最新初中数学命题与证明的全集汇编及答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最新初中数学命题与证明的全集汇编及答案解析
一、选择题
1.下列命题中,是真命题的是()
A.将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x
B.若一个数的平方根等于其本身,则这个数是0和1
C.对函数y=2
x
,其函数值y随自变量x的增大而增大
D.直线y=3x+1与直线y=﹣3x+2一定互相平行
【答案】A
【解析】
【分析】
利用一次函数的性质、平方根的定义、反比例函数的性质等知识分别判断后即可确定正确的选项.
【详解】
解:A、将函数y=1
2
x+1向右平移2个单位后所得函数的解析式为y=
1
2
x,正确,符合题
意;
B、若一个数的平方根等于其本身,则这个数是0,故错误,是假命题,不符合题意;
C、对函数y=2
x
,其函数值在每个象限内y随自变量x的增大而增大,故错误,是假命
题,不符合题意;
D、直线y=3x+1与直线y=﹣3x+2因比例系数不相等,故一定不互相平行,故错误,是假命题,
故选:A.
【点睛】
本题考查了判断命题真假的问题,掌握一次函数的性质、平方根的定义、反比例函数的性质等知识是解题的关键.
2.下列命题是真命题的是()
A.若两个数的平方相等,则这两个数相等B.同位角相等
C.同一平面内,垂直于同一直线的两条直线平行D.相等的角是对顶角
【答案】C
【解析】
【分析】
根据平方的意义,同位角的概念,平行线的判定,对顶角的概念逐一进行判断即可得.【详解】
A.若两个数的平方相等,则这两个数不一定相等,如22=(-2)2,但2≠-2,故A选项错误;
B . 只有两直线平行的情况下,才有同位角相等,故B 选项错误;
C . 同一平面内,垂直于同一直线的两条直线平行,真命题,符合题意;
D . 相等的角不一定是对顶角,如图,∠1=∠2,但这两个角不符合对顶角的概念,故D 选项错误,
故选C .
【点睛】
本题考查了命题真假的判定,涉及了乘方、同位角、对顶角、平行线的判定等知识,熟练掌握相关知识是解题的关键.
3.已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:
①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )
A .③④②①
B .③④①②
C .①②③④
D .④③①②
【答案】B
【解析】
【分析】
根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.
【详解】
题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:
应该为:(1)假设∠B ≥90°,
(2)那么,由AB=AC ,得∠B=∠C ≥90°,即∠B+∠C ≥180°,
(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,
(4)因此假设不成立.∴∠B <90°,
原题正确顺序为:③④①②,
故选B .
【点睛】
本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.
4.下列结论中,不正确的是()
A.两点确定一条直线
B.两点之间,直线最短
C.等角的余角相等
D.等角的补角相等
【答案】B
【解析】
【分析】
根据直线线段的性质和余角、补角的定义逐项分析可得出正确选项.
【详解】
A.两点确定一条直线,正确;
B.两点之间,线段最短,所以B选项错误;
C.等角的余角相等,正确;
D.等角的补角相等,正确.
故选B
考点:定理
5.下列命题中是真命题的是()
A.多边形的内角和为180°B.矩形的对角线平分每一组对角
C.全等三角形的对应边相等D.两条直线被第三条直线所截,同位角相等【答案】C
【解析】
【分析】
根据多边形内角和公式可对A进行判定;根据矩形的性质可对B进行判定;根据全等三角形的性质可对C进行判定;根据平行线的性质可对D进行判定.
【详解】
A.多边形的内角和为(n-2)·180°(n≥3),故该选项是假命题,
B.矩形的对角线不一定平分每一组对角,故该选项是假命题,
C.全等三角形的对应边相等,故该选项是真命题,
D.两条平行线被第三条直线所截,同位角相等,故该选项是假命题,
故选:C.
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.熟练掌握矩形的性质、平行线的性质、全等三角形的性质及多边形的内角和公式是解题关键.
