大仓盖镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大仓盖镇初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1、(2分)用加减法解方程组时,下列解法错误的是()
A. ①×3-②×2,消去x
B. ①×2-②×3,消去y
C. ①×(-3)+②×2,消去x
D. ①×2-②×(-3),消去y
【答案】D
【考点】解二元一次方程组
【解析】【解答】解:A、①×3-②×2,可消去x,故不符合题意;
B、①×2-②×3,可消去y,故不符合题意;
C、①×(-3)+②×2,可消去x,故不符合题意;
D、①×2-②×(-3),得13x-12y=31,不能消去y,符合题意.
故答案为:D
【分析】若要消去x,可将①×3-②×2或①×(-3)+②×2;若消去y,可将①×2-②×3,观察各选项,就可得出解法错误的选项。
的
2、(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()
A. 全区所有参加中考的学生
B. 被抽查的1000名学生
C. 全区所有参加中考的学生的数学成绩
D. 被抽查的1000名学生的数学成绩
【答案】D
【考点】总体、个体、样本、样本容量
【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.
考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.
全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.
故答案为:D
【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.
3、(2分)如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()
A. A处
B. B处
C. C处
D. D处
【答案】B
【考点】用坐标表示地理位置
【解析】【解答】解:∵一号墙堡的坐标为(4,2),四号墙堡的坐标为(−2,4),
∴一号暗堡的坐标和四号暗堡的横坐标为一正一负,
∴B点可能为坐标原点,
∴敌军指挥部的位置大约是B处。
故答案为:B
【分析】根据一号暗堡的坐标和四号暗堡的横坐标为一正一负分析,于是四点中只有B点可能为坐标原点。
4、(2分)下列说法:①;②数轴上的点与实数成一一对应关系;③-2是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个
数有()
A. 2个
B. 3个
C. 4个
D. 5个
【答案】C
【考点】实数及其分类,实数在数轴上的表示,实数的运算,无理数的认识
【解析】【解答】解:①=10,故说法错误;
②数轴上的点与实数成一一对应关系,故说法正确;
③-2是的平方根,故说法正确;
④任何实数不是有理数就是无理数,故说法正确;
⑤两个无理数的和还是无理数,如与- 的和是0,是有理数,故说法错误;
⑥无理数都是无限小数,故说法正确.
故正确的是②③④⑥共4个.故答案为:C.
【分析】根据二次根式的性质,一个数的平方的算术平方根等于它的绝对值;数轴上的点与实数成一一对应关系;一个正数有两个平方根,这两个平方根互为相反数,=4,-2是4的一个平方根;实数分为有理数和无理数,故任何实数不是有理数就是无理数;两个无理数的和不一定是无理数;无理数是无限不循环的小数,故无理数都是无限小数;根据这些结论即可一一判断。
5、(2分)若方程mx+ny=6有两个解,则m,n的值为()
A. 4,2
B. 2,4
C. -4,-2
D. -2,-4
【答案】C
【考点】解二元一次方程组
【解析】【解答】解:把,代入mx+ny=6中,
得:,
解得:.
故答案为:C.
【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
6、(2分)对于图中标记的各角,下列条件能够推理得到a∥b的是()
A. ∠1=∠2
B. ∠2=∠4
C. ∠3=∠4
D. ∠1+∠4=180°
【答案】D
【考点】平行线的判定
【解析】【解答】A选项,错误,所以不符合题意;
B选项,∠2与∠4不是同位角,错误,所以不符合题意;
C选项,∠3与∠4不是同位角,错误,所以不符合题意;
D选项,因为∠1+∠4=180°,所以a∥b,正确,符合题意;
故答案为:D。
【分析】根据判断直线平行的几个判定定理即可进行判别:同位角相同,两直线平行;同旁内角互补,两直线平行
内错角相等,两直线平行。
7、(2分)为了直观地表示出5班女生人数在全年级女生人数中所占的比例,应该选用()。
A. 条形统计图
B. 折线统计图
C. 扇形统计图
D. 面积图
【答案】C
【考点】扇形统计图
【解析】【解答】为了直观地表示出5班女生人数在全年级女生人数中所占的比例,应该选用扇形统计图.
故答案为:C.
【分析】扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数,通过扇形统计图可以很清楚的表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
8、(2分)如左下图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()
A. 150°
B. 130°
C. 100°
D. 50°
【答案】B
【考点】对顶角、邻补角,平行线的性质
【解析】【解答】解:∵a∥b,
∴∠2+∠3=180°
∵∠1=∠3=50°
∴∠2=180°-∠3=180°-50°=130°
故答案为:B
【分析】根据平行线的性质,可证得∠2+∠3=180°,再根据对顶角相等,求出∠3的度数,从而可求出∠2的度数。
9、(2分)设方程组的解是那么的值分别为()
A.
