人教版八年级数学上册 三角形填空选择易错题(Word版 含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级数学上册 三角形填空选择易错题(Word 版 含答案)
一、八年级数学三角形填空题(难)
1.如图,平面内有五个点,以其中任意三个点为顶点画三角形,最多可以画_____个三角形.
【答案】10
【解析】
【分析】
以平面内的五个点为顶点画三角形,根据三角形的定义,我们在平面中依次选取三个点画出图形即可解答.
【详解】
解:如图所示,以其中任意三个点为顶点画三角形,最多可以画10个三角形,
故答案为:10.
【点睛】
本题考查的是几何图形的个数,我们根据三角形的定义,在画图的时候要注意按照一定的顺序,保证不重复不遗漏.
2.如图,ABC ∆的面积为1,第一次操作:分别延长AB ,BC ,CA 至点111,,A B C ,使111,,A B AB B C BC C A CA ===,顺次连接111,,A B C ,得到111A B C ∆;第二次操作:分别延长111111,,A B B C C A 至点222,,A B C ,使2111A B A B =,2111B C B C =,2111C A C A =,顺次连接222,,A B C ,得到222A B C ∆,…;按此规律,要使得到的三角形的面积超过2020,最少需经过__________次操作.
【答案】4
【解析】
【分析】
连接111,,AC B A C B ,根据两个三角形等底同高可得
111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======从而得出第一次操作:11177A B C ABC S S ∆∆==<2020;同理可得第二次操作22211127749A B C A B C S S ∆∆===<
2020……直至第四次操作4443334
772401A B C A B C S S ∆∆===>2020,即可得出结论.
【详解】
解:连接111,,AC B A C B
∵111,,A B AB B C BC C A CA ===
根据等底同高可得:
111111111,,C A B C AB ABC A B C A BC ABC B C A B CA ABC S S S S S
S S S S ====== ∴111111111,C A B C AB A B C A BC B C A B CA ABC S S S S S S S ======
∴第一次操作:11177A B C ABC S S ∆∆==<2020
同理可得第二次操作2221112
7749A B C A B C S S ∆∆===<2020
第三次操作333222377343A B C A B C S S ∆∆===<2020
第四次操作4443334772401A B C A B C S S ∆∆===>2020
故要使得到的三角形的面积超过2020,最少需经过4次操作,
故答案为:4.
【点睛】
此题考查的是三角形的面积关系和探索规律,掌握两个三角形等底同高时,面积相等是解决此题的关键.
3.如图1,△ABC 中,沿∠BAC 的平分线AB 1折叠,剪掉重叠部分;将余下部分沿∠B 1A 1C 的平分线A 1B 2折叠,剪掉重叠部分;…;将余下部分沿∠B n A n C 的平分线A n B n+1折叠,点B n 与点C 重合,无论折叠多少次,只要最后一次恰好重合,我们就称∠BAC 是△ABC 的好角.
(1)如图2,在△ABC 中,∠B>∠C ,若经过两次折叠,∠BAC 是△ABC 的好角,则∠B 与∠C 的等量关系是_______;
(2)如果一个三角形的最小角是20°,则此三角形的最大角为______时,该三角形的三个角均是此三角形的好角。

