(2021年整理)高中数学经典解题技巧和方法--函数、基本初等函数的图象与性质(跟踪训练题)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学经典解题技巧和方法--函数、基本初等函数的图象与性质(跟踪训练题)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学经典解题技巧和方法--函数、基本初等函数的图象与性质(跟踪训练题))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学经典解题技巧和方法--函数、基本初等函数的图象与性质(跟踪训练题)的全部内容。
函数、基本初等函数的图象与性质——跟踪练习
一、选择题(本大题共6个小题,每小题6分,总分36分)
1.设函数f (x)=log 2x 的反函数为y=g (x ),若
41)11(
=
-a g ,则a 等于( )
A .—2
B .21
-
C .21
D .2
2。
已知一容器中有A 、B 两种菌,且在任何时刻A ,B 两种菌的个数乘积为定值1010
,为了简单
起见,科学家用)lg(A A n P =来记录A 菌个数的资料,其中A n 为A 菌的个数,则下列判断中正确
的
个
数
为
( ) ①1≥A P
②若今天的P A 值比昨天的P A 值增加1,则今天的A 菌个数比昨天的A 菌个数多了10个 ③假设科学家将B 菌的个数控制为5万个,则此时5.55<<A P
A .0
B .1
C .2
D .3 3。
函数||y x =与
2
1y x =+在同一坐标系的图象为
( )
4。
类比“两角和与差的正余弦公式”的形式,对于给定的两个函数,()2x x
a a S x --=
,
()2x x
a a C x -+=
,其中0a >,且1a ≠,下面正确的运算公式是( )
①()()()()()S x y S x C y C x S y +=+; ②()()()()()S x y S x C y C x S y -=-; ③()()()()()C x y C x C y S x S y +=-; ④()()()()()C x y C x C y S x S y -=+. (A )①③
(B )②④
(C )①④ (D )①②③④
5.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x 〈2x 时,都有1()f x 〉2()f x 的是( )
A .()f x =1
x B 。
()f x =2(1)x - C 。
()f x =x e D ()ln(1)f x x =+
6. f(x )=⎩⎨⎧≥<+4,24
),1(x x x f x
,则()2log 3
f =( )
(A )—23 (B )11 (C)19 (D)24
二、填空题(本大题共3个小题,每小题6分,总分18分)
7.已知函数2()log f x x =,正实数m ,n 满足m n <,且()()f m f n =,若()f x 在区间2
[,]m n 上的最大
值为2,则n m += .
8.已知
a =
,函数()x
f x a =,若实数m 、n 满足()()f m f n >,则m 、
n 的大小关系为 . 9.给出下列四个命题:
①函数x x x f +-=2ln )(在区间),1(e 上存在零点 ②若)('0x f =0,则函数)(x f y =在0x x =取得极值; ③m ≥-1,则函数
)
2(log 22
1m x x y --=的值域为R ;
④“1=a ”是“函数
x x
ae e a x f +-=
1)(在定义域上是奇函数”的充分不必要条件。
其中真命题是 (把你认为正确的命题序号都填在横线上) 三、解答题(10、11题每小题15分,12题16分,总分46分)
10.据调查,安徽某地区有100万从事传统农业的农民,人均年收入3000元。
为了增加农民的收入,当地政府积极引资建立各种加工企业,对当地的农产品进行深加工,同时吸收当地部分农民进入加工企业工作. 据估计,如果有x(x >0)万人进入企业工作,那么剩下从事传统农业的农民的人均年收入有望提高2x%,而进入企业工作的农民人均年收入为3000a 元(a >0为常数)。
(I )在建立加工企业后,要使该地区从事传统农业的农民的年总收入不低于加工企业建立前的
年总收入,求x 的取值范围;
(II)在(I )的条件下,当地政府应安排多少万农民进入加工企业工作,才能使这100万农民的人均年收入达到最大?
11.已知函数f (x )=lnx —a
x (a ∈R)。
(1)当a ∈[—e,-1]时,试讨论f (x )在[1,e ]上的单调性; (2)若f(x)〈x 在[1,+∞)上恒成立,试求a 的
取值范围
12.(探究创新题)若函数f (x )对定义域中任意x 均满足f (x )+f(2a-x )=2b,则称函数y=f(x )的图象关于点(a,b )对称。
(1)已知函数f(x)=2x mx m
x ++的图象关于点(0,1)对称,
求实数m 的值;
(2)已知函数g (x )在(-∞,0)∪(0,+∞)上的图象关于点(0,1)对称,且当x ∈(0,+∞)时,g (x)=x 2+ax+1,求函数g (x )在 (—∞,0)上的解析式;
(3)在(1)(2)的条件下,当t 〉0时,若对任意实数x ∈ (-∞,0),恒有g (x)〈f(t)成立,求实数a 的取值范围.
