辽宁东北育才学校高中部等差数列测试题doc

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、等差数列选择题
1.在等差数列{}n a 中,若n S 为其前n 项和,65a =,则11S 的值是( ) A .60
B .11
C .50
D .55
2.等差数列{}n a 中,22a =,公差2d =,则10S =( ) A .200 B .100 C .90 D .80 3.等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8
B .10
C .12
D .14
4.设n S 是等差数列{}n a 的前n 项和.若1476a a a ++=,则7S =( ) A .10-
B .8
C .12
D .14
5.已知数列{}n a 的前n 项和为n S ,15a =,且满足
122527
n n
a a n n +-=--,若p ,*q ∈N ,p q >,则p q S S -的最小值为( )
A .6-
B .2-
C .1-
D .0
6.已知等差数列{a n }的前n 项和为S n ,则下列判断错误的是( ) A .S 5,S 10-S 5,S 15-S 10必成等差数列 B .S 2,S 4-S 2,S 6-S 4必成等差数列 C .S 5,S 10,S 15+S 10有可能是等差数列
D .S 2,S 4+S 2,S 6+S 4必成等差数列
7.等差数列{}n a 中,12318192024,78a a a a a a ++=-++=,则此数列的前20项和等于( ) A .160
B .180
C .200
D .220
8.等差数列{}n a 的前n 项和为n S ,若12a =,315S =,则8a =( ) A .11 B .12
C .23
D .249.题目文件丢失!
10.已知等差数列{}n a 的前n 项和为n S ,31567a a a +=+,则23S =( ) A .121
B .161
C .141
D .151
11.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( ) A .132项
B .133项
C .134项
D .135项
12.等差数列{}n a 的前n 项和为n S ,且132a a +=,422a a -=,则5S =( ) A .21
B .15
C .10
D .6
13.在等差数列{}n a 中,已知前21项和2163S =,则25820a a a a ++++的值为( )
A .7
B .9
C .21
D .42
14.设等差数列{}n a 的前n 项和为n S ,若718a a a -<<-,则必定有( ) A .70S >,且80S < B .70S <,且80S > C .70S >,且80S > D .70S <,且80S <
15.若数列{}n a 满足121
()2
n n a a n N *++=∈,且11a =,则2021a =( ) A .1010 B .1011 C .2020
D .2021
16.已知数列{}n a 是公差不为零且各项均为正数的无穷等差数列,其前n 项和为n S .若
p m n q <<<且()
*,,,p q m n p q m n N +=+∈,则下列判断正确的是( )
A .22p p S p a =⋅
B .p q m n a a a a >
C .
1111p q m n a a a a +<+ D .
1111p q m n
S S S S +>+ 17.已知数列{}n a 的前n 项和()2
*
n S n n N =∈,则{}n
a 的通项公式为( )
A .2n a n =
B .21n a n =-
C .32n a n =-
D .1,1
2,2n n a n n =⎧=⎨≥⎩
18.已知数列{x n }满足x 1=1,x 2=23
,且
11112n n n x x x -++=(n ≥2),则x n 等于( ) A .(
23
)n -1
B .(
23
)n C .
21
n + D .
1
2
n + 19.已知数列{}n a 中,11a =,22a =,对*n N ∀∈都有333
122n n n a a a ++=+,则10a 等于
( ) A .10
B
C .64
D .4
20.已知等差数列{}n a 满足48a =,6711a a +=,则2a =( ) A .10
B .9
C .8
D .7
二、多选题
21.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >
B .130S >,140S <,则78a a >
C .若915S S =,则n S 中的最大值是12S
D .若2
n S n n a =-+,则0a =
22.设数列{}n a 的前n 项和为*
()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是
( )
A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列
B .若2
n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列
C .若()11n
n S =--,则{}n a 是等比数列
D .若{}n a 是等差数列,则n S ,2n n S S -,*
32()n n S S n N -∈也成等差数列23.题目文
件丢失!