【答案】B 2C ∠∠= 140°、120°或80°
【解析】
【分析】
(1)根据折叠性质可得∠A 1B 1B 2=∠C ,∠AA 1B 1=∠B ,由三角形外角性质可得
∠AA 1B 1=2∠C ,根据等量代换可得∠B=2∠C ;(2)先求出经过三次折叠,∠BAC 是△ABC 的好角时,∠B 与∠C 的等量关系为∠B=3∠C ,进而可得经过n 次折叠,∠BAC 是△ABC 的好角时∠B 与∠C 的等量关系为∠B=n ∠C ,因为最小角是20º,是△ABC 的好角,根据好角定义,设另两角分别为20mº,4mn°,由题意得20m+20mn+20=180°,所以m(n+1)=8,再根据m 、n 都是正整数可得m 与n+1是8的整数因子,从而可以求得结果.
【详解】
(1)根据折叠性质得∠B=∠AA 1B 1,∠A 1B 1B 2=∠C ,
∵∠AA 1B 1=∠A 1B 1B 2+∠C ,
∴∠B=2∠C
故答案为:∠B=2∠C
(2)如图:∵根据折叠的性质知,∠B=∠AA 1B 1,∠C=∠A 2B 2C ,∠A 1B 1C=∠A 1A 2B 2, ∴根据三角形的外角定理知,∠A 1A 2B 2=∠C+∠A 2B 2C=2∠C ;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA 1B 1-∠A 1B 1C=∠BAC+2∠B-2∠C=180°, 根据三角形ABC 的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C ;
∴当∠B=2∠C 时,∠BAC 是△ABC 的好角;当∠B=3∠C 时,∠BAC 是△ABC 的好角; 故若经过n 次折叠∠BAC 是△ABC 的好角,则∠B 与∠C (不妨设∠B >∠C )之间的等量关
系为∠B=n∠C;
∵最小角为20°,
∴设另两个角为20m°和20mn°,
∴20°+20m°+20mn°=180°,即m(1+n)=8,
∵m、n为整数,
∴m=1,1+n=8;或m=2,1+n=4;或m=4,1+n=2.
解得:m=1,n=7;m=2,n=3,m=4,n=1,
∴另两个角为20°、140°或40°、120°或80°、80°,
∴此三角形最大角为140°、120°或80°时,三个角均是此三角形的好角.
故答案为:140°、120°或80°
【点睛】
本题考查了翻折变换(折叠问题).充分利用三角形内角和定理、三角形外角定理以及折叠的性质是解题关键.
4.如图,已知:四边形ABCD中,对角线BD平分∠ABC,∠ACB=74°,∠ABC=46°,且∠BAD+∠CAD=180°,那么∠BDC的度数为_____.
【答案】30°
【解析】
【分析】
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,根据BD是∠ABC的平分线可得出△BDE≌△BDF,故DE=DF,过D点作DG⊥AC于G点,可得出
△ADE≌△ADG,△CDG≌△CDF,进而得出CD为∠ACF的平分线,得出∠DCA=53°,再根据三角形内角和定理即可得出结论.
【详解】
解:
延长BA和BC,过D点作DE⊥BA于E点,过D点作DF⊥BC于F点,
∵BD是∠ABC的平分线
在△BDE与△BDF中,
ABD CBD BD BD
AED DFC
∠=∠


=

⎪∠=∠


∴△BDE≌△BDF(ASA),∴DE=DF,
又∵∠BAD+∠CAD=180°∠BAD+∠EAD=180°
∴∠CAD=∠EAD,
∴AD为∠EAC的平分线,过D点作DG⊥AC于G点,
在Rt△ADE与Rt△ADG中,
AD AD DE DG
=


=


∴△ADE≌△ADG(HL),∴DE=DG,
∴DG=DF.
在Rt△CDG与Rt△CDF中,
CD CD DG DF
=


=


∴Rt△CDG≌Rt△CDF(HL),
∴CD为∠ACF的平分线,
∠ACB=74°,
∴∠DCA=53°,
∴∠BDC=180°﹣∠CBD﹣∠DCA﹣∠ACB=180°﹣23°﹣53°﹣74°=30°.
故答案为:30°
【点睛】
本题考查了多边形的外角和内角,能熟记三角形的外角性质和三角形的内角和定理是解此题的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.
5.一个正多边形的每个外角为60°,那么这个正多边形的内角和是_____.
【答案】720°.
【解析】
【分析】先利用多边形的外角和为360°计算出这个正多边形的边数,然后再根据内角和公式进行求解即可.
【详解】这个正多边形的边数为360
60


