2022届浙江省湖州市初二下期末学业质量监测数学试题含解析
浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题含解析
浙江省湖州市吴兴区十学校2024届数学八年级第二学期期末学业水平测试试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.某班30名学生的身高情况如下表:身高()m 1.65 1.58 1.70 1.72 1.76 1.80人数 3 4 6 7 6 4则这30名学生身高的众数和中位数分别是( )A .7,1.71m mB .1.72,1.70m mC .1.72,1.71m mD .1.72,1.72m m2.京津冀都市圈是指以北京、天津两座直辖市以及河北省的保定、廊坊、唐山、邯郸、邢台、秦皇岛、沧州、衡水、承德、张家口和石家庄为中心的区域.若“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,则与图中张家口的位置对应的“数对”为A .(176,145°)B .(176,35°)C .(100,145°)D .(100,35°)3.在同一平面直角坐标系中,函数y =ax 2+bx 与y =﹣bx +a 的图象可能是( )A .B .C .D .4.如图,在▱ABCD 中,AB =6,BC =8,∠BCD 的平分线交AD 于点E ,交BA 的延长线于点F ,则AE +AF 的值等于( )A .2B .3C .4D .65.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,3,33==AO BO ,则菱形ABCD 的面积是( )A .18B .183C .36D .3636.如图,△ABC 中,D 、E 分别是AB 、AC 上点,DE∥BC,AD=2,DB=1,AE=3,则EC 长( )A .23 B .1 C .32 D .67.已知ABC ∆,如图,4AC =,5AB =,90C ∠=︒,AC 的垂直平分DE 交AB 于点E ,则DE 的长为()A .3B .2.5C .2D .1.58.直线与轴、轴所围成的直角三角形的面积为( )A .B .C .D .9.把函数y x =与2y x =的图象画在同一个直角坐标系中,正确的是( )A .B .C .D .10.满足下列条件的三角形中,不是直角三角形的是( )A .三内角的度数之比为1∶2∶3B .三内角的度数之比为3∶4∶5C .三边长之比为3∶4∶5D .三边长的平方之比为1∶2∶311.在三角形纸片ABC 中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC 相似的是( ) A . B . C . D .12.如图,过点A 的一次函数的图象与正比例函数2y x =的图象相交于点,B 则这个一次函数的解析式是( )A . 3y x =-+B .23y x =-+C .23y x =-D .3y x =--二、填空题(每题4分,共24分)13.在▱ABCD 中,如果∠A+∠C=140°,那么∠B= 度.14.在□ABCD 中,∠A =105º,则∠D =__________.15. “赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a ,较短直角边长为b ,若ab=8,大正方形的面积为25,则小正方形的边长为_____.16.若112a b-=,则422a ab ba ab b+---的值是________17.若直角三角形的两边分别为1分米和2分米,则斜边上的中线长为_________.18.使21x-有意义的x的取值范围是______.三、解答题(共78分)19.(8分)如图,长方形ABCD中,点P沿着边按B C D A→→→.方向运动,开始以每秒m个单位匀速运动、a 秒后变为每秒2个单位匀速运动,b秒后恢复原速匀速运动,在运动过程中,ABP∆的面积S与运动时间t的函数关系如图所示.(1)直接写出长方形的长和宽;(2)求m,a,b的值;(3)当P点在AD边上时,直接写出S与t的函数解析式.20.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点,以格点为顶点按下列要求画图:(1)在图①中画一条线段AB,使AB=5;(2)在图②中画一个以格点为顶点,面积为2的正方形ABCD.21.(8分)如图,平面直角坐标系中,一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()3C m ,. (1)求m 的值及2l 的解析式;(2)求AOC BOC S S -的值;(3)一次函数1y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.22.(10分)某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A :4棵;B :5棵;C :6棵;D :7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:① 小宇的分析是从哪一步开始出现错误的?② 请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.23.(10分)化简:(1)22414a a ++- (2)222222x y x xy x xy y x y ⎛⎫-÷- ⎪+++⎝⎭ 24.(10分)今年5月19日为第29个“全国助残日”我市某中学组织了献爱心捐款活动,该校数学课外活动小组对本次捐款活动做了一次抽样调查,并绘制了如下不完整的频数分布表和频数分布直方图(每组含前一个边界,不含后一个边界). 捐款额(元) 频数百分比 510x < 37.5% 1015x <7 17.5% 1520x < ab 2025x < 1025% 2530x < 615% 总计100% (1)填空:a =________,b =________.(2)补全频数分布直方图.(3)该校有2000名学生估计这次活动中爱心捐款额在1525x <的学生人数.25.(12分)如图,直线y =kx +b (k ≠0)与两坐标轴分别交于点B 、C ,点A 的坐标为(﹣2,0),点D 的坐标为(1,0).(1)求直线BC 的函数解析式.(2)若P (x ,y )是直线BC 在第一象限内的一个动点,试求出△ADP 的面积S 与x 的函数关系式,并写出自变量x 的取值范围.(3)在直线BC 上是否存在一点P ,使得△ADP 的面积为3?若存在,请直接写出此时点P 的坐标,若不存在,请说明理由.26.如图,已知直线AB 的函数解析式为28y x =-+,直线与x 轴交于点A,与y 轴交于点B .(1)求A 、B 两点的坐标;(2)若点P(m ,n)为线段AB 上的一个动点(与A 、B 不重合),过点P 作PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,连接EF ; ①若△PAO 的面积为S ,求S 关于m 的函数关系式,并写出m 的取值范围;②是否存在点P ,使EF 的值最小?若存在,求出EF 的最小值;若不存在,请说明理由.参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【题目详解】解:由图可得出这组数据中1.72m 出现的次数最多,因此,这30名学生身高的众数是1.72m ;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这30名学生身高的中位数是1.72m.故选:D.【题目点拨】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.2、A【解题分析】根据题意,画出坐标系,再根据题中信息进行解答即可得.【题目详解】建立坐标系如图所示,∵“数对”(190,43°) 表示图中承德的位置,“数对”(160,238°) 表示图中保定的位置,∴张家口的位置对应的“数对”为(176,145°),故选A.【题目点拨】本题考查了坐标位置的确定,解题的关键是明确题意,画出相应的坐标系.3、B【解题分析】首先根据图形中给出的一次函数图象确定a、b的符号,进而运用二次函数的性质判断图形中给出的二次函数的图象是否符合题意,根据选项逐一讨论解析,即可解决问题.【题目详解】解:A、对于直线y=-bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意;B、对于直线y=-bx+a来说,由图象可以判断,a>0,b<0;而对于抛物线y=ax2+bx来说,图象开口向上,对称轴x=-2b a>0,在y 轴的右侧,符合题意,图形正确; C 、对于直线y=-bx+a 来说,由图象可以判断,a <0,b <0;而对于抛物线y=ax 2+bx 来说,对称轴x=-2b a <0,应位于y 轴的左侧,故不合题意;D 、对于直线y=-bx+a 来说,由图象可以判断,a >0,b <0;而对于抛物线y=ax 2+bx 来说,图象应开口向下,故不合题意.故选:B .【题目点拨】此题主要考查了一次函数、二次函数图象的性质及其应用问题;解题的方法是首先根据其中一次函数图象确定a 、b 的符号,进而判断另一个函数的图象是否符合题意;解题的关键是灵活运用一次函数、二次函数图象的性质来分析、判断、解答.4、C【解题分析】解:∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD=BC=8,CD=AB=6,∴∠F=∠DCF ,∵∠C 平分线为CF ,∴∠FCB=∠DCF ,∴∠F=∠FCB ,∴BF=BC=8,同理:DE=CD=6,∴AF=BF−AB=2,AE=AD−DE=2∴AE+AF=4故选C5、B【解题分析】先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.【题目详解】∵四边形ABCD 是菱形,∴BD=2BO ,AC=2AO ,∵∴BD=63,AC=6, ∴菱形ABCD 的面积=12×AC×BD=12×63×6=183. 故选B.【题目点拨】此题主要考查菱形的对角线的性质和菱形的面积计算. 6、C【解题分析】试题解析:∵D 、E 分别是AB 、AC 上点,DE //BC , ∴AD AE BD EC= ∵AD =2,DB =1,AE =3,∴·31322AE BD EC AD ⨯=== 故选C.7、D【解题分析】根据中位线的性质得出//DE BC ,1=2DE BC ,然后根据勾股定理即可求出DE 的长. 【题目详解】 DE 垂直平分AC ,DE ∴为ACB ∆中BC 边上的中位线,∴//DE BC ,1=2DE BC 在Rt ACB ∆中, 22543BC =-=,1.5DE ∴=.故选D .【题目点拨】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.8、C【解题分析】 先根据一次函数图象上的坐标特征和坐标轴上点的坐标特征确定直线与两条坐标轴的交点坐标,然后根据三角形的面积公式求解.【题目详解】解:把x=0代入得y=-1,则直线与y 轴的交点坐标为(0,-1); 把y=0代入得2x-1=0,解得x=2,则直线与x 轴的交点坐标为(2,0), 所以直线与x 轴、y 轴所围成的三角形的面积=×2×1=1. 故选:C .【题目点拨】本题考查了一次函数图象上点的坐标特征,直线与坐标轴的交点问题,掌握求直线与坐标轴的交点是解题的关键. 9、D【解题分析】根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【题目详解】解:函数y x =中10k =>,所以其图象过一、三象限,函数2y x =中20k =>,所以其图象的两支分别位于第一、三象限,符合的为D 选项.故选D.【题目点拨】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键. 10、B【解题分析】试题解析:A 、因为根据三角形内角和定理可求出三个角分别为30度,60度,90度,所以是直角三角形;B 、根据三角形内角和定理可求出三个角分别为45度,60度,75度,所以不是直角三角形;C 、因为32+42=52,符合勾股定理的逆定理,所以是直角三角形;D 、因为1+2=3,所以是直角三角形.故选B .11、D【解题分析】解:三角形纸片ABC 中,AB =8,BC =4,AC =1.A .44182AB ==,对应边631842AC AB ==≠,则沿虚线剪下的涂色部分的三角形与△ABC 不相似,故此选项错误;B.338AB=,对应边633848ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;C.22163AC==,对应边631843ACAB==≠,则沿虚线剪下的涂色部分的三角形与△ABC不相似,故此选项错误;D.22142BC==,对应边411822BCAB===,则沿虚线剪下的涂色部分的三角形与△ABC相似,故此选项正确;故选D.点睛:此题主要考查了相似三角形的判定,正确利用相似三角形两边比值相等且夹角相等的两三角形相似是解题关键.12、A【解题分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【题目详解】解:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组32bk b=⎧⎨+=⎩,解得31bk=⎧⎨=-⎩,则这个一次函数的解析式为y=-x+3,故选:A.【题目点拨】此题主要考查了待定系数法求一次函数解析式,解决问题的关键是利用一次函数的特点,来列出方程组,求出未知数,即可写出解析式.二、填空题(每题4分,共24分)13、1.【解题分析】根据平行四边形的性质,对角相等以及邻角互补,即可得出答案.解:∵平行四边形ABCD,∴∠A+∠B=180°,∠A=∠C,∵∠A+∠C=140°,∴∠A=∠C=70°,∴∠B=1°.故答案为1.14、75︒【解题分析】根据平行四边形的对角相等的性质即可求解.【题目详解】解:在□ABCD中,//AB CD180A D∴∠+∠=︒∠A=105º,∴180********D A∠=︒-∠=︒-︒=︒故答案为:75︒【题目点拨】本题考查平行四边形的性质,利用平行四边形对角相等的性质是解题的关键.15、3【解题分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长. 【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:12ab=12×8=4,∴4×12ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.16、2-5. 【解题分析】 解:∵1a ﹣1b =2,∴a ﹣b =﹣2ab ,∴原式=42a b ab a b ab -+--()()=244ab ab ab ab -+--=25ab ab -=﹣25.故答案为﹣25.17、1分米. 【解题分析】分2是斜边时和2是直角边时,利用勾股定理列式求出斜边,然后根据直角三角形斜边上的中线等于斜边的一半解答.【题目详解】2是斜边时,此直角三角形斜边上的中线长=12×2=1分米,2是直角边时,斜边此直角三角形斜边上的中线长=122分米,综上所述,此直角三角形斜边上的中线长为1分米.故答案为1分米. 【题目点拨】 本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,难点在于分情况讨论.18、1x >【解题分析】根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【题目详解】 解:依题意得:201x -≥且x-1≠0, 解得1x >.故答案为:1x >.【题目点拨】0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.三、解答题(共78分)19、(1)长方形的长为8,宽为1;(2)m=1,a=1,b=11;(3)S与t的函数解析式为448(811)226(1113)t tSt t-+≤≤⎧=⎨-+<≤⎩.【解题分析】(1)由图象可知:当6≤t≤8时,△ABP面积不变,由此可求得长方形的宽,再根据点P运动到点C时S△ABP=16,即可求出长方形的长;(2)由图象知当t=a时,S△ABP=8=12S△ABP,可判断出此时点P的位置,即可求出a和m的值,再根据当t=b时,S△ABP=1,可求出AP的长,进而可得b的值;(3)先判断S与t成一次函数关系,再用待定系数法求解即可.【题目详解】解:(1)从图象可知,当6≤t≤8时,△ABP面积不变,∴6≤t≤8时,点P从点C运动到点D,且这时速度为每秒2个单位,∴CD=2(8-6)=1,∴AB=CD=1.当t=6时(点P运动到点C),由图象知:S△ABP=16,∴12AB•BC=16,即12×1×BC=16.∴BC=8.∴长方形的长为8,宽为1.(2)当t=a时,S△ABP=8=12×16,此时点P在BC的中点处,∴PC=12BC=12×8=1,∴2(6-a)=1,∴a=1.∵BP=PC=1,∴m=BPa=44=1.当t=b时,S△ABP=12AB•AP=1,∴12×1×AP=1,AP=2.∴b=13-2=11.故m=1,a=1,b=11.(3)当8≤t≤11时,S关于t的函数图象是过点(8,16),(11,1)的一条线段,可设S =kt +b ,∴816114k b k b +=⎧⎨+=⎩,解得448k b =-⎧⎨=⎩,∴S =-1t +18(8≤t ≤11). 同理可求得当11<t ≤13时,S 关于t 的函数解析式为S=-2t +26(11<t ≤13).∴S 与t 的函数解析式为448(811)226(1113)t t S t t -+≤≤⎧=⎨-+<≤⎩. 【题目点拨】本题是一次函数的综合题,重点考查了动点问题的函数图象和用待定系数法求一次函数的解析式,弄清题意,抓住动点运动中的几个关键点,读懂图象所提供的信息是解题的关键.20、(1)详见解析;(2)详见解析.【解题分析】(1)利用勾股定理即可解决问题.(2)利用数形结合的思想,画一个边长为2的正方形即可.【题目详解】解:(1)线段AB 如图所示.(2)正方形ABCD 如图所示.【题目点拨】本题考查作图﹣应用与设计,勾股定理等知识,解题的关键是熟练掌握基本知识,学会利用数形结合的思想解决问题.21、(1)m=2;2l 的解析式为:32y x =;(2)8;(3)k 的值为12-或32或1 【解题分析】(1)将点C 坐标代入142y x =-+即可求出m 的值,利用待定系数法即可求出l 2的解析式; (2)根据一次函数142y x =-+,可求出A (8,0),B (0,4),结合点C 的坐标,利用三角形面积的计算公式即可求出AOC BOC S S -的值;(3)若1l ,2l ,3l 不能围成三角形,则有三种情况,①当l 1∥l 3时;②当l 2∥l 3时;③当l 3过点C 时,根据得出k 的值即可.【题目详解】解:(1)将点()3C m ,代入142y x =-+得1342m =-+,解得m=2, ∴C (2,3)设l 2的解析式为y=nx ,将点C 代入得:3=2n ,∴32n =, ∴2l 的解析式为:32y x =; (2)如图,过点C 作CE ⊥y 轴于点E ,作CF ⊥x 轴于点F ,∵C (2,3)∴CE=2,CF=3,∵一次函数142y x =-+的图象1l 分别与x ,y 轴交于A ,B 两点, ∴当x=0时,y=4,当y=0时,x=8,∴A (8,0),B (0,4),∴OA=8,OB=4,∴1111834282222AOC BOC OA CF OB CE S S =⋅-⋅=⨯-⨯-⨯⨯=(3)①当l 1∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=12-; ②当l 2∥l 3时,1l ,2l ,3l 不能围成三角形,此时k=32; ③当l 3过点C 时,将点C 代入1y kx =+中得:321k =+,解得k=1,综上所述,k 的值为12-或32或1. 【题目点拨】 本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.22、解:(1)D 错误(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的.②1278(颗)【解题分析】分析:(1)条形统计图中D 的人数错误,应为20×10%. (2)根据条形统计图及扇形统计图得出众数与中位数即可.(2)①小宇的分析是从第二步开始出现错误的;②求出正确的平均数,乘以260即可得到结果.解:(1)D 错误,理由为:∵共随机抽查了20名学生每人的植树量,由扇形图知D 占10%,∴D 的人数为20×10%=2≠2.(2)众数为1,中位数为1.(2)①小宇的分析是从第二步开始出现错误的. ②44586672x 5.320⨯+⨯+⨯+⨯==(棵). 估计260名学生共植树1.2×260=1278(颗) 23、(1)2a a -;(2)2x. 【解题分析】(1)根据平方差公式和提公因式法,对分式进行化简即可(2)利用完全平方公式和平方差公式,进行化简,再对括号里面的分式进行通分约分,再把除法转化为乘法,即可解答【题目详解】(1)原式2122a a a =+=-- 或:原式22242a a a a a +==--(2)原式()()()2222x y x y x xy x y x y x y x y x x y x+---=÷=⋅=+++- 【题目点拨】此题考查分式的化简求值,掌握运算法则是解题关键24、(1)14a =,35%b =;(2)详见解析;(3)估计这次活动中爱心捐款额在1525x <的学生有1200人【解题分析】(1)先根据5≤x<l0的频数及其百分比求出样本容量,再根据各组频数之和等于总人数求出a 的值,继而由百分比的概念求解可得;(2)根据所求数据补全图形即可得;(3)利用200060%1200⨯=可以求得.【题目详解】(1)样本容量=3÷0.75%=40,∴14a =,35%b =.(2)补图如下.(3)200060%1200⨯=(人).答:估计这次活动中爱心捐款额在1525x <的学生有1200人.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.25、(1)243y x =-+;(2)S =﹣x +6(0<x <6);(3)点P 的坐标是(3,2),P ′(9,﹣2). 【解题分析】(1)设直线BC 的函数关系式为y =kx +b (k ≠0),把B 、C 的坐标代入求出即可;(2)求出y =﹣23x +4和AD =3,根据三角形面积公式求出即可; (3)把S =3代入函数解析式,求出x ,再求出y 即可.【题目详解】解:(1)设直线BC 的函数关系式为y =kx +b (k ≠0),由图象可知:点C 坐标是(0,4),点B 坐标是(6,0),代入得:460b k b =⎧⎨+=⎩, 解得:k =﹣23,b =4, 所以直线BC 的函数关系式是y =﹣23x +4; (2)∵点P (x ,y )是直线BC 在第一象限内的点,∴y >0,y =﹣23x +4,0<x <6, ∵点A 的坐标为(﹣2,0),点D 的坐标为(1,0),∴AD =3,∴S △ADP =12×3×(﹣23x +4)=﹣x +6, 即S =﹣x +6(0<x <6);(3)当S =3时,﹣x +6=3,解得:x =3,y =﹣23×3+4=2, 即此时点P 的坐标是(3,2),根据对称性可知当当P 在x 轴下方时,可得满足条件的点P′(9,﹣2).【题目点拨】本题考查了用待定系数法求一次函数的解析式和一次函数图象上点的坐标特征,能正确求出直线BC 的解析式是解此题的关键.26、(1)A (4,0),B (0,8);(2)S =﹣4m +16,(0<m <4);(3,理由见解析 【解题分析】试题分析:(1)根据坐标轴上点的特点直接求值,(2)①由点在直线AB 上,找出m 与n 的关系,再用三角形的面积公式求解即可;②判断出EF 最小时,点P 的位置,根据三角形的面积公式直接求解即可.试题解析:(1)令x=0,则y=8,∴B (0,8),令y=0,则﹣2x+8=0,∴x=4,∴A (4,0),(2)∵点P (m ,n )为线段AB 上的一个动点,∴﹣2m+8=n ,∵A (4,0),∴OA=4,∴0<m <4∴S △PAO =12OA×PE=12×4×n=2(﹣2m+8)=﹣4m+16,(0<m <4); (3)存在,理由如下:∵PE ⊥x 轴于点E ,PF ⊥y 轴于点F ,OA ⊥OB ,∴四边形OEPF 是矩形,∴EF=OP ,当OP ⊥AB 时,此时EF 最小,∵A (4,0),B (0,8),∴∵S △AOB=12OA×OB=12AB×OP ,∴OP=OA OB AB ⨯==,∴EF 最小 【题目点拨】主要考查了坐标轴上点的特点,三角形的面积公式,极值的确定,解本题的关键是求出三角形PAO 的面积.。
八年级下册数学湖州数学期末试卷测试卷(word版,含解析)
