聊城市人教版(七年级)初一上册数学期末测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
聊城市人教版(七年级)初一上册数学期末测试题及答案
一、选择题
1.地球与月球的平均距离为384 000km ,将384 000这个数用科学记数法表示为( ) A .3.84×103 B .3.84×104 C .3.84×105 D .3.84×106 2.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3
B .π,2
C .1,4
D .1,3
3.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,
,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )
A .9a π
B .8a π
C .98
a π
D .94
a π
4.如图所示,数轴上A ,B 两点表示的数分别是2﹣1和2,则A ,B 两点之间的距离是( )
A .22
B .22﹣1
C .22+1
D .1 5.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m
A .21.0410-⨯
B .31.0410-⨯
C .41.0410-⨯
D .51.0410-⨯
6.若x=﹣1
3
,y=4,则代数式3x+y ﹣3xy 的值为( ) A .﹣7
B .﹣1
C .9
D .7
7.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2
8.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cm B .3cm C .3cm 或6cm D .4cm 9.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1
B .﹣1
C .3
D .﹣3
10.如图,能判定直线a ∥b 的条件是( )
A .∠2+∠4=180°
B .∠3=∠4
C .∠1+∠4=90°
D .∠1=∠4
11.如果方程组223x y x y +=⎧⎨-=⎩的解为5
x y =⎧⎨=
⎩,那么“口”和“△”所表示的数分别是( )
A .14,4
B .11,1
C .9,-1
D .6,-4
12.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是( )
A .两点确定一条直线
B .两点之间线段最短
C .垂线段最短
D .连接两点的线段叫做两点的距离
二、填空题
13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.把53°30′用度表示为_____.
15.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元. 支付宝帐单 日期
交易明细 10.16 乘坐公交¥ 4.00- 10.17
转帐收入¥200.00+ 10.18 体育用品¥64.00- 10.19
零食¥82.00- 10.20 餐费¥100.00-
17.若3750'A ∠=︒,则A ∠的补角的度数为__________. 18.当a=_____时,分式1
3
a a --的值为0. 19.已知23,9n m
n a
a -==,则m a =___________.
20.4是_____的算术平方根.
21.为了了解我市2019年10000名考生的数学中考成绩,从中抽取了200名考生成绩进
行统计.在这个问题中,下列说法:①这10000名考生的数学中考成绩的全体是总体:②每个考生是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本:④样本容量是200.其中说法正确的有(填序号)______
22.单项式()2
6
a bc -
的系数为______,次数为______.
23.观察一列有规律的单项式:x ,23x ,35x ,47x ,59x ⋅⋅⋅,它的第n 个单项式是______.
24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).
三、解答题
25.古代名著《算学启蒙》中有一题:良马日行二百四十里,驽马日行一百五十里,驽马先行十二日,问良马几日追及之.若设良马x 天可追上弩马. (1)当良马追上驽马时,驽马行了 里(用x 的代数式表示). (2)求x 的值.
(3)若两匹马先在A 站,再从A 站出发行往B 站,并停留在B 站,且A 、B 两站之间的路程为7500里,请问驽马出发几天后与良马相距450里? 26.先化简, 再求值. 已知2
22213,222
A x xy y
B x y =
-+=- ()1求2A B - ()2当3,1x y
时,求2A B -的值
27.数学课上老师设计了一个数学游戏:若两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”。
甲、乙、丙、丁四位同学各有一张多项式卡片,下面是甲、乙、丙、丁四位同学的对话:
请根据对话解答下列问题:
(1)判断甲、乙、丙三位同学的多项式是否为“友好多项式”,并说明理由. (2)丁的多项式是什么?(请直接写出所有答案). 28.解下列方程或方程组: (1)3(2x ﹣1)=2(1﹣x )﹣1
(2
)11
123
4
x y x y -+⎧+=⎪
⎨⎪+=⎩ 29.一个几何体由若干个大小相同的小立方块搭成,从上面看到的这个几何体的形状图如图所示,其中小正方形中的数字表示在该位置上小立方块的个数.画出从正面和从左面看到的这个几何体的形状图.
30.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020
710a c ++-=,点B
对应点的数为-3.
(1)a =______,c =______;
(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点
Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为
4
3
; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.
四、压轴题
31.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,
122
x x +,
123
3
x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,
()212
+-=
1
2,
()2133
+-+=43,所以数列2,-1,3的最佳值为
1
2
. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为
1
2
;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳
值的最小值为
1
2
.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);
(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值.
32.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠. (1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),
COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,
请补全图形并加以说明.
