2015年高中数学步步高大一轮复习讲义(文科)选修4-5 不等式选讲

合集下载

北师版高考总复习一轮文科数学精品课件 选修4—5 不等式选讲 第1课时 绝对值不等式

北师版高考总复习一轮文科数学精品课件 选修4—5 不等式选讲 第1课时 绝对值不等式
因为f(x)=|x-a|+|x+3|≥|(x-a)-(x+3)|=|a+3|,
所以f(x)min=|a+3|,所以|a+3|>-a,即a+3<a或a+3>-a,
选修4—5 第1课时 绝对值不等式




01
强基础 增分策略
02
增素能 精准突破
课标解读
衍生考点
核心素养
1.绝对值不等式的解法
1.理解绝对值的几何意义,并能利用含绝对
2.与绝对值不等式有关的
值不等式的几何意义证明以下不等式:
参数范围
|a+b|≤|a|+|b|,|a-b|≤|a-c|+|c-b|.
因为|x-3|+|x+4|≥|x-3-x-4|=7,
所以m<7,则m的取值范围是(-∞,7).
考向3.利用绝对值三角不等式求参数范围
典例突破
例4.(2021全国乙,理23)已知函数f(x)=|x-a|+|x+3|.
(1)当a=1时,求不等式f(x)≥6的解集;
(2)若f(x)>-a,求a的取值范围.
a 1 +a 2 +…+a n
均值,即
n


1 2 … ,此式当且仅当 a1=a2=…=an 时取“=”号.
4.柯西不等式
(1)定理1:对任意实数a,b,c,d,有(a2+b2)(c2+d2)≥(ac+bd)2,当向量(a,b)与向
量(c,d)共线时,等号成立.
(2)柯西不等式的向量形式,设α,β是两个向量,则|α·β|≤|α||β|,等号成立的条

湘教版高中数学选修4-5不等式选讲:排序不等式

湘教版高中数学选修4-5不等式选讲:排序不等式

【自主解答】 (1)∵a≥b>0,于是1a≤1b, 又c>0,∴1c>0. 从而b1c≥c1a. 同理,∵b≥c>0,于是1b≤1c. ∴a>0,∴1a>0,于是得c1a≥a1b. 从而b1c≥c1a≥a1b.
(2)由(1)知b1c≥c1a≥a1b>0且a≥b≥c>0, ∴b21c2≥c21a2≥a21b2,a2≥b2≥c2. 由排序不等式,顺序和≥乱序和得 ba2c22+cb2a22+ac2b2 2≥bb2c22+cc2a2 2+aa2b22=c12+a12+b12=a12+b12 +c12, 故ba2c22+cb2a22+ac2b2 2≥a12+b12+c12.
利用排序不等式证明不等式的技巧在于仔细观察、分析 所要证明的式子的结构,从而正确地构造出不等式中所需要 的带有大小顺序的两个数组.
本例题中条件不变,求证:ba3c53+cb3a53+ac3b5 3≥ac23+ab23+ b2 c3.
【证明】 ∵a≥b≥c≥0, ∴a5≥b5≥c5, 1c≥1b≥1a>0. ∴b1c≥a1c≥b1a,
利用排序不等式求最值
设A,B,C表示△ABC的三个内角,a,b,c表 示其对边,求aAa++bbB++ccC的最小值(A,B,C用弧度制表 示).
【思路探究】 不妨设a≥b≥c>0,设法构造数组,利 用排序不等式求解.
【自主解答】 不妨设a≥b≥c, 则A≥B≥C,
aA+bB+cC=aA+bB+cC, aA+bB+cC≥bA+cB+aC, aA+bB+cC≥cA+aB+bC, 将以上三式相加,得 3(aA+bB+cC)≥(a+b+c)·(A+B+C)=π(a+b+c), 当且仅当A=B=C=π3时,等号成立. ∴aAa++bbB++ccC≥3π, 即aAa++bbB++ccC的最小值为3π.