八年级下册数学湖州数学期末试卷测试卷(word 版,含解析) 一、选择题 1.若y =242x x -+-﹣3,则(x +y )2021等于( )A .1B .5C .﹣5D .﹣12.下列说法错误的是( )A .△ABC 中,若有∠A +∠B =∠C ,则△ABC 是直角三角形B .△ABC 中,若有∠A ∶∠B ∶∠C =1∶2∶3,则△ABC 是直角三角形C .△ABC 的三边长分别为:a ,b ,c ,且a 2﹣b 2=c 2,则△ABC 是直角三角形D .在一个直角三角形中,有两边的长度分别是3和5,则第三边的长度是43.下列命题正确的是( )A .对角线互相垂直的四边形是菱形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直且相等的四边形是正方形D .一组对边相等,另一组对边平行的四边形是平行四边形4.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.关于这组数据,下列说法错误的是( )A .众数是6B .中位数是6C .平均数是6D .方差是4 5.某三角形三条中位线的长分别为3、4、5,则此三角形的面积为( )A .6B .12C .24D .48 6.如图,在菱形ABCD 中,AC 与BD 相交于点O ,BC 的垂直平分线EF 分别交BC ,AC 于点E ,F ,连接DF ,若70BCD ∠=︒,则ADF ∠的度数是( )A .60°B .75C .80°D .110°7.如图,矩形ABCD 中,AB =7,BC =6,点F 是BC 的中点,点E 在AB 上,且AE =2,连接DF ,CE ,点G 、H 分别是DF ,CE 的中点,连接GH ,则线段GH 的长为( )A .210B .13C .10.D .1328.货车和轿车分别沿同一路线从A 地出发去B 地,已知货车先出发10分钟后,轿车才出发,当轿车追上货车5分钟后,轿车发生了故障,花了20分钟修好车后,轿车按原来速度的910继续前进,在整个行驶过程中,货车和轿车均保持各自的速度匀速前进,两车相距的路程y (米)与货车出发的时间x (分钟)之间的关系的部分图象如图所示,对于以下说法:①货车的速度为1500米/分;②OA//CD ;③点D 的坐标为()65,27500;④图中a 的值是4703,其中正确的结论有( )个A .1B .2C .3D .4二、填空题9.若232(2)x x -+--有意义,则x 的取值范围是_______________.10.在菱形ABCD 中,对角线4,7,AC cm BD cm ==则菱形的面积为__________2.cm 11.《九章算术》是我国古代重要的数学著作之一,其中记载了一道“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?译为:如图所示,ABC 中,90,ACB ∠=︒10,3,AC AB BC +==求AC 的长.在这个问题中,可求得的长为_________.12.如图,矩形ABCD 的对角线AC 与BD 相交点O ,6AB =,8BC =,P ,Q 分别为AO ,AD 的中点,则PQ 的长度为______.13.直线y =kx +b 的图象如图所示,则代数式2k ﹣b 的值为 _____.14.如图,在ABC 中,AD ,CD 分别平分BAC ∠和ACB ∠,//AE CD ,//CE AD .若从以下三个条件:①AB AC =;②BA BC =;③AC BC =中选择一个作为已知条件,则能使四边形ADCE 为菱形的是_______(填序号).15.正方形111A B C O ,2221A B C C ,3332A B C C ,…,按如图所示的方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,已知点()11,1B ,()23,2B ,则n B 的横坐标是_____.16.如图,在平面直角坐标系中,点A 的坐标为()0,1,点B 在x 轴上,60OAB ∠=︒,作点O 关于AB 的对称点C ,连接AC ,BC ,则点C 的坐标为__________.三、解答题17.计算下列各式的值(1)271462÷⨯ (2)183222-+ (3)3121232(83)42⨯÷-- (4)2(31)4x -=18.如图,小明将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆5m 处,发现此时绳子末端距离地面1m ,求旗杆的高度.(滑轮上方的部分忽略不计)19.如图,网格中每个小正方形的边长都为1.(1)求四边形ABCD 的面积;(2)求BCD ∠的度数.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 . 21.阅读下面的解答过程,然后作答: 有这样一类题目:将2a b +化简,若你能找到两个数 m 和n ,使m2+n2=a 且 mn=b ,则a+2b 可变为m2+n2+2mn ,即变成(m+n )2,从而使得2a b +化简.例如:∵5+26=3+2+26=(3)2+(2)2+26=(3+2)2∴526+=()232+=3+2请你仿照上例将下列各式化简(1)423+,(2)7210-.22.亮亮奶茶店生产A 、B 两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现A 种奶茶每杯生产时间为4分钟,B 种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟.(1)设每天生产A 种奶茶x 杯,生产B 种奶茶y 杯,求y 与x 之间的函数关系式; (2)由于A 种奶茶比较受顾客青睐,亮亮决定每天生产A 种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若A 种奶茶每杯利润为3元,B 种奶茶每杯利润为1元,求亮亮每天获得的最大利润.23.如图,在▱ABCD 中,连接BD ,AB BD ⊥,且AB BD =,E 为线段BC 上一点,连接AE 交BD 于F .(1)如图1,若22AB =,BE =1,求AE 的长度;(2)如图2,过D 作DH ⊥AE 于H ,过H 作HG ⊥AD 交AD 于G ,交BD 于M ,过M 作MN ∥AD 交AE 于N ,连接BN ,证明:2NH BN =;(3)如图3,点E 在线段BC 上运动时,过D 作DH ⊥AE 于H ,延长DH 至Q ,使得12QH AH =,M 为AD 的中点,连接QM ,若42AD =,当QM 取最大值时,请直接写出△ADH 的面积.24.如图,A ,B 是直线与坐标轴的交点,直线过点B ,与x 轴交于点C .(1)求A ,B ,C 三点的坐标. (2)当点D 是AB 的中点时,在x 轴上找一点E ,使的和最小,画出点E 的位置,并求E 点的坐标.(3)若点D 是折线上一动点,是否存在点D ,使为直角三角形,若存在,直接写出D 点的坐标;若不存在,请说明理由.25.综合与实践问题情境:数学课上,同学们以等腰直角三角形为背景探究图形变化中的数学问题.如图1,将两张等腰直角三角形纸片重叠摆放在桌面,其中90BAC EDF ∠=∠=︒,AB AC =,DE DF =,点A ,D 在EF 的同侧,点B ,C 在线段EF 上,连接DA 并延长DA 交EF 于点O ,已知DO EF ⊥.将DEF 从图1中的位置开始,绕点O 顺时针旋转(ABC 保持不动),旋转角为α.数学思考:(1)“求索小组”的同学发现图1中BE CF =,请证明这个结论;操作探究:(2)如图2,当0180α︒<<︒时,“笃行小组”的同学连接线段AD ,BE . 请从下面A ,B 两题中任选一题作答.我选择________题.A .①猜想AD ,BE 满足的数量关系,并说明理由;②若2OE AB ==,请直接写出45α=︒时,C ,E 两点间的距离;B .①猜想AD ,BE 满足的位置关系,并说明理由;②若2OE AB ==,请直接写出点F 落在AC 延长线时,C ,F 两点间的距离.【参考答案】一、选择题1.D解析:D【分析】直接利用二次根式中的被开方数是非负数,进而得出x的值,进而得出y的值,再利用有理数的乘方运算法则计算得出答案.【详解】解:由题意可得:x﹣2≥0且4﹣2x≥0,解得:x=2,故y=﹣3,则(x+y)2021=﹣1.故选:D.【点睛】此题主要考查了二次根式有意义的条件以及有理数的乘方运算,正确掌握被开方数的符号是解题关键.2.D解析:D【分析】根据勾股定理的逆定理和三角形内角和定理判断即可.【详解】解:A、△ABC中,若有∠A+∠B=∠C,则∠C=90°,∴△ABC是直角三角形,说法正确;B、△ABC中,若有∠A∶∠B∶∠C=1∶2∶3,则∠C=90°,∴△ABC是直角三角形,说法正确;C、△ABC的三边长分别为:a,b,c,且a2﹣b2=c2,则a2=b2+c2,∴△ABC是直角三角形,说法正确;D、在一个直角三角形中,有两边的长度分别是3和5,则第三边的长度是434错误;故选:D.【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.B解析:B【解析】【分析】利用菱形、矩形、平行四边形及正方形的判定方法逐一判断即可答案.【详解】A.对角线互相垂直且平分的四边形是菱形,故该选项错误,不符合题意,B.对角线互相平分且相等的四边形是矩形,故该选项正确,符合题意,C.对角线互相垂直平分且相等的四边形是正方形,故该选项错误,不符合题意,D.一组对边相等,另一组对边也相等的四边形是平行四边形,故该选项错误,不符合题意,故选:B .【点睛】本题考查命题与定理,熟练掌握菱形、矩形、平行四边形及正方形的判定方法是解题关键.4.D解析:D【解析】【分析】根据统计图得出10户家庭的用水量数据,求得众数,中位数,平均数,方差,进而逐项判断即可【详解】根据统计图可得这10户家庭的用水量分别为:5,5,6,6,6,6,6,6,7,7其中6出现了6次,次数最多,故众数是6,故A 选项正确,不符合题意;这组数据的中位数为:6,故B 选项正确,不符合题意; 这组数据的平均数为1(256672)610⨯+⨯+⨯=,故C 选项正确,不符合题意; 这组数据的方差为:()()()222212566662760.410S ⎡⎤=⨯-+⨯-+⨯-=⎣⎦,故D 选项不正确,符合题意.故选D .【点睛】本题考查了求众数,中位数,平均数,方差,掌握方差的计算公式是解题的关键.方差的计算公式:2222121[()()()]n s x x x x x x n=-+-++-….5.C解析:C【分析】先根据三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,即求出原三角形的边长分别为6、8、10,再根据勾股定理的逆定理判断原三角形的形状,即可根据三角形面积公式求得面积.【详解】解:∵三角形三条中位线的长为3、4、5,∴原三角形三条边长为3264285210⨯=⨯=⨯=,,,2226810+=,∴此三角形为直角三角形, 168242S ∴=⨯⨯=, 故选C .【点睛】本题考查的是三角形的中位线定理、勾股定理的逆定理,属于基础应用题,熟知性质定理是解题的关键.6.B解析:B【解析】【分析】连接BF ,由菱形的性质得∠DCF =∠BCF =35°,AC 垂直平分BD ,AD ∥BC ,再由线段垂直平分线的性质得BF =DF ,BF =CF ,则DF =CF ,得∠CDF =∠DCF =35°,然后求出∠ADC =110°,求解即可.【详解】解:连接BF ,如图所示:∵四边形ABCD 是菱形,∴∠DCF =∠BCF =12∠BCD =35°,AC 垂直平分BD ,AD ∥BC ,∴BF =DF ,∵EF 是BC 的垂直平分线,∴BF =CF ,∴DF =CF ,∴∠CDF =∠DCF =35°,∵AD ∥BC ,∴∠ADC +∠BCD =180°,∴∠ADC =180°-70°=110°,∴∠ADF =110°-35°=75°,故选:B .【点睛】本题考查了菱形的性质、线段垂直平分线的性质、等腰三角形的性质以及平行线的性质等知识;熟练掌握菱形的性质,证出DF =CF 是解题的关键.7.D解析:D【解析】【分析】取AD 中点M ,连接,CM FM ,过G 作GN FM ⊥于N ,根据已知条件以及三角形中位线定理,求得,GN NH ,进而勾股定理解决问题.【详解】如图,取AD 中点M ,连接,CM FM ,过G 作GN FM ⊥于N ,四边形ABCD 是矩形,,AD BC DC AB ∴==,90ADC ∠=︒,//,MD CF MD CF =∴四边形DMFC 是平行四边形,点F 是BC 的中点,AB =7,BC =6,3,7DM CF MF DC AB ∴=====,90ADC ∠=︒,∴四边形DMFC 是矩形,DF MC ∴=,点G 、H 分别是DF ,CE 的中点,,MC DF ∴交于点G ,GM FG =,72MN NF ∴==,1322NG DM ==, 点H 是CE 的中点,点F 是BC 的中点, ∴115()222HF EB AB AE ==-=, 75122NH NF HF ∴=-=-=, 在Rt GNH △中GH ∴=, 故选D【点睛】本题考查了矩形的性质,三角形中位线定理,勾股定理,添加辅助,构造Rt GNH △是解题的关键.8.D解析:D【分析】先设出货车的速度和轿车故障前的速度,再根据货车先出发10分钟后轿车出发,桥车发生故障的时间和两车相遇的时间,根据路程=速度×时间列出方程组求解可判断①;利用待定系数法求OA 与CD 解析式可判断②,先求出点C 货车的时间,用轿车修车20分钟-BC 段货车追上轿车时间乘以货车速度,求出点D 的坐标可判断③;求出轿车速度2000×910=1800(米/分),到x =a 时轿车追上货车两车相遇,列方程(a -65)×(1800-1500)=27500,解得a =4703可判断④. 【详解】解:由图象可知,当x =10时,轿车开始出发;当x =45时,轿车开始发生故障,则x =45-5=40(分钟),即货车出发40分钟时,轿车追上了货车,设货车速度为x 米/分,轿车故障前的速度为y 米/分,根据题意,得:()()()()10401045402500x y x y x ⎧=--⎪⎨--=⎪⎩, 解得:15002000x y =⎧⎨=⎩, ∴货车的速度为1500米/分,轿车故障前的速度是2000米/分,故①货车的速度为1500米/分正确;∵A (10,15000)设OA 解析式:y kx b =+过点O (0,0)与点A ,代入坐标得01015000b k b =⎧⎨+=⎩解得01500b k =⎧⎨=⎩ ∴OA 解析式:1500y x =点C 表示货车追上轿车,从B 到C 表示货车追及的距离是2500,货车所用速度为1500, 追及时间为25005=15003分 点C (1403,0) CD 段表示货车用20-555=33分钟行走的路程, D 点的横坐标为45+20=65分,纵坐标551500=275003⨯米, ∴D (65,27500)故③点D 的坐标为()65,27500正确;设CD 解析式为11y k x b =+,代入坐标得1111140036527500k b k b ⎧+=⎪⎨⎪+=⎩ 解得11=1500-70000k b ⎧⎨=⎩ ∴CD 解析式为1500-70000y x =∵OA 与CD 解析式中的k 相同,∴OA ∥CD ,∴②OA//CD 正确;D 点表示轿车修好开始继续行驶时,轿车的速度变为原来的910,即此时轿车的速度为:2000×910=1800(米/分), 到x =a 时轿车追上货车两车相遇,∴(a -65)×(1800-1500)=27500,解得a =65+27547033=, 即图中a 的值是4703; 故④图中a 的值是4703正确, 正确的结论有4个.故选择D .【点睛】本题考查一次函数图像与行程问题的应用,解答本题的关键是明确题意,从图像中获取信息,利用一次函数的性质和数形结合的思想,方程思想解答.二、填空题9.3x ≥-且2x ≠【解析】【分析】 由3x +有意义可得30,x +≥ 由222x 有意义可得20,x -≠ 再解不等式组,从而可得答案.【详解】解: 232(2)x x -+--有意义, 3020x x ①②由①得:3,x ≥-由②得:2,x ≠所以x 的取值范围是:3x ≥-且2,x ≠故答案为:3x ≥-且2x ≠【点睛】本题考查的是二次根式有意义的条件,负整数指数幂的含义,由二次根式有意义的条件,结合负整数指数幂的含义列出不等式组是解本题的关键.10.A解析:14【解析】【分析】根据菱形的面积=两条对角线长乘积的一半进行计算即可.【详解】如图所示:∵菱形ABCD 中,对角线AC=4cm ,BD=7cm ,∴菱形ABCD 的面积12=AC ⋅BD 12=×4×7=14(cm 2); 故答案为:14.【点睛】本题考查了菱形的性质,熟记菱形的面积=两条对角线长乘积的一半是解题的关键. 11.A解析:55【分析】设AC=x ,可知AB=10-x ,再根据勾股定理即可得出结论.【详解】解:设AC=x ,∵AC+AB=10,∴AB=10-x .在Rt △ABC 中,∠ACB=90°,∴AC 2+BC 2=AB 2,即x 2+32=(10-x)2解得:x=4.55,即AC=4.55.故答案为:4.55.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12.5【分析】先利用勾股定理求解,BD 再利用矩形的性质求解,OD 从而根据中位线的性质可得答案.【详解】 解: 矩形ABCD ,6AB =,8BC =,18,90,,2AD BAD OB OD BD ∴=∠=︒==10,5,BD OD ∴===P ,Q 分别为AO ,AD 的中点,1 2.5.2PQ OD ∴== 故答案为:2.5.【点睛】本题考查的是矩形的性质,勾股定理的应用,三角形的中位线的性质,灵活应用以上知识是解题的关键.13.-3【分析】将点(2,3)P -代入y kx b =+即可求解.【详解】解:y kx b =+的图象经过点(2,3)P -,32k b ∴=-+,23k b ∴-=-,故答案为3-.本题考查一次函数图象上点的特征,熟练掌握点与一次函数解析式的关系是解题的关键. 14.B解析:②【分析】当BA=BC 时,四边形ADCE 是菱形.只要证明四边形ADCE 是平行四边形,DA=DC 即可解决问题.【详解】解:当BA BC =时,四边形ADCE 是菱形.理由://AE CD ,//CE AD ,∴四边形ADCE 是平行四边形.∵BA BC =,∴BAC BCA ∠=∠.∵AD ,CD 分别平分BAC ∠和ACB ∠,∴DAC DCA ∠=∠,∴DA DC =,∴四边形ADCE 是菱形.故答案为:②.【点睛】本题考查菱形的判断、平行四边形的判断和性质、角平分线的定义、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【分析】根据,,,,……,即可归纳出的横坐标.【详解】解:∵点,,,…和点,,,…分别在直线和轴上,已知点,,∴(0,1),(1,2),(3,4),……,∴,(7,8),,∴,故答案解析:12n -【分析】根据()11,1B ,()23,2B ,()37,4B ,()415,8B ,……,即可归纳出n B 的横坐标.【详解】解:∵点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,已知点()11,1B ,()23,2B ,∴1A (0,1),2A (1,2),3A (3,4),……,∴()37,4B ,4A (7,8),()415,8B ,∴()121,2n n n B --,故答案是:12n -.【点睛】本题主要考查一次函数图像和正方形的性质,根据点()11,1B ,()23,2B ,()37,4B ,()415,8B ,找出n B 横坐标的变化规律,是解题的关键.16.【分析】先根据题意确定点B 的坐标,然后再确定直线AB 的解析式,然后设点C 的坐标为(x ,y ),然后求出OC 的中点坐标,然后将中点坐标代入解析式即可.【详解】解:∵点A 的坐标为∴OA=1∵,解析:32⎫⎪⎪⎝⎭【分析】先根据题意确定点B 的坐标,然后再确定直线AB 的解析式,然后设点C 的坐标为(x ,y ),然后求出OC 的中点坐标,然后将中点坐标代入解析式即可.【详解】解:∵点A 的坐标为()0,1∴OA=1∵60OAB ∠=︒,即∠OBA=30°∴AB=2∴∴点A的坐标为 设直线AB 的解析式为y=kx+b则有1=k?0b b +⎧⎪⎨+⎪⎩,即1b k =⎧⎪⎨⎪⎩∴y= ∵作点O 关于AB 的对称点C∴直线OC 的解析式为设点C 的坐标为(x ,y ),则OC 的中点坐标为(,22x y )∴12222y x y x ⎧=+⎪⎪⎨⎪=⎪⎩,解得:32x y ⎧=⎪⎪⎨⎪=⎪⎩. ∴点C的坐标为32⎫⎪⎪⎝⎭.故答案为32⎫⎪⎪⎝⎭. 【点睛】本题考查了轴对称变换、一次函数解析式以及相互垂直直线的特点,掌握相互垂直直线的特点和轴对称的对应点的坐标特点是解答本题的关键.三、解答题17.(1);(2);(3)0;(4)或【分析】(1)根据二次根式的乘除计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可;(3)先根据二次根式的性质化简,然解析:(12);(3)0;(4)1x =或13x =- 【分析】(1)根据二次根式的乘除计算法则求解即可;(2)先利用二次根式的性质化简,然后根据二次根式的加减计算法则求解即可; (3)先根据二次根式的性质化简,然后根据二次根式的混合计算法则求解即可; (4)根据求平方根的方法解方程即可.【详解】(1==2=; (2==(3)⎛= ⎝⎭3=÷=-0=; (4)∵()2314x -=,∴312x -=或312x -=-,解得1x =或13x =-. 【点睛】本题主要考查了利用二次根式的性质化简,二次根式的乘除计算,二次根式的混合计算,二次根式的加减计算,求平方根法解方程,熟知相关计算法则是解题的关键.18.13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为m ,即,,中,即解得即旗杆的高度为13米.【点睛】本题考查了勾股解析:13m【分析】根据题意构造直角三角形,然后设旗杆高度为xm ,根据勾股定理即可求解.【详解】如图,设旗杆高度为x m ,即AD x =,1AB x =-,5BC =Rt ABC ∴中,222AB BC AC +=即()22215x x -+=解得13x =即旗杆的高度为13米.【点睛】本题考查了勾股定理的应用,构造直角三角形是解题的关键. 19.(1);(2).【解析】【分析】(1)利用图形的割补法可得四边形的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;(2)连,利用勾股定理分别求解,,,证明是直角三角形解析:(1)352;(2)90BCD ∠=︒. 【解析】【分析】(1)利用图形的割补法可得四边形ABCD 的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;(2)连BD ,利用勾股定理分别求解25CD =,220BC =,225BD =,证明BCD △是直角三角形,从而可得答案.【详解】 解:(1)1111357517241234322222ABCD S =⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯-=四边形 (2)连接BD ,∵222125CD =+=,2222420BC =+=,2224325BD =+=∴222CD BC BD +=∴BCD △是直角三角形,∴90BCD ∠=︒【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用割补法求网格多边形的面积,掌握勾股定理与勾股定理的逆定理是解题的关键.20.(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE=OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证; (2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE =OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE 的面积,又2AE ED =,从而可得三角形CED 的面积,则ABCD 的面积即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴AE //FC .∴∠EAO =∠FCO ,∠AEO =∠CFO .∵EF 平分AC ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.(1)1+;(2).【解析】【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵,∴;(2)∵,∴.解析:(1)2-【解析】【分析】参照范例中的方法进行解答即可.【详解】解:(1)∵22241(1++=,∴1=(2)∵2227-=-=,∴22.(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与的函数关解析:(1)4300y x =-+;(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由A 种奶茶不少于73杯,B 种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与x 的函数关系式,然后依据一次函数的性质求解即可.【详解】(1)∵每天生产的时间为300分钟,由题意得:4300x y +=,4300y x ∴=-+(2)由题意得:7343000x x ≥⎧⎨-+≥⎩解得:7375x ≤≤ x 为整数,73x ∴=,74,75∴不同的生产方案有3种.(3)设每天的利润为w 元,则()343001300W x x x =+-+⨯=-+即300w x =-+10k =-<,w ∴随x 的增大而减小∴当73x =时,w 取最大值,此时73300227W =-+=(元)答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于x 的不等式组是解题的关键.23.(1)见解析;(2)见解析;(3).