33.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒. (1)写出数轴上点B 表示的数____,点P 表示的数____(用含t 的代数式表示); (2)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时追上点Q?(列一元一次方程解应用题)
(3)若动点Q 从点B 出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问 秒时P 、Q 之间的距离恰好等于2(直接写出答案)
(4)思考在点P 的运动过程中,若M 为AP 的中点,N 为PB 的中点.线段MN 的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN 的长.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.C
解析:C
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
试题分析:384 000=3.84×105.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
2.A
解析:A
【解析】
【分析】
由题意根据单项式系数和次数的确定方法即可求出答案得到选项.
【详解】
解:单项式2r h
π的系数和次数分别是π,3;
故选:A.
【点睛】
本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.
3.D
解析:D
【解析】
【分析】
根据中点的定义及线段的和差关系可用a表示出AC、BD、AD的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案.
【详解】
∵AB a,C、D分别是AB、BC的中点,
∴AC=BC=1
2
AB=
1
2
a,BD=CD=
1
2
BC=
1
4
a,
∴AD=AC+BD=3
4 a,
∴三个阴影部分图形的周长之和=aπ+1
2
aπ+
3
4
aπ=
9
4
a
,
故选:D.
【点睛】
本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.
4.D
解析:D
【解析】
【分析】
根据题意列出算式,计算即可得到结果.
【详解】
解:∵A,B﹣1,
∴A,B﹣1)=1;
故选:D.
【点睛】
此题考查了实数与数轴,掌握数轴上点的特点,利用数轴,数形结合求出答案.
5.C
解析:C
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.000104=1.04×10−4.
故选:C.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
6.D
解析:D
【解析】
【分析】
将x与y的值代入原式即可求出答案.
【详解】
当x=﹣1
3
,y=4,
∴原式=﹣1+4+4=7
故选D.
【点睛】
本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.7.B
解析:B
【解析】先根据同号得正的原则判断出ab的符号,再根据不等式的基本性质判断出ab2及a的符号及大小即可.
解:∵a<0,b<0,
∴ab>0,
又∵-1<b<0,ab>0,
∴ab2<0.
∵-1<b<0,
∴0<b2<1,
∴ab2>a,
∴a<ab2<ab.
故选B
本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.
8.D
解析:D
【解析】
【分析】
根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.
【详解】
当点C在AB的延长线上时,如图1,则MB=MC-BC,
∵M是AC的中点,N是BC的中点,AB=8cm,
∴MC=11
()
22
AC AB BC
=+,BN=
1
2
BC,
∴MN=MB+BN,=MC-BC+BN,
=1
()
2
AB BC
+-BC+
1
2
BC,
=1
2 AB,
=4,
同理,当点C 在线段AB 上时,如图2, 则MN=MC+NC=
12AC+12BC=1
2
AB=4, ,
故选:D . 【点睛】
本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.
9.B
解析:B 【解析】 【分析】
将1x =-代入2ax x -=,即可求a 的值. 【详解】
解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】
本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.
10.D
解析:D 【解析】 【分析】
根据平行线的判定方法逐一进行分析即可得. 【详解】
A. ∠2+∠4=180°,互为邻补角,不能判定a//b ,故不符合题意;
B. ∠3=∠4,互为对顶角,不能判定a//b ,故不符合题意;
C. ∠1+∠4=90°,不能判定a//b ,故不符合题意;
D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b ,故符合题意, 故选D. 【点睛】
本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.
11.B
解析:B 【解析】 【分析】
把
5
x
y
=
⎧
⎨
=
⎩
x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.
【详解】
把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,
把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,
故选B.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.
12.A
解析:A
【解析】
【分析】
根据公理“两点确定一条直线”来解答即可.
【详解】
解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.
故选:A.
【点睛】
此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.
二、填空题
13.-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.
【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
解析:-3
【解析】
【分析】
根据有理数在数轴上的分布,此题注意考虑两种情况:要求的点在已知点的左侧或右侧.【详解】
数轴上到原点的距离不大于3个单位长度的点表示的数有:﹣3、﹣2、﹣1、0、1、2、
3,
所以最小的整数是﹣3.
故答案为:﹣3.
【点睛】
本题考查了数轴,注意数轴上距离某个点是一个定值的点有两个,左右各一个,不要漏掉任一种情况.
14.5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:5330’用度表示为53.5,
故答案为:53.5.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以
解析:5°.
【解析】
【分析】
根据度分秒之间60进制的关系计算.
【详解】
解:53︒30’用度表示为53.5︒,
故答案为:53.5︒.