6.下列命题是真命题的个数是().
①64的平方根是8 ;
②22a b =,则a b =;
③三角形三条内角平分线交于一点,此点到三角形三边的距离相等;
④三角形三边的垂直平分线交于一点.
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
【分析】
分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.
【详解】
①64的平方根是8±,正确,是真命题;
②22a b =,则不一定a b =,可能=-a b ;故错误;
③根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;
④根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;
故选:C
【点睛】
考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.
7.下列命题中是假命题的是( ).
A .同旁内角互补,两直线平行
B .直线a b ⊥r r ,则a 与b 相交所成的角为直角
C .如果两个角互补,那么这两个角是一个锐角,一个钝角
D .若a b ∥,a c ⊥,那么b c ⊥
【答案】C
【解析】
根据平行线的判定,可知“同旁内角互补,两直线平行”,是真命题;
根据垂直的定义,可知“直线a b ⊥,则a 与b 相交所成的角为直角”,是真命题; 根据互补的性质,可知“两个角互补,这两个角可以是两个直角”,是假命题;
根据垂直的性质和平行线的性质,可知“若a b P ,a c ⊥,那么b c ⊥”,是真命题. 故选C.
8.下列三个命题:①对顶角相等;②全等三角形的对应边相等;③如果两个实数是正数,它们的积是正数.它们的逆命题成立的个数是( )
A .0个
B .1个
C .2个
D .3个
【答案】B
【解析】【分析】把一个命题的条件和结论互换就得到它的逆命题,再把逆命题进行判断即可.
【详解】①对顶角相等的逆命题是相等的角是对顶角,逆命题错误;
②全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确;
③如果两个实数是正数,它们的积是正数的逆命题是如果两个数的积为正数,那么这两个数也是正数,逆命题错误,也可以有都是负数,
所以逆命题成立的只有一个,
故选B.
【点睛】本题考查了互逆命题,真命题与假命题,真命题要运用相关知识进行推导,假命题要通过举反例来进行否定.
9.下列命题是真命题的是()
A.中位数就是一组数据中最中间的一个数
B.一组数据的众数可以不唯一
C.一组数据的标准差就是这组数据的方差的平方根
D.已知a、b、c是Rt△ABC的三条边,则a2+b2=c2
【答案】B
【解析】
【分析】
正确的命题是真命题,根据定义判断即可.
【详解】
解:A、中位数就是一组数据中最中间的一个数或着是中间两个数的平均数,故错误;
B、一组数据的众数可以不唯一,故正确;
C、一组数据的标准差是这组数据的方差的算术平方根,故此选项错误;
D、已知a、b、c是Rt△ABC的三条边,当∠C=90°时,则a2+b2=c2,故此选项错误;
故选:B.
【点睛】
此题考查真命题的定义,掌握定义,准确理解各事件的正确与否是解题的关键.
10.下列命题的逆命题不成立的是()
A.两直线平行,同旁内角互补B.如果两个实数相等,那么它们的平方相等C.平行四边形的对角线互相平分D.全等三角形的对应边相等
【答案】B
【解析】
【分析】
把一个命题的条件和结论互换就得到它的逆命题.分析是否为真命题,需要分别分析各题
设是否能推出结论,从而利用排除法得出答案.
【详解】
选项A,两直线平行,同旁内角互补的逆命题是同旁内角互补,两直线平行,正确,成立;
选项B,如果两个实数相等,那么它们的平方相等的逆命题是平方相等的两个数相等,错误,不成立,如(﹣3)2=32,但﹣3≠3;
选项C,平行四边形的对角线互相平分的逆命题是对角线互相平分的四边形是平行四边形,正确,成立;
选项D,全等三角形的对应边相等的逆命题是对应边相等的三角形全等,正确,成立;
故选B.
【点睛】
本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.