【分析】(1)分别过点作,垂足分别为,勾股定理解即可;(2)连接,过点作于点,设,经过角度的变换得出,再证明,得出,,结合已知条件,继而证,得出,,进而得到解析:(1)见解析;(2)见解析;(3 【分析】(1)分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S R ,勾股定理解Rt ARE △即可; (2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=,经过角度的变换得出BAN HDB ∠=∠,再证明ATN △≌HGD △,得出,AN HD =,结合已知条件,继而证BAN ≌BDH △,得出ABN DBH ∠=∠,NB HB =,进而得到NBH △是等腰直角三角形,从而得证;(3)分别作,AD AQ 的中垂线,交于点O ,根据作图,先判断MQ 最大的时候的位置,进而由12QH AH =,AD =,AH HD ,从而求得△ADH 的面积 .【详解】(1)如图,分别过点,B E 作,BS AD ER AD ⊥⊥,垂足分别为,S RAB BD ⊥,AB BD =,22AB =ABD ∴是等腰直角三角形,ASB △是等腰直角三角形224AD AB BD ∴=+=∴122AS SD AD ===,2BS AS == 四边形ABCD 是平行四边形//AD BC ∴,BS AD ER AD ⊥⊥,1BE =∴四边形SBER 是矩形∴SR BE =1=,2RE SB ==3AR AS SR ∴=+=在Rt ARE △中22223213AE AR RE =+=+=(2)连接BH ,过点N 作NT AD ⊥于点T ,设BAN α∠=BAD 是等腰直角三角形45BAD BDA ∴∠=∠=︒45HAD BAD BAN α∴∠=∠-∠=︒-DH AE ⊥,9045ADH HAD α∴∠=︒-∠=︒+4545HDB ADH ADB αα∴∠=∠-∠=︒+-︒=BAN HDB ∴∠=∠NT AD ⊥9090(45)45ANT HAD αα∴∠=︒-∠=︒-︒-=︒+,90ATN ∠=︒ANT ADH HDG ∴∠=∠=∠HG AD ⊥90HGD ∴∠=︒ATN HGD ∴∠=∠又45BDA ∠=︒9045DMG MDG ∴∠=︒-∠=︒GD GM ∴=//MN AD ,HG AD ⊥,NT AD ⊥∴四边形TNMG 是矩形GM TN ∴=TN GD ∴=在ATN △和HGD △中ANT HDG TN GDATN HGD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ATN △≌HGD △(ASA )AN HD ∴=在BAN 和BDH △中AB BD BAN HDB AN HD =⎧⎪∠=∠⎨⎪=⎩∴BAN ≌BDH △(SAS )ABN DBH ∴∠=∠,NB HB =ABN NBD DBH NBD ∠+∠=∠+∠即ABD NBH ∠=∠AB BD ⊥90ABD ∴∠=︒90NBH ∴∠=︒NBH ∴△是等腰直角三角形∴NH =即NH =(3)分别作,AD AQ 的中垂线,交于点O ,由题意,当点E 在线段BC 上运动时,AQD ∠不变,AD 的长度不变,则,,A D Q 三点共圆,则点Q 在以O 为圆心OQ 为半径的圆上运动,DH AE ⊥,12QH AH =tan 2AH AQD QH∴∠== 在OMQ 中MQ MO OQ ≤+∴当,,M O Q 三点共线时,MQ 取得最大值,此时情形如图:,AB BD BM AD =⊥∴AM MD =,,M O Q 三点共线,∴点Q 在AB 的垂直平分线上QA QD ∴=DH AE ⊥,tan 2AH AQDQH∠== 设QH x =,则AH 2x =5AQ x ∴=QD =5DH x x ∴=- 42AD =222AH DH AD ∴+=即222(2)(5)(42)x x x +-=得:21655x =- △ADH 的面积12AH DH =⋅ 12(5)2x x x =⨯⋅-2(51)x =-1616165=(51)5555-⨯==- ∴当QM 取最大值时,△ADH 的面积为1655. 【点睛】本题考查了平行四边形的性质,矩形的性质与判定,等腰三角形的性质,垂直平分线的性质,圆的性质,勾股定理,三角形三边关系,三角形全等的证明与性质,动点问题等,本题是一道综合性比较强的题,熟练平面几何的性质定理是解题的关键.24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125.【解析】【分析】(1)分别令x=0,y=0即可确定A 、B解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,D 点的坐标为或. 【解析】【分析】(1)分别令x=0,y=0即可确定A 、B 的坐标,然后确定直线BC 的解析式,然后再令y=0,即可求得C 的坐标;(2)先根据中点的性质求出D 的坐标,然后再根据轴对称确定的坐标,然后确定DB 1的解析式,令y=0,即可求得E 的坐标;(3)分别就D 点在AB 和D 点BC 上两种情况进行解答即可.【详解】解:(1)在中, 令0x =,得, 令0y =,得4x =-,,(0,4)B .把(0,4)B 代入,, 得∴直线BC 为:24y x =-+.在24y x =-+中,令0y =,得2x =,点的坐标为(2,0);(2)如图点E 为所求点D 是AB 的中点,,(0,4)B ..点B 关于x 轴的对称点的坐标为. 设直线的解析式为y kx b =+. 把,代入, 得. 解得3k =-,. 故该直线方程为:. 令0y =,得E 点的坐标为.(3)存在,D 点的坐标为或.①当点D 在AB 上时,由得到:,由等腰直角三角形求得D 点的坐标为; ②当点D 在BC 上时,如图,设AD 交y 轴于点F . 在与中,.,∴点F 的坐标为(0,2),易得直线AD 的解析式为,与24y x =-+组成方程组, 解得.∴交点D 的坐标为【点睛】本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.25.(1)见详解;(2)A.①AD=BE ,理由见详解;②;B.①AD ⊥BE ,理由见详解;②-1.【分析】(1)根据等腰三角形三线合一的性质,即可得到结论;(2)A.①利用手拉手模型,证明,即可得到解析:(1)见详解;(2)A.①AD =BE ,理由见详解;10;B.①AD ⊥BE ,理由见详解;3.【分析】(1)根据等腰三角形三线合一的性质,即可得到结论;(2)A.①利用手拉手模型,证明EOB DOA ≌,即可得到结论;②过点E 作EH ⊥CB 交CB 的延长线于点H ,连接CE ,根据等腰直角三角形的性质和勾股定理,即可求解;B.①延长DA 交OE 于点Q ,交BE 于点P ,利用“8”字模型得∠EPQ =∠QOD =90°,进而即可得到结论;②过点O 作OQ ⊥AC ,可得QO =1,利用勾股定理得3QF =【详解】解:(1)∵90BAC ∠=︒,AB AC =,∴ABC 是等腰直角三角形,又∵AO EF ⊥,∴OB =OC ,同理:OE =OF ,∴OE -OB =OF -OC ,∴BE CF =;(2)A.①AD =BE ,理由如下:∵AO BC ⊥,OD ⊥EF ,∴∠AOB =∠DOE =90°,∴∠EOB =∠DOA ,∵ABC 和DEF 是等腰直角三角形, ∴BO =AO ,EO =DO , ∴EOB DOA ≌,∴AD =BE ;②∵旋转角45α=︒,∴∠BOE =45°,∴∠COE =135°,∵2OE AB ==,∴OC =OB =2÷2=2,过点E 作EH ⊥CB 交CB 的延长线于点H ,连接CE ,∵在Rt OHE △中,HE =HO 22∴在Rt CHE △中,CE ()()2222210+B.①AD ⊥BE ,理由如下:延长DA 交OE 于点Q ,交BE 于点P ,易证:EOB DOA ≌,∴∠1=∠2,又∵∠3=∠4,∠1+∠EPQ +∠3=∠2+∠QOD +∠4=180°, ∴∠EPQ =∠QOD =90°,∴AD ⊥BE ;②过点O 作OQ ⊥AC ,∵2OE AB ==,∴2OF AC ==,∵∠ACO =45°,∴QCO 是等腰直角三角形,∴QO =QC =11122AC AB ==, ∴在Rt QOF 中,22213QF =-∴CF 3.【点睛】本题主要考查勾股定理,全等三角形的判定和性质,等腰直角三角形的性质,添加合适的辅助线,构造直角三角形,是解题的关键.。
人教版八年级下册数学湖州数学期末试卷测试卷(word版,含解析)
人教版八年级下册数学湖州数学期末试卷测试卷(word 版,含解析)一、选择题1.下列式子中,一定属于二次根式的是( )A .6-B .2x -C .39D .3 2.已知ABC 的三边长分别为a ,b ,c ,由下列条件不能判断ABC 是直角三角形的是( )A .23ABC ∠=∠=∠B .AC B ∠=∠-∠ C .()2512130a b c -+-+-=D .()()2a b c b c =+- 3.在四边形ABCD 中,对角线AC 与BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .AB ∥DC ,AD ∥BCB .AD ∥BC ,AB =DC C .AB ∥DC ,∠DAB =∠DCBD .AO =CO ,BO =DO 4.为了丰富校园文化,学校艺术节举行初中生书法大赛,设置了10个获奖名额.结果共有21名选手进入决赛,且决赛得分均不相同.若知道某位选手的决赛得分,要判断它是否获奖,只需知道学生决赛得分的( )A .平均数B .中位数C .众数D .方差5.图,在四边形ABCD 中,1AB BC ==,2CD =,6AD =,且90ABC ∠=︒,则四边形ABCD 的面积为( )A .61+B .122+C .12+D .162- 6.如图,在菱形ABCD 中,4AB =,120BAD ∠=︒,O 是对角线BD 的中点,过点O 作OE CD ⊥ 于点E ,连结OA .则四边形AOED 的周长为( )A .93+B .93+C .73+D .87.如图,在正方形ABCD 中,22AB =E ,F 分别为边AB ,BC 的中点,连接AF ,DE ,点N ,M 分别为AF ,DE 的中点,连接MN .则MN 的长为( )A .22B .1C .2D .28.如图1,在矩形ABCD 中,E 是CD 上一点,动点P 从点A 出发沿折线AE →EC →CB 运动到点B 时停止,动点Q 从点A 沿AB 运动到点B 时停止,它们的速度均为每秒1cm .如果点P 、Q 同时从点A 处开始运动,设运动时间为x (s ),△APQ 的面积为ycm 2,已知y 与x 的函数图象如图2所示,以下结论:①AB =5cm ;②cos ∠AED =35;③当0≤x ≤5时,y =225x ;④当x =6时,△APQ 是等腰三角形;⑤当7≤x ≤11时,y =55522x +.其中正确的有( )A .2个B .3个C .4个D .5个二、填空题9.函数2x y +=x 的取值范围是______. 10.菱形的一条对角线长为12cm ,另一条对角线长为16cm ,则菱形的面积为_____. 11.已知一个直角三角形的两直角边长分别是1和3,则斜边长为________. 12.边长为a 、b 的长方形,它的周长为14,面积为10,则22a b ab +的值为__. 13.某一次函数的图象经过点(2,-3),且函数y 随x 的增大而增大,请你写出一个符合条件的函数解析式_____________________.14.若矩形的边长分别为2和4,则它的对角线长是__.15.如图1,在平面直角坐标系中,将平行四边形ABCD 放置在第一象限,且AB //x轴.直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么AB 的长为___.16.如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠使AD 边与BD 重合,得折痕DG .(1)若AG =1,∠ABD =30°,求AD 的长;(2)若AB =4,BC =3,求AG 的长.三、解答题17.计算(1)321224843274⎛⎫÷+- ⎪ ⎪⎝⎭(2)()()()()0221123223431+-+++--- 18.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 外移多少米?19.如图是一个44⨯的正方形网格,已知每个小正方形的边长均为1,每个小正方形的顶点称为格点,请按要求解答下列问题:(1)如图,满足线段10AB 的格点B 共有______个;(2)试在图中画出一个格点ABC ,使其为等腰三角形,10AB,且ABC 的内部只包含4个格点(不包含在ABC 边上的格点). 20.如图,已知点E 是ABCD 中BC 边的中点,连接AE 并延长交DC 的延长线于点F ,连接AC ,BF ,AF BC =.(1)求证:四边形ABFC 为矩形;(2)若AFD ∆是等边三角形,且边长为6,求四边形ABFC 的面积.21.(1)观察下列各式的特点:2132>3223,2352>,5265>… 2021202020222021“>”“<”或“=”). (2)观察下列式子的化简过程:212121(21)(21)-==++-, 323232(32)(32)-==++-, 4343(43)(43)-=++-43 … 1n n +-n ≥2,且n 是正整数)的化简过程.(3)根据上面(1)(2)得出的规律计算下面的算式:21323243+++++4354++10099101100++. 22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x 人,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y 1、y 2与x 之间的函数关系式;(3)导游小王5月2日(五一假日)带A 旅游团,5月8日(非节假日)带B 旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A 、B 两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在ABC 中,5AB BC ==,6AC =,将ABC 沿BC 方向平移得到DCE ,A ,C 的对应点分别是D 、E ,连接BD 交AC 于点O .(1)如图1,将直线BD 绕点B 顺时针旋转,与AC 、DC 、DE 分别相交于点I 、F 、G ,过点C 作//CH BG 交DE 于点H .①求证:IBC ≌HCE②若DF CF =,求DG 的长;(2)如图2,将直线BD 绕点O 逆时针旋转()90αα<︒,与线段AD 、BC 分别交于点P 、Q ,在旋转过程中,四边形ABQP 的面积是否发生变化?若不变,求出四边形ABQP 的面积,若变化,请说明理由;(3)在(2)的旋转过程中,AOP 能否为等腰三角形,若能,请直接写出PQ 的长,若不能,请说明理由.24.将一矩形纸片OABC 放在平面直角坐标系中,O 为原点,点A 在x 轴上,点C 在y 轴上,10OA =,8OC =.如图1在OC 边上取一点D ,将BCD △沿BD 折叠,使点C 恰好落在OA 边上,记作E 点:(1)求点E 的坐标及折痕DB 的长;(2)如图2,在OC、CB边上选取适当的点F、G,将△FCG沿FG折叠,使点C落在OA上,记为H点,设OH x=,四边形OHGC的面积为S.求:S与x之间的函数关系式;MN,求使四边形(3)在线段OA上取两点M、N(点M在点N的左侧),且 4.5BDMN的周长最短的点M、点N的坐标.25.如图,在平面直角坐标系中,点A(1,4),点B(3,2),连接OA,OB.(1)求直线OB与AB的解析式;(2)求△AOB的面积.(3)下面两道小题,任选一道作答.作答时,请注明题号,若多做,则按首做题计入总分.①在y轴上是否存在一点P,使△PAB周长最小.若存在,请直接写出....点P坐标;若不存在,请说明理由.②在平面内是否存在一点C,使以A,O,C,B为顶点的四边形是平行四边形.若存在,请直接写出....点C坐标;若不存在,请说明理由.26.在直角坐标系xOy中,四边形ABCD是矩形,点A在x轴上,点C在y轴的正半轴BC=.上,点B,D分别在第一,二象限,且3AB=,4=.(1)如图1,延长CD交x轴负半轴于点E,若AC AE①求证:四边形ABDE为平行四边形②求点A的坐标.(2)如图2,F为AB上一点,G为AD的中点,若点G恰好落在y轴上,且CG平分DCF∠,求AF的长.(3)如图3,x轴负半轴上的点P与点Q关于直线AD对称,且AP AD=,若BCQ△的面积为矩形ABCD面积的18,则BQ的长可为______(写出所有可能的答案).【参考答案】一、选择题1.D解析:D【分析】根据二次根式的定义,被开方数大于等于0进行判断即可得到结果.【详解】解:A、被开方数不是非负数,没有意义,所以A不合题意;B、x≥2时二次根式有意义,x<2时没意义,所以B不合题意;C39C不合题意;D3D符合题意;故选:D.【点睛】本题考查了二次根式的定义,解题的关键是掌握二次根式的定义.2.A解析:A【分析】根据三角形的内角和定理求出∠A 的度数,即可判断选项A ;根据三角形内角和定理求出∠C 的度数,即可判断选项B ;根据勾股定理的逆定理判定选项C 和选项D 即可.【详解】设△ABC 中,∠A 的对边是a ,∠B 的对边是b ,∠C 的对边是c , A. ∠A = 2∠B = 3∠C , ∴11,,23B AC A ∠=∠∠=∠ ∠A +∠B + ∠C = 180°, ∴1118023A A A ∠+∠+∠=︒, 解得: 108011A ⎛⎫∠=︒ ⎪⎝⎭, ∴△ABC 不是直角三角形,故本选项符合题意; B. ∠A = ∠C -∠B ,∴∠A +∠B = ∠C ,∠A +∠B + ∠C = 180°,∴2∠C = 180°,∴∠C = 90°,∴△ABC 是直角三角形,故本选项不符合题意;C. ()25120a b -+-=,∴a - 5 = 0,b - 12 = 0, c - 13 = 0,∴a = 5,b = 12,c = 13,∴222+=a b c ,∴∠C = 90°,∴△ABC 是直角三角形,故本选项不符合题意; D. ()()2a b c b c =+-,∴222a b c =-,即222a c b +=,∴∠B = 90°,∴△ABC 是直角三角形,故本选项不符合题意.故选:A .【点睛】本题考查了勾股定理的逆定理和三角形内角和定理,能熟记勾股定理的逆定理和三角形内角和定理是解此题的关键,注意:如果一个三角形的两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形,三角形的内角和等于180°.3.B解析:B【解析】【分析】依据平行四边形的定义和判定方法逐一判断即可得解;【详解】A、∵AB∥DC,AD∥BC,∴四边形ABCD是平行四边形,故选项A不符合题意;B、由AD∥BC,AB=DC,即一组对边平行,一组对边相等,无法判断四边形ABCD是平行四边形,举反例如等腰梯形,故选项B符合题意;C、∵AB∥DC,∴∠ABC+∠DCB=180°,∠DAB+∠ADC=180°,∵∠DAB=∠DCB,∴∠ABC=∠ADC,∴四边形ABCD是平行四边形,故选项C不符合题意;D、∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,故选项D不符合题意;故选:B.【点睛】本题主要考查平行四边形的判定,熟练掌握平行四边形的判定方法是解题的关键,同时注意一组对边平行,一组对边相等得四边形不一定是平行四边形.4.B解析:B【解析】【分析】由于书法大赛设置了10个获奖名额,共有21名选手进入决赛,根据中位数的意义分析即可.【详解】解:将21名选手进入决赛不同的分数按从小到大排序后,中位数及中位数之后的共有11个数,故只要知道自己的分数和中位数就可以知道是否获奖了,故选B.【点睛】本题主要考查中位数,以及相关平均数、众数、方差的意义,熟练掌握相关知识是解题的关键.5.B解析:B【分析】连接AC,在直角三角形ABC中,利用勾股定理求出AC的长,在三角形ACD中,利用勾股定理的逆定理判断得到三角形ACD为直角三角形,两直角三角形面积之和即为四边形ABCD的面积.【详解】解:连接AC,如图,在Rt△ABC中,AB=1,BC=1,根据勾股定理得:22112AC=+=在△ACD中,CD=2,6AD=∴AC2+CD2=AD2,∴△ACD为直角三角形,则四边形ABCD的面积11111222222 ABC ACDS S S∆∆=+=⨯⨯+⨯故选:B.【点睛】此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理是解本题的关键.6.B解析:B【解析】【分析】由已知及菱形的性质求得∠ABD=∠CDB=30º,AO⊥BD,利用含30º的直角三角形边的关系分别求得AO、DO、OE、DE,进而求得四边形AOED的周长.【详解】∵四边形ABCD是菱形,O是对角线BD的中点,∴AO⊥BD , AD=AB=4,AB∥DC∵∠BAD=120º,∴∠ABD=∠ADB=∠CDB=30º,∵OE⊥DC,∴在RtΔAOD中,AD=4 , AO=12AD=2 ,2223AD AO-=在RtΔDEO中,OE=132OD=223OD OE-=,∴四边形AOED的周长为33故选:B.【点睛】本题考查菱形的性质、含30º的直角三角形、勾股定理,熟练掌握菱形的性质及含30º的直角三角形边的关系是解答的关键.7.B解析:B【解析】【分析】连接AM ,延长AM 交CD 于G ,连接FG ,由正方形性质得22AB BC CD DA ====,//AB CD ,90C ∠=︒,证得AEM GDM =(AAS ),得到AM MG =,1122AE DG AB CD ===,根据三角形中位线定理得到12MN FG =,再用由勾股定理求出FG 即可得MN .【详解】解:如图所示,连接AM ,延长AM 交CD 于G ,连接FG ,∵四边形ABCD 是正方形,∴22AB BC CD DA ====//AB CD ,90C ∠=︒,∴AEM GDM ∠=∠,EAM DGM ∠=∠, ∵M 是DE 的中点,∴EM =DM ,在AEM △和GDM △中,AEM GDM EAM DGM ME MD ∠=∠⎧⎪∠=∠⎨⎪=⎩ ∴AEM GDM =(AAS ),∴AM MG =,1122AE DG AB CD ===, ∴122CG CD = ∵点N 是为AF 的中点,∴12MN FG =, ∵F 是BC 的中点,∴122CF BC = 在Rt CFG 中,根据勾股定理,2222(2)(2)2FG CF CG ++=,∴112122MN GF ==⨯=, 故选B . 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,三角形中位线定理和勾股定理,解题的关键是掌握并灵活运用这些知识点.8.B解析:B【分析】根据图中相关信息即可判断出正确答案.【详解】解:图2知:当57x ≤≤ 时y 恒为10,∴当5x =时,点Q 运动恰好到点B 停止,且当57x ≤≤ 时点P 必在EC 上, 5AB cm ∴=,故①正确; ∵当57x ≤≤ 时点P 必在EC 上,且当7x > 时,y 逐渐减小,∴当7x = 时,点Q 在点B 处,点P 在点C 处,此时10y =,47BC cm AE EC cm ∴+=,=,设EC acm =,则7AE a cm =(﹣), 5DE a cm =(﹣), 在Rt ADE ∆ 中,由勾股定理得:222457a a +(﹣)=(﹣),解得:2a =,235EC cm DE cm AE cm ∴=,=,=,35DE cos AED AE ∴∠==,故②正确; 当05x ≤≤ 时,由5AE cm = 知点P 在AE 上,过点P 作PH AB ⊥,如图:35DE cos EAB cos AED AE ∠∠===, 45sin EAB ∴∠=, AP AQ xcm ==,45PH xcm ∴=, 212•25y AQ PH y ∴===x ,故③正确; 当6x = 时,5AQ AB cm ==,172PQ cm AP cm =,=, APQ ∴∆ 不是等腰三角形,故④不正确;当711x ≤≤时,点P 在BC 上,点Q 和点B 重合,115555(74)2222y AQ PQ x x ==⨯⨯+-=-+ 故⑤ 不正确;故选B .【点睛】本题主要考查了动点问题的函数图像,理解题意,读懂图像信息,灵活运用所学知识是解题关键,属于中考选择题中的压轴题.二、填空题9.2x ≥-且0x ≠【解析】【分析】根据分式的分母不能为0、二次根式的定义即可得.【详解】由题意得:200x x +≥⎧⎨≠⎩, 解得2x ≥-且0x ≠,故答案为:2x ≥-且0x ≠.【点睛】本题考查了求函数自变量的取值范围、分式的分母不能为0、二次根式的定义,熟练掌握分式和二次根式的定义是解题关键.10.96cm 2【解析】【分析】根据菱形的面积等于两对角线的积的一半求解即可.【详解】由已知可得,这个菱形的面积1216962⨯==(2cm ), 故答案为:296cm .【点睛】本题考查了菱形的性质,解答此题的关键是掌握菱形的面积等于两对角线的积的一半. 11【解析】【分析】利用勾股定理计算即可.【详解】解:∵直角三角形的两直角边长分别是1和3,∴斜边【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.12.70【分析】直接利用长方形的周长和面积公式结合提取公因式法分解因式计算即可.【详解】解:依题意:2a +2b =14,ab =10,则a +b =7∴a 2b +ab 2=ab (a+b )=70;故答案为:70【点睛】此题主要考查了提取公因式法分解因式,正确得出a +b 和ab 的值是解题关键. 13.5y x =-(答案不唯一)【分析】根据题意,写出一个0k >且经过(2,3)-的解析式即可【详解】函数y 随x 的增大而增大0k ∴>图象经过点(2,-3)例如:5y x =-(答案不唯一)【点睛】本题考查了一次函数的性质,一次函数的定义,理解一次函数的性质是解题的关键. 14.A【分析】根据矩形的性质得出∠ABC =90°,AC =BD ,根据勾股定理求出AC 即可.【详解】∵四边形ABCD 是矩形,∴∠ABC =90°,AC =BD ,在Rt △ABC 中,AB =2,BC =4,由勾股定理得:AC ∴BD AC ==故答案为【点睛】本题考查了矩形的性质,勾股定理的应用,题目比较好,难度适中.15.4【分析】由图1,当直线在DE 的左下方时,由图2可得AE 长度;由图1,当直线在DE和BF之间时,长度不变,由图2可得EB的长度,从而AB=AE+EB,即求得AB.