高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲

高中数学步步高大一轮复习讲义(文科)选修45-不等式选讲

选修4-5不等式选讲1.两个实数大小关系的基本事实a>b⇔________;a=b⇔________;a<b⇔________.2.不等式的基本性质(1)对称性:如果a>b,那么________;如果________,那么a>b.即a>b⇔________.(2)传递性:如果a>b,b>c,那么________.(3)可加性:如果a>b,那么____________.(4)可乘性:如果a>b,c>0,那么________;如果a>b,c<0,那么________.(5)乘方:如果a>b>0,那么a n________b n(n∈N,n>1).(6)开方:如果a>b>0,那么na________nb(n∈N,n>1).3.绝对值三角不等式(1)性质1:|a+b|≤________.(2)性质2:|a|-|b|≤________.性质3:________≤|a-b|≤________.4.绝对值不等式的解法(1)含绝对值的不等式|x|<a与|x|>a的解集不等式a>0a=0a<0|x|<a|x|>a(2)|ax+b|≤c (c>0)和|ax+b|≥c (c>0)型不等式的解法①|ax+b|≤c⇔______________;②|ax+b|≥c⇔______________.(3)|x-a|+|x-b|≥c和|x-a|+|x-b|≤c型不等式的解法①利用绝对值不等式的几何意义求解,体现了数形结合的思想;②利用“零点分段法”求解,体现了分类讨论的思想;③通过构造函数,利用函数的图象求解,体现了函数与方程的思想.5.基本不等式(1)定理:如果a ,b ∈R ,那么a 2+b 2≥2ab ,当且仅当a =b 时,等号成立.(2)定理(基本不等式):如果a ,b >0,那么a +b2________ab ,当且仅当________时,等号成立.也可以表述为:两个________的算术平均________________它们的几何平均. (3)利用基本不等式求最值 对两个正实数x ,y ,①如果它们的和S 是定值,则当且仅当________时,它们的积P 取得最________值; ②如果它们的积P 是定值,则当且仅当________时,它们的和S 取得最________值. 6.三个正数的算术—几何平均不等式(1)定理 如果a ,b ,c 均为正数,那么a +b +c 3________3abc ,当且仅当________时,等号成立.即三个正数的算术平均____________它们的几何平均. (2)基本不等式的推广对于n 个正数a 1,a 2,…,a n ,它们的算术平均__________它们的几何平均,即a 1+a 2+…+a n n ________na 1a 2…a n ,当且仅当________________时,等号成立. 7.柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i=1,2,…,n )时,等号成立.(3)柯西不等式的向量形式:设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 8.证明不等式的方法 (1)比较法 ①求差比较法知道a >b ⇔a -b >0,a <b ⇔a -b <0,因此要证明a >b ,只要证明________即可,这种方法称为求差比较法. ②求商比较法由a >b >0⇔ab >1且a >0,b >0,因此当a >0,b >0时要证明a >b ,只要证明________即可,这种方法称为求商比较法.(2)分析法从待证不等式出发,逐步寻求使它成立的____________,直到将待证不等式归结为一个已成立的不等式(已知条件、定理等).这种证法称为分析法,即“执果索因”的证明方法. (3)综合法从已知条件出发,利用不等式的有关性质或定理,经过推理论证,推导出所要证明的不等式成立,即“由因寻果”的方法,这种证明不等式的方法称为综合法. (4)反证法的证明步骤第一步:作出与所证不等式________的假设;第二步:从条件和假设出发,应用正确的推理方法,推出矛盾的结论,否定假设,从而证明原不等式成立. (5)放缩法所谓放缩法,即要把所证不等式的一边适当地________________,以利于化简,并使它与不等式的另一边的不等关系更为明显,从而得到欲证不等式成立. (6)数学归纳法设{P n }是一个与自然数相关的命题集合,如果:(1)证明起始命题P 1(或P 0)成立;(2)在假设P k 成立的前提下,推出P k +1也成立,那么可以断定{P n }对一切自然数成立.1.不等式|2x -1|-|x -2|<0的解集为__________. 2.不等式1<|x +1|<3的解集为__________________.3.(2013·福建改编)设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12∉A .则a 的值为________.4.已知a 、b 、m 均为正数,且a <b ,M =ab ,N =a +m b +m ,则M 、N 的大小关系是________.5.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小关系为__________.