B.
C.
D.
【答案】A
【考点】解二元一次方程组
【解析】【解答】解:解方程组,
由①×3+②×2得
19x=19
解之;x=1
把x=1代入方程①得
3+2y=1
解之:y=-1
∴
∵方程组的解也是方程组的解,
∴,
解之:
故答案为:A
【分析】利用加减消元法求出方程组的解,再将x、y的值分别代入第一个方程组,然后解出关于a、b的方程组,即可得出答案。
10、(2分)判断下列现象中是平移的有几种?().
(1 )篮球运动员投出篮球的运动;(2)升降机上上下下运送东西;(3)空中放飞的风筝的运动;(4)飞机在跑道上滑行到停止的运动;(5)铝合金窗叶左右平移;(6)电脑的风叶的运动.
A. 2种
B. 3种
C. 4种
D. 5种
【答案】B
【考点】生活中的平移现象
【解析】【解答】解:(2)(4)(5)是平移;(1)(3)(6)不是平移
故答案为:B
【分析】平移是指让物体沿着一定的方向移动一定的距离,所以(2)、(4)、(5)是平移.
11、(2分)在“同一平面内”的条件下,下列说法中错误的有()
①过一点有且只有一条直线与已知直线平行;②过一点有且只有一条直线与已知直线垂直;③两条不同直线的位置关系只有相交、平行两种;④不相交的两条直线叫做平行线;⑤有公共顶点且有一条公共边的两个角互为邻补角.
A. 1个
B. 2个
C. 3个
D. 4个
【答案】B
【考点】对顶角、邻补角,垂线,平行公理及推论,平面中直线位置关系
【解析】【解答】解:①同一平面内,过直线外一点有且只有一条直线与已知直线平行,故①错误;
②同一平面内,过一点有且只有一条直线与已知直线垂直,故②正确;
③同一平面内,两条不同直线的位置关系只有相交、平行两种,故③正确;
④同一平面内,不相交的两条直线叫做平行线,故④正确;
⑤有公共顶点且有一条公共边,另一边互为反向延长线的两个角互为邻补角,⑤错误;
错误的有①⑤
故答案为:B
【分析】根据平行线公理,可对①作出判断;过一点作已知直线的垂线,这点可能在直线上也可能在直线外,且只有一条,可对②作出判断;同一平面内,两条不同直线的位置关系只有相交、平行两种,可对③作出判断;根据平行线的定义,可对④作出判断;根据邻补角的定义,可对⑤作出判断。
即可得出答案。
12、(2分)周敏一月各项消费情况如图所示,下面说法正确的是()
A. 从图中可以看出各项消费数额
B. 从图中可以看出总消费数额
C. 从图中可以看出餐费占总消费额的40%,且在各项消费中最多
【答案】C
【考点】扇形统计图
【解析】【解答】解:因为没有总数,所以无法直接看出具体消费数额和各项消费数额在一月中的具体变化情况,所以选项A、B不正确;
从图中可以直接看出餐费占总消费数额的40%,因为40%>30%>20%>10%,所以在各项消费中最多.
故答案为:C.
【分析】扇形统计图中只有各部分占整体的百分率,所以只能根据百分率的大小判断各部分的大小.
二、填空题
13、(1分)甲、乙两人玩摸球游戏,从放有足够多球的箱子中摸球,规定每人最多两种取法,甲每次摸4个或(3-k)个,乙每次摸5个或(5-k)个(k是常数,且0<k<3);经统计,甲共摸了16次,乙共摸了17次,并且乙至少摸了两次5个球,最终两人所摸出的球的总个数恰好相等,那么箱子中至少有球________个
【答案】110
【考点】二元一次方程的解
【解析】【解答】解:设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,依题意k=1,2,当k=1时,甲总共取球的个数为4x+2(16-x)=2x+32,乙总共取球的个数为5y+4(17-y)=y+68,当k=2时,甲总共取球的个数为4x+(16-x)=3x+16,乙总共取球的个数为5y+3(17-y)=2y+51,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,即y=2x-34,由x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;②2x+32=2y+51,即2x+2y=19,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;③3x+16=y+68,即y=3x-52,因x≤16,2≤y≤17且x、y为正整数,不合题意,舍去;④
3x+16=2y+51,即,因x≤16,2≤y≤17且x、y为正整数,可得x=13,y=2或x=15,y=5;所以当x=13,y=2,球的个数为3×13+16+2×2+51=110个;当x=15,y=5,球的个数为3×15+16+2×5+51=122个,所以箱子中至少有球110个.