【详解】如图1,当直线在DE解析:4【分析】由图1,当直线在DE的左下方时,由图2可得AE长度;由图1,当直线在DE和BF之间时,长度不变,由图2可得EB的长度,从而AB=AE+EB,即求得AB.【详解】如图1,当直线在DE的左下方时,由图2得:AE=7-4=3;由图1,当直线在DE和BF之间时,由图2可得:EB=8-7=1,所以AB=AE+EB=3+1=4.故答案为:4.【点睛】本题考查一次函数的图象与图形的平移,平行四边形的性质,关键是明确题意,读懂函数图象,利用数形结合的思想.16.(1);(2)【分析】(1)由折叠的性质可以得到∠ADG=∠BDG=30°,再根据含30°直角三角形的性质即可求得AD的长;(2)过点G作GE⊥BD交BD于E,由折叠的性质可以得到AG=GE,解析:(1)3AD=2)32 AG=【分析】(1)由折叠的性质可以得到∠ADG=∠BDG=30°,再根据含30°直角三角形的性质即可求得AD的长;(2)过点G作GE⊥BD交BD于E,由折叠的性质可以得到AG=GE,AD=DE,从而得到BE 的长,在三角形BGE中运用勾股定理求解即可得到答案.【详解】解:(1)由折叠的性质可知∠ADG=∠BDG∵四边形ABCD是矩形,∠ABD=30°∴∠A=90°∴∠ADB=60°∴∠ADG=∠BDG=30°∴DG=2AG=2223AD DG AG=-=(2)如图所示,过点G作GE⊥BD交BD于E 由折叠的性质可知∠ADG=∠BDG∵∠DAG=90°,∠DEG=90°∴△DAG≌△DEG∴AD=DE,AG=GE∵BC=3,AB=4∴AD=BC=DE=3∴225BD AD AB=+=∴BE=BD-DE=2,BG=AB-AG=AB-GE=4-GE设AG=GE=x,则BG=4-x∵222GE BE BG+=∴()22224x x+=-解得32 x=∴AG的长为32.【点睛】本题主要考查了折叠的性质,矩形的性质,全等三角形的性质与判定,勾股定理和含30°的直角三角形的性质,解题的关键在于能够熟练掌握相关知识进行求解计算.三、解答题17.(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)=;(2);解析:(1)4;(2)0【分析】(1)先算括号里面的,再算括号外面的,利用二次根式的性质计算即可;(2)根据平方差公式、零指数幂和绝对值的性质计算即可;【详解】(1)⎛ ⎝=(4==;(2))())0211241++- ()1312140=-++-=-; 【点睛】本题主要考查了二次根式的混合运算,结合平方差公式,零指数幂,绝对值的性质,完全平方公式计算是解题的关键.18.8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB 、OB '的长度,进而求出BB '的长度即可.【详解】解:如图,依题意可知AB =25(米),AO =24(米),∠解析:8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB 、OB '的长度,进而求出BB '的长度即可.【详解】解:如图,依题意可知AB =25(米),AO =24(米),∠O =90°,∴ BO 2=AB 2﹣AO 2=252-242,∴ BO =7(米),移动后,A O '=20(米),222222()25205(1)B O A B A O ''''--===∴ 15B O '= (米),∴ =1578BB B O BO ''-=-=(米).答:梯子底端B 外移8米.【点睛】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B O '的长度是解题的关键.19.(1)3;(2)见解析.【分析】(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;(2)根据题意画出图形即可.【详解】解:(1)∵10=12+32∴如图:∴满足解析:(1)3;(2)见解析.【解析】【分析】(1)先根据勾股定理算出AB的两条直角边,再结合画图即可解答;(2)根据题意画出图形即可.【详解】解:(1)∵10=12+32∴如图:∴满足线段10AB的格点B共有3个故填3;(2)画图如下(答案不唯一):【点睛】本题主要考查了勾股定理和等腰三角形的定义,掌握勾股定理成为解答本题的关键.20.(1)见解析;(2)四边形的面积.【分析】(1)利用平行四边形的性质先证明,可得再证明四边形是平行四边形,从而可得结论;(2)先求解,,再利用勾股定理求解,从而可得答案.【详解】(1)证明解析:(1)见解析;(2)四边形ABFC 的面积=【分析】(1)利用平行四边形的性质先证明ABE FCE ∆≅∆,可得,AB FC =再证明四边形ABFC 是平行四边形,从而可得结论;(2)先求解6AF DF ==,132CF DF ==,再利用勾股定理求解AC =而可得答案.【详解】(1)证明:四边形ABCD 是平行四边形, AB CD ∴=,//AB CD ,BAE CFE ∴∠=∠,点E 是ABCD 中BC 边的中点,BE CE ∴=,AEB FEC ∠=∠,()ABE FCE AAS ∴∆≅∆,,AB FC ∴=//AB FC ,∴四边形ABFC 是平行四边形,又AF BC =,∴平行四边形ABFC 为矩形;(2)解:由(1)得:四边形ABFC 为矩形,90ACF ∴∠=︒, AFD 是等边三角形,6AF DF ∴==,132CF DF ==,AC ∴∴四边形ABFC 的面积3AC CF =⨯==.【点睛】本题考查的是等边三角形的性质,勾股定理的应用,平行四边形的性质与判定,矩形的判定,熟练的使用矩形的判定定理是解题的关键.21.(1)>;(2)见解析;(3)【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2)把分子分母同时乘以,然后化简即可得到答案;(3)根据(2)中的规律可得,,,分别把绝对值解析:(1)>;(2)见解析;(39【解析】【分析】(1)根据题目所给的例题大小关系可直接得到答案;(2==⋯,(3)根据(21【详解】解:(1)∵…,∴∴>故答案为:>;(2(3)原式|1)||||| =-+-++⋯+-=-+-+⋯+-1)=-1)1109.【点睛】此题主要考查了分母有理化,关键是注意观察题目所给的例题,找出其中的规律,然后再进行计算.22.(1)80元/人;(2)y1=48x,y2=;(3)A旅游团30人,B旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2解析:(1)80元/人;(2)y 1=48x ,y 2=80(010)64160(10)x x x x ≤≤⎧⎨+>⎩;(3)A 旅游团30人,B 旅游团20人【分析】(1)由函数图象,节假日期间,10人的购票款数为800元,购票款数除以人数,可得不打折的门票价格;(2)利用待定系数法求正比例函数解析式求出1y ,分010x 与10x >,利用待定系数法求2y 与x 的函数关系式即可;(3)设A 团有x 人,表示出B 团的人数为(50)x -,然后分010x 与10x >两种情况,根据(2)的函数关系式列出方程求解即可.【详解】解:(1)8001080÷=(元/人),答:不打折的门票价格是80元/人;(2)设110y k =,解得:48k =,148y x ∴=,当010x 时,设280y x =,当10x >时,设2y mx b =+,则10800201440m b m b +=⎧⎨+=⎩, 解得:64m =,160b =,264160y x ∴=+,280(010)64160(10)x x y x x ⎧∴=⎨+>⎩; (3)设A 旅游团x 人,则B 旅游团(50)x -人,若010x ,则8048(50)3040x x +-=,解得:20x ,与10x 不相符,若10x >,则6416048(50)3040x x ++-=,解得:30x =,与10x >相符,503020-=(人),答:A 旅游团30人,B 旅游团20人.【点睛】本题考查了一次函数的应用,利用了待定系数法求一次函数解析式,准确识图获取必要的信息是解题的关键,(3)要注意分情况讨论.23.(1)①见解析;②2;(2)不变,12;(3)能,或6或【分析】(1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ; ②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得I解析:(1)①见解析;②2;(2)不变,12;(3)能,5PQ =或6或1255【分析】 (1)①由平移的特征可以推出三角形全等的条件,证明△IBC ≌△HCE ;②由①得IC =HE ,再证明四边形ICHG 是平行四边形,得IC =GH ,再证明△DFG ≌△CFI ,得DG =IC ,于是得DG =GH =HE =13DE =13AC ,可求出DG 的长; (2)由平行四边形的性质可证明线段相等和角相等,证明△AOP ≌△COQ ,将四边形ABQP 的面积转化为△ABC 的面积,说明四边形ABQP 的面积不变,求出△ABC 的面积即可;(3)按OP =OA 、PA =OA 、OP =AP 分类讨论,分别求出相应的PQ 的长,其中,当PA =OA 时,作OL ⊥AP 于点L ,构造直角三角形,用面积等式列方程求OL 的长,再用勾股定理求出OP 的长即可.【详解】(1)证明:①如图1,∵DCE 是由ABC 平移得到的,∴//AC DE BC CE =,∴ACB DEC ∠=∠,∵//CH BG ,∴GBC HCE ∠=∠∴IBC ≌HCE②如图1, 由①可知:IBC ≌HCE , ∴IC HE =,∵//AC DE ,//CH BG ,∴CI //GH ,CH //GH ,∴四边形ICHG 是平行四边形,∴IC GH = ,∵//AC DE ,∴CDG DCI ∠=∠∵CFI DFG ∠=∠ , DF CF = ,∴DFG ≌CFI △,∴DG IC =,∴DG GH HE ==, ∴11233DG DE AC ===. (2)面积不变;如图2:由平移可知//AB CD ,AB CD =,∴四边形ABCD 是平行四边形,∴OA OC =,∵//AD BC ,∴APO CQO ∠=∠ ,∵AOP COQ ∠=∠,∴APO △≌CQO ,∴APO CQO S S =△△,APO CQO ABC ABQP AOQB AOQB S S S S S S =+=+=四边形四边形四边形△△△,∴四边形ABQP 的面积不变.∵5AB BC == 132OA OC AC === , ∴OB AC ⊥,∴90AOB ∠=︒ ,在Rt BOC 中 222OB OC BC +=∴2222534OB AB OA -=-,∴11641222ABC S AC OB ==⨯⨯=, ∴12ABQP S =四边形(3)如图3,OP =OA =3,由(2)得,△AOP ≌△COQ ,∴OQ =OP =3,∴PQ =3+3=6;如图4,PA =OA =3,作OL ⊥AP 于点L ,则∠OLA =∠OLP =90°,由(2)得,四边形ABCD 是平行四边形,OA =3,∠AOB =90°,∴OD =OB =4,∠AOD =180°−∠AOB =90°,∵AO ⊥BD ,OD =OB ,∴AO 垂直平分BD ,∴AD =AB =5, 由12AD •OL =12OA •OD =AOD S得, 12×5OL =12×3×4, 解得,OL =125, ∴2222129355AL OA OL ⎛⎫=-=-= ⎪⎝⎭, ∴96355PL =-= , ∴22221266555OP OL PL ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭, ∴PQ =2OP 125 如图5,OP =AP ,∵AD =AB ,AC ⊥BD ,∴∠DAC =∠BAC ,∴∠POA =∠DAC =∠BAC ,∴PQ //AB ,∵AP //BQ ,∴四边形ABQP 是平行四边形,∴PQ =AB =5,综上所述,5PQ =或6125【点睛】此题重点考查平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的判定、平移的特征、勾股定理以及根据面积等式列方程求线段的长度等知识与方法,解第(3)题时要进行分类讨论,求出所有符合条件的值,此题难度较大,属于考试压轴题. 24.(1)E ,;(2);(3),.【解析】【分析】(1)根据矩形的性质得到,,再根据折叠的性质得到,,易得,则,即可得到点坐标;在中,设,则,利用勾股定理可计算出,再在中,利用勾股定理计算出。
浙江省湖州市安吉县2024届八年级数学第二学期期末学业质量监测模拟试题含解析
浙江省湖州市安吉县2024届八年级数学第二学期期末学业质量监测模拟试题 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.函数3y x =的图象向上平移2个单位长度后得到的图象的解析式为( )A .32y x =+B .32y x =-C .2y x =+D .2y x =-2.下列式子正确的是( )A .若x y a a <,则x <yB .若bx >by ,则x >yC .若x y a a =,则x=yD .若mx=my ,则x=y3.为了了解某市八年级女生的体能情况,从某校八年级的甲、乙两班各抽取27名女生进行一分钟跳绳次数的测试,测试数据统计如下:人数 中位数 平均数 甲班27 104 97 乙班 27 106 96如果每分钟跳绳次数大于或等于105为优秀,则甲、乙两班优秀率的大小关系是( )A .甲优<乙优B .甲优>乙优C .甲优=乙优D .无法比较4.在平面直角坐标系中,A ,B ,C 三点坐标分别是(0,0),(4,0),(3,2),以A ,B ,C 三点为顶点画平行四边形,则第四个顶点不可能在( ).A .第一象限B .第二象限C .第三象限D .第四象限5.如图,平行四边形ABCD 的对角线AC ,BD 交于点O ,已知AD=16,BD=24,AC=12,则△OBC 周长为( )A .26B .34C .40D .526.若平行四边形中两个邻角的度数比为1:3,则其中较小的内角是( )A .30°B .45°C .60°D .75°7.如图,在矩形ABCD 中(AD >AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F ,在下列结论中,不一定正确的是( )A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD ﹣DF8.下列各式中,化简后能与2合并的是( )A .12B .8C .23D .0.29.已知一次函数1y x a =+与2y kx b =+的图象如图,则下列结论:①0k <;②0ab >;③关于x 的方程x a kx b +=+的解为2x =;④当2x 时,12y y ,其中正确的个数是( )A .1B .2C .3D .410.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直二、填空题(每小题3分,共24分)11.如图,△ABC 的中位线DE =5cm ,把△ABC 沿DE 折叠,使点A 落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则△ABC 的面积为_____cm 1.12.已知实数A 、B 满足()()42323x A B x x x x -=-----,则A B +=_____.13.已知反比例函数3y x =的图像过点()211,A m y +、()222,B m y +,则1y __________2y .15.如图,直线y=2x+4与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为 .16.二次根式2x -在实数范围内有意义,x 的取值范围是_____.17.若A (﹣1,y 1)、B (﹣1,y 1)在y =图象上,则y 1、y 1大小关系是y 1_____y 1.18.有5张正面分别标有数字-2,0,2,4,6的不透明卡片,它们除数字不同外其余全部相同,先将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m ,则使关于x 的分式方程2322x m m x x++=--有正实数解的概率为________. 三、解答题(共66分)19.(10分)阅读下列材料:数学课上,老师出示了这样一个问题:如图,菱形ABCD 和四边形ABCE ,60BAD ∠=︒,连接BD ,BE ,BD BE =.求证:ADC AEC ∠=∠;某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察分析,发现ABE ∠与EBC ∠存在某种数量关系”;小强:“通过观察分析,发现图中有等腰三角形”;小伟:“利用等腰三角形的性质就可以推导出ADC AEC ∠=∠”.……老师:“将原题中的条件‘BD BE =’与结论‘ADC AEC ∠=∠’互换,即若ADC AEC ∠=∠,则BD BE =,其它条件不变,即可得到一个新命题”.……请回答:(1)在图中找出与线段BE 相关的等腰三角形(找出一个即可),并说明理由;(3)若ADC AEC ∠=∠,则BD BE =是否成立?若成立,请证明;若不成立,请说明理由.20.(6分)某市举行“行动起来,对抗雾霾”为主题的植树活动,某街道积极响应,决定对该街道进行绿化改造,共购进甲、乙两种树共50棵,已知甲树每棵800元,乙树每棵1200元.(1)若购买两种树的总金额为56000元,求甲、乙两种树各购买了多少棵?(2)若购买甲树的金额不少于购买乙树的金额,至少应购买甲树多少棵?21.(6分)已知关于x 、y 的方程组x 2y 2x 3y 2m 4m -=⎧⎨+=+⎩①②的解满足不等式组3x y 0x 5y 0+≤⎧⎨+≥⎩.求满足条件的m 的整数值. 22.(8分)在平面直角坐标系中,设两数12,n y x m y x=-+= (m n ,, 是常数,0n ≠).若函数1y x m =-+的图象过(2)n -,,且6n m +=. (1)求m n ,的值:(2)将函数 y x m =-+的图象向上平移()0h h >个单位,平移后的函数图象与函数2 n y x =的图象交于直线4y =上的同一点,求h 的值;(3)已知点()M a b , (a b ,为常数)在函数1 y x m =-+的图象上,()M a b ,关于y 轴的对称点为N ,函数3 0()y kx m k =+≠的图象经过点N ,当1322y y y +<时,求x 的取值范围. 23.(8分)先化简,再求值,211111x x x -⎛⎫⨯+ ⎪-+⎝⎭从-1、1、2中选择一个你喜欢的且使原式有意义的x 的值代入求值. 24.(8分)已知一次函数()212y a x a =-+-.(1)若这个函数的图像经过原点,求a 的值.(2)若这个函数的图像经过一、三、四象限,求a 的取值范围.25.(10分)如图,在△ABC 中,AD=15,AC=12,DC=9,点B 是CD 延长线上一点,连接AB ,若AB=1.求:△ABD 的面积.26.(10分)某市为了鼓励居民节约用电,采用分段计费的方法按月计算每户家庭的电费,分两档收费:第一档是当月用电量不超过220kW •h 时实行“基础电价”;第二档是当用电量超过220kW •h 时,其中的220kW •h 仍按照“基础电价”请根据图象回答下列问题:(1)“基础电价”是 元/kw •h ;(2)求出当x >220时,y 与x 的函数解析式;(3)若小豪家六月份缴纳电费121元,求小豪家这个月用电量为多少kW •h ?参考答案一、选择题(每小题3分,共30分)1、A【解题分析】根据平移的性质,即可得解.【题目详解】根据题意,得平移后的图像解析式为32y x =+,故答案为A.【题目点拨】此题主要考查平移的性质,熟练掌握,即可解题.2、C【解题分析】A 选项错误,xy a a<,若a >0,则x <y ;若a <0,则x >y ; B 选项错误,bx >by ,若b >0,则x >y ;若b <0,则x <y ;C 选项正确;故选C.点睛:遇到等式或者不等式判断正误,可以采用取特殊值代入的方法.3、A【解题分析】已知每分钟跳绳次数在105次以上的为优秀,则要比较优秀率,关键是比较105次以上人数的多少;从表格中可看出甲班的中位数为104,且104<105,所以甲班优秀率肯定小于50%;乙班的中位数为106,106>105,至此可求得答案.【题目详解】从表格中可看出甲班的中位数为104,104<105,乙班的中位数为106,106>105,即甲班大于105次的人数少于乙班,所以甲、乙两班的优秀率的关系是甲优<乙优.故选A.【题目点拨】本题考查了统计量的选择,正确理解中位数和平均数的定义是解答本题的关键.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.平均数代表一组数据的平均水平,中位数代表一组数据的中等水平4、C【解题分析】A点在原点上,B点在横轴上,C点在第一象限,根据平行四边形的性质:两组对边分别平行,可知第四个顶点可能在第一、二、四象限,不可能在第三象限,故选C5、B【解题分析】由平行四边形的性质得出OA=OC=6,OB=OD=12,BC=AD=16,即可求出△OBC的周长.【题目详解】解:∵四边形ABCD是平行四边形,∴OA=OC=6,OB=OD=12,BC=AD=16,∴△OBC的周长=OB+OC+AD=6+12+16=1.故选:B.点睛:本题主要考查了平行四边形的性质,并利用性质解题.平行四边形基本性质:①平行四边形两组对边分别平行;②平行四边形的两组对边分别相等;③平行四边形的两组对角分别相等;④平行四边形的对角线互相平分.【解题分析】根据平行四边形的性质,可设较小的角为x,较大的角是3x,列式子即可得出结果.【题目详解】设较小的角为x,较大的是3x,x+3x=180,x=45°.故选B.【题目点拨】本题考查平行四边形的性质,比较简单.7、B【解题分析】A.由矩形ABCD,AF⊥DE可得∠C=∠AFD=90°,AD∥BC,∴∠ADF=∠DEC.又∵DE=AD,∴△AFD≌△DCE(AAS),故A正确;B.∵∠ADF不一定等于30°,∴直角三角形ADF中,AF不一定等于AD的一半,故B错误;C.由△AFD≌△DCE,可得AF=CD,由矩形ABCD,可得AB=CD,∴AB=AF,故C正确;D.由△AFD≌△DCE,可得CE=DF,由矩形ABCD,可得BC=AD,又∵BE=BC﹣EC,∴BE=AD﹣DF,故D正确;故选B.8、B【解题分析】.【题目详解】因为A. ;B. ;C. ;D. .所以,只有选项B.故选B【题目点拨】本题考核知识点:同类二次根式.解题关键点:理解同类二次根式的定义.9、C【解题分析】根据一次函数的性质对①②进行判断;利用一次函数与一元一次方程的关系对③进行判断;利用函数图象,当x≥2时,一次函数y 1=x+a 在直线y 2=kx+b 的上方,则可对④进行判断.【题目详解】一次函数2y kx b =+经过第一、二、四象限,0k ∴<,0b >,所以①正确;直线1y x a =+的图象与y 轴交于负半轴,0a ∴<,0ab <,所以②错误;一次函数1y x a =+与2y kx b =+的图象的交点的横坐标为2,2x ∴=时,x a kx b +=+,所以③正确;当2x 时,12y y ,所以④正确.故选C .【题目点拨】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.也考查了一次函数与一元一次方程,一次函数的性质.10、C【解题分析】试题分析:A .对角线相等是矩形具有的性质,菱形不一定具有;B .对角线互相平分是菱形和矩形共有的性质;C .对角线互相垂直是菱形具有的性质,矩形不一定具有;D .邻边互相垂直是矩形具有的性质,菱形不一定具有.故选C .点评】本题考查菱形与矩形的性质,需要同学们对各种平行四边形的性质熟练掌握并区分.考点:菱形的性质;矩形的性质.二、填空题(每小题3分,共24分)11、2【解题分析】根据对称轴垂直平分对应点连线,可得AF 即是△ABC 的高,再由中位线的性质求出BC ,继而可得△ABC 的面积.【题目详解】解:∵DE 是△ABC 的中位线,∴DE ∥BC ,BC =1DE =10cm ;由折叠的性质可得:AF ⊥DE ,∴AF ⊥BC ,∴S △ABC =12BC×AF =12×10×8=2cm 1. 故答案为2.【题目点拨】本题考查了翻折变换的性质及三角形的中位线定理,解答本题的关键是得出AF 是△ABC 的高. 12、3【解题分析】根据分式的运算法则即可求出答案.【题目详解】解:等式的右边=()()()()()()(3)(2)()324232323A x B x A B x A B x x x x x x x -----+-==------=等式的左边,∴1234A B B A -⎧⎨--⎩==, 解得:21A B ⎧⎨⎩==,∴A+B=3,故答案为:3【题目点拨】本题考查分式的运算,解题的关键是熟练掌握分式的运算法则以及二元一次方程组的解法. 13、>【解题分析】根据反比例函数的增减性,结合点A 和点B 的横坐标的大小,即可得到答案.∵m2≥0,∴m2+2>m2+1,∵反比例函数y=3x,k>0,∴当x>0时,y随着x的增大而减小,∴y1>y2,故答案为:>.【题目点拨】本题考查了反比例函数图象上点的坐标特征,正确掌握反比例函数的增减性是解题的关键.14、4【解题分析】根据平均数的定义求出x的值即可.【题目详解】根据题意得,4+5546757x+++++=,解得,x=4.故答案为:4.【题目点拨】要熟练掌握平均数的定义以及求法.15、(﹣2,2)【解题分析】试题分析:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣2.