11.下列命题是假命题的是()
A.三角形的外心到三角形的三个顶点的距离相等
B.如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16
C.将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限
D.若关于x的一元一次不等式组
213
x m
x
-≤


+>

无解,则m的取值范围是1

【答案】B
【解析】
【分析】
利用三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组分别判断后即可确定正确的选项.
【详解】
A. 三角形的外心到三角形的三个顶点的距离相等,正确,是真命题;
B. 如果等腰三角形的两边长分别是5和6,那么这个等腰三角形的周长为16或17,错误,是假命题;
C. 将一次函数y=3x-1的图象向上平移3个单位,所得直线不经过第四象限,正确,是真命题;
D. 若关于x的一元一次不等式组
213
x m
x
-≤


+>

无解,则m的取值范围是1
m£,正确,是真
命题;
故答案为:B
【点睛】
本题考查了命题与定理的知识,解题的关键是了解三角形外心的性质、等腰三角形的性质和三角形三边关系定理、一次函数图象的平移规律、解一元一次不等式组.
12.用三个不等式,0,a b ab a b >>>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )
A .0
B .1
C .2
D .3 【答案】A
【解析】
【分析】
由题意得出三个命题,根据不等式的性质判断命题的真假.
【详解】
若,0a b ab >>,则a b >为假命题.反例:a=-1,b=-2 若,a b a b >>,则0ab >为假命题.反例:a=2,b=-1 若0,
ab a b >>,则a b >为假命题.反例:a=-2,b=-1 故选:A
【点睛】
本题考查了命题与不等式的性质,解题的关键在于根据题意得出命题,根据不等式的性质判断真假.
13.下列命题中:①;②在同一平面内,若a ⊥b ,a ⊥
c ,则b ∥c ;③若ab =0,则P(a ,b)表示原点;9.是真命题的有( )
A .1 个
B .2 个
C .3 个
D .4 个
【答案】A
【解析】
【分析】
根据立方根、平行线的判定和算术平方根判断即可.
【详解】
解:①≥0≤0不一定成立,错误; ②在同一平面内,若a b ⊥r r ,a c ⊥,则//b c ,正确; ③若0ab =,则(,)P a b 表示原点或坐标轴,错误;
3,错误;
故选:A .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.
14.下列命题的逆命题正确的是( )
A .如果两个角是直角,那么它们相等
B .全等三角形的面积相等
C .同位角相等,两直线平行
D .若a b =,则22a b =
【答案】C
【解析】
【分析】 交换原命题的题设与结论得到四个命题的逆命题,然后分别根据直角的定义、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.
【详解】
解:A 、逆命题为:如果两个角相等,那么它们都是直角,此逆命题为假命题; B 、逆命题为:面积相等的两三角形全等,此逆命题为假命题;
C 、逆命题为:两直线平行,同位角相等,此逆命题为真命题;
D 、逆命题为,若a 2=b 2,则a =b ,此逆命题为假命题.
故选:C .
【点睛】
本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.也考查了逆命题.
15.用反证法证明命题:“在三角形中,至多有一个内角是直角”,正确的假设是( ) A .在三角形中,至少有一个内角是直角
B .在三角形中,至少有两个内角是直角
C .在三角形中,没有一个内角是直角
D .在三角形中,至多有两个内角是直角
【答案】B
【解析】
【分析】
反证法即假设结论的反面成立,“最多有一个”的反面为“至少有两个”.
【详解】
解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的否命题正确, ∴应假设:在三角形中,至少有两个内角是直角.
故选:B.
【点睛】
此题主要考查了反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,不需要一一否定,只需否定其一即可.
16.下列命题的逆命题是真命题的是( )
A .若a b =,则a b =
B .AB
C ∆中,若222AC BC AB +=,则ABC ∆是Rt ∆
C .若0a =,则0ab =
D .四边相等的四边形是菱形
【答案】D
【解析】
【分析】
先根据逆命题的定义分别写出各命题的逆命题,然后根据绝对值的意义和有理数的乘法、菱形的性质及勾股定理进行判断.
