
x
的偏导数,记作
z x
x x0
, f x
x x0
,
z

x
x x0 y y0
,fx(x0 ,
y0 ) .
y y0
y y0
类似地,可以定义函数 z f (x, y) 在点 P0 (x0 , y0 ) 处对变量 y 的偏导数
k 阶无穷小:设在某极限过程 x 中,函数 (x), (x) 都为无穷小量,并且都不为 0 .若
( x)
lim
x


(
x)k
C 0 ,则称当 x 时, (x) 是 (x) 的 k 阶无穷小.
2、导数的四则运算法则:设函数 f (x) 与 g(x) 均可导,则
可导.
①若 x (x0 , x0 ) 时 f ' (x) 0, 而 x (x0 , x0 ) 时 f ' (x) 0, 则 f (x) 在 x0 处取得极大
值;
②若 x (x0 , x0 ) 时 f ' (x) 0, 而 x (x0 , x0 ) 时 f ' (x) 0, 则 f (x) 在 x0 处取得极小
b
的一个原函数,则 f (x)dx F (b) F (a) a
2)计算导函数
x

(1) f (t)dt f (x), a x b a
b

(2) f (t)dt f (x), a x b x
(3)

u(x) a
f
(t )dt

3!
(2n 1)!
相关文档
最新文档