所以C′的坐标为(﹣2,2).考点:2.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移.16、x≤1【解题分析】根据二次根式有意义的条件列出不等式,解不等式即可.【题目详解】解:由题意得,1﹣x≥0,解得,x≤1,故答案为x≤1.【题目点拨】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.17、>【解题分析】根据反比例函数的图象和性质,再根据点的横坐标的大小,判断纵坐标的大小.【题目详解】∵y=图象在一、三象限,在每个象限内y随x的增大而减小,A(﹣1,y1)、B(﹣1,y1)都在第三象限图象上的两点,∵﹣1<﹣1,∴y1>y1,故答案为:>.【题目点拨】考查比例函数的图象和性质,当k>0,在每个象限内,y随x的的增大而减小,是解决问题的依据.18、3 5 .【解题分析】解分式方程2322x m mx x++=--,得到解,并让解大于零,然后根据概率公式求解.【题目详解】解:解分式方程23 22x m mx x++= --得:62mx-=且x≠2令62m->0 且不等于2,则符合题意得卡片上的数字有:-2,0 ,4;∴方程的解为正实数的概率为:35,故答案为35.【题目点拨】本题考查了概率公式和分式方程的求解,其关键是确定满足题意卡片上的数字..三、解答题(共66分)19、 (1)见解析;(2)见解析;(3)见解析.【解题分析】(1)先利用菱形的性质,得出ABD ∆是等边三角形,再利用等边三角形的性质,即可解答(2)设ABE α∠=,根据菱形的性质得出180120ABC ADC BAD ∠=∠=︒-∠=︒,由(1)可知120EBC α∠=︒-,即可解答(3)连接DE ,在AE 上取点F ,使AF EC =,延长AE 至G ,使EG EC =,连接GC ,连接DG ,设AE 与DC 的交点为O ,首先证明ADF CDE ∆≅∆,再根据全等三角形的性质得出CEG ∆是等边三角形,然后再证明DCG BCF ∆≅∆,即可解答【题目详解】(1)ABE ∆是等腰三角形;证明:∵四边形ABCD 是菱形,∴AB BC CD DA ===,∵60BAC ∠=︒,∴ABD ∆是等边三角形,∴AB BD =.∵BD BE =,∴AB BE =,∴ABE ∆是等腰三角形.(2)设ABE α∠=.∵四边形ABCD 是菱形,∴AD BC ∥,∴180120ABC ADC BAD ∠=∠=︒-∠=︒.由(1)知,AB BE =,同理可得:BC BE =.∴120EBC α∠=︒-, ∴()111809022AEB a α∠=︒-=︒-,∴()111801203022BEC αα∠=︒-+=︒+, ∴11903012022AEC AEB BEC αα∠=∠+∠=︒-+︒+=︒. ∴ADC AEC ∠=∠.(3)成立;证明:如图2,连接DE ,在AE 上取点F ,使AF EC =,延长AE 至G ,使EG EC =,连接GC ,连接DG ,设AE 与DC 的交点为O .∵ADC AEC ∠=∠,AOD COF ∠=∠,∴DAF DCE ∠=∠.∵AD DC =,∴ADF CDE ∆≅∆(ASA ),∴DF DE =,ADF CDE ∠=∠,∴120FDE ADC ∠=∠=︒,∴30DFE DEF ∠=∠=︒.∵150DEC ∠=︒,∵120AEC ∠=︒,∵60CEG ∠=︒,∴CEG ∆是等边三角形,∴EG CE GC ==.∵150DEG DEC ∠=∠=︒,∵DE DE =,∴DEC DEG ∆≅∆,∴DG DC =.∵BCD DCE ECG DCE ∠+∠=∠+∠,∴BCE DCG ∠=∠,∴DCG BCF ∆≅∆,∵BE DG =,∴BD BE =.【题目点拨】此题考查全等三角形的判定与性质,菱形的性质, 等边三角形的判定与性质,解题关键在于作辅助线20、(1)购买了甲树10棵、乙树40棵;(2)至少应购买甲树30棵.【解题分析】(1)首先设甲种树购买了x 棵,乙种数购买了y 棵,由题意得等量关系:①进甲、乙两种树共50棵;②购买两种树总金额为56000元,根据等量关系列出方程组,再解即可;(2)首先设应购买甲树x 棵,则购买乙种树(50﹣a )棵,由题意得不等关系:购买甲树的金额≥购买乙树的金额,再列出不等式,求解即可.【题目详解】解:(1)设购买了甲树x 棵、乙树y 棵,根据题意得50800120056000x y x y +=⎧⎨+=⎩解得:1040x y =⎧⎨=⎩ 答:购买了甲树10棵、乙树40棵;(2)设应购买甲树a 棵,根据题意得:800a ≥1200(50﹣a )解得:a ≥30答:至少应购买甲树30棵.【题目点拨】此题主要考查了二元一次方程组和一元一次不等式的应用,关键是正确理解题意,找出题目中的等量关系和不等关系,列出方程组和不等式.21、-3,-1.【解题分析】首先根据方程组可得y=47,把y=47代入①得:x=m+87,然后再把x=m+87,y=47代入不等式组3x y 0x 5y 0+≤⎧⎨+≥⎩中得34040m m +≤⎧⎨+≥⎩,再解不等式组,确定出整数解即可. 【题目详解】①×1得:1x-4y=1m ③,②-③得:y=47,把y=47代入①得:x=m+87, 把x=m+87,y=47代入不等式组3x y 0x 5y 0+≤⎧⎨+≥⎩中得: 34040m m +≤⎧⎨+≥⎩, 解不等式组得:-4≤m≤-43, 则m=-3,-1.考点:1.一元一次不等式组的整数解;1.二元一次方程组的解.22、(1)2,4m n ==;(2)3h =;(3)2x >或0x <【解题分析】(1)根据题意列方程组即可得到结论;(2)根据平移的性质得到平移后的函数的解析式为y=-x+2+h ,得到交点的坐标为(1,4),把(1,4)代入y=-x+2+h 即可得到结论;(3)由点M (a ,b )(a ,b 为常数)在函数y 1=-x+m 的图象上,得到M (a ,2-a ),求得点M (a ,b )关于y 轴的对称点N (-a ,2-a ),于是得到y 3=x+2,解不等式即可得到结论.【题目详解】解:(1) y x m =-+的图象过(2)n -,,∴2n m -+=-又6n m +=,2,4m n ∴==;(2)将1 2y x =-+的图象向上平移h 后为2y x h =-++, 与函数24 y x=的图象交直线4y =于点(1,4), 将(1,4)代入2y x h =-++,得:412h =-++,解得:3h =.(3)∵点M (a ,b )(a ,b 为常数)在函数y 1=-x+m 的图象上,∴M (a ,2-a ),∴点M (a ,b )关于y 轴的对称点N (-a ,2-a ),∵函数y 3=kx+m (k≠1)的图象经过点N ,32y x ∴=+,由2312y y y <+,代入得: 422 2x x x<+-+, 当x >1时,解得:x >2,当x <1时,解得:x <1,综上所述,x 的取值范围为:x >2或x <1.【题目点拨】本题考查了反比例函数与一次函数的交点问题,正确的理解题意,熟练掌握反比例函数与一次函数的关系是解题的关键.注意掌握数形结合的思想进行解题.23、4 【解题分析】根据分式的运算法则即可求出答案.【题目详解】原式=()()112•11x x x x x +-+-+ =x+2,由分式有意义的条件可知:x=2,∴原式=4,【题目点拨】 本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.24、(1)2;(2)122a << 【解题分析】(1)y=kx+b 经过原点则b=0,据此求解;(2)y=kx+b 的图象经过一、三、四象限,k >0,b <0,据此列出不等式组求解即可.【题目详解】解:(1)由题意得20a -=,∴2a =.(2)由题意得21020 aa->⎧⎨-<⎩解得:12 2a<<∴a的取值范围是:12 2a<<【题目点拨】考查了一次函数的性质,了解一次函数的性质是解答本题的关键,难度不大.25、2.【解题分析】试题分析:由勾股定理的逆定理证明△ADC是直角三角形,∠C=90°,再由勾股定理求出BC,得出BD,即可得出结果.解:在△ADC中,AD=15,AC=12,DC=9,AC2+DC2=122+92=152=AD2,即AC2+DC2=AD2,∴△ADC是直角三角形,∠C=90°,在Rt△ABC中,BC===16,∴BD=BC﹣DC=16﹣9=7,∴△ABD的面积=×7×12=2.26、(1)0.5;(2)y=0.55x﹣11;(3)小豪家这个月用电量为1kW•h.【解题分析】(1)由用电220度费用为110元可得;(2)当x>220时,待定系数法求解可得此时函数解析式;(3)由121>110知,可将y=121代入(2)中函数解析式求解可得.【题目详解】(1)“基础电价”是110220=0.5元/度,故答案为:0.5;(2)当x>220时,设y=kx+b,由图象可得:220110 300154k bk b+=⎧⎨+=⎩,解得k0.55 b11=⎧⎨=-⎩,∴y=0.55x﹣11;(3)∵y=121>110∴令0.55x﹣11=121,得:x=1.答:小豪家这个月用电量为1kW•h.【题目点拨】本题主要考查一次函数的图象与待定系数求函数解析式,分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,理解每个区间的实际意义是解题关键.。
湖州市重点中学2024届数学八下期末检测试题含解析
湖州市重点中学2024届数学八下期末检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.某商场要招聘电脑收银员,应聘者需通过计算机、语言和商品知识三项测试,小明的三项成绩(百分制)依次是70分,50分,80分,其中计算算机成绩占50%,语言成绩占30%,商品知识成绩占20%.则小明的最终成绩是( ) A .66分B .68分C .70分D .80分2.方程20x x -=的根是( ) A .1x =B .120x x ==C .121x x ==D .10x =,21x =3.如图,a ,b ,c 分别表示苹果、梨、桃子的质量,同类水果质量相等,则下列关系正确的是A .a c b >>B .b a c >>C .a b c >>D .c a b >>4.甲、乙、丙、丁四位选手各射击10次,每人的平均成绩都是9.3环,方差如表: 选手甲 乙 丙 丁 方差(环2)0.0350.0160.0220.025则这四个人种成绩发挥最稳定的是( ) A .甲B .乙C .丙D .丁5.如图,已知四边形ABCD 是平行四边形,下列结论中错误的是( )A .当AB=BC 时,它是菱形B .当AC ⊥BD 时,它是菱形 C .当AC=BD 时,它是矩形 D .当∠ABC=90°时,它是正方形6.下列算式正确的( )A .22(a b)(a b)-+-=1B .2a 1a 8---+=2a 1a 8-+C .22x y x y++=x+yD .0.52y0.1x ++=52y1x++7.下列运算中正确的是( ) A .27?3767=B .()24423233333=== C .3313939===D .155315151÷⨯=÷=8.关于x 的方程无解,则m 的值为( )A .﹣5B .﹣8C .﹣2D .59.如图,四边形ABCD 的对角线交于点O ,下列哪组条件不能判断四边形ABCD 是平行四边形( )A .OA OC =,OB OD = B .AB CD =,AO CO =C .//AD BC ,AD BC =D .BAD BCD ∠=∠,//AB CD10.顺次连接四边形各边的中点,所成的四边形必定是( ) A .等腰梯形B .直角梯形C .矩形D .平行四边形11.济南某中学足球队的18名队员的年龄如下表所示:这18名队员年龄的众数和中位数分别是( ) A .13岁,14岁B .14岁,14岁C .14岁,13岁D .14岁,15岁12.现有甲、乙两个合唱队,队员的平均身高都是175cm ,方差分别为2s =0.51甲,2s =0.35乙,那么两个队中队员的身高较整齐的是( ) A .甲队B .乙队C .两队一样高D .不能确定二、填空题(每题4分,共24分)13.若多项式222(3)x mx x x +=-,则m =_______________.14.在分式2xx+中,当x=___时分式没有意义.15.如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA边上的中点,连结AC、BD,回答问题(1)对角线AC、BD满足条件_____时,四边形EFGH是矩形.(2)对角线AC、BD满足条件_____时,四边形EFGH是菱形.(3)对角线AC、BD满足条件_____时,四边形EFGH是正方形.16.学校开展的“争做最美中学生”的一次演讲比赛中,编号分别为1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数是_____,中位数是_____.17.若最简二次根式23x-与5是同类二次根式,则x=_______.18.如图,点G为正方形ABCD内一点,AB=AG,∠AGB=70°,联结DG,那么∠BGD=_____度.三、解答题(共78分)19.(8分)已知n边形的内角和θ=(n﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了540°,用列方程的方法确定x.20.(8分)如图,四边形ABCD为菱形,E为对角线AC上的一个动点,连结DE并延长交射线AB于点F,连结BE.(1)求证:∠AFD=∠EBC;(2)若∠DAB=90°,当△BEF为等腰三角形时,求∠EFB的度数.21.(8分)如图,在平面直角坐标系中,一次函数的图象经过点A(6,﹣3)和点B(﹣2,5).(1)求这个一次函数的表达式.(2)求该函数图象与坐标轴围成的三角形的面积.(3)判断点C(2,2)是在直线AB的上方(右边)还是下方(左边).22.(10分)老师随机抽査了本学期学生读课外书册数的情况,绘制成不完整的条形统计图和不完整的扇形统计图(如图所示).(1)补全条形统计图;(2)求出扇形统计图中册数为4的扇形的圆心角的度数;(3)老师随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后发现册数的中位数没改变,则最多补查了.23.(10分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.24.(10分)(75)(75)(2712)3+-+-÷25.(12分)如图,正方形OABC的面积为4,点O为坐标原点,点B在函数y=kx(k<0,x<0)的图象上,点P(m,n)是函数y=kx(k<0,x<0)的图象上异于B的任意一点,过点P分别作x轴、y轴的垂线,垂足分别为E、F.(1)设矩形OEPF的面积为S1,求S1;(1)从矩形OEPF的面积中减去其与正方形OABC重合的面积,剩余面积记为S1.写出S1与m的函数关系式,并标明m的取值范围.26.图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形.(2)若DE=4cm,∠EBC=60°,求菱形BCFE的面积。
浙江省湖州市名校2024届数学八下期末监测试题含解析
浙江省湖州市名校2024届数学八下期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)1.下列语句:①每一个外角都等于的多边形是六边形;②“反证法”就是举反例说明一个命题是假命题;③“等腰三角形两底角相等”的逆命题是真命题;④分式值为零的条件是分子为零且分母不为零,其中正确的个数为()A.1 B.2 C.3 D.42.下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.3.分式①22 3a a ++,②22a ba b--,③()412aa b-,④12x-中,最简分式有()A.1个B.2个C.3个D.4个4.某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( ) A.众数是80 B.中位数是75 C.平均数是80 D.极差是155.函数y=ax﹣a与y=ax(a≠0)在同一直角坐标系中的图象可能是()A.B.C.D.6.下列说法正确的是( )A .对应边都成比例的多边形相似B .对应角都相等的多边形相似C .边数相同的正多边形相似D .矩形都相似7.直角三角形的两条直角边长分别为a 和b ,斜边长为c ,已知c =13,b =5,则a =( )A .1B .5C .12D .258.八年级6班的一个互助学习小组组长收集并整理了组员们讨论如下问题时所需的条件:如图所示,在四边形ABCD 中,点E 、F 分别在边BC 、AD 上,____,求证:四边形AECF 是平行四边形. 你能在横线上填上最少且简捷的条件使结论成立吗?条件分别是:①BE =DF ;②∠B =∠D ;③BAE =∠DCF ;④四边形ABCD 是平行四边形.其中A 、B 、C 、D 四位同学所填条件符合题目要求的是( )A .①②③④B .①②③C .①④D .④9.如图,在四边形ABCD 中,AC 与BD 相交于点O ,AD ∥BC ,AC =BD ,那么下列条件中不能判定四边形ABCD 是矩形的是( )A .AD =BCB .AB =CDC .∠DAB =∠ABCD .∠DAB =∠DCB10.下列化简正确的是( )A .B .C .D .二、填空题(每小题3分,共24分)11.已知一次函数24y x =+的图象经过点(m,6),则m=____________12.抛物线22y x x =-,当y 随x 的增大而减小时x 的取值范围为______. 13.写出一个经过二、四象限的正比例函数_________________________.14.如图,在△ABC 中,∠C=90°,AC=BC ,AD 是∠CAB 的角平分线,DE ⊥AB 于点E ,若BE=4cm ,则AC 的长是____________cm .15.如图所示,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P,使PD+PE的和最小,则这个最小值为_____.16.若三角形三边分别为6,8,10,那么它最长边上的中线长是_____.17.直线y=kx+b与直线y=-3x+4平行,且经过点(1,2),则k=______,b=______.18.如图所示,直线y=kx+b经过点(﹣2,0),则关于x的不等式kx+b<0的解集为_____.三、解答题(共66分)19.(10分)如图,平面直角坐标系内有一△ABC,且点A(2,4),B(1,1),C(4,2).(1)画出△ABC向下平移5个单位后的△A1B1C1;(2)画出△A1B1C1先向左平移5个单位再作关于x轴对称的△A2B2C2,并直接写出点A2,B2的坐标.20.(6分)解不等式组:22112x xxx≤+⎧⎪⎨-+⎪⎩①<②请结合题意填空,完成本题解答:(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.21.(6分)如图,在5×5的正方形网格中,每个小正方形的边长都为1.请在所给网格中按下列要求画出图形.(1)画线段AC,使它的另一个端点C落在格点(即小正方形的顶点)上,且长度为32;(2)以线段AC为对角线,画凸四边形ABCD,使四边形ABCD既是中心对称图形又是轴对称图形,顶点都在格点上,且边长是无理数;(3)求(2)中四边形ABCD的周长和面积.22.(8分)某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分)(1)这6名选手笔试成绩的中位数是分,众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.23.(8分)地铁检票处有三个进站闸口A、B、C.①人选择A进站闸口通过的概率是________;②两个人选择不同进站闸口通过的概率.(用树状图或列表法求解)24.(8分)正方形ABCD中,点O是对角线DB的中点,点P是DB所在直线上的一个动点,PE⊥BC于E,PF⊥DC 于F.(1)当点P与点O重合时(如图①),猜测AP与EF的数量及位置关系,并证明你的结论;(2)当点P在线段DB上(不与点D、O、B重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P在DB的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.25.(10分)如图,正方形ABCD ,点P 为射线DC 上的一个动点,点Q 为AB 的中点,连接,PQ DQ ,过点P 作PE DQ ⊥于点E .(1)请找出图中一对相似三角形,并证明;(2)若4AB =,以点,,P E Q 为顶点的三角形与ADQ △相似,试求出DP 的长.26.(10分)如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan48 1.11︒≈,tan58 1.60︒≈.参考答案一、选择题(每小题3分,共30分)1、C【解题分析】根据多边形的外角,反证法的定义,等腰三角形的性质与判定,分式有意义的条件,进行逐一判定分析,即可解答.【题目详解】①每一个外角都等于60°的多边形是六边形,正确;②“反证法”就是从反面的角度思考问题的证明方法,故错误;③“等腰三角形两底角相等”的逆命题是有两个角相等的三角形为等腰三角形,是真命题,正确;④分式值为零的条件是分子为零且分母不为零,故正确;正确的有3个.故选C.【题目点拨】此题考查命题与定理,解题关键在于掌握各性质定理.2、C【解题分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x 轴的直线在左右平移的过程中与函数图象只会有一个交点.【题目详解】根据函数的意义可知:对于自变量x 的任何值,y 都有唯一的值与之相对应,所以只有选项C 不满足条件. 故选C .【题目点拨】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x ,y ,对于x 的每一个取值,y 都有唯一确定的值与之对应,则y 是x 的函数,x 叫自变量.3、B【解题分析】利用约分可对各分式进行判断.【题目详解】 ①223a a ++是最简分式; ②221=()()ab a b a b a b a b a b--=-+-+,故不是最简分式; ③()4=123()a a ab a b --,故不是最简分式;④12x是最简分式;所以,最简分式有2个,故选:B.【题目点拨】本题考查了最简分式:一个分式的分子与分母没有公因式时,叫最简分式.4、B【解题分析】(1)80出现的次数最多,所以众数是80,A正确;(2)把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;(3)平均数是80,C正确;(4)极差是90-75=15,D正确.故选B5、D【解题分析】当反比例函数图象分布在第一、三象限,则a>0,然后根据一次函数图象与系数的关系对A、B进行判断;当反比例函数图象分布在第二、四象限,则a<0,然后根据一次函数图象与系数的关系对C、D进行判断.【题目详解】解:A、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以A选项错误;B、从反比例函数图象得a>0,则对应的一次函数y=ax﹣a图象经过第一、三、四象限,所以B选项错误;C、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以C选项错误;D、从反比例函数图象得a<0,则对应的一次函数y=ax﹣a图象经过第一、二、四象限,所以D选项正确.故选:D.【题目点拨】本题考查了反比例函数图象:反比例函数y=kx的图象为双曲线,当k>0,图象分布在第一、三象限;当k<0,图象分布在第二、四象限.也考查了一次函数图象.6、C【解题分析】试题分析:根据相似图形的定义,对选项一一分析,排除错误答案.解:A、对应边都成比例的多边形,属于形状不唯一确定的图形,故错误;B、对应角都相等的多边形,属于形状不唯一确定的图形,故错误;C、边数相同的正多边形,形状相同,但大小不一定相同,故正确;D、矩形属于形状不唯一确定的图形,故错误.故选C.考点:相似图形.点评:本题考查相似变换的定义,即图形的形状相同,但大小不一定相同的是相似形.7、C【解题分析】根据勾股定理计算即可.【题目详解】由勾股定理得,,故选C.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.8、C【解题分析】由平行四边形的判定可求解.【题目详解】解:当添加①④时,可得四边形AECF是平行四边形,理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∵BE=DF∴AD﹣DF=BC﹣BE∴AF=EC,且AF∥CE∴四边形AECF是平行四边形.故选C.【题目点拨】本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.9、B【解题分析】有一个角是直角的平行四边形是矩形;有三个角是直角的四边形是矩形;对角线相等的平行四边形是矩形,依据矩形的判定进行判断即可。
2022-2023学年浙江省湖州市德清县八年级(下)期末数学试卷(含解析)