题型一 含绝对值的不等式的解法例1 (2012·课标全国)已知函数f (x )=|x +a |+|x -2|. (1)当a =-3时,求不等式f (x )≥3的解集;(2)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围.思维升华解绝对值不等式的基本方法:(1)利用绝对值的定义,通过分类讨论转化为解不含绝对值符号的普通不等式;(2)当不等式两端均为正号时,可通过两边平方的方法,转化为解不含绝对值符号的普通不等式;(3)利用绝对值的几何意义,数形结合求解.已知函数f(x)=|x-a|.(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;(2)在(1)的条件下,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.题型二柯西不等式的应用例2已知3x2+2y2≤6,求证:2x+y≤11.思维升华使用柯西不等式时,关键是将已知条件通过配凑,转化为符合柯西不等式条件的式子,二维形式的柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.若3x+4y=2,试求x2+y2的最小值.题型三 不等式的证明方法例3 已知a ,b ,c ∈(0,+∞),且a +b +c =1, 求证:(1)(1a -1)·(1b -1)·(1c -1)≥8;(2)a +b +c ≤ 3.思维升华 用综合法证明不等式是“由因导果”,分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提,充分利用这一辩证关系,可以增加解题思路,开阔视野.设a ,b ,c >0,且ab +bc +ca =1.求证:(1)a +b +c ≥3; (2) a bc+ b ac+ cab≥3(a +b +c ).绝对值不等式的解法典例:(10分)解不等式|x +1|+|x -1|≥3.思维启迪 本题不等式为|x -a |+|x -b |≥c 型不等式,解此类不等式有三种方法:几何法、分区间(分类)讨论法和图象法. 规范解答解 方法一 如图所示,设数轴上与-1,1对应的点分别为A ,B ,那么A ,B 两点的距离和为2,因此区间[-1,1]上的数都不是不等式的解.设在A 点左侧有一点A 1,到A ,B 两点的距离和为3,A 1对应数轴上的x.[4分]∴-1-x +1-x =3,得x =-32.同理设B 点右侧有一点B 1到A ,B 两点距离之和为3,B 1对应数轴上的x ,∴x -1+x -(-1)=3.∴x =32.从数轴上可看到,点A 1,B 1之间的点到A ,B 的距离之和都大于3;点A 1的左边或点B 1的右边的任何点到A ,B 的距离之和都大于3.[8分] 所以原不等式的解集是⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 方法二 当x ≤-1时,原不等式可化为 -(x +1)-(x -1)≥3,解得:x ≤-32.[3分]当-1<x <1时,原不等式可以化为x +1-(x -1)≥3,即2≥3.不成立,无解.[6分] 当x ≥1时,原不等式可以化为 x +1+x -1≥3.所以x ≥32.[9分]综上,可知原不等式的解集为⎩⎨⎧⎭⎬⎫x |x ≤-32或x ≥32.[10分]方法三 将原不等式转化为|x +1|+|x -1|-3≥0. 构造函数y =|x +1|+|x -1|-3, 即y =⎩⎪⎨⎪⎧-2x -3,x ≤-1;-1,-1<x <1;2x -3,x ≥1.[3分]作出函数的图象,如图所示:函数的零点是-32,32.从图象可知,当x ≤-32或x ≥32时,y ≥0,[8分]即|x +1|+|x -1|-3≥0.所以原不等式的解集为⎝⎛⎦⎤-∞,-32∪⎣⎡⎭⎫32,+∞.[10分] 温馨提醒 这三种方法是解|x +a |+|x +b |≥c 型不等式常用的方法,方法一中关键是找到特殊点,方法二中的分类讨论要遵循“不重不漏”的原则,方法三则要准确画出函数图象,并准确找出零点.方法与技巧1.解绝对值不等式主要是通过同解变形去掉绝对值符号转化为一元一次和一元二次不等式(组)进行求解.含有多个绝对值符号的不等式,一般可用零点分段法求解,对于形如|x -a |+|x -b |>m 或|x -a |+|x -b |<m (m 为正常数),利用实数绝对值的几何意义求解较简便. 2.不等式的证明方法灵活,要注意体会,要根据具体情况选择证明方法.3.柯西不等式的证明有多种方法,如数学归纳法,教材中的参数配方法(或判别式法)等,参数配方法在解决其它问题方面应用比较广泛.柯西不等式的应用比较广泛,常见的有证明不等式,求函数最值,解方程等.应用时,通过拆常数,重新排序、添项,改变结构等手段改变题设条件,以利于应用柯西不等式. 失误与防范1.理解绝对值不等式的几何意义. 2.掌握分类讨论的标准,做到不重不漏.3.利用基本不等式必须要找准“对应点”,明确“类比对象”,使其符合几个著名不等式的特征.4.注意检验等号成立的条件,特别是多次使用不等式时,必须使等号同时成立.A 组 专项基础训练1.已知集合A ={x ∈R ||x +3|+|x -4|≤9},B ={x ∈R |x =4t +1t -6,t ∈(0,+∞)},求集合A ∩B .2.(2013·江苏)已知a ≥b >0,求证:2a 3-b 3≥2ab 2-a 2b .3.若a 、b 、c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6.