【点睛】
此题考查度分秒的换算,由度化分应乘以60,由分化度应除以60,注意度、分、秒都是60进制的,由大单位化小单位要乘以60才行.
15.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b +
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 16.810
【解析】
【分析】
根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.
【详解】
解:由题意五笔交易后余额为860+200-4-64-82-100=810元,
故填810.
【点睛
解析:810
【解析】
【分析】
根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.
【详解】
解:由题意五笔交易后余额为860+200-4-64-82-100=810元,
故填810.
【点睛】
本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.
17.【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵,
∴的补角=180°-=.
故填.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒
解析:14210'︒
【解析】
【分析】
由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.
【详解】
解:∵3750'A ∠=︒,
∴A ∠的补角=180°-3750'︒=14210'︒.
故填14210'︒.
【点睛】
本题考查补角的定义,难度较小,要注意度、分、秒是60进制.
18.1
【解析】
【分析】
根据分式值为零的条件可得a −1=0,且a −3≠0,求解即可.
【详解】
解:由题意得:a −1=0,且a −3≠0,
解得:a =1,
故答案为:1.
【点睛】
此题主要考查了分式
解析:1
【解析】
【分析】
根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.
【详解】
解:由题意得:a−1=0,且a−3≠0,
解得:a =1,
故答案为:1.
【点睛】
此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.
19.27
【解析】
【分析】
首先根据an =9,求出a2n =81,然后用它除以a2n −m ,即可求出am 的值.
【详解】
解:∵an=9,
∴a2n=92=81,
∴am=a2n÷a2n −m =81÷3=2
解析:27
【解析】
【分析】
首先根据a n =9,求出a 2n =81,然后用它除以a 2n−m ,即可求出a m 的值.
【详解】
解:∵a n=9,
∴a2n=92=81,
∴a m=a2n÷a2n−m=81÷3=27.
故答案为:27.
【点睛】
此题主要考查了同底数幂的除法的运算法则以及幂的乘方的运算法则,解题的关键是熟练掌握基本知识,属于中考常考题型.
20.【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
解析:【解析】
试题解析:∵42=16,
∴4是16的算术平方根.
考点:算术平方根.
21.①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概
解析:①③④
【解析】
【分析】
总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.
【详解】
①这10000名考生的数学中考成绩的全体是总体,正确;
②每个考生的数学中考成绩是个体,故原说法错误;
③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;
④样本容量是200,正确;
故答案为:①③④.
【点睛】
本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围
的大小.样本容量是样本中包含的个体的数目,不能带单位.
22.【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式的系数为;次数为2+1+1=4;
故答案为;4.
【点睛】
此 解析:16
- 【解析】
【分析】
根据定义:单项式的次数是指单项式中所有字母的指数和;单项式的系数是单项式中的数字因数,即可得解.
【详解】
单项式()2
6
a bc -的系数为16-;次数为2+1+1=4; 故答案为16
-;4. 【点睛】
此题主要考查对单项式系数和次数的理解,熟练掌握,即可解题.
23.【解析】
【分析】 首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第个单项式的系数是;
单
解析:()21n
n x - 【解析】
【分析】
首先观察单项式的系数,可发现规律奇数递增,然后观察其次数,可发现规律自然数递增,即可得出第n 个单项式.
【详解】
单项式系数分别是1、3、5、7、9……,第n 个单项式的系数是21n -;
单项式的次数分别是1、2、3、4、5……,第n 个单项式的次数是n ;
第n 个单项式是()21n
n x -; 故答案为()21n
n x -. 【点睛】
此题主要考查根据单项式的系数和次数探索规律,熟练掌握,即可解题.
24.>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小
解析:>.
【解析】
【分析】
先求出两个数的绝对值,再根据绝对值大的反而小进行比较.
【详解】
∵|﹣8|=8,|﹣9|=9,8<9,
∴﹣8>﹣9.
故答案是:>.
【点睛】
考查简单的有理数比较大小,比较两个负数的大小的解题关键是绝对值大的反而小.
三、解答题
25.(1)(150x +1800);(2)20;(3)驽马出发3或27或37或47天后与良马相距450里.
【解析】
【分析】
(1)利用路程=速度×时间可用含x 的代数式表示出结论;
(2)利用两马行的路程相等,即可得出关于x 的一元一次方程,解之即可得出结论; (3)设驽马出发y 天后与良马相距450里,分良马未出发时、良马未追上驽马时、良马追上驽马时及良马到达B 站时四种情况考虑,根据两马相距450里,即可得出关于y 的一元一次方程,解之即可得出结论.