2022-2023学年浙江省湖州市德清县八年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 在下列图形中,是中心对称图形的是( )A. B. C. D.2.如图,DE是△ABC的中位线,若BC=8,则DE的长是( )A. 3B. 4C. 5D. 63. 下列运算结果正确的是( )A. 3+2=5B. 3×2=5C. 35−5=2D. 18÷2=34. 在平面直角坐标系xOy中,若点A(2,y1),B(5,y2)在反比例函数y=k(k>0,k为常数)的图x象上,则( )A. y1>y2B. y1≥y2C. y1=y2D. y1<y25. 甲、乙、丙、丁四名射击运动员进行射击测试,每人10次射击成绩的平均数−x(单位:环)及方差S2(单位,环 2)如表所示:甲乙丙丁−x9999S2 1.6 1.230.8根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A. 甲B. 乙C. 丙D. 丁6. 一元二次方程x2−4x+4=0的根的情况为( )A. 只有一个实数根B. 有两个不相等的实数根C. 有两个相等的实数根D. 没有实数根7.如图,平行四边形ABCD的对角线交于点E,已知AB=5cm,△ABE的周长比△BEC的周长小3cm,则AD的长度为( )A. 8cmB. 5cmC. 3cmD. 2cm8. 高空抛物极其危险,是我们必须杜绝的行为.据研究,高空抛物下落的时间t(单位:s)和(不考虑风速的影响).记从50m高空抛物到落地所需时间高度ℎ(单位:m)近似满足公式t=ℎ5为t1.从100m高空抛物到落地所需时间为t2,则t2:t1的值是( )A. 25B. 5C. 2D. 29. 如图,在平面直角坐标系中,反比例函数y=k(k>0,x>0)的图x象经过△AOB的顶点B.若AB//y轴,点A的坐标为(3,2),△OAB的面积为3.5,则k的值为( )A. 6.5B. 7C. 13D. 1410.如图,将两个等腰直角三角形(△AEF和△CEF)拼接在正方形ABCD内部,其中∠AEF=∠EFC=90°,下列结论:①四边形AECF是平行四边形;②△ABF是直角三角形;③若AB=10,则AF=22.其中正确结论的编号是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本大题共6小题,共24.0分)11. 使代数式有意义的x的取值范围是.12. 四边形的内角和的度数为______ .13. 若关于x的一元二次方程x2+ax+2a+3=0的一个根是1,则a的值是______ .14.如图,E是平行四边形ABCD内一点,△BCE是正三角形,连结AE,DE,若AE⊥AD,DE⊥EC,且AE=1,∠ADE=30°,则AB的长是______ .15. 如图,一次函数y=k1x+b(k1和b均为常数且k1>0)与反比例函数y=k2(k2为常数且k2x−k1x−b>0的解集是<0)的图象交于A,B两点,其横坐标为1和2.5,则关于x的不等式k2x______ .16. 如图,在平面直角坐标系中,反比例函数y=k(k>0,kx是常数)在第一象限部分的图象与矩形OABC的两边AB和BC分别交于D,F两点,将△OAD沿OD翻折得到△OED,DE的延长线恰好经过点C.若∠EOC=45°,则CF的值是______ .BF三、解答题(本大题共8小题,共66.0分。
2022届浙江省名校八年级第二学期期末质量检测数学试题含解析
2022届浙江省名校八年级第二学期期末质量检测数学试题一、选择题(每题只有一个答案正确)1.如图,矩形纸片ABCD中,已知AD =8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3,则AB的长为( )A.3 B.4C.5 D.62.如图,长方形ABCD中,BE、CE分别平分∠ABC和∠DCB,点E在AD上,①△ABE≌△DCE;②△ABE 和△DCE都是等腰直角三角形;③AE=DE;④△BCE是等边三角形,以上结论正确的有( )A.1个B.2个C.4个D.3个3.如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18, 1.5OE ,则四边形EFCD的周长为()A.14 B.13 C.12 D.104.如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DG,则A′G的长是()A.1 B.43C.32D.25.化简的结果是()A .B .C .D .6.直线y=x-2与x 轴的交点坐标是( )A .(2,0)B .(-2,0)C .(0,-2)D .(0,2)7.估计56﹣24的值应在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间8.点A (4,3)经过某种图形变化后得到点B (-3,4),这种图形变化可以是( )A .关于x 轴对称B .关于y 轴对称C .绕原点逆时针旋转90D .绕原点顺时针旋转909.小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中小明离家的距离y (km )与时间x(min)之间的对应关系.根据图象,下列说法中正确的是( )A .小明吃早餐用了17minB .食堂到图书馆的距离为0.8kmC .小明读报用了28minD .小明从图书馆回家的速度为0.8km/min10.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的( )A .平均数B .方差C .众数D .中位数二、填空题11.二次函数()2215y x =---的最大值是____________.12.如图,在ABC ∆中,6AB =,4AC =,AD 是角平分线,AE 是中线,过点C 作CG AD ⊥于点F ,交AB 于点G ,连接EF ,则线段EF 的长为_____.13.一次函数y kx b =+(k ,b 为常数,0k ≠)的图象如图所示,根据图象信息可得到关于x 的方程4kx b +=的解为__________.14.使得分式值242x x -+为零的x 的值是_________; 15.如图,ABC ∆中,AB AC =,40A ∠=︒,点D 为AC 边上一动点(不与点A 、C 重合),当BCD ∆为等腰三角形时,ABD ∠的度数是________.16.如图所示,小明从坡角为30°的斜坡的山底(A )到山顶(B )共走了200米,则山坡的高度BC 为 米.17.如图,菱形的周长为20,对角线的长为6,则对角线的长为______.三、解答题18.(132722(2)解方程:260x x +=.19.(6分)如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫做格点.(1)以格点为顶点画ABC ∆13,8,17;(2)若Rt DEF ∆的三边长分别为m 、n 、d 2344m n n -=--,求三边长,若能画出以格点为顶点的三角形,请画出该格点三角形.20.(6分)已知:如图,在菱形ABCD 中, BE ⊥AD 于点E ,延长AD 至F ,使DF=AE ,连接CF .(1)判断四边形EBCF 的形状,并证明;(2)若AF=9,CF=3,求CD 的长.21.(6分)阅读材料:各类方程的解法求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想--转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2-2x=0,可以通过因式分解把它转化为x(x 2+x-2)=0,解方程x=0和x 2+x-2=0,可得方程x 3+x 2-2x=0的解.(1)问题:方程x 3+x 2-2x=0的解是x 1=0,x 2= ,x 3= ;(2)拓展:用“转化”思想求方程23x x +=的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.22.(8分)如图1,正方形ABCD 的边长为4,对角线AC 、BD 交于点M .(1)直接写出AM= ;(2)P 是射线AM 上的一点,Q 是AP 的中点,设PQ=x .①AP= ,AQ= ; ②以PQ 为对角线作正方形,设所作正方形与△ABD 公共部分的面积为S ,用含x 的代数式表示S ,并写出相应的x 的取值范围.(直接写出,不需要写过程)23.(8分)E 、F 、M 、N 分别是正方形ABCD 四条边上的点,AE =BF =CM =DN ,四边形EFMN 是什么图形?证明你的结论.24.(10分)已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=m x 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式;(2)求△AOC 的面积;(3)求不等式kx+b-m x<0的解集(直接写出答案).25.(10分)(1)计算2423(21)287x y x y x y ++-÷(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.解方程 32122x x x =--- 解:方程两边乘2(1)x -,得232x =-第一步解得12x=第二步检验:当12x=时,2(1)0x-≠.所以,原分式方程的解是12x=第三步小刚的解法从第步开始出现错误,原分式方程正确的解应是.参考答案一、选择题(每题只有一个答案正确)1.D【解析】试题分析:先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF的长,再在△ABC中利用勾股定理即可求出AB的长.解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8﹣3=5,在Rt△CEF中,CF===4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选D.考点:翻折变换(折叠问题);勾股定理.2.D【解析】【分析】根据矩形性质得出∠A=∠D=90°,AB=CD,AD∥BC,推出∠AEB=∠EBC,∠DEC=∠ECB,求出∠AEB=∠ABE,∠DCE=∠DEC,推出AB=AE,DE=DC,推出AE=DE,根据SAS推出△ABE≌△DCE,推出BE=CE即可.【详解】∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=CD,AD∥BC,∴∠AEB=∠EBC ,∠DEC=∠ECB ,∵BE 、CE 分别平分∠ABC 和∠DCB ,∴∠ABE=∠EBC ,∠DCE=∠ECB ,∴∠AEB=∠ABE ,∠DCE=∠DEC ,∴AB=AE ,DE=DC ,∴AE=DE ,∴△ABE 和△DCE 都是等腰直角三角形,在△ABE 和△DCE 中,AE DE A D AB CD ⎧=∠=∠=⎪⎨⎪⎩, ∴△ABE ≌△DCE(SAS),∴BE=CE ,∴①②③都正确,故选D.【点睛】此题考查全等三角形的判定与性质,等腰直角三角形,等边三角形的判定,解题关键在于掌握各判定定理. 3.C【解析】【详解】∵平行四边形ABCD ,∴AD ∥BC ,AD=BC ,AO=CO ,∴∠EAO=∠FCO ,∵在△AEO 和△CFO 中,AEO CFO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEO ≌△CFO ,∴AE=CF ,EO=FO=1.5,∵C 四边形ABCD =18,∴CD+AD=9,∴C 四边形CDEF =CD+DE+EF+FC=CD+DE+EF+AE=CD+AD+EF=9+3=12.故选C.【点睛】本题关键在于利用三角形全等,解题关键是将四边形CDEF 的周长进行转化.4.C【解析】【分析】由在矩形纸片ABCD 中,AB=4,AD=3,可求得BD 的长,由折叠的性质,即可求得A′B 的长,然后设A′G=x ,由勾股定理即可得:x 2+4=(4-x )2,解此方程即可求得答案.【详解】∵四边形ABCD 是矩形,∴90A ∠=,∴225BD AD AB =+=,由折叠的性质,可得:A′D=AD=3,A′G=AG,'90DA G ∠=,∴A′B=BD−A′D=5−3=2,设A′G=x ,则AG=x ,BG=AB−AG=4−x ,在Rt △A′BG 中,222''A G A B BG +=,∴()2244x x +=-, 解得:3,2x =∴3'.2A G = 故选:C.【点睛】考查折叠的性质,矩形的性质,勾股定理等知识点,熟练掌握折叠的性质是解题的关键.5.C【解析】【分析】直接利用二次根式的乘法运算法则,计算得出答案.【详解】解:,故选择:C.【点睛】此题主要考查了二次根式的乘法运算,正确化简二次根式是解题的关键.6.A【解析】【分析】令y=0,求出x的值即可【详解】解:∵令y=0,则x=2,∴直线y=x-2与x轴的交点坐标为(2,0).故选:A.【点睛】本题考查的是一次函数图象上点的坐标特点,熟知x轴上点的坐标特点是解答此题的关键.7.D【解析】【分析】先合并后,再根据无理数的估计解答即可.【详解】−=∵78,∴的值应在7和8之间,故选D.【点睛】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.C【解析】分析:根据旋转的定义得到即可.详解:因为点A(4,3)经过某种图形变化后得到点B(-3,4),所以点A绕原点逆时针旋转90°得到点B,故选C.点睛:本题考查了旋转的性质:旋转前后两个图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段的夹角等于旋转角.9.A【解析】【分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解;由图象可得:小明吃早餐用了25﹣8=17min,故选项A正确;食堂到图书馆的距离为0.8﹣0.6=0.2km ,故选项B 错误;小明读报用了58﹣28=30min ,故选项C 错误;小明从图书馆回家的速度为0.8÷(68﹣58)=0.08km/min ,故选项D 错误.故选A .【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.10.B【解析】【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.二、填空题11.-5【解析】【分析】根据二次函数的性质求解即可.【详解】∵()2215y x =---的a=-2<0,∴当x=1时,有最大值-5.故答案为-5.【点睛】本题考查了二次函数的最值:二次函数y=ax 2+bx+c ,当a >0时,抛物线在对称轴左侧,y 随x 的增大而减少;在对称轴右侧,y 随x 的增大而增大,因为图象有最低点,所以函数有最小值,当x=-2b a时,y=244ac b a -;(2)当a <0时,抛物线在对称轴左侧,y 随x 的增大而增大;在对称轴右侧,y 随x 的增大而减少,因为图象有最高点,所以函数有最大值,当x=-2b a时,y=244ac b a -. 12.1【解析】【分析】首先根据全等三角形判定的方法,判断出△AFG ≌△AFC ,即可判断出FG=FC ,AG=AC ,所以点F 是CG 的中点;然后根据点E 是BC 的中点,可得EF 是△CBG 的中位线,再根据三角形中位线定理,求出线段EF 的长为多少即可.【详解】∵AD 是∠BAC 的平分线,∴∠FAG=∠FAC ,∵CG ⊥AD ,∴∠AFG=∠AFC=90°,在△AFG 和△AFC 中,FAG FAC AF AFAFG AFC ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△AFG ≌△AFC ,∴FG=FC ,AG=AC=4,∴F 是CG 的中点,又∵点E 是BC 的中点,∴EF 是△CBG 的中位线, ∴()()111BG AB AG 641222EF ==-=⨯-=. 故答案为:1.【点睛】本题考查了全等三角形的判定以及三角形的中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.13.x =1【解析】【分析】直接根据图象找到y =kx +b =4的自变量的值即可.【详解】观察图象知道一次函数y =kx +b (k 、b 为常数,且k≠0)的图象经过点(1,4),所以关于x 的方程kx +b =4的解为x =1,故答案为:x =1.【点睛】本题考查了一次函数与一元一次不等式,能结合图象确定方程的解是解答本题的关键.14.2【解析】【分析】根据分式的性质,要使分式有意义,则必须分母不能为0,要使分式为零,则只有分子为0,因此计算即可.【详解】解:要使分式有意义则20x +≠ ,即2x ≠-要使分式为零,则240x -= ,即2x =±综上可得2x =故答案为2【点睛】本题主要考查分式的性质,关键在于分式的分母不能为0.15.15︒或30【解析】【分析】根据AB=AC ,∠A=40°,得到∠ABC=∠C=70°,然后分当CD=CB 时和当BD=BC 时两种情况求得∠ABD 的度数即可.【详解】解:∵AB=AC ,∠A=40°,∴∠ABC=∠C=70°,当CD=CB 时,∠CBD=∠CDB=(180°-70°) ÷2=55°,此时∠ABD=70°-55°=15°;当BD=BC 时,∠BDC=∠BCD=70°,∴∠DBC=180°-70°-70°=40°,∴∠ABD=70°-40°=30°,故答案为:15°或30°.【点睛】本题考查了等腰三角形的性质,解题的关键是能够分类讨论,难度不是很大,是常考的题目之一. 16.1【解析】试题分析:直接利用坡角的定义以及结合直角三角中30°所对的边与斜边的关系得出答案. 解:由题意可得:AB=200m ,∠A=30°,则BC=AB=1(m ).故答案为:1.17.8【解析】【分析】利用菱形的性质根据勾股定理求得AO的长,然后求得AC的长即可.【详解】如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO,BO=DO∵BD=6,∴BO=3,∵周长为20,∴AB=5,由勾股定理得:AO==4,∴AC=8,故答案为:8【点睛】本题主要考查了菱形的性质,解题的关键是菱形问题转化为直角三角形问题求解.三、解答题18.(1)23(2)x1=0,x2=﹣1.【解析】【分析】(1)先算乘法,根据二次根式化简,再合并同类二次根式即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】(1)原式=33323(2)x2+1x=0,x(x+1)=0,x=0,x+1=0,x 1=0,x 2=﹣1.【点睛】本题考查二次根式的混合运算和解一元二次方程,能正确运用运算法则进行化简是解(1)的关键,能把一元二次方程转化成一元一次方程是解(2)的关键.19.(1)见解析如图(1);(2)三边分别为13,3,2是格点三角形.图见解析.【解析】【分析】(1)根据勾股定理画出图形即可.(2)先将等式变形,根据算术平方根和平方的非负性可得m 和n 的值,计算d 的值,画出格点三角形即可.【详解】(1)如图(1)所示:(2)∵2344m n n -=--,∴()2320m n -+-=,解得:m=3,n=2,∴三边长为3,2,5或13,3,2,如图(2)所示:13,3,2是格点三角形.【点睛】本题考查的是勾股定理,格点三角形、算术平方根和平方的非负性,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.20.(1)四边形EBCF 是矩形,证明见解析;(2)CD =5【解析】【分析】(1)由菱形的性质证得EF=BC ,由此证明四边形EBCF 是平行四边形.,再利用BE ⊥AD 即可证得四边形EBCF 是矩形;(2)设CD=x ,根据菱形的性质及矩形的性质得到DF=9-x ,再利用勾股定理求出答案.【详解】(1)四边形EBCF 是矩形证明:∵四边形ABCD 菱形,∴AD=BC ,AD ∥BC.又∵DF=AE ,∴DF+DE=AE+DE ,即:EF = AD.∴ EF = BC.∴四边形EBCF 是平行四边形.又∵BE ⊥AD ,∴ ∠BEF=90°.∴四边形EBCF 是矩形.(2) ∵ 四边形ABCD 菱形,∴ AD=CD.∵ 四边形EBCF 是矩形,∴ ∠F=90°.∵AF=9,CF=3,∴设CD=x , 则DF=9-x ,∴ ()22293x x =-+,解得: 5.x =∴CD =5.【点睛】此题考查菱形的性质,矩形的判定定理及性质定理,勾股定理,熟记各定理是解题的关键.21. (1)-2,1;(2)x=3;(3)4m.【解析】【分析】(1)因式分解多项式,然后得结论;(2)两边平方,把无理方程转化为整式方程,求解,注意验根;(3)设AP 的长为xm ,根据勾股定理和BP+CP=10,可列出方程,由于方程含有根号,两边平方,把无理方程转化为整式方程,求解,【详解】解:(1)3220x x x +-=,()220x x x +-=, ()()210x x x +-=所以0x =或20x +=或10x -=10x ∴=,22x =-,31x =;故答案为2-,1;(2)x =,方程的两边平方,得223x x +=即2230x x --=()()310x x -+=30x ∴-=或10x +=13x ∴=,21x =-,当1x =-11==≠-,所以1-不是原方程的解.x =的解是3x =;(3)因为四边形ABCD 是矩形,所以90A D ∠=∠=︒,3AB CD m ==设AP xm =,则()8PD x m =-因为10BP CP +=,BP =CP∴ 10=∴ 10=两边平方,得()22891009x x -+=-+整理,得49x =+两边平方并整理,得28160x x -+=即()240x-=所以4x=.经检验,4x=是方程的解.答:AP的长为4m.【点睛】考查了转化的思想方法,一元二次方程的解法.解无理方程是注意到验根.解决(3)时,根据勾股定理和绳长,列出方程是关键.22.(1)22;(2)①2x,x;②S222x x=-+(0<x≤22).【解析】【分析】(1)根据勾股定理可得AC=42,进而根据正方形对角线相等而且互相平分,可得AM的长;(2)由中点定义可得AP=2PQ,AQ=PQ,然后由正方形与△ABD公共部分可得是以QM为高的等腰直角三角形,据此即可解答.【详解】解:(1)∵正方形ABCD的边长为4,∴对角线AC22AB==42,又∴AM12AC==22.故答案为:22.(2)①Q是AP的中点,设PQ=x,∴AP=2PQ=2x,AQ=x.故答案为:2x;x.②如图:∵以PQ为对角线作正方形,∴∠GQM=∠FQM=45°∵正方形ABCD对角线AC、BD交于点M,∴∠FMQ=∠GMQ=90°,∴△FMQ和△GMQ均为等腰直角三角形,∴FM=QM=MG.∵QM=AM﹣x,∴S12=FG•QM()122x x=⋅,∴S2x=-+,∵依题意得:xx⎧⎪⎨⎪⎩>>,∴0<x≤,综上所述:S2x=-+(0<x≤),【点睛】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.解答本题要充分利用等腰直角三角形性质解答.23.四边形EFMN是正方形.【解析】【分析】是正方形.可通过证明△AEN≌△DNM≌△CMF≌△BFE,先得出四边形EFMN是菱形,再证明四边形EFMN 中一个内角为90°,从而得出四边形EFMN是正方形的结论.【详解】解:四边形EFMN是正方形.证明:∵AE=BF=CM=DN,∴AN=DM=CF=BE.∵∠A=∠B=∠C=∠D=90°,∴△AEN≌△DNM≌△CMF≌△BFE.∴EF=EN=NM=MF,∠ENA=∠DMN.∴四边形EFMN是菱形.∵∠ENA=∠DMN,∠DMN+∠DNM=90°,∴∠ENA+∠DNM=90°.∴∠ENM=90°.∴四边形EFMN是正方形.【点睛】本题主要考查了正方形的性质和判定,灵活运用性质定理进行推理是解题关键.24. (1)反比例函数关系式:4y x =;一次函数关系式:y=1x+1;(1) 3;(3)x <-1或0<x <1. 【解析】 分析:(1)由B 点在反比例函数y=m x上,可求出m ,再由A 点在函数图象上,由待定系数法求出函数解析式; (1)由上问求出的函数解析式联立方程求出A ,B ,C 三点的坐标,从而求出△AOC 的面积;(3)由图象观察函数y=m x的图象在一次函数y=kx+b 图象的上方,对应的x 的范围. 详解:(1)∵B (1,4)在反比例函数y=m x 上, ∴m=4,又∵A (n ,-1)在反比例函数y=m x 的图象上, ∴n=-1,又∵A (-1,-1),B (1,4)是一次函数y=kx+b 的上的点,联立方程组解得,k=1,b=1,∴y =4x,y=1x+1; (1)过点A 作AD ⊥CD ,∵一次函数y=kx+b 的图象和反比例函数y=m x 的图象的两个交点为A ,B ,联立方程组解得, A (-1,-1),B (1,4),C (0,1),∴AD=1,CO=1,∴△AOC 的面积为:S=12AD•CO=12×1×1=1; (3)由图象知:当0<x <1和-1<x <0时函数y=4x 的图象在一次函数y=kx+b 图象的上方, ∴不等式kx+b-m x<0的解集为:0<x <1或x <-1. 点睛:此题考查一次函数和反比例函数的性质及图象,考查用待定系数法求函数的解析式,还间接考查函数的增减性,从而来解不等式.25.(1)224421x x y y ++++;(2)一 ,76x = 【解析】【分析】(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘2(1)x -,然后进行正确的解方程计算,从而求解即可.【详解】解:(1)2423(21)287x y x y x y ++-÷=[]2(2)14x y xy ++-=2(2)2(2)14x y x y xy ++++-=22444214x xy y x y xy +++++-=224421x x y y ++++(2)小刚的解法从第一步开始出现错误解方程 32122x x x =--- 解:方程两边乘2(1)x -,得234(1)x x =--解得 76x =检验:当76x =时,2(1)0x -≠. 所以,原分式方程的解是76x = 故答案为:一 ,76x = 【点睛】本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.。
浙江省湖州市南浔区2022-2023学年八年级下学期期末数学试题
19.已知反比例函数 y k k 0 的图象经过点 A2, 4 .