求证:a 、b 、c 中至少有一个大于0.4.(2013·课标全国Ⅱ)设a 、b 、c 均为正数,且a +b +c =1,证明:(1)ab +bc +ac ≤13;(2)a 2b +b 2c +c 2a ≥1.5.设不等式|2x -1|<1的解集为M . (1)求集合M ;(2)若a ,b ∈M ,试比较ab +1与a +b 的大小.6.(2013·辽宁)已知函数f (x )=|x -a |,其中a >1. (1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.B 组 专项能力提升1.若n ∈N *,Sn =1×2+2×3+…+n (n +1),求证:n (n +1)2<S n <(n +1)22.2.(2013·课标全国Ⅰ)已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.3.(2012·福建)已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c ∈R +,且1a +12b +13c=m ,求证:a +2b +3c ≥9.4.设a ,b ,c 为正实数,求证:1a 3+1b 3+1c 3+abc ≥2 3.答案要点梳理1.a -b >0 a -b =0 a -b <02.(1)b <ab <ab <a (2)a >c (3)a +c >b +c (4)ac >bcac <bc (5)> (6)>3.(1)|a |+|b | (2)|a +b | |a |-|b | |a |+|b |4.(1){x |-a <x <a } ∅∅ {x |x >a 或x <-a }{x |x ∈R 且x ≠0} R(2)①-c ≤ax +b ≤c ②ax +b ≥c 或ax +b ≤-c5.(2)≥a =b 正数 不小于(即大于或等于)(3)①x =y 大 ②x =y 小6.(1)≥a =b =c 不小于(2)不小于 ≥a 1=a 2=…=a n8.(1)①a -b >0 ②a b>1 (2)充分条件 (4)相反 (5)放大或缩小夯基释疑1.{x |-1<x <1} 2.(-4,-2)∪(0,2)3.1 4.M <N 5.a >b >c题型分类·深度剖析例1解 (1)当a =-3时,f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3得2x -5≥3,解得x ≥4.所以f (x )≥3的解集为{x |x ≤1或x ≥4}.(2)f (x )≤|x -4|⇔|x -4|-|x -2|≥|x +a |.当x ∈[1,2]时,|x -4|-|x -2|≥|x +a |⇔4-x -(2-x )≥|x +a |⇔-2-a ≤x ≤2-a .由条件得-2-a ≤1且2-a ≥2,即-3≤a ≤0.故满足条件的a 的取值范围为[-3,0]. 跟踪训练1 解 方法一 (1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧ a -3=-1,a +3=5,解得a =2. (2)当a =2时,f (x )=|x -2|,设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧ -2x -1,x <-3,5,-3≤x ≤2,2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x ≤2时,g (x )=5;当x >2时,g (x )>5.综上可得,g (x )的最小值为5.从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].方法二 (1)同方法一.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5).由|x -2|+|x +3|≥|(x -2)-(x +3)|=5(当且仅当-3≤x ≤2时等号成立),得g (x )的最小值为5. 从而,若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5].例2证明 由于2x +y =23(3x )+12(2y ), 由柯西不等式(a 1b 1+a 2b 2)2≤(a 21+a 22)(b 21+b 22)得(2x +y )2≤[(23)2+(12)2](3x 2+2y 2) ≤(43+12)×6=116×6=11, ∴|2x +y |≤11,∴2x +y ≤11.跟踪训练2 解 由柯西不等式(32+42)·(x 2+y 2)≥(3x +4y )2,①得25(x 2+y 2)≥4,所以x 2+y 2≥425. 不等式①中当且仅当x 3=y 4时等号成立,x 2+y 2取得最小值, 由方程组⎩⎪⎨⎪⎧ 3x +4y =2,x 3=y 4,解得⎩⎨⎧ x =625,y =825.因此当x =625,y =825时,x 2+y 2取得最小值,最小值为425. 例3证明 (1)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,(1a -1)·(1b -1)·(1c-1) =(b +c )(a +c )(a +b )abc≥2bc ·2ac ·2ab abc=8.(2)∵a ,b ,c ∈(0,+∞),∴a +b ≥2ab ,b +c ≥2bc ,c +a ≥2ca ,2(a +b +c )≥2ab +2bc +2ca ,两边同加a +b +c 得3(a +b +c )≥a +b +c +2ab +2bc +2ca=(a +b +c )2.