=6,
所以这个正多边形的内角和=(6﹣2)×180°=720°,
故答案为720°.
【点睛】本题考查了多边形内角与外角:内角和定理:(n﹣2)•180 (n≥3)且n为整
数);多边形的外角和等于360度.
6.如图,AD是△ABC的中线,CE是△ACD的中线,S△ACE=3cm2,则S△ABC=_____cm2.
【答案】12cm2.
【解析】
【分析】
根据三角形的面积公式,得△ACE的面积是△ACD的面积的一半,△ACD的面积是△ABC 的面积的一半.
【详解】
解:∵CE是△ACD的中线,
∴S△ACD=2S△ACE=6cm2.
∵AD是△ABC的中线,
∴S△ABC=2S△ACD=12cm2.
故答案为12cm2.
【点睛】
此题主要是根据三角形的面积公式,得三角形的中线把三角形的面积分成了相等的两部分.
7.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.
【答案】12
【解析】
试题解析:根据题意,得
(n-2)•180-360=1260,
解得:n=11.
那么这个多边形是十一边形.
考点:多边形内角与外角.
8.如图是小李绘制的某大桥断裂的现场草图,若∠1=38°,∠2=23°,则桥面断裂处夹角∠BCD=__________.
【答案】119°
【解析】
【分析】
连接BD,构△BCD根据对顶角相等和三角形内角和定理即可求出∠BCD的度数.
【详解】
如图所示,连接BD,
∵∠4=∠1=38°,∠3=∠2=23°,
∴∠BCD=180°-∠4-∠3=180°-38°-23°=119°.
故答案为:119°.
【点睛】
本题考查了对顶角的性质与三角形内角和定理. 连接BD,构△BCD是解题的关键.
9.三角形的三个内角度数比为1:2:3,则三个外角的度数比为_____.
【答案】5:4:3
【解析】
试题解析:设此三角形三个内角的比为x,2x,3x,
则x+2x+3x=180,
6x=180,
x=30,
∴三个内角分别为30°、60°、90°,
相应的三个外角分别为150°、120°、90°,
则三个外角的度数比为:150°:120°:90°=5:4:3,
故答案为5:4:3.
10.中国人民银行近期下发通知,决定自2019年4月30日停止兑换第四套人民币中菊花1角硬币. 如图所示,则该硬币边缘镌刻的正多边形的外角的度数为_______.
【答案】45°
【解析】
【分析】
根据正多边形的外角度数等于外角和除以边数可得.
【详解】
∵硬币边缘镌刻的正多边形是正八边形,
∴它的外角的度数等于360÷8=45°.
故答案为45°.
【点睛】
本题主要考查了多边形的外角和定理,任何一个多边形的外角和都是360°.
二、八年级数学三角形选择题(难)
11.已知△ABC,(1)如图①,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+1
2
∠A;(2)如图②,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°-∠A;
(3)如图③,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°-1
2
∠A.上述说
法正确的个数是()
A.0个B.1个C.2个D.3个【答案】C
【解析】
【分析】
根据三角形的内角和外角之间的关系计算.
【详解】
解:(1)∵若P点是∠ABC和∠ACB的角平分线的交点,
∴∠ABP=∠PBC,∠ACP=∠PCB
∵∠A=180°-∠ABC-∠ACB=180°-2(∠PBC+∠PCB)
∠P=180°-(∠PBC+∠PCB)
∴∠P=90°+1
2
∠A;
故(1)的结论正确;
(2)∵∠A=∠ACB-∠ABC=2∠PCE-2∠PBC=2(∠PCE-∠PBC)∠P=∠PCE-∠PBC
∴2∠P=∠A
故(2)的结论是错误.
(3)∠P=180°-(∠PBC+∠PCB)
=180°-1
2
(∠FBC+∠ECB)
=180°-1
2
(∠A+∠ACB+∠A+∠ABC)
=180°-
12(∠A+180°) =90°-12
∠A . 故(3)的结论正确.
正确的为:(1)(3).
故选:C
【点睛】
主要考查了三角形的内角和外角之间的关系.
(1)三角形的外角等于与它不相邻的两个内角和;
(2)三角形的内角和是180度.求角的度数常常要用到三角形的内角和是180°这一隐含的条件.
12.如图,CD 是ABC 的一条中线,E 为BC 边上一点且2,BE CE AE CD 、相交于,F 四边形BDFE 的面积为6,则ABC 的面积是( )
A .14
B .14.4
C .13.6
D .13.2
【答案】B
【解析】
【分析】 连结BF ,设S △BDF =x ,则S △BEF =6-x ,由CD 是中线可以得到S △ADF =S △BDF ,S △BDC =S △ADC ,由BE =2CE 可以得到S △CEF =12S △BEF ,S △ABE =23
S △ABC ,进而可用两种方法表示△ABC 的面积,由此可得方程,进而得解.
【详解】
解:如图,连接BF ,
设S△BDF=x,则S△BEF=6-x,∵CD是中线,
∴S△ADF=S△BDF=x,S△BDC= S△ADC=1
2△ABC