参考答案
1。
【解析】选C 因为函数f (x)=log 2x 的反函数为2,x
y =所以()2,x
g x =由
41)11(
=-a g
得
1
1
1112
,2,.412a a a -=∴=-=-
2。
【解析】选B 当1
A n =时
A P =,故①错误;若
1,10A A P n ==则,若2,100A A P n ==则,
故②错
误;
设B 菌的个数为104
5
4
10510210,lg()lg 2 5.510B A A A n n P n =⨯∴==⨯∴==+⨯,
lg 20.414,=又所以5.55<<A P ,故③正确。
3。
【解析】选A
因为||x ≤||y x =
的图像在函数
y =除C 、D;
||x x →∞当时,B ,故选A 。
4。
【解析】选D 因为()2x x a a S x --=,
()2x x
a a C x -+=
()
()(),
2
()()()()2222
11
[()()][()()]4411,222
()()()()().
x y x y x x y y x x y y
x y y y y x y y y y x y x y x y x y a a S x y a a a a a a a a S x C y C x S y a a a a a a a a a a a a a a a a S x y S x C y C x S y +-+---------+-+---∴+=-++-+=+
=++-+-++--=-=∴+=+
同理可证其它3个式子也成立。
5。
【解析】选A 依题意可得函数应在(0,)x ∈+∞上单调递减,故由选项可得A 正确。
6。
【解析】选D
2log 2422222(log 3)(log 31)(log 32)
(log 33)(log 24)224.
f f f f f =+=+=+===
7。
【解析】由已知得2222221111
,01,1,[,][,],()log 2log 2().
m m n m n n f n f n n n n n =<<>∴====
所以()f x 在区间2
[,]m n 上的最大值为
2211(
)2().2log 2,1, 2..2f f n n n n m n =∴=>∴==故5
.2n m +=
答案:5
.2
8. 【解析】1
(0,1)2a =
∈,函数()x
f x a =在R 上递减。
由()()f m f n >得:m 〈n
答案:m<n
9. 【解析】①正确:显然x x x f +-=2ln )(在),1(e 上是增函数,且(1)10,()10,f f e e =-<=->
所以函数x x x f +-=2ln )(在区间),1(e 上存在零点;②不正确,例
32
(),()30,f x x f x x '==≥
()00,f x x '==由得30()x f x x ==但不是的极值点;③正确:
21,440,2m m x x m ≥-∴∆=+≥--能取到所有的正实数,所以函数的值域为R.对于④:若
1=a ,则11(1)1(),()().11(1)1x x x x x x x x x
x e e e e e f x f x f x e e e e e --------=∴-====-++++又
1()1x x e f x e -=+的定义域为R ,所以1a =⇒“函数x
x ae e a x f +-=1)(在定义域上是奇函数”;若函数x x
ae e a x f +-=1)(在定义域上是奇函数,则()()f x f x -=-恒成立.因为
()1
()1(1)x x x x x x x
x
a e a e e ae f x ae ae e e a --------===+++, 所以222
1,()()(1)(1),(1)11x x x x x x x x x
a e ae a e a e ae ae a e a ae e a --=-∴-+=--+-=-++即恒成立, 所以2
10,1,a a -=∴=±,故“函数x x
ae e a x f +-=1)(在定义域上是奇函数” 推不出“1=a ”,
所以④正确。
综上正确的为①③④。
答案:①③④
10。
【解】(I)据题意,(100-x )·3000·(1+2x %)≥100×3000,
即x2-50x ≤0,解得0≤x ≤50。
又x >0,故x 的取值范围是(0,50]。
(II)设这100万农民的人均年收入为y 元,则
y =
2(100)3000(1)3000100
100
x
x ax -⨯+
+
=-错误![x -25(a +1)]2+3000+475(a +1)2 (0〈x ≤50). (1)若0<25(a +1)≤50,即0<a ≤1,则当x =25(a +1)时,y 取最大值; (2)若25(a +1)>50,即a >1,则当x =50时,y 取最大值。
答:当0<a ≤1时,安排25(a +1)万人进入加工企业工作,当a >1时,安排50万人进入企业工作,才能使这100万人的人均年收入最大. 11. 【解析】(1)f (x)的定义域为(0,+∞),
2221(),0a x a
f x x x x x +'=
+=>显然
当-e ≤a ≤-1时,1≤-a ≤e,令f ′(x)=0得x=-a ,于是当1≤x ≤-a 时,f ′(x )≤0,∴f(x)在[1,-a]上为减函数,当-a ≤x ≤e 时,f ′(x )≥0,∴f(x)在[-a ,e ]上为增函数。
综上可知,当—e ≤a ≤—1时f (x)在[1,—a ]上为减函数,在[-a ,e ]上为增函数。
(2)由f(x )〈x 得lnx —a
x <x ,∵x ≥1,∴a 〉xlnx-x 2。
令g (x )=xlnx-x 2,要使a>xlnx-x 2
在[1,+∞)上恒成立,
只需a 〉g(x)max ,g ′(x )=lnx-2x+1,令φ(x)=lnx-2x+1,则φ′(x )= 1
x —2,
∵x ≥1,∴φ′(x)〈0,∴φ(x)在[1,+∞)上单调递减,∴φ(x)≤φ(1)=—1〈0,因此g ′(x)<0,故g (x)在[1,+∞)上单调递减,则g (x )≤g (1)=—1, ∴a 的取值范围是(-1,+∞)。
12. 【解析】(1)由题设可得f (x)+f (-x)=2,即2x mx m x +++2x mx m
x -+-=2,解得1m =。
(2)当x 〈0时,—x>0且g(x )+g (—x )=2, ∴g(x)=2— g (—x )=—x 2
+ax+1.
(3)由(1)得f (t )=t+1
t +1(t 〉0),其最小值为f (1)=3.
g(x )= —x 2+ax+1=-(x —a/2)2
+1+2
4a ,
①当2max 0,013,(24a a a a <<=+<∈-即时,g(x)得
②当max 0,0,()3,[0,);2
().a
a g x x a a ≥≥<<∈+∞∈-+∞即时得由①②得
31
2
1
()()(),()[3,4]2
()[3,4].
()[3,4]3(),
31199
log (),.31288
x x f x x m x x m x x x m ϕϕϕϕϕ=->∴=+-=-∴<--令则对于区间上的每一个都成立等价于
在上的最小值大于在上为增函数,当时,取得最小值。