x (1)求该反比例函数的表达式;
(2)若 B 1, y1 , C 3, y2 是该反比例函数图象上的两个点,请比较 y1 , y2 的大小,并说
明理由. 20.根据以下素材,探索完成“问题解决”中的任务 1 和任务 2. 让学生了解班级粮食浪费现状,体会浪费粮食的危害
二、填空题 11.当 x 5时,二次根式 x 3 的值是. 12.如图, l1 ∥l2 ,点 A 在直线 l1 上,点 B、C 在直线 l2 上, AC l2 .如果 AB 5cm, BC 4cm ,那么平行线 l1 、 l2 之间的距离为 cm .
13.在平面直பைடு நூலகம்坐标系 xOy 中,若点 A1, 2 与点 A 关于原点 O 成中心对称,则点 A 的
则 k 的值是( )
A. 1 5
B.1
C.1 或 2
D. 1 或 2 5
10.将四个全等的直角三角形作为叶片按图 1 摆放成一个风车形状,形成正方形 ABCD
和正方形 EFGH .现将四个直角三角形的较长直角边分别向外延长,且 AE ME ,
BF NF , CG PG , DH HQ ,得到图 2 所示的“新型数学风车”的四个叶片,即
试卷第 3 页,共 7 页
2021-2022学年浙江省湖州市吴兴区八年级(下)期末数学试卷(含解析)
2021-2022学年浙江省湖州市吴兴区八年级(下)期末数学试卷一、选择题(本题共10小题,共30分)1.使二次根式x+1有意义的x的取值范围是( )A. x≠1B. x≥―1C. x≥1D. x≠―12.第24届冬奥会计划于2022年2月4日在北京开幕,北京将成为全球首个既举办过夏季奥运会又举办过冬季奥运会的城市.下列各届冬奥会会徽部分图案中,是中心对称图形的是( )A. B. C. D.3.已知反比例函数的图象经过点(2,―4),那么这个反比例函数的解析式是( )A. y=2x B. y=―2xC. y=8xD. y=―8x4.下列算式中,计算正确的是( )A. 2+3=5B. 12÷3=4C. 9―3=3D. 3×2=65.用配方法解方程x2―2x―2=0时,原方程应变形为( )A. (x+1)2=3B. (x+2)2=6C. (x―1)2=3D. (x―2)2=66.下列说法正确的是( )A. 一组对边平行另一组对边相等的四边形是平行四边形B. 对角线互相垂直平分的四边形是菱形C. 对角线相等的四边形是矩形D. 对角线互相垂直且相等的四边形是正方形7.一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( )A. 平均数B. 中位数C. 众数D. 方差8.随着生产技术的进步,某制药厂生产成本逐年下降,两年前生产一吨药的成本是6000元,现在生产一吨药的成本是5000元.设生产成本的年平均下降为x,下列所列的方程正确的是( )A. 6000(1+x)2=5000B. 5000(1+x)2=6000C. 6000(1―x)2=5000D. 5000(1―x)2=60009.如图,菱形ABCD的边AD与x轴平行,A点的横坐标为1,∠BAD=45°,反比例函数y=2的图象经过A,B两点,则菱形ABCD的面积是( )xA. 2B. 22C. 2D. 410.如图,在平行四边形ABCD中,AD=3,AB=22,∠B是锐角,AE⊥BC于点E,F为AB中点,连接DF,EF,若∠EFD=90°,则AE的长是( )A. 2B. 3C. 7D. 25二、填空题(本题共6小题,共24分)11.计算:(2+1)(2―1)=______.12.一个六边形的内角和是______.13.若一元二次方程x2―2x+m=0有两个相等的实数根,则m的值是______.14.某人5次射击命中的环数分别为5,10,7,x,10.若这组数据的中位数为8,则这组数据的方差为______ .(x>0)的图象上有一点C,作15.如图,反比例函数y=2x(k>2)图象上点A,AC//x轴,BC//y轴,交函数y=kx3,则k=______.B,且BC=3,AC=2316.如图,在矩形ABCD中,AB=2,AD=23,M为对角线BD所在直线的一个动点,点N是平面上一点.若四边形MCND为平行四边形,MN=27,则BM的值为______.三、解答题(本题共8小题,共66分)17.计算:12―18÷6.18.解方程:x2―4x+3=0.19.某单位450名职工积极参加想贫困地区捐书活动,为了解职工的捐书两,采用随机抽样的方法抽取了30名职工作为样本,对他们的涓蜀梁进行统计,统计结果共有4本,5本,6本,7本,8本,五类,分别用A,B,C,D,E表示,根据统计数据绘制成了如图所示不完整的条形统计图,用图中所给的信息解答下列问题:(1)补全条形统计图;(2)求这30名职工捐书本书的平均数;(3)估计该单位450名职工共捐书多少本?20.如图所示,已知点E,F在▱ABCD的对角线BD上,且BE=DF.(1)求证:△ABE≌△CDF;(2)连接AF,CE,求证:四边形AECF是平行四边形.21.如图一次函数y=kx+b的图象与反比例函数y=m x(x>0)的图象交于点A(2,5)和点B(n,2).(1)求m,n的值;(2)连接OA,OB,求△OAB的面积.22.某超市销售一种饮料,平均每天可售出100箱,每箱利润120元.天气渐热,为了扩大销售,增加利润,超市准备适当降价.据测算,若每箱饮料每降价1元,每天可多售出2箱.针对这种饮料的销售情况,请解答以下问题:(1)当每箱饮料降价20元时,这种饮料每天销售获利多少元?(2)在要求每箱饮料获利大于80元的情况下,要使每天销售饮料获利14400元,问每箱应降价多少元?23.矩形OABC的顶点A,C分别在x,y轴的正半轴上,点F是边BC上的一个动点(不与点B,C重合),过点F的反比例函数y=k(x>0)的图象与边AB交于点E(8,m),AB=4.x(1)如图1,若BE=3AE.①求反比例函数的表达式;②将矩形OABC折叠,使O点与F点重合,折痕分别与x,y轴交于点H,G,求线段OG的长度.(2)如图2,连接OF,EF,请用含m的关系式表示OAEF的面积,并求OAEF的面积的最大值.24.在边长为4的正方形ABCD中,点M,N分别是边BC,CD上的动点,且BM=CN.(1)如图1,连接AM和AN交于点P,求证:AM⊥BN.(2)如图2,连接AM和AN交于点P,连接DP,若点M为BC的中点,求DP的长.(3)如图3,连接BN,DM,则BN+DM的最小值为______.答案和解析1.【答案】B【解析】解:由题意得,x+1≥0,解得x≥―1.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.2.【答案】C【解析】解:选项A、B、D均不能找到这样的一个点,使形绕某一点旋转180°后原来的图形重合,所以不是中心对称图形,选项C能找到这样的一个点,使形绕某一点旋转180°后原来的图形重合,所以是中心对称图形,故选:C.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【答案】D【解析】解:设反比例函数解析式为y=k,x将(2,―4)代入,得:―4=k,2解得k=―8,,所以这个反比例函数解析式为y=―8x故选:D.,再将点的坐标已知函数图象上一点的坐标求反比例函数解析式,可先设出解析式y=kx代入求出待定系数k的值,从而得出答案.本题主要考查待定系数法求反比例函数解析式,用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=k(k为常数,k≠0);x(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.4.【答案】D【解析】解:A、2与3不是同类二次根式,故不能合并,故A不符合题意.B、原式=4=2,故B不符合题意.C、原式=9―3=3―3,故C不符合题意.D、原式=6,故D符合题意.故选:D.根据二次根式的加减运算、二次根式的乘除法运算即可求出答案.本题考查二次根式的混合运算,解题的关键是熟练运用二次根式的加减运算、乘除法运算,本题属于基础题型.5.【答案】C【解析】解:x2―2x―2=0移项,得:x2―2x=2,配方:x2―2x+1=3,即(x―1)2=3.故选C.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.6.【答案】B【解析】【分析】本题考查了正方形的判定,平行四边形的判定,矩形的判定,菱形的判定,掌握这些判定定理是本题的关键.根据平行四边形的判定,菱形的判定,矩形的判定,正方形的判定依次判断可求解.【解答】解:A 、两组对边平行或两组对边相等或一组对边平行且相等的四边形是平行四边形,故选项A 不合题意;B 、对角线互相垂直平分的四边形是菱形,故选项B 符合题意;C 、对角线相等的平行四边形是矩形,故选项C 不合题意;D 、对角线互相垂直平分且相等的四边形是正方形,故选项D 不合题意;故选:B .7.【答案】B【解析】解:A 、原来数据的平均数是2,添加数字3后平均数为115,故不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故符合题意;C 、原来数据的众数是2,添加数字3后众数为2和3,故不符合题意;D 、原来数据的方差=14[(1―2)2+2×(2―2)2+(3―2)2]=12,添加数字3后的方差=15[(1―115)2+2×(2―115)2+2×(3―115)2]=1425,故方差发生了变化,故不符合题意;故选:B .依据平均数、中位数、众数、方差的定义和公式求解即可.本题主要考查的是众数、中位数、方差、平均数,熟练掌握相关概念和公式是解题的关键.8.【答案】C【解析】解:依题意得:6000(1―x )2=5000.故选:C .利用现在生产一吨药的成本=两年前生产一吨药的成本×(1―生产成本的年平均下降率)2,即可得出关于x 的一元二次方程,此题得解.本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.9.【答案】A【解析】解:作AH ⊥BC 交CB 的延长线于H , ∵反比例函数y =2x 的图象经过A ,B 两点,A 点的横坐标为1,∴A(1,2),设菱形的边长为a ,∵AD//BC ,∴∠BAD =∠ABH =45°,∴AH =BH =22a ,∴B(1+22a,2―22a),∴(1+22a)⋅(2―22a)=2,∴a 1=2,a 2=0(舍去),∴AH =22×2=1,∴菱形ABCD 的面积=BC ×AH =2×1=2,故选:A .作AH ⊥BC 交CB 的延长线于H ,根据反比例函数解析式求出A 的坐标,设菱形的边长为a ,易证得∠BAD =∠ABH =45°,即可得到AH =BH =22a ,则点B(1+22a,2―22a),求出AH ,根据菱形的面积公式计算即可.本题考查的是反比例函数的系数k 的几何意义、菱形的性质,根据反比例函数解析式求出A 的坐标,表示出点B 的坐标是解题的关键.10.【答案】C【解析】解:如图,延长EF 交DA 的延长线于Q ,连接DE ,设BE =x ,∵四边形ABCD 是平行四边形,∴DQ//BC ,∴∠AQF =∠BEF ,∵AF =FB ,∠AFQ =∠BFE ,∴△QFA≌△EFB(AAS),∴AQ =BE =x ,QF =EF ,∵∠EFD =90°,∴DF⊥QE,∴DQ=DE=x+3,∵AE⊥BC,BC//AD,∴AE⊥AD,∴∠AEB=∠EAD=90°,∵AE2=DE2―AD2=AB2―BE2,∴(x+3)2―32=(22)2―x2,整理得:x2+3x―4=0,解得x=1或x=―4(舍去),∴BE=1,∴AE=AB2―BE2=(22)2―12=7,故选:C.延长EF交DA的延长线于Q,连接DE,设BE=x.首先证明DQ=DE=x+3,利用勾股定理构建方程即可解决问题.本题考查平行四边形的性质,线段的垂直平分线的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.【答案】1【解析】解:(2+1)(2―1)=(2)2―1=1.故答案为:1.两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).本题应用了平方差公式,使计算比利用多项式乘法法则要简单.12.【答案】720°【解析】解:由内角和公式可得:(6―2)×180°=720°.故答案为:720°.根据多边形内角和公式进行计算即可.此题主要考查了多边形内角和公式,关键是熟练掌握计算公式:(n―2).180°(n≥3)且n 为整数).13.【答案】1【解析】【分析】根据已知条件“一元二次方程x2―2x+m=0有两个相等的实数根”可知根的判别式△=0,据此可以求得m的值.本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△=b2―4ac>0⇔方程有两个不相等的实数根;(2)△=b2―4ac=0⇔方程有两个相等的实数根;(3)△=b2―4ac<0⇔方程没有实数根.【解答】解:∵一元二次方程x2―2x+m=0的二次项系数为1,一次项系数为―2,常数项为am,且一元二次方程x2―2x+m=0有两个相等的实数根,∴△=(―2)2―4×1×m=0,解得m=1.故答案是:1.14.【答案】3.6【解析】解:根据题意,数据5,10,7,x,10的中位数为8,则有x=8,×(5+10+7+8+10)=8,这组数据的平均数为15×[(5―8)2+(10―8)2+(7―8)2+(8―8)2+(10―8)2则这组数据的方差s2=15]=3.6,故答案为:3.6.根据题意,由中位数的定义可得x的值,计算出这组数据的平均数,再根据方差计算公式列式计算即可.本题考查中位数和数据的方差计算,关键是由中位数的定义求出x的值.15.【答案】4【解析】解:设C(x,y),3,y A=y,则x A=x+23x B=x,y B=y+3,∵x B⋅y B=x A⋅y A,∴k =x(y +3)=(x +233)y ,∴x =23y ,又∵xy =2,∴23y 2=2,∴y =3,∴x =233,∴k =233(3+3)=4,故答案为:4.设C(x,y),由BC =3,AC =233,则x A =x +233,y A =y ,然后根据k =x B ⋅y B =x A ⋅y A 建立方程,得出C 的横坐标和纵坐标的关系,再根据C 在反比例函数y =2x (x >0),即可求出C 的坐标,代入k =x B ⋅y B =x A ⋅y A 即可求得k 的值.本题考查了反比例函数图象的特征,关键是根据反比例函数图象上的点的横坐标纵坐标之积为常数列方程.16.【答案】6或1【解析】解:分两种情况:①如图1,M 在对角线BD 上时,设四边形MCND 对角线MN 和DC 交于O ,过O 作OG ⊥BD 于G ,∵四边形MCND 为平行四边形,∴OD =12DC =12AB =1,OM =12MN =7,∵四边形ABCD 是矩形,∴∠A =90°,∵AB =2,AD =23,∴BD =AB 2+AD 2=22+(23)2=4,∴AB =12BD ,∴∠ADB =30°,∵∠ADC =90°,∴∠BDC =60°,Rt △ODG 中,∠DOG =30°,∴DG =12,OG =32,设BM =x ,则MG =4―x ―12=72―x ,△OMG 中,MG 2+OG 2=OM 2,∴(72―x )2+(32)2=(7)2,解得:x =6(舍)或1;②如图2,M 在BD 的延长线上时,过O 作OG ⊥BD 于G ,同理得:DG =12,OG =32,OM =7,设BM =x ,则MG =x ―4+12=x ―72,△OMG 中,MG 2+OG 2=OM 2,∴(x ―72)2+(32)2=(7)2,解得:x =6或1(舍);综上,BM 的长为6或1;故答案为:6或1.分两种情况:①如图1,M 在对角线BD 上时,设四边形MCND 对角线MN 和DC 交于O ,过O 作OG ⊥BD 于G ;②如图2,M 在BD 的延长线上时,过O 作OG ⊥BD 于G ;设BM =x ,表示MG 的长,先根据直角三角形30度角的性质可得OG 和DG 的长,在直角三角形OGM 中列方程可得结论.本题考查了矩形性质,平行四边形的判定,勾股定理等知识;熟练掌握矩形的性质,设未知数列方程是解决问题的关键.17.【答案】解:原式=23―3=3.【解析】化简12同时计算除法,再合并同类二次根式即可.本题主要考查二次根式的混合运算,熟练掌握二次根式的运算法则和性质是解题的关键,混合运算时注意运算顺序.18.【答案】解:x2―4x+3=0,(x―1)(x―3)=0,x―1=0或x―3=0,x1=1,x2=3.【解析】本题考查的是一元二次方程的解法,掌握因式分解法解一元二次方程的步骤是解题的关键.属于基础题.关键在于利用因式分解法解出方程.19.【答案】解:(1)捐D类书的有30―4―6―9―3=8(人),补全的条形统计图如右图所示;(2)―x=130×(4×4+5×6+6×9+7×8+8×3)=6(本),答:这30名职工捐书本数的平均数为6本;(3)450×6=2700(本),答:估计该单位450名职工共捐书2700本.【解析】(1)根据题目中的数据和条形统计图中的数据,可以计算出捐D类书的人数,从而可以将条形统计图补充完整;(2)根据条形统计图中的数据,可以计算出平均数;(3)根据(2)中的平均数,可以计算出该单位450名职工共捐书多少本.本题考查条形统计图、用样本估计总体、加权平均数,利用数形结合的思想解答是解答本题的关键.20.【答案】证明:(1)∵四边形ABCD是平行四边形,∴AB//DC,AB=CD,∴∠ABE=∠CDF,在△ABE和△CDF中,AB=CD∠ABE=∠CDFBE=DF,∴△ABE≌△CDF(SAS);(2)∵△ABE≌△CDF,∴∠AEB=∠DFC,AE=CF,∴∠AED=∠BFC,∴AE//CF,∴四边形AECF是平行四边形.【解析】(1)由平行四边形的性质可知:∠ABE=∠CDF,再利用已知条件和三角形全等的判定方法即可证明△ABE≌△CDF;(2)由(1)可知△ABE≌△CDF,所以∠AEB=∠DFC,进而可得∠AED=∠BFC,所以AE//CF,根据平行四边形的判定定理即可得到结论.本题考查了平行四边形的性质和判定、全等三角形的判定和性质熟练掌握平行四边形的判定定理是解题的关键.21.【答案】解:(1)把A(2,5)代入y=mx(x>0)中,得到m=10,∴反比例函数的解析式为y=10x,把B(n,2)代入y=10x中,得到n=5.(2)∵一次函数y=kx+b的图象过点A(2,5)和点B(5,2).∴2k+b=55k+b=2,解得k=―1 b=7,∴一次函数为y=―x+7,令y=0,则―x+7=0,解得x=7,∴C(7,0),∴S△OAB=S△OAC―S△BOC=12×7×5―12×7×2=212.【解析】(1)利用待定系数法即可解决问题;(2)利用待定系数法求得一次函数的解析式,即可求得直线与x轴的交点,然后根据S△OAB =S△OAC―S△BOC求得即可.本题是一次函数与反比例函数的交点问题,考查了待定系数法求函数的解析式,一次函数图象上点的坐标特征,反比例函数图象上点的坐标特征,三角形面积,解题的关键是灵活应用待定系数法确定函数解析式,属于中考常考题型.22.【答案】解:(1)每箱应降价x元,依据题意得总获利为:(120―x)(100+2x),当x=20时,(120―x)(100+2x)=100×140=14000元;(2)要使每天销售饮料获利14400元,每箱应降价x元,依据题意列方程得,(120―x)(100+2x)=14400,整理得x2―70x+1200=0,解得x1=30,x2=40;∵要求每箱饮料获利大于80元,∴x=30答:每箱应降价30元,可使每天销售饮料获利14400元.【解析】(1)此题利用的数量关系:销售每箱饮料的利润×销售总箱数=销售总利润,由此列出算式后代入20即可求解;(2)利用上题得到的算式进一步得到方程求解即可解答.本题考查了一元二次方程的应用,此题考查最基本的数量关系是:销售每箱饮料的利润×销售总箱数=销售总利润.23.【答案】解:(1)①∵BE=3AE,AB=4,∴AE=1,BE=3,∴E(8,1),∴k=8×1=8,∴反比例函数表达式为y=8;x②当y=4时,x=2,∴F(2,4),∴CF=2,设OG=x,则CG=4―x,FG=x,由勾股定理得,(4―x)2+22=x2,解得x=52,∴OG=52;(2)∵点E、F在反比例函数y=kx(x>0)的图象上,∴CF×4=8m,∴CF=2m,∴四边形OAEF的面积为8×4―12×4×2m―12×(8―2m)×(4―m)=―m2+4m+16=―(m―2)2+20,∵0<m<4,∴当m=2时,四边形OAEF的面积最大为20.