∵BE=2CE,
∴S△CEF=1
2
S△BEF=
1
2
(6-x),S△ABE=
2
3
S△ABC,
∵S△BDC= S△ADC=1
2△ABC

∴S△ABC=2S△BDC
=2[x+3
2
(6-x)]
=18-x,
∵S△ABE=2
3
S△ABC,
∴S△ABC=3
2
S△ABE
=3
2
[2x+ (6-x)]
=1.5x+9,
∴18-x =1.5x+9,
解得:x=3.6,
∴S△ABC=18-x,
=18-3.6
=14.4,
故选:B.
【点睛】
本题考查了三角形的中线能把三角形的面积平分,等高三角形的面积比等于底的比,熟练掌握这个结论记以及方程思想是解题的关键.
13.在多边形内角和公式的探究过程中,主要运用的数学思想是()
A .化归思想
B .分类讨论
C .方程思想
D .数形结合思想
【答案】A
【解析】
【分析】 根据多边形内角和定理:(n-2)·
180(n≥3)且n 为整数)的推导过程即可解答. 【详解】
解:多边形内角和定理:(n-2)·
180(n≥3)且n 为整数),该公式推导的基本方法是从n 边形的一个顶点出发引出(n-3)条对角线,将n 边形分割为(n-2)个三角形,这(n-2)个三角形的所有内角之和正好是n 边形的内角和,体现了化归思想.
故答案为A .
【点睛】
本题主要考查了在数学的学习过程应用的数学思想,弄清推导过程是解答此题的关键.
14.如图,三角形ABC 内的线段,BD CE 相交于点O ,已知OB OD =,2OC OE =.若BOC ∆的面积=2,则四边形AEOD 的面积等于( )
A .4
B .5
C .6
D .7
【答案】D
【解析】
【分析】 连接AO ,利用等高不等底的三角形面积比等于底长的比,可求出△COD 与△BOE 的面积.列出关于△AOE 与△AOD 的面积的方程即可求出四边形AEOD 的面积.
【详解】
连接OA ,
∵OB=OD ,
∴S △BOC =S △COD =2,
∵OC=2OE ,
∴S △BOE =
12
S △BOC =1, ∵OB=OD ,
∴S △AOB =S △AOD ,
∴S △BOE +S △AOE =S △AOD ,
即:1+S △AOE =S △AOD ①,
∵OC=2OE ,
∴S △AOC =2S △AOE ,
∴S △AOD +S △COD =2S △AOE ,
即:S △AOD +2=2S △AOE ②, 联立①和②:解得:S △AOE =3,S △AOD =4,
S 四边形AEOD =S △AOE +S △AOD =7,
故选D .
【点睛】
本题考查三角形面积问题,涉及方程组的解法,注意灵活运用等高不等底的三角形面积比等于底长的比这一结论.
15.已知:如图,D 、E 、 F 分别是△ABC 的三边的延长线上一点,且AB =BF ,BC =CD ,AC =AE ,ABC S ∆=5cm 2,则DEF S ∆的值是( )
A .15 cm 2
B .20 cm 2
C .30 cm 2
D .35 cm 2
【答案】D
【解析】
【分析】 连接AD ,BE ,CF .根据等底同高的两个三角形面积相等,得到所有小三角形面积都等于△ABC 的面积,故△DEF 的面积等于7倍的△ABC 面积,即可得出结果.
【详解】
连接AD ,BE ,CF .
∵BC =CD ,∴S △ACD =S △ABC =5,S △FCD =S △BCF .同理S △AEB =S △ABC =5,S △AED =S △ACD =5;S △AEB =S △BEF =5,S △BFC =S △ABC =5;∴S △FCD =S △BCF =5,∴S △EFD =7 S △ABC =35(cm 2). 故选D .
【点睛】
本题是面积及等积变换综合题目,考查了三角形的面积及等积变换,本题有一定难度,需要通过作辅助线,运用三角形中线等分三角形的面积才能得出结果.
16.如图,把一张长方形纸条ABCD 沿EF 折叠,C 、D 两点落到'C 、'D 处.已知20DAC ∠=,且''//C D AC ,则AEF ∠的度数为( )
A .20
B .35
C .50
D .70
【答案】B
【解析】
【分析】 依据C'D'//AC ,即可得到∠AHG=∠C′=90°,进而得出AGH 70∠=,由折叠可得,CFE GFE ∠∠=,由AD//BC ,可得CFE GEF ∠∠=,依据三角形外角性质得到1AEF GFE AGH 352∠∠∠===.
【详解】
如图,C'D'//AC ,