【详解】
解:A 、该命题的逆命题为:若|a|=|b|,则a=b ,此命题为假命题;
B 、该命题的逆命题为:若△AB
C 是Rt △,则AC 2+BC 2=AB 2,此命题为假命题;
C 、该命题的逆命题为:若ab=0,则a=0,此命题为假命题;
D 、该命题的逆命题为:菱形的四边相等,此命题为真命题;
故选:D .
【点睛】
本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
17.下列命题中,假命题是( )
A .平行四边形的对角线互相垂直平分
B .矩形的对角线相等
C .菱形的面积等于两条对角线乘积的一半
D .对角线相等的菱形是正方形
【答案】A
【解析】
【分析】
不正确的命题是假命题,根据定义依次判断即可.
【详解】
A. 平行四边形的对角线互相平分,故是假命题;
B. 矩形的对角线相等,故是真命题;
C. 菱形的面积等于两条对角线乘积的一半,故是真命题;
D. 对角线相等的菱形是正方形,故是真命题,
故选:A.
【点睛】
此题考查假命题的定义,正确理解平行四边形的性质是解题的关键.
18.下列命题的逆命题不正确...
的是( ) A .相等的角是对顶角
B .两直线平行,同旁内角互补
C .矩形的对角线相等
D .平行四边形的对角线互相平分
【答案】C
【解析】
【分析】
首先写出各个命题的逆命题,然后进行判断即可.
【详解】
A、逆命题是:对顶角相等.正确;
B、逆命题是:同旁内角互补,两直线平行,正确;
C、逆命题是:对角线相等的四边形是矩形,错误;
D、逆命题是:对角线互相平分的四边形是平行四边形,正确.
故选:C.
【点睛】
本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.
19.下列正确说法的个数是()
①同位角相等;②等角的补角相等;③两直线平行,同旁内角相等;④在同一平面内,过一点有且只有一条直线与已知直线垂直
A.1 B.2 C.3 D.4
【答案】B
【解析】
【分析】
根据平行线的性质以及等角或同角的补角相等的知识,即可求得答案.
【详解】
解:∵两直线平行,同位角相等,故①错误;
∵等角的补角相等,故②正确;
∵两直线平行,同旁内角互补,故③错误;
∵在同一平面内,过一点有且只有一条直线与已知直线垂直,故④正确.
∴正确说法的有②④.
故选B.
【点睛】
此题考查了平行线的性质与对顶角的性质,以及等角或同角的补角相等的知识.解题的关键是注意需熟记定理.
20.下列命题正确的是()
A.矩形的对角线互相垂直平分
B.一组对角相等,一组对边平行的四边形一定是平行四边形
C.正八边形每个内角都是145o
D.三角形三边垂直平分线交点到三角形三边距离相等
【答案】B
【解析】
【分析】
根据矩形的性质、平行四边形的判定、多边形的内角和及三角形垂直平分线的性质,逐项判断即可.
【详解】
A.矩形的对角线相等且互相平分,故原命题错误;
B.已知如图:A C ∠=∠,//AB CD ,求证:四边形ABCD 是平行四边形.
证明:∵//AB CD ,
∴180A D +=︒∠∠,
∵A C ∠=∠,
∴180C D ∠+∠=︒,
∴//AD BC ,
又∵//AB CD ,
∴四边形ABCD 是平行四边形,
∴一组对角相等,一组对边平行的四边形一定是平行四边形,故原命题正确;
C.正八边形每个内角都是:()180821358
︒⨯-=︒,故原命题错误; D.三角形三边垂直平分线交点到三角形三个顶点的距离相等,故原命题错误. 故选:B .
【点睛】
本题考查命题的判断,明确矩形性质、平行四边形的判定定理、多边形内角和公式及三角形垂直平分线的性质是解题关键.。

相关文档
最新文档