又a +b +c =1,∴(a +b +c )2≤3, ∴a +b +c ≤ 3.跟踪训练3 证明 (1)要证a +b +c ≥3,由于a ,b ,c >0,因此只需证明(a +b +c )2≥3.即证:a 2+b 2+c 2+2(ab +bc +ca )≥3,而ab +bc +ca =1,故需证明:a 2+b 2+c 2+2(ab +bc +ca )≥3(ab +bc +ca ).即证:a 2+b 2+c 2≥ab +bc +ca .而这可以由ab +bc +ca ≤a 2+b 22+b 2+c 22+c 2+a 22=a 2+b 2+c 2 (当且仅当a =b =c 时等号成立)证得.∴原不等式成立. (2) a bc + b ac + c ab =a +b +c abc. 在(1)中已证a +b +c ≥ 3.因此要证原不等式成立,只需证明1abc ≥a +b +c . 即证a bc +b ac +c ab ≤1,即证a bc +b ac +c ab ≤ab +bc +ca .而a bc =ab ·ac ≤ab +ac 2,b ac ≤ab +bc 2,c ab ≤bc +ac 2. ∴a bc +b ac +c ab ≤ab +bc +ca (a =b =c =33时等号成立). ∴原不等式成立.练出高分A 组1.解 |x +3|+|x -4|≤9,当x <-3时,-x -3-(x -4)≤9,即-4≤x <-3;当-3≤x ≤4时,x +3-(x -4)=7≤9恒成立;当x >4时,x +3+x -4≤9,即4<x ≤5.综上所述,A ={x |-4≤x ≤5}.又∵x =4t +1t-6,t ∈(0,+∞), ∴x ≥24t ·1t -6=-2,当t =12时取等号. ∴B ={x |x ≥-2},∴A ∩B ={x |-2≤x ≤5}.2.证明 2a 3-b 3-(2ab 2-a 2b )=2a (a 2-b 2)+b (a 2-b 2)=(a 2-b 2)(2a +b )=(a -b )(a +b )(2a +b ).因为a ≥b >0,所以a -b ≥0,a +b >0,2a +b >0,从而(a -b )(a +b )(2a +b )≥0,即2a 3-b 3≥2ab 2-a 2b .3.证明 假设a 、b 、c 都不大于0,即a ≤0,b ≤0,c ≤0,所以a +b +c ≤0.而a +b +c =⎝⎛⎭⎫x 2-2y +π2+ ⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3.所以a +b +c >0,这与a +b +c ≤0矛盾,故a 、b 、c 中至少有一个大于0.4.证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 5.解 (1)由|2x -1|<1得-1<2x -1<1,解得0<x <1.所以M ={x |0<x <1}.(2)由(1)和a ,b ∈M 可知0<a <1,0<b <1.所以(ab +1)-(a +b )=(a -1)(b -1)>0.故ab +1>a +b .6.解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6,x ≤2,2,2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5; 所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a ,x ≤0,4x -2a ,0<x <a ,2a ,x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2},所以⎩⎪⎨⎪⎧ a -12=1,a +12=2,于是a =3.B 组1.证明 ∵n (n +1)>n 2,∴S n >1+2+…+n =n (n +1)2. 又∵n (n +1)<n +n +12=2n +12=n +12, ∴S n <(1+12)+(2+12)+…+(n +12) =n (n +1)2+n 2=n 2+2n 2<(n +1)22. ∴n (n +1)2<S n <(n +1)22. 2.解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎨⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1,其图象如图所示,由图象可知,当且仅当x ∈(0,2)时,y <0, 所以原不等式的解集是{x |0<x <2}.(2)∵a >-1,则-a 2<12, ∴f (x )=|2x -1|+|2x +a |=⎩⎪⎨⎪⎧ -4x +1-a ⎝⎛⎭⎫x <-a 2a +1 ⎝⎛⎭⎫-a 2≤x <124x +a -1 ⎝⎛⎭⎫x ≥12当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=a +1, 即a +1≤x +3在x ∈⎣⎡⎭⎫-a 2,12上恒成立. ∴a +1≤-a 2+3,即a ≤43, ∴a 的取值范围为⎝⎛⎦⎤-1,43. 3.(1)解 因为f (x +2)=m -|x |,f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.又f (x +2)≥0的解集为[-1,1],故m =1.(2)证明 由(1)知1a +12b +13c=1, 又a ,b ,c ∈R +,由柯西不等式得a +2b +3c =(a +2b +3c )·⎝⎛⎭⎫1a +12b +13c ≥(a ·1a+2b ·12b +3c ·13c)2=9.4.证明 因为a ,b ,c 是正实数,由算术—几何平均不等式可得1a 3+1b 3+1c 3≥331a 3·1b 3·1c 3, 即1a 3+1b 3+1c 3≥3abc . 所以1a 3+1b 3+1c 3+abc ≥3abc +abc . 而3abc +abc ≥2 3abc·abc =23, 当且仅当a =b =c 且abc =3时,取等号.所以1a 3+1b 3+1c3+abc ≥2 3.。