又DAC 20∠=,
AGH 70∠∴=,
由折叠可得,CFE GFE ∠∠=,
由AD//BC ,可得CFE GEF ∠∠=,
1AEF GFE AGH 352
∠∠∠∴===, 故选:B .
【点睛】
本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,内错角相等.
17.适合下列条件的△ABC 中, 直角三角形的个数为
①111345
a b c ,,;==
=②6a =,∠A =45°;③∠A =32°, ∠B =58°; ④72425a b c ===,,;⑤22 4.a b c ===,,⑥::3:4:5a b c = ⑦::12:13:15A B C ∠∠∠=⑹5,25,5a b c =
== A .2个
B .3个
C .4个
D .5个
【答案】C
【解析】 根据勾股定理的逆定理,可分别求出各边的平方,然后计算判断:
222
111+345≠()()(),故①不能构成直角三角形;
当a=6,∠A=45°时,②不足以判定该三角形是直角三角形;
根据直角三角形的两锐角互余,可由∠A+∠B=90°,可知③是直角三角形;
根据72=49,242=576,252=625,可知72+242=252,故④能够成直角三角形;
由三角形的三边关系,2+2=4可知⑤不能构成三角形;
令a=3x ,b=4x ,c=5x ,可知a 2+b 2=c 2,故⑥能够成直角三角形;
根据三角形的内角和可知⑦不等构成直角三角形;
由a 2=5,b 2=20,c 2=25,可知a 2+b 2=c 2,故⑧能够成直角三角形.
故选:C.
点睛:此题主要考查了直角三角形的判定,解题关键是根据角的关系,两锐角互余,和边的关系,即勾股定理的逆定理,可直接求解判断即可,比较简单.
18.在下列图形中,正确画出△ABC 的AC 边上的高的图形是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】
△ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段,根据定义即可作出判断.
【详解】
解:△ABC 的AC 边上的高的就是通过顶点B 作的AC 所在直线的垂线段.根据定义正确的只有C .
故选:C .
【点睛】
本题考查了三角形的高线的定义,理解定义是关键.
19.已知一个正多边形的内角是140°,则这个正多边形的边数是( )
A .9
B .8
C .7
D .6 【答案】A
【解析】 分析:根据多边形的内角和公式计算即可. 详解:
.
答:这个正多边形的边数是9.故选A.
点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.
20.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )
A .2γαβ=+
B .2γαβ=+
C .γαβ=+
D .180γαβ=--
【答案】A
【解析】
【分析】
【详解】 分析:根据三角形的外角得:∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',代入已知可得结论. 详解:
由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD ,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选A.
点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.。

相关文档
最新文档