解:(1)∵150×12=1800(里),
∴当良马追上驽马时,驽马行了(150x +1800)里.
故答案为:(150x +1800).
(2)依题意,得:240x =150x +1800,
解得:x =20.
答:x 的值为20.
(3)设驽马出发y 天后与良马相距450里.
①当良马未出发时,150y =450,
解得:y =3;
②当良马未追上驽马时,150y ﹣240(y ﹣12)=450,
解得:y =27;
③当良马追上驽马时,240(y ﹣12)﹣150y =450,
解得:y =37;
④当良马到达B 站时,7500﹣150y =450,
解得:y =47.
答:驽马出发3或27或37或47天后与良马相距450里.
【点睛】
本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,利用含x 的代数式表示出驽马行的路程;(2)(3)找准等量关系,正确列出一元一次方程.
26.(1)22
64x xy y --+;(2)13.
【解析】
【分析】
(1)将A,B 代入2A B -后化简即可;
(2)将x,y 的值代入2A B -化简后的式子求值即可.
【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(
2264x xy y =--+;
(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.
【点睛】
本题主要考查整式的化简求值,解题的关键是利用法则化简整式.
27.(1)是,理由见详解;(2)223x x ---;223x x ++;2541x x --.
【解析】
【分析】
(1) 由题意根据“友好多项式”的定义,对甲、乙、丙三位同学的多项式进行判断即可;
(2)由题意利用甲、乙、丁三位同学的多项式为“友好多项式”进行分析求解.
解:(1)由题意可知两个多项式相减的结果等于第三个多项式,则称这三个多项式为“友好多项式”;
∵乙减甲等于丙即222
31(232)23,x x x x x x -+---=++
∴甲、乙、丙三位同学的多项式是 “友好多项式”.
(2)∵甲、乙、丁三位同学的多项式为“友好多项式”,
∴甲-乙=丁;乙-甲=丁;甲+乙=丁;
∴丁=222(232)(31)23x x x x x x ----+=---;
或丁=222(31)(232)23x x x x x x -+---=++;
或丁=222(232)(31)541x x x x x x --+-+=--.
【点睛】
本题考查整式加减的实际应用,理解题意列出整式并利用合并同类项原则进行分析计算. 28.(1)x=12 ;(2)15x y =-⎧⎨=⎩
. 【解析】
【分析】
(1)方程去括号,移项合并,把x 系数化为1,即可求出解;
(2)方程组整理后,利用加减消元法求出解即可.
【详解】
解:(1)3(2x ﹣1)=2(1﹣x )﹣1,
6x ﹣3=2﹣2x ﹣1, x=12
, (2)111234
x y x y -+⎧+=⎪⎨⎪+=⎩, 整理得:3x+2y=72x+2y=8①②
⎧⎨⎩, ②﹣①得:﹣x=1,
x=﹣1,
把x=﹣1代入①中得:y=5,
∴方程组的解为:15x y =-⎧⎨
=⎩
. 【点睛】
此题考查了解二元一次方程组和一元一次方程,熟练掌握运算法则是解本题的关键.
29.见解析
【解析】
由已知条件可知,从正面看有4列,每列小正方数形数目分别为2,3,3,1;从左面看有3列,每列小正方形数目分别为3,2,3.据此可画出图形.
【详解】
解:如图所示.
从正面看 从侧面看
【点睛】
本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.
30.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43
.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.
【解析】
【分析】
(1)由绝对值和偶次方的非负性列方程组可解;
(2)设经过t 秒两点的距离为43
,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.
【详解】
(1)由非负数的性质可得:7010a c +=⎧⎨
-=⎩, ∴7a =-,1c =,
故答案为:-7,1;
(2)设经过t 秒两点的距离为
43, 由题意得:41433t t ⨯+-=
, 解得43t =或83
,
答:经过
43秒或83秒P ,Q 两点的距离为43
; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇, 由题意得:34x x =+,
∴2x =,
表示的数为:7321-+⨯=-,
点P 运动到点C 返回时,设经过y 秒P ,Q 相過,
由题意得:()34217y y ++=--⎡⎤⎣⎦,
∴3y =,
表示的数是:()331710⨯----=⎡⎤⎣⎦,
当点P 返回到点A 时,用时
163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇, 由题意得:()1373z z +=-
--, ∴53
z =, 表示的数是:57323-+
⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.
【点睛】
本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.
四、压轴题
31.(1)3;(2)
12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】
【分析】
(1)根据上述材料给出的方法计算其相应的最佳值为即可;
(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a 的数值即可.