【分析】设甲取了x次4个球,取了(16-x)次(3-k)个球,乙取了y次5个球,取了(17-y)次(5-k)个球,又k是整数,且0<k<3 ,则k=1或者2,然后分别算出k=1与k=2时,甲和乙分别摸出的球的个数,根据最终两人所摸出的球的总个数恰好相等可得:①2x+32=y+68,②2x+32=2y+51,③3x+16=y+68,④3x+16=2y+51四个二元一次方程,再分别求出它们的正整数解再根据乙至少摸了两次5个球进行检验即可得出x,y的值,进而根据箱子中的球的个数至少等于两个人摸出的个数之和算出箱子中球的个数的所有情况,再比较即可算出答案。
14、(1分)如图,已知AB∥CD,CE,AE分别平分∠ACD,∠CAB,则∠1+∠2=________.
【答案】90°
【考点】平行线的性质
【解析】【解答】解:∵CE、AE分别平分∠ACD、∠CAB,
∴∠1=∠DCE=∠ACD,∠2=∠BAE=∠CAB,
∴∠ACD=2∠1,∠CAB=2∠2,
又∵AB∥CD,
∴∠CAB+∠ACD=180°,
∴2∠2+2∠1=180°,
∴∠2+∠1=90°.
故答案为:90°.
【分析】根据角平分线定义得∠ACD=2∠1,∠CAB=2∠2,再由平行线性质得∠CAB+∠ACD=180°,代入、计算即可得出答案.
15、(1分)正数的两个平方根分别是和,则正数=________.
【答案】100
【考点】平方根
【解析】【解答】解:∵正数a的两个平方根分别是2m和5-m,
∴2m+5-m=0,
解得:m=-5,
∴a=(2m)2=(-5×2)2=100.
故答案为:100.
【分析】一个正数的两个平方根互为相反数,从而可得2m+5-m=0,解之求出m值,再由a=(2m)2即可求得答案.
16、(1分)的立方根是________.
【答案】4
【考点】立方根及开立方
【解析】【解答】解:=64
∴的立方根为=4.
故答案为:4
【分析】先求出的值,再求出64的立方根。
17、(1分)点A,B在数轴上,以AB为边作正方形,该正方形的面积是49.若点A对应的数是-2,则点B对应的数是________.
【答案】5
【考点】数轴及有理数在数轴上的表示,算术平方根
【解析】【解答】解:∵正方形的面积为49,
∴正方形的边长AB==7
∵点A对应的数是-2
∴点B对应的数是:-2+7=5
故答案为:5
【分析】根据正方形的面积求出正方形的边长,就可得出AB的长,然后根据点A对应的数,就可求出点B 表示的数。
18、(1分)对于有理数,定义新运算:* ;其中是常数,等式右边是通常
的加法和乘法运算,已知,,则的值是________ .
【答案】-6
【考点】解二元一次方程组,定义新运算
【解析】【解答】解:根据题中的新定义化简1∗2=1,(−3)∗3=6得:,
解得:,
则2∗(−4)=2×(−1)−4×1=−2−4=−6.
故答案为:−6
【分析】根据新定义的运算法则:* ,由已知:,,建立关于a、b的
方程组,再利用加减消元法求出a、b的值,然后就可求出的结果。
三、解答题
19、(5分)如图,∠1= ∠2,∠1+∠2=162°,求∠3与∠4的度数.
【答案】解:∵∠1= ∠2,∠1+∠2=162°,
∴∠1=54°,∠2=108°.
∵∠1和∠3是对顶角,
∴∠3=∠1=54°
∵∠2和∠4是邻补角,
∴∠4=180°-∠2=180°-108°=72°
【考点】解二元一次方程组
【解析】【分析】将∠1= ∠2 代入∠1+∠2=162°,消去∠1,算出∠2的值,再将∠2的值代入∠1= ∠2算出∠1的值,然后根据对顶角相等及邻补角的定义即可分别算出∠3与∠4的度数.