24.已知数列{}n a 的前4项为2,0,2,0,则该数列的通项公式可能为( ) A .0,2,n n a n ⎧=⎨
⎩为奇数
为偶数
B .1(1)1n n a -=-+
C .2sin
2
n n a π= D .cos(1)1n a n π=-+
25.(多选题)已知数列{}n a 中,前n 项和为n S ,且2
3n n n S a +=,则1
n n a a -的值不可能为
( ) A .2
B .5
C .3
D .4
26.已知数列{}2n
n
a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6
D .a 1,a 2,a 3可能成等差数列
27.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310S S =
D .当8n ≥时,0n a <
28.在数列{}n a 中,若22*
1(2,.n n a a p n n N p --=≥∈为常数),则称{}n a 为“等方差数
列”.下列对“等方差数列”的判断正确的是( ) A .若{}n a 是等差数列,则{}n a 是等方差数列 B .{(1)}n -是等方差数列
C .若{}n a 是等方差数列,则{}(
)*
,kn a k N
k ∈为常数)也是等方差数列
D .若{}n a 既是等方差数列,又是等差数列,则该数列为常数列 29.已知等差数列{}n a 的前n 项和为n S ()*
n N ∈,公差0d ≠,6
90S
=,7a 是3a 与9
a 的等比中项,则下列选项正确的是( ) A .2d =-
B .1
20a =-
C .当且仅当10n =时,n S 取最大值
D .当0n
S <时,n 的最小值为22
30.设等差数列{}n a 的前n 项和为n S ,公差为d .已知312a =,120S >,70a <则( )
A .60a >
B .数列1n a ⎧⎫

⎬⎩⎭
是递增数列 C .0n S <时,n 的最小值为13
D .数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项
【参考答案】***试卷处理标记,请不要删除
一、等差数列选择题 1.D 【分析】
根据题中条件,由等差数列的性质,以及等差数列的求和公式,即可求出结果. 【详解】
因为在等差数列{}n a 中,若n S 为其前n 项和,65a =, 所以()
1111161111552
a a S a +===.
故选:D. 2.C 【分析】
先求得1a ,然后求得10S . 【详解】
依题意120a a d =-=,所以101104545290S a d =+=⨯=. 故选:C 3.C 【分析】
利用等差数列的通项公式即可求解. 【详解】 {a n }为等差数列,
S 3=12,即1232312a a a a ++==,解得24a =. 由12a =,所以数列的公差21422d a a =-=-=, 所以()()112212n a a n d n n =+-=+-=, 所以62612a =⨯=. 故选:C 4.D 【分析】
利用等差数列下标性质求得4a ,再利用求和公式求解即可 【详解】
147446=32a a a a a ++=∴=,则()
177477142
a a S a +=
== 故选:D 5.A 【分析】 转化条件为
122527
n n a a
n n +-=--,由等差数列的定义及通项公式可得()()2327n a n n =--,求得满足0n a ≤的项后即可得解.
【详解】 因为122527
n n a a n n +-=--,所以122527n n
a a n n +-
=--, 又
1127a =--,所以数列27n a n ⎧⎫
⎨⎬-⎩⎭是以1-为首项,公差为2的等差数列, 所以
()1212327
n
a n n n =-+-=--,所以()()2327n a n n =--, 令()()23270n a n n =--≤,解得
3722
n ≤≤, 所以230,0a a <<,其余各项均大于0, 所以()
()()3123min
13316p q S S a a S S =-=+=⨯-+--⨯=-.
故选:A. 【点睛】
解决本题的关键是构造新数列求数列通项,再将问题转化为求数列中满足0n a ≤的项,即可得解. 6.D 【分析】
根据等差数列的性质,可判定A 、B 正确;当首项与公差均为0时,可判定C 正确;当首项为1与公差1时,可判定D 错误. 【详解】
由题意,数列{}n a 为等差数列,n S 为前n 项和,
根据等差数列的性质,可得而51051510,,S S S S S --,和24264,,S S S S S --构成等差数列,所以,所以A ,B 正确;
当首项与公差均为0时,5101510,,S S S S +是等差数列,所以C 正确;
当首项为1与公差1时,此时2426102,31,86S S S S S =+=+=,此时24264,,S S S S S ++不构成等差数列,所以D 错误.
7.B 【分析】
把已知的两式相加得到12018a a +=,再求20S 得解. 【详解】
由题得120219318()()()247854a a a a a a +++++=-+=, 所以1201203()54,18a a a a +=∴+=. 所以2012020
()10181802
S a a =+=⨯=. 故选:B 8.C 【分析】
由题设求得等差数列{}n a 的公差d ,即可求得结果. 【详解】
32153S a ==,25a ∴=, 12a =,∴公差213d a a =-=, 81727323a a d ∴=+=+⨯=,
故选:C.
9.无
10.B 【分析】
由条件可得127a =,然后231223S a =,算出即可. 【详解】
因为31567a a a +=+,所以15637a a a =-+,所以1537a d =+,所以1537a d -=,即
127a =
所以231223161S a == 故选:B 11.D 【分析】
由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】
被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则
()8151157n a n n =+-=-,令1572020n a n =-≤,解得:2135
15
n ≤, 所以该数列的项数共有135项.