【详解】
(1)因为|−4|=4,-4-3
2=3.5,-4-31
2+=3,
所以数列−4,−3,1的最佳值为3.故答案为:3;
(2)对于数列−4,−3,2,因为|−4|=4,
43
2
--
=
7
2
,
432
||
2
--+
=
5
2
,
所以数列−4,−3,2的最佳值为5
2
;
对于数列−4,2,−3,因为|−4|=4,||
4
2
2
-+
=1,
432
||
2
--+
=
5
2
,
所以数列−4,2,−3的最佳值为1;
对于数列2,−4,−3,因为|2|=2,2
2
4
-
=1,
432
||
2
--+
=
5
2
,
所以数列2,−4,−3的最佳值为1;
对于数列2,−3,−4,因为|2|=2,2
2
3
-
=
1
2
,
432
||
2
--+
=
5
2
,
所以数列2,−3,−4的最佳值为1 2
∴数列的最佳值的最小值为2
2
3
-
=
1
2
,
数列可以为:−3,2,−4或2,−3,−4.
故答案为:1
2
,−3,2,−4或2,−3,−4.
(3)当2
2
a
+
=1,则a=0或−4,不合题意;
当
9
2
a
-+
=1,则a=11或7;
当a=7时,数列为−9,7,2,因为|−9|=9,
97
2
-+
=1,
972
2
-+
+
=0,
所以数列2,−3,−4的最佳值为0,不符合题意;
当
97
2
a
-+
+
=1,则a=4或10.
∴a=11或4或10.
【点睛】
此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.32.(1)41°;(2)见解析.
【解析】
【分析】
(1)根据角平分线的定义可得
1
2
AOC AOB
∠∠
=,
1
2
AOE AOD
∠∠
=,进而可得
∠COE=()12AOB AOD ∠∠-,即可得答案;(2)分别讨论OA 在∠BOD 内部和外部的情况,根据求得结果进行判断即可.
【详解】 (1)∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴12AOC AOB ∠∠=,12
AOE AOD ∠∠=, ∴COE AOC AOE ∠∠∠=-
=
1122
AOB AOD ∠∠- =()12
AOB AOD ∠∠- =12
BOD ∠ =01822
⨯ =41°
(2)α与β之间的数量关系发生变化, 如图,当OA 在BOD ∠内部,
∵射线OC 平分AOB ∠、 射线OE 平分AOD ∠,
∴11O ,22
AOC A B AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =
1122
AOB AOD ∠∠+ =()12AOB AOD ∠∠+ =12
α
如图,当OA 在BOD ∠外部,
∵射线OC 平分AOB ∠、射线OE 平分AOD ∠,
∴11,22
AOC AOB AOE AOD ∠∠∠∠=
=, ∴COE AOC AOE β∠∠∠==+ =1122AOB AOD ∠∠=
+ =()12
AOB AOD ∠∠+ =()013602
BOD ∠- =()
013602α- =011802
α-
∴α与β之间的数量关系发生变化.
【点睛】
本题考查角平分线的定义,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.
33.(1)-14,8-4t (2)点P 运动11秒时追上点Q (3)
103
或4(4)线段MN 的长度不发生变化,都等于11
【解析】
【分析】
(1)根据AB 长度即可求得BO 长度,根据t 即可求得AP 长度,即可解题;
(2)点P 运动x 秒时,在点C 处追上点Q ,则AC=5x ,BC=3x ,根据AC-BC=AB ,列出方程求解即可;
(3)分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;
(4)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.
【详解】
(1)∵点A 表示的数为8,B 在A 点左边,AB=22,
∴点B表示的数是8-22=-14,
∵动点P从点A出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,
∴点P表示的数是8-4t.
故答案为-14,8-4t;
(2)设点P运动x秒时,在点C处追上点Q,
则AC=5x,BC=3x,
∵AC-BC=AB,
∴4x-2x=22,
解得:x=11,
∴点P运动11秒时追上点Q;
(3) ①点P、Q相遇之前,4t+2+2t =22,t=10
3
,
②点P、Q相遇之后,4t+2t -2=22,t=4,
故答案为10
3
或4
(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:
MN=MP+NP=1
2
AP+
1
2
BP=
1
2
(AP+BP)=1
2
AB=
1
2
×22=11
②当点P运动到点B的左侧时:
MN=MP﹣NP=1
2
AP﹣
1
2
BP=
1
2
(AP﹣BP)=1
2
AB=11
∴线段MN的长度不发生变化,其值为11.
【点睛】
本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.。