高考数学(文)一轮复习文档:选修4-5 不等式选讲 第3讲柯西不等式与排序不等式 Word版含答案

高考数学(文)一轮复习文档:选修4-5 不等式选讲 第3讲柯西不等式与排序不等式 Word版含答案

第3讲柯西不等式与排序不等式,)1.二维形式的柯西不等式(1)定理1(二维形式的柯西不等式)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)(二维变式)a2+b2·c2+d2≥|ac+bd|,a2+b2·c2+d2≥|ac|+|bd|.(3)定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.(4)定理3(二维形式的三角不等式)设x1,y1,x2,y2∈R,那么x21+y21+x22+y22(5)(三角变式)设x1,y1,x2,y2,x3,y3∈R,则(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)22.柯西不等式的一般形式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.3.排序不等式设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n为b1,b2,…,b n的任一排列,则有:a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.柯西不等式的证明若a,b,c,d都是实数,求证(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc 时,等号成立.【证明】因为(a2+b2)(c2+d2)-(ac+bd)2=a2c2+a2d2+b2c2+b2d2-a2c2-b2d2-2acbd=a2d2+b2c2-2adbc=(ad-bc)2≥0,当且仅当ad=bc时,等号成立.即(a2+b2)(c2+d2)-(ac+bd)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.设α,β是两个向量,求证|α·β|≤|α||β|,当且仅当β为零向量或存在实数k,使α=kβ时等号成立.如图,设在平面直角坐标系xOy中有向量α=(a,b),β=(c,d),α与β之间的夹角为θ,0≤θ≤π.根据向量数量积(内积)的定义,有α·β=|α||β|cos θ,所以|α·β|=|α||β||cos θ|.因为|cos θ|≤1,所以|α·β|≤|α||β|.如果向量α和β中有零向量,则ad-bc=0,不等式取等号.如果向量α和β都不是零向量,则当且仅当|cos θ|=1,即向量α和β共线时,不等式取等号.柯西不等式的证明可利用已学过的比较法,也可利用向量法,柯西三角不等式还可利用几何法证明.如下:设x 1,y 1,x 2,y 2,x 3,y 3∈R ,则(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2. 证明:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3).由|CA |+|CB |≥|BA |与两点间的距离公式得(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2. 当且仅当点C 位于线段BA 上时取等号.设a 1,a 2,b 1,b 2为实数,求证:a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2. (a 21+a 22+b 21+b 22)2=a 21+a 22+2a 21+a 22b 21+b 22+b 21+b 22 ≥a 21+a 22+2|a 1b 1+a 2b 2|+b 21+b 22 ≥a 21+a 22-2(a 1b 1+a 2b 2)+b 21+b 22 =(a 21-2a 1b 1+b 21)+(a 22-2a 2b 2+b 22) =(a 1-b 1)2+(a 2-b 2)2,所以a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2.利用柯西不等式求最值已知正实数u ,v ,w 满足u 2+v 2+w 2=8,求u 49+v 416+w 425的最小值.【解】 因为u 2+v 2+w 2=8.所以82=(u 2+v 2+w 2)2=⎝ ⎛⎭⎪⎫u 23·3+v 24·4+w 25·52≤⎝ ⎛⎭⎪⎫u 49+v 416+w 425(9+16+25),所以u 49+v 416+w 425≥6450=3225.