【解析】(1)①首先求出AE的长,从而得出点E的坐标,即可得出k的值;②利用反比例函数图象上点的坐标的特征求出CF的长,设OG=x,则CG=4―x,FG=x,利用勾股定理列方程,从而解决问题;(2)利用反比例函数图象上点的坐标的特征求出CF=2m,再利用矩形面积减去△OCF 和△BEF的面积,从而表示出四边形OAEF的面积,再利用配方法求出最大值.本题是反比例函数综合题,主要考查了反比例函数图象上点的坐标的特征,翻折的性质,勾股定理,配方法求代数式的最值等知识,表示出四边形OAEF的面积是解题的关键.24.【答案】45【解析】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,又∵BM=CN,∴△ABM≌△BCN(SAS),∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠AOB=90°,∴AM⊥BN;(2)解:延长BN,交AD的延长线于点G,由(1)可知△ABM≌△BCN,∴BM=CN,∵BM=CM,∴CN=DN,∵∠BNC=∠DNG,∠NDG=∠BCN,∴△BCN≌△GDN(ASA),∴BC=DG,∵四边形ABCD是正方形,∴AD=BC,∴AD=DG,由(1)知AM⊥BN,∴∠APG=90°,∴PD=AD=4;(3)解:如图3,连接AM,延长AB至H,使AB=BH,连接HM,DH,∵∴△ABM≌△BCN,∴AM=BN,∵AB=BH=4,∠ABM=∠HBM=90°,BM=BM,∴△ABM≌△HBM(SAS),∴AM=HM=BN,∴BN+DM=HM+DM,∴当点H,点M,点D三点共线时,BN+DM有最小值为DH,∵AD=4,AH=AB+BH=8,∴DH=AD2+AH2=42+82=45,∴BN+DM的最小值为45;故答案为:45.(1)由“SAS”可证△ABM≌△BCN,可得AM=BN,∠BAM=∠CBN,可证AM⊥BN;(2)延长BN,交AD的延长线于点G,由(1)可知△ABM≌△BCN,得出BM=CN,证明△BCN≌△GDN(ASA),由全等三角形的性质得出BC=DG,证出AD=DG,则可得出答案;(3)连接AM,延长AB至H,使AB=BH,连接HM,DH,由“SAS”可证△ABM≌△HBM,可得AM=HM=BN,则当点H,点M,点D三点共线时,BN+DM有最小值为DH,由勾股定理可求解.本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,直角三角形的性质,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2022届浙江省湖州市初二下期末学业质量监测数学试题一、选择题(每题只有一个答案正确)1.如图,以正方形ABCD 的边AB 为一边向外作等边△ABE ,则∠BED 的度数为( )A .55°B .45°C .40°D .42.5°2.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .123.如果实数,k b 满足0kb <且不等式kx b <的解集是bx k>,那么函数y kx b =+的图象只可能是( ) A . B . C .D .4.若式子-2x 在实数范围内有意义,则x 的取值范围是( )A .0x ≥B .0x <C .2x >D .2x ≥5.下列图形是中心对称图形的是( )A .B .C .6.一次函数2y x m =+的图象经过原点,则m 的值为( ) A .1B .0C .1-D .127.下列因式分解正确的是( ) A .x 2+2x-1=(x-1)2 B .a 2-a=a(a+1)C .m 2+(-n)2=(m+n)(m-n)D .-9+4y 2=(3+2y)(2y-3)8.如图是甲、乙两名射击运动员的10次射击训练成绩的折线统计图.观察统计图,下列关于甲、乙这10次射击成绩的方差判断正确的是( )A .甲的方差大于乙的方差B .乙的方差大于甲的方差C .甲、乙的方差相等D .无法判断9.如图的阴影部分是两个正方形,图中还有两个直角三角形和一个大正方形,则阴影部分的面积是( )A .16B .25C .144D .16910.计算()()x x 1x x 1+---的值为( )A .2B .3C .4D .1二、填空题11.若一个正多边形的每一个外角都是30,则这个正多边形的边数为__________.12.在平面直角坐标系中,已知一次函数21y x =+的图像经过111(,)P x y ,222(,)P x y 两点,若12x x <,则1y 2y .(填”>”,”<”或”=”)13.把我们平时使用的一副三角板,如图叠放在一起,则∠α的度数是___度.15.计算32-8=_______.16.若代数式25626x xx-+-的值等于0,则x=_____.17.如图所示,线段EF过平行四边形ABCD的对角线的交点O,交AD于点E,交BC于点F。
已知AB=4,BC=5,EF=3,那么四边形EFCD的周长是_____.三、解答题18.为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表平均数中位数方差命中10环的次数甲7乙 1(1)请补全上述图表(请直接在表中填空和补全折线图);(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?19.(6分)如图,正方形ABCD的边长为22,对角线AC、BD相交于点O,E是OC的中点,连接BE,过点A作AM⊥BE于点M,交BD于点F.(1)求证:AF=BE;(2)求点E到BC边的距离.20.(6分)在平面直角坐标系xOy 中,直线l 1:()10y kx b k =+≠过点A (3,0),且与直线l 2:212y x =交于点B (m ,1).(1)求直线l 1:()10y kx b k =+≠的函数表达式;(2)过动点P (n ,0)且垂于x 轴的直线与l 1、l 2分别交于点C 、D ,当点C 位于点D 上方时,直接写出n 的取值范围.21.(6分)计算:(1)113187244268⎛⎫+-÷ ⎪ ⎪⎝⎭;(2)2(32)(32)(2332)-+--.22.(8分)若关于x 的一元二次方程()2222120x k x k --++=有实数根α,β. (1)求实数k 的取值范围; (2)设t kαβ+=,求t 的最小值.23.(8分)如图,在矩形ABCD 中,点E 为AD 上一点,连接BE 、CE,45ABE ∠=︒ . (1)如图1,若32,4,BE BC DE ==求 ;(2)如图2,点P 是EC 的中点,连接BP 并延长交CD 于点F ,H 为AD 上一点,连接HF,且DHF CBF ∠=∠ ,求证:BP PF FH =+.24.(10分)若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x+y >0,求m 的取值范围.25.(10分)甲、乙两人利用不同的交通工具,沿同一路线从A 地出发前往B 地,甲出发1h 后,乙出发,(1)甲的速度是_____km/h;(2)当1≤x≤5时,求y乙关于x的函数解析式;(3)当乙与A地相距240km时,甲与A地相距_____km.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据等边三角形,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【详解】解:∵等边△ABE∴∠EAB=∠BED=60°,AE=AD∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠EAD=150°,AE=AD∴∠AED=∠ADE=15°∴∠BED=60°-15°=45°故选:B.【点睛】此题主要考查了等边三角形的性质.即每个角为60度.2.D【解析】详解:∵共6个数,大于3的有3个,∴P(大于3)=31 62 =.故选D.点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.3.A 【解析】【分析】先根据不等式kx<b的解集是bxk>判断出k、b的符号,再根据一次函数图象的性质即可解答.【详解】∵不等式kx<b的解集是bxk >,∴k<0,∵kb<0,∴b>0,∴函数y=kx+b的图象过一、二、四象限.故选:A.【点睛】一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.4.D【解析】【分析】由二次根式的性质可以得到x-1≥0,由此即可求解.【详解】解:依题意得:x-1≥0,∴x≥1.故选:D.5.B 【解析】 【分析】根据中心对称图形的概念,轴对称图形与中心对称图形是图形沿对称中心旋转180度后与原图重合,即可解题.A 、不是中心对称图形,故本选项错误;B 、是中心对称图形,故本选项正确;C 、不是中心对称图形,故本选项错误;D 、不是中心对称图形,故本选项错误. 故选B.考点:中心对称图形. 【详解】 请在此输入详解! 6.B 【解析】分析:根据一次函数的定义及函数图象经过原点的特点,求出m 的值即可. 详解:∵一次函数2y x m =+的图象经过原点, ∴m=1. 故选B .点睛:本题考查的是一次函数图象上点的坐标特点,即一次函数y=kx+b (k≠1)中,当b=1时函数图象经过原点. 7.D 【解析】 【分析】因式分解就是把多项式变形成几个整式积的形式,根据定义即可判断. 【详解】A 选项:等号两边不相等,故是错误的;B 选项:等号两边不相等,故是错误的;C 选项:等号两边不相等,故是错误的;D 选项:-9+4y 2=(3+2y)(2y-3),是因式分解,故是正确的. 故选:D.式)是解题的关键.8.A【解析】【分析】结合图形,乙的成绩波动比较小,则波动大的方差就小.【详解】解:从图看出:乙选手的成绩波动较小,说明它的成绩较稳定,甲的波动较大,则其方差大.故选A.【点睛】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.9.B【解析】【分析】两个阴影正方形的面积和等于直角三角形另一未知边的平方,利用勾股定理即可求出.【详解】两个阴影正方形的面积和为132-122=25,所以B选项是正确的.【点睛】本题主要考查了正方形的面积以及勾股定理的应用,推知“正方形的面积和等于直角三角形另一未知边的平方”是解题的难点.10.D【解析】【分析】根据平方差公式计算即可.【详解】原式=x-(x-1)=1.故选D.【点睛】本题考查了二次根式的混合运算,难度不大,注意平方差公式的灵活运用.二、填空题11.1根据正多边形的每一个外角都相等以及多边形的外角和为360°,多边形的边数=360°÷30°,计算即可求解. 【详解】解:这个正多边形的边数:360°÷30°=1, 故答案为:1. 【点睛】本题考查了多边形的内角与外角的关系,熟记正多边形的边数与外角的关系是解题的关键. 12.<. 【解析】试题分析:一次函数y kx+b =的增减性有两种情况:①当k 0>时,函数y kx+b =的值随x 的值增大而增大;②当k 0<时,函数y kx+b =y 的值随x 的值增大而减小. 由题意得,函数21y x =+的k 0>,故y 的值随x 的值增大而增大. ∵12x x <,∴12y y <.考点:一次函数图象与系数的关系. 13.105 【解析】 【分析】根据三角板上的特殊角度,外角与内角的关系解答. 【详解】根据三角板角度的特殊性可知∠AEB=45°,∠B=60°,∵∠α是△BDE 的外角, ∴∠α=∠AEB+∠B=45°+60°=105° 故答案为:105. 【点睛】此题考查三角形的外角性质,解题关键在于掌握其性质定义和三角板的特殊角. 14.1分m=1即m≠1两种情况考虑,当m=1时可求出方程的解,从而得出m=1符合题意;当m≠1时,由方程有实数根,利用根的判别式即可得出△=-8m+4≥1,解之即可得出m的取值范围.综上即可得出m的取值范围,取其内最大的整数即可.【详解】解:当m=1时,原方程为2x+1=1,解得:x=﹣12,∴m=1符合题意;当m≠1时,∵关于x的方程m2x2+2(m﹣1)x+1=1有实数根,∴△=[2(m﹣1)]2﹣4m2=﹣8m+4≥1,解得:m≤12且m≠1.综上所述:m≤12.故答案为:1.【点睛】本题考查的是方程的实数根,熟练掌握根的判别式是解题的关键.15.【解析】【分析】利用二次根式的减法法则计算即可.【详解】解:原式==故答案为:【点睛】本题考查二次根式的减法运算,熟练掌握二次根式的减法运算法则是解题关键. 16.2【解析】【分析】【详解】由分式的值为零的条件得x2-5x+6=0,2x-6≠0,由x2-5x+6=0,得x=2或x=3,17.1【解析】【分析】根据平行四边形的性质,得△AOE ≌△COF .根据全等三角形的性质,得OF=OE ,CF=AE .再根据平行四边形的对边相等,得CD=AB ,AD=BC ,故FC+ED=AE+ED=AD ,根据所推出相等关系,可求四边形EFCD 的周长.【详解】解:∵四边形ABCD 为平行四边形,∴AO=OC ,AD ∥BC ,∴∠EAO=∠FCO ,在△AOE 和△COF 中,AO CO EAO FCO AOE COF =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△AOE ≌△COF ,∴OF=OE=1.5,CF=AE ,根据平行四边形的对边相等,得CD=AB=4,AD=BC=5,故四边形EFCD 的周长=EF+FC+ED+CD=OE+OF+AE+ED+CD=1.5+1.5+5+4=1.故答案为:1.【点睛】本题考查了平行四边形的性质,解题的关键是能够根据平行四边形的性质发现全等三角形,再根据全等三角形的性质求得相关线段间的关系.三、解答题18. (1)见解析;(2)甲胜出;(3)见解析.【解析】试题分析:(1)根据折线统计图列举出乙的成绩,计算出甲的中位数,方差,以及乙平均数,中位数及方差,补全即可;(2)计算出甲乙两人的方差,比较大小即可做出判断;(3)希望甲胜出,规则改为9环与10环的总数大的胜出,因为甲9环与10环的总数为4环. 试题解析:(1)如图所示.甲、乙射击成绩统计表平均数 中位数 方差 命中10环的次数 甲7 7 4 0 乙 7 7.5 5.4 1(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出.(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出.因为甲、乙的平均成绩相同,随着比赛的进行,乙的射击成绩越来越好(回答合理即可).19. (1)见解析;(2)2【解析】【分析】(1)利用ASA 证明△AFO ≌△BE ,然后根据全等三角形的对应边相等即可得AF=BE ;(2)如图,过点E 作EN ⊥BC ,垂足为N ,根据正方形的边长求得对角线的长,继而求得OC 的长且∠ECN =45°,由E 是OC 的中点,可得OE =EC =1,在直角三角形ENC 中利用勾股定理进行求解即可得.【详解】(1)∵正方形ABCD , ∴AO=BO ,∠AOF=∠BOE=90°∵AM ⊥BE ,∠AFO=∠BFM ,∴∠FAO=∠EBO在△AFO 和△BEO 中 AOF BOE AO BOFAO EBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AFO ≌△BE(ASA ),∴AF=BE ;(2)如图,过点E 作EN ⊥BC ,垂足为N ,∵正方形ABCD 的边长为2,∴AC 22AB BC +=4,CO =2,且∠ECN =45°,∵E 是OC 的中点,∴OE =EC =1,由EN ⊥BC ,∠ECN =45°,得∠CEN =45°,∴EN =CN ,设EN =CN =x ,∵2EN +2CN =2EC ,∴2x +2x =1 , ∴21x 2= 因为x >0,x 22, 即:点E 到BC 边的距离是22. 【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理的应用等,正确添加辅助线、熟练应用相关的性质与定理是解题的关键.20.(1)13y x =-+;(2)2n <【解析】【分析】(1)利用212y x =求出点B 的坐标,再将点A 、B 的坐标代入()10y kx b k =+≠求出答案; (2)求出直线13y x =-+与直线212y x =的交点坐标即可得到答案. 【详解】(1)解:∵ 直线l 2:212y x =过点B (m ,1), ∴11,2m =∴m=2,∴B (2,1),∵直线l 1:()10y kx b k =+≠过点A (3,0)和点B (2,1)∴0312k b k b =+⎧⎨=+⎩, 解得:13k b =-⎧⎨=⎩, ∴直线l 1的函数表达式为1 3.y x =-+(2)解方程组312y x y x =-+⎧⎪⎨=⎪⎩,得21x y =⎧⎨=⎩, 当过动点P (n ,0)且垂于x 轴的直线与l 1、l 2分别交于点C 、D ,当点C 位于点D 上方时,即点P 在图象交点的左侧, ∴ 2.n <【点睛】此题考查一次函数的解析式,一次函数图象交点坐标与方程组的关系,(2)是难点,确定交点坐标后,在交点的左右两侧取点P 通过作垂线即可判断出点P 的位置.21. (1)94;6. 【解析】【分析】(1)直接化简二次根式进而合并,再利用二次根式除法运算法则计算得出答案;(2)直接利用乘法公式化简得出答案.【详解】解:(1)原式=12926244264⎛⎫⨯⨯÷ ⎪ ⎪⎝⎭924294==(2)原式6).【点睛】此题主要考查了二次根式的混合运算,正确化简各数是解题关键.22.(1)k ≤−2;(2)t 的最小值为−1.【解析】【分析】(1)由一元二次方程存在两实根,可得△≥0,进而求得k 的取值范围;(2)将α+β化为关于k 的表达式,根据k 的取值范围得出t 的取值范围,即可求得t 的最小值.【详解】(1)∵一元二次方程x 2−2(2−k)x+k 2+12=0有实数根a ,β,∴△≥0,即:1(2−k)2−1(k 2+12)≥0,解得:k ≤−2;(2)由根与系数的关系得:a+β=−[−2(2−k)]=1−2k , ∴t k αβ+==4-2k k =4k−2, ∵k ≤−2,∴−2≤4k<0, ∴−1≤4k −2<−2, ∴t 的最小值为−1.【点睛】本题主要考查一元二次方程根的判别式以及根与系数的关系,掌握20ax bx c ++=(a ≠0),有实数根a ,β时,则△≥0,a+β=b a -,aβ=c a,是解题的关键. 23.(1)1;(2)详见解析.【解析】【分析】(1)根据题意四边形ABCD 是矩形,可得AE=BE ,再利用勾股定理222,AE BE BE +=得到3AE =,即可解答(2)延长BF,AD 交于点M.,得到,PBC EMP ∠=∠再证明().BPC MPE AAS ∆≅∆,得到BP PM =,,,DHF CBF CBF M ∠=∠∠=∠即可解答【详解】解:(1)∵四边形ABCD 是矩形∴90,A ∠=︒ AD=AC=4∵45,ABE ∠=︒∴45,AEB ∠=︒∴AE=BE∵222,AE BE BE +=∴222,AE AE +=∴3AE =∴431DE AD AE =-=-=(2)延长BF,AD 交于点M.∵四边形ABCD 是矩形∴AD BC ∥,∴,PBC EMP ∠=∠∵点P 是EC 的中点∴PC=PE∵,BPC MPE ∠=∠∴().BPC MPE AAS ∆≅∆∴BP PM =∵,,DHF CBF CBF M ∠=∠∠=∠∴DHF M ∠=∠∴FM FH =∴.BP PM PF FM PF FH ==+=+∴.BF PF FH =+【点睛】此题考查矩形的性质,全等三角形的判定与性质,勾股定理,解题关键在于利用矩形的性质求解 24.m >﹣1【解析】【分析】两方程相加可得x+y =m+1,根据题意得出关于m 的方程,解之可得.【详解】解:将两个方程相加即可得1x+1y =1m+4,则x+y =m+1,根据题意,得:m+1>0,解得m>﹣1.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.25.(1)V甲=60km/h (2)y乙=90x-90 (3)220【解析】【分析】(1)根据图象确定出甲的路程与时间,即可求出速度;(2)利用待定系数法确定出y乙关于x的函数解析式即可;(3)求出乙距A地240km时的时间,加上1,再乘以甲的速度即可得到结果.【详解】(1)根据图象得:360÷6=60km/h;(2)当1≤x≤5时,设y乙=kx+b,把(1,0)与(5,360)代入得:{5360k bk b==++,解得:k=90,b=-90,则y乙=90x-90;(3)∵乙与A地相距240km,且乙的速度为360÷(5-1)=90km/h,∴乙用的时间是240÷90=83 h,则甲与A地相距60×(83+1)=220km.【点睛】此题考查了一次函数的应用,弄清图象中的数据是解本题的关键.。