20、(10分)
(1)如图AB∥CD,∠ABE=120°,∠EC D=2 5°,求∠E的度数。
(2)小亮的一张地图上有A、B、C三个城市,但地图上的C城市被墨迹污染了(如图),但知道∠BAC=∠1,∠ABC=∠2,请你用尺规作图法帮他在如图中确定C城市的具体位置.(用尺规作图,保留作图痕迹,不写作法)
【答案】(1)解:过点E作EF∥AB,∵AB∥CD,∠ABE=120°
∴∠FEB=60°,EF∥CD
∴∠FEC=25°
∴∠BEC=25°+60°=85°
(2)解:连接AB,以AB为边,作∠BAC=∠1,作∠ABC=∠2,则两个弧相交的点即为点C的位置。
【考点】平行线的性质,作图—复杂作图
【解析】【分析】(1)根据直线平行的性质,两直线平行,内错角相等,同旁内角互补,即可得到∠E的值。
(2)根据作一个角等于已知角的方法进行操作即可,可得最后两个直线的交点即为C点所在的位置。
21、(5分)把下列各数填在相应的括号内:
①整数{ };
②正分数{ };
③无理数{ }.
【答案】解:∵
∴整数包括:|-2|,,-3,0;
正分数:0.,,10%;
无理数:2,,1.1010010001(每两个1之间依次多一个0)
【考点】实数及其分类
【解析】【分析】根据实数的相关概念和分类进行判断即可得出答案。
22、(15分)某市团委在2015年3月初组织了300个学雷锋小组,现从中随机抽取6个小组在3月份做好事的件数,并进行统计,将统计结果绘制成如图所示的统计
图.
(1)这6个学雷锋小组在2015年3月份共做好事多少件?
(2)补全条形统计图;
(3)求第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数.
【答案】(1)13+16+25+22+20+18=114(件),这6个学雷锋小组在2015年3月份共做好事114件
(2)解:如图所示:
(3)解:×100%≈49.12%,答:第2,4和6小组做的好事的件数的总和占这6个小组做好事的总件数的百分数约为49.12%
【考点】条形统计图,折线统计图
【解析】【分析】(1)根据折线统计图中的数据,相加可得结果;
(2)根据第三组对应的数据即可补全统计图;
(3)计算第2、4、6小组做好事的件数的总和除以总件数可得百分比.
23、(5分)试将100分成两个正整数之和,其中一个为11的倍数,另一个为17的倍数.
【答案】解:依题可设:
100=11x+17y,
原题转换成求这个方程的正整数解,
∴x==9-2y+,
∵x是整数,
∴11|1+5y,
∴y=2,x=6,
∴x=6,y=2是原方程的一组解,
∴原方程的整数解为:(k为任意整数),
又∵x>0,y>0,
∴,
解得:-<k<,
∴k=0,
∴原方程正整数解为:.
∴100=66+34.
【考点】二元一次方程的解
【解析】【分析】根据题意可得:100=11x+17y,从而将原题转换成求这个方程的正整数解;求二元一次不定方程的正整数解时,可先求出它的通解。
然后令x>0,y>0,得不等式组.由不等式组解得k的范围.在这范围内取k的整数值,代人通解,即得这个不定方程的所有正整数解.
24、(5分)如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.试说明:AD∥BC.
【答案】解:∵AE平分∠BAD,
∴∠1=∠2.
∵AB∥CD,∠CFE=∠E,
∴∠1=∠CFE=∠E.
∴∠2=∠E.
∴AD∥BC
【考点】平行线的判定与性质
【解析】【分析】根据角平分线的定义得∠1=∠2,由平行线的性质和等量代换可得∠2=∠E,根据平行线的判定即可得证.
25、(5分)如图,在四边形ABCD中,AB∥CD,点P为BC上一点(点P与B,C不重合),设∠CDP=∠α,∠CPD=∠β,你能不能说明,不论点P在BC上怎样运动,总有∠α+∠β=∠B.
【答案】解:过点P作PE∥CD交AD于E,则∠DPE=∠α.
∵AB∥CD,∴PE∥AB.
∴∠CPE=∠B,即∠DPE+∠β=∠α+∠β=∠B.故不论点P在BC上怎样运动,总有∠α+∠β=∠B
【考点】平行公理及推论,平行线的性质
【解析】【分析】过点P作PE∥CD交AD于E,根据平行线性质得∠DPE=∠α,由平行的传递性得PE∥AB,根据平行线性质得∠CPE=∠B,从而即可得证.
26、(5分)在数轴上表示下列数(要准确画出来),并用“<”把这些数连接起来.-(-4),-|-
3.5|,,0,+(+2.5),1
【答案】解:如图,
-|-3.5|<0< <1 <+(+2.5)< -(-4)
【考点】数轴及有理数在数轴上的表示,有理数大小比较,实数在数轴上的表示,实数大小的比较
【解析】【分析】将需化简的数进行化简;带根号的无理数,需要在数轴上构造边长为1的正方形,其对
角的长度为;根据每个数在数轴上的位置,左边的数小于右边的数.。