当且仅当u 23÷3=v 24÷4=w 25÷5,即u =65,v =85,w =2时取到“=”,所以当u =65,v =85,w =2时u 49+v 416+w 425的最小值为3225.利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.1.设x ,y ,z ∈R ,2x -y -2z =6,试求x 2+y 2+z 2的最小值. 考虑以下两组向量u =(2,-1,-2),v =(x ,y ,z ),根据柯西不等式(u ·v )2≤|u |2·|v |2, 得2≤(x 2+y 2+z 2),即(2x -y -2z )2≤9(x 2+y 2+z 2), 将2x -y -2z =6代入其中, 得36≤9(x 2+y 2+z 2), 即x 2+y 2+z 2≥4, 故x 2+y 2+z 2的最小值为4.2.设x ,y ,z ∈R ,x 2+y 2+z 2=25,试求x -2y +2z 的最大值与最小值. 根据柯西不等式,有(1·x -2·y +2·z )2≤(x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.利用柯西不等式证明不等式设a ,b ,c 为正数,且a +b +c =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2≥1003.【证明】 ⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2=13(12+12+12)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2+⎝ ⎛⎭⎪⎫c +1c 2 ≥13⎣⎢⎡⎦⎥⎤1×⎝ ⎛⎭⎪⎫a +1a +1×⎝ ⎛⎭⎪⎫b +1b +1×⎝ ⎛⎭⎪⎫c +1c 2=13⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b +1c 2 =13⎣⎢⎡⎦⎥⎤1+(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c 2≥13×(1+9)2=1003,当且仅当a =b =c 时等号成立, 所以所求证的不等式成立.利用柯西不等式证明的关键是恰当构造变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.注意等号成立的条件.1.已知a ,b 为正数,求证1a +4b ≥9a +b .因为a >0,b >0,所以由柯西不等式,得(a +b )⎝ ⎛⎭⎪⎫1a +4b=·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a 2+⎝⎛⎭⎪⎫4b 2≥⎝⎛⎭⎪⎫a ·1a+b ·4b 2=9,当且仅当a =12b 时取等号, 所以1a +4b ≥9a +b.2.设a ,b >0,且a +b =1,求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.因为(12+12)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2=⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2=⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝⎛⎭⎪⎫因为ab ≤14,当且仅当a =b =12时取等号,所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.利用排序不等式求最值设a ,b ,c 为任意正数,求ab +c +bc +a +ca +b的最小值.【证明】 不妨设a ≥b ≥c , 则a +b ≥a +c ≥b +c ,1b +c ≥1c +a ≥1a +b, 由排序不等式得,a b +c +b c +a +c a +b ≥b b +c +c c +a +a a +b , ab +c +bc +a +ca +b ≥cb +c +ac +a +ba +b,上述两式相加得: 2⎝⎛⎭⎪⎫a b +c +b c +a +c a +b ≥3,即a b +c +b c +a +ca +b ≥32.当且仅当a =b =c 时,ab +c+b c +a +ca +b 取最小值32.求最小(大)值时,往往所给式子是顺(反)序和式.然后利用顺(反)序和不小(大)于乱序和的原理构造出适当的一个或两个乱序和,从而求出其最小(大)值.设0<a ≤b ≤c 且abc =1.试求1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值.令S =1a 3(b +c )+1b 3(a +c )+1c 3(a +b ),则S =(abc )2a 3(b +c )+(abc )2b 3(a +c )+(abc )2c 3(a +b )=bc a (b +c )·bc +ac b (a +c )·ac +abc (a +b )·ab .由已知可得:1a (b +c )≥1b (a +c )≥1c (a +b ),ab ≤ac ≤bc .所以S ≥bc a (b +c )·ac +ac b (a +c )·ab +abc (a +b )·bc=c a (b +c )+a b (a +c )+bc (a +b ).