【点睛】
关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列. 12.C 【分析】
根据已知条件得到关于首项1a 和公差d 的方程组,求解出1,a d 的值,再根据等差数列前n 项和的计算公式求解出5S 的值. 【详解】 因为1342
22a a a a +=⎧⎨
-=⎩,所以1222
22a d d +=⎧⎨=⎩,所以101a d =⎧⎨=⎩,
所以5154
550101102
S a d ⨯=+=⨯+⨯=, 故选:C. 13.C 【分析】
利用等差数列的前n 项和公式可得1216a a +=,即可得113a =,再利用等差数列的性质即可求解. 【详解】
设等差数列{}n a 的公差为d ,则()
1212121632
a a S +=
=, 所以1216a a +=,即1126a =,所以113a =, 所以()()()2582022051781411a a a a a a a a a a a +++
+=++++++
111111111122277321a a a a a =+++==⨯=,
故选:C 【点睛】
关键点点睛:本题的关键点是求出1216a a +=,进而得出113a =,
()()()2582022051781411117a a a a a a a a a a a a +++
+=++++++=即可求解.
14.A 【分析】
根据已知条件,结合等差数列前n 项和公式,即可容易判断. 【详解】
依题意,有170a a +>,180a a +< 则()177702
a a S +⋅=
>
()()1881884
02
a a S a a +⋅=
=+<
故选:A . 15.B 【分析】
根据递推关系式求出数列的通项公式即可求解. 【详解】 由121
()2n n a a n N *++=
∈,则11()2
n n a a n N *+=+∈, 即11
2
n n a a +-=
, 所以数列{}n a 是以1为首项,
1
2
为公差的等差数列, 所以()()11111122
n n a a n d n +=+-=+-⨯=, 所以2021a =20211
10112
+=. 故选:B 16.D 【分析】
利用等差数列的求和公式可判断A 选项的正误;利用作差法结合等差数列的通项公式可判断B 选项的正误;利用p q m n a a a a <结合不等式的基本性质可判断C 选项的正误;利用等差数列的求和公式结合不等式的基本性质可判断D 选项的正误. 【详解】
对于A 选项,由于()
()1221222
p p
p p p p a a S
p a a pa ++=
=+≠,故选项A 错误;
对于B 选项,由于m p q n -=-,则
()()p q m n m n m n a a a a a p m d a q n d a a ⋅-⋅=+-⋅+--⋅⎡⎤⎡⎤⎣⎦⎣⎦
()()()()()2
2m n m n m n a q n d a q n d a a q n a a d q n d =--⋅+--=----⎡⎤⎡⎤⎣⎦⎣⎦
()()()2
220q n n m d q n d =-----<,故选项B 错误;
对于C 选项,由于
1111
p q m n m n p q p q p q m n m n
a a a a a a a a a a a a a a a a ++++==>=+⋅⋅⋅,故选项C 错误; 对于D 选项,设0x q n m p =-=->,则
()()()20pq mn m x n x mn x n m x -=-+-=---<,从而pq mn <,
由于2
2
2
2
22p q m n p q pq m n mn +=+⇔++=++,故2222
p q m n +>+.
()()()()()()111111p q pq p q mn m n m n --=-++<-++=--,
故()()22221122
p q m n p q p q m n m n
S S p q a d m n a d S S +--+--+=++>++=+.
()()()()()2
21111112112224p q p p q q pq p q pq p q S S pa d qa d pqa a d d
--+---⎡⎤⎡⎤⋅=+⋅+=++⎢⎥⎢⎥⎣⎦⎣⎦
()()()22
1121124mn m n mn p q mna a d d
+---<+
+()()()22
1121124m n mn m n mn m n mna a d d S S +---<++=,
由此
1111
p q m n p q p q m n m n
S S S S S S S S S S S S +++=>=+,故选项D 正确. 故选:D. 【点睛】
关键点点睛:本题考查等差数列中不等式关系的判断,在解题过程中充分利用基本量来表示n a 、n S ,并结合作差法、不等式的基本性质来进行判断. 17.B 【分析】
利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】
2n S n =,∴当2n ≥时,221(1)21n n n a S S n n n -=-=--=-,
当1n =时,111a S ==,上式也成立,
()
*21n a n n N ∴=-∈,
故选:B. 【点睛】
易错点睛:本题考查数列通项公式的求解,涉及到的知识点有数列的项与和的关系,即
11,1,2n n
n S n a S S n -=⎧=⎨-≥⎩,算出之后一定要判断1n =时对应的式子是否成立,最后求得结
果,考查学生的分类思想与运算求解能力,属于基础题. 18.C 【分析】 由已知可得数列1n x ⎧⎫⎨⎬⎩⎭是等差数列,求出数列1n x ⎧⎫
⎨⎬⎩⎭
的通项公式,进而得出答案. 【详解】
由已知可得数列1n x ⎧⎫
⎨⎬⎩⎭
是等差数列,且121131,2x x ==,故公差12d =

()1111122n n n x +=+-⨯=,故21
n x n =+ 故选:C 19.D 【分析】
利用等差中项法可知,数列{}
3n a 为等差数列,根据11a =,22a =可求得数列{}
3
n a 的公
差,可求得3
10a 的值,进而可求得10a 的值. 【详解】
对*n N ∀∈都有3
3
3
122n n n a a a ++=+,由等差中项法可知,数列{}
3
n a 为等差数列,
由于11a =,22a =,则数列{}
3n a 的公差为33
217d a a =-=,
所以,33
101919764a a d =+=+⨯=,因此,104a .
故选:D. 20.A 【分析】
利用等差数列的性质结合已知解得d ,进一步求得2a . 【详解】
在等差数列{}n a 中,设公差为d ,由
467811a a a =⎧⇒⎨
+=⎩4448
12311
a d a d a d =⎧⇒=-⎨+++=⎩,24210a a d ∴=-=. 故选:A
二、多选题
21.AD 【分析】
对于A ,作差后利用等差数列的通项公式运算可得答案;
对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;
对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】
对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,
所以2
4619150a a a a d -=>,所以4619a a a a >,故A 正确;
对于B ,因为130S >,140S <,所以
77713()
1302
a a a +=>,即70a >,
787814()
7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以
7878||||0a a a a -=+<,即78||||a a <,故B 不正确;
对于C ,因为915S S =,所以101114150a a a a ++
++=,所以12133()0a a +=,即
12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值
是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;
对于D ,若2
n S n n a =-+,则11a S a ==,2n ≥时,
221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,
所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键. 22.BCD 【分析】
利用等差等比数列的定义及性质对选项判断得解. 【详解】
选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:
2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;
选项C: ()11n
n S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,
12(1)n n a -∴=⨯-是等比数列,故对;
选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*
32()n n S S n N -∈是等差数
列,故对; 故选:BCD 【点睛】
熟练运用等差数列的定义、性质、前n 项和公式是解题关键.
23.无
24.BD 【分析】
根据选项求出数列的前4项,逐一判断即可. 【详解】
解:因为数列{}n a 的前4项为2,0,2,0, 选项A :不符合题设;
选项B :01(1)12,a =-+=1
2(1)10,a =-+=
23(1)12,a =-+=34(1)10a =-+=,符合题设;
选项C :,12sin
2,2
a π
==22sin 0,a π==
332sin
22
a π
==-不符合题设; 选项D :1cos 012,a =+=2cos 10,a π=+=
3cos 212,a π=+=4cos310a π=+=,符合题设.
故选:BD. 【点睛】
本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题. 25.BD 【分析】 利用递推关系可得12
11
n n a a n -=+-,再利用数列的单调性即可得出答案. 【详解】 解:∵2
3
n n n S a +=
, ∴2n ≥时,1121
33
n n n n n n n a S S a a --++=-=
-, 化为:112
111
n n a n a n n -+==+--, 由于数列21n ⎧⎫

⎬-⎩⎭
单调递减, 可得:2n =时,2
1
n -取得最大值2. ∴
1
n
n a a -的最大值为3. 故选:BD . 【点睛】
本题考查了数列递推关系、数列的单调性,考查了推理能力与计算能力,属于中档题. 26.ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为
1
112a =+,1(1)2
n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,
则a 1+a 3=a 2,即14+22d =12+12d ,解得15
d =-. 故选ACD 27.AD 【分析】
利用等差数列的通项公式可以求70a >,80a <,即可求公差0d <,然后根据等差数列的性质判断四个选项是否正确. 【详解】
因为67S S <,所以7670S S a -=> , 因为78S S >,所以8780S S a -=<, 所以等差数列{}n a 公差870d a a =-<, 所以{}n a 是递减数列,
故1a 最大,选项A 正确;选项B 不正确;
10345678910770S S a a a a a a a a -=++++++=>,
所以310S S ≠,故选项C 不正确;
当8n ≥时,80n a a ≤<,即0n a <,故选项D 正确; 故选:AD 【点睛】
本题主要考查了等差数列的性质和前n 项和n S ,属于基础题. 28.BCD 【分析】
根据等差数列和等方差数列定义,结合特殊反例对选项逐一判断即可. 【详解】
对于A ,若{}n a 是等差数列,如n a n =,
则12222
(1)21n n a a n n n --=--=-不是常数,故{}
n a 不是等方差数列,故A 错误;
对于B ,数列
(){}1n
-中,222121[(1)][(1)
]0n n n n a
a ---=---=是常数, {(1)}n ∴-是等方差数列,故B 正确;
对于C ,数列{}n a 中的项列举出来是,1a ,2a ,,k a ,,2k a ,
数列{}kn a 中的项列举出来是,k a ,2k a ,3k a ,

()(
)()()
22222222
12132221k k k k k k k k a
a a a a a a a p +++++--=-=-==-=,将这k 个式子累加得()()()()
22
222
2221
2
1
3
2
221k k
k k k k k k a
a a a a a a a kp +++++--+-+-+
+-=,222k k a a kp ∴-=,
()221kn k
n a a kp +∴-=,{}*(,kn a k N ∴∈k 为常数)是等方差数列,故C 正确;
对于D ,
{}n a 是等差数列,1n n a a d -∴-=,则设n a dn m =+
{}n a 是等方差数列,
()()222112(2)n n n n dn m a a a a d a d d n m d d dn d m --∴-=++++=+=++是常数,故220d =,故0d =,所以(2)0m d d +=,22
10n n a a --=是常数,故D 正确.
故选:BCD. 【点睛】
本题考查了数列的新定义问题和等差数列的定义,属于中档题. 29.AD 【分析】
运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0n S <解不等式可判断D .
【详解】
等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即
12530a d +=,①
由7a 是3a 与9a 的等比中项,得2
739a a a =,即()()()2
111628a d a d a d +=++,化为
1100a d +=,②
由①②解得120a =,2d =-,则202(1)222n a n n =--=-,
21
(20222)212
n S n n n n =+-=-,
由2
2144124n S n ⎛⎫=--+ ⎪⎝
⎭,可得10n =或11时,n S 取得最大值110; 由2
102n S n n -<=,解得21n >,则n 的最小值为22.
故选:AD 【点睛】
本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 30.ACD 【分析】 由已知得()
()612112712+12+2
2
0a a a a S ==
>,又70a <,所以6>0a ,可判断A ;由已知
得出24
37
d -
<<-,且()12+3n a n d =-,得出[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又()1112+3n a n d =-,可得出1n
a 在1,6n n N
上单调递增,1
n
a 在
7n n N ,
上单调递增,可判断B ;由()
313117
713+12
2
03213a a a S a ⨯=
=<=
,可判断C ;判断 n a ,n S 的符号, n a 的单调性可判断D ; 【详解】
由已知得311+212,122d a a a d ===-,()
()612112712+12+2
2
0a a a a S =
=
>,又
70a <,所以6>0a ,故A 正确;
由716167
1+612+40+512+3>0+2+1124+7>0
a a d d a a d d a a a d d ==<⎧⎪==⎨⎪==⎩,解得24
37d -<<-,又()()3+312+3n a n d n d a =-=-,
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,又
()11
12+3n a n d
=-,所以[]1,6n ∈时,1>0n
a ,7n ≥时,1
0n a <,
所以1
n
a 在1,6n
n N
上单调递增,1
n
a 在7n
n N ,上单调递增,所
以数列1n a ⎧⎫

⎬⎩⎭
不是递增数列,故B 不正确; 由于()
313117
713+12
2
03213a a a S a ⨯=
=<=
,而120S >,所以0n S <时,n 的最小值为13,故C 选项正确 ;
当[]1,6n ∈时,>0n a ,7n ≥时,0n a <,当[]1,12n ∈时,>0n S ,13n ≥时,
0n
S <,所以当[]7,12n ∈时,0n a <,>0n S ,
0n
n
S a <,[]712n ∈,时,n a 为递增数列,n S 为正数且为递减数列,所以数列n n S a ⎧⎫
⎨⎬⎩⎭
中最小项为第7项,故D 正确;
【点睛】
本题考查等差数列的公差,项的符号,数列的单调性,数列的最值项,属于较难题.。

相关文档
最新文档