又S ≥bc a (b +c )·ab +ac b (a +c )·bc +abc (a +b )·ac=b a (b +c )+c b (a +c )+ac (a +b ),两式相加得:2S ≥1a +1b +1c ≥331abc=3.所以S ≥32,即1a 3(b +c )+1b 3(a +c )+1c 3(a +b )的最小值为32., )1.设a ,b ∈(0,+∞),若a +b =2,求1a +1b的最小值.因为(a +b )⎝ ⎛⎭⎪⎫1a +1b=⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1a 2+⎝ ⎛⎭⎪⎫1b 2 ≥⎝⎛⎭⎪⎫a ·1a +b ·1b 2=(1+1)2=4.所以2⎝ ⎛⎭⎪⎫1a +1b≥4,即1a +1b≥2. 当且仅当a ·1b=b ·1a,即a =b 时取等号,所以当a =b =1时,1a +1b的最小值为2.2.设a 、b 、c 是正实数,且a +b +c =9,求2a +2b +2c的最小值.因为(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c=·⎣⎢⎡⎝⎛⎭⎪⎫2a 2+⎝⎛⎭⎪⎫2b 2+⎦⎥⎤⎝⎛⎭⎪⎫2c 2≥⎝⎛⎭⎪⎫a ·2a+b ·2b+c ·2c 2=18.所以2a +2b +2c ≥2.当且仅当a =b =c 时取等号,所以2a +2b +2c的最小值为2.3.设a 1,a 2,…,a n 是1,2,…,n (n ≥2,n ∈N *)的一个排列,求证:12+23+…+n -1n ≤a 1a 2+a 2a 3+…+a n -1a n. 设b 1,b 2,…,b n -1是a 1,a 2,…,a n -1的一个排列,且b 1<b 2<…<b n -1;c 1,c 2,…,c n-1是a 2,a 3,…,a n 的一个排列,且c 1<c 2<…<c n -1, 则1c 1 >1c 2>…>1c n -1,且b 1≥1,b 2≥2,…,b n -1≥n -1,c 1≤2,c 2≤3,…,c n -1≤n . 利用排序不等式,有a 1a 2+a 2a 3+…+a n -1a n ≥b 1c 1+b 2c 2+…+b n -1c n -1≥12+23+…+n -1n. 故原不等式成立.4.已知大于1的正数x ,y ,z 满足x +y +z =3 3.求证:x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥32.由柯西不等式及题意得,⎝ ⎛⎭⎪⎫x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ·≥(x +y +z )2=27. 又(x +2y +3z )+(y +2z +3x )+(z +2x +3y )=6(x +y +z )=183,所以x 2x +2y +3z +y 2y +2z +3x +z 2z +2x +3y ≥27183=32,当且仅当x =y =z =3时,等号成立.5.设x ,y ,z ∈R ,且满足:x 2+y 2+z 2=1,x +2y +3z =14,求x +y +z 的值.由柯西不等式可得(x 2+y 2+z 2)(12+22+32)≥(x +2y +3z )2,即(x +2y +3z )2≤14, 因此x +2y +3z ≤14. 因为x +2y +3z =14, 所以x =y 2=z3,解得x =1414,y =147,z =31414, 于是x +y +z =3147.6.已知a ,b ,c ∈R ,且2a +2b +c =8,求(a -1)2+(b +2)2+(c -3)2的最小值. 由柯西不等式得 (4+4+1)×≥2, 所以9≥(2a +2b +c -1)2. 因为2a +2b +c =8,所以(a -1)2+(b +2)2+(c -3)2≥499,当且仅当a -12=b +22=c -3时等号成立,所以(a -1)2+(b +2)2+(c -3)2的最小值是499.7.已知x ,y ,z 均为实数.(1)若x +y +z =1,求证:3x +1+3y +2+3z +3≤33; (2)若x +2y +3z =6,求x 2+y 2+z 2的最小值.(1)证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27.所以3x +1+3y +2+3z +3≤3 3. 当且仅当x =23,y =13,z =0时取等号.(2)因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187.8.已知a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞). (1)求x 1a +x 2b +2x 1x 2的最小值;(2)求证:(ax 1+bx 2)(ax 2+bx 1)≥x 1x 2.(1)因为a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞), 所以x 1a +x 2b +2x 1x 2≥3·3x 1a ·x 2b ·2x 1x 2=3·32ab≥3·32⎝ ⎛⎭⎪⎫a +b 22=3×38=6, 当且仅当x 1a =x 2b =2x 1x 2且a =b ,即a =b =12且x 1=x 2=1时,x 1a +x 2b +2x 1x 2有最小值6.(2)证明:由a ,b ∈(0,+∞),a +b =1,x 1,x 2∈(0,+∞),及柯西不等式可得:(ax 1+bx 2)(ax 2+bx 1)=·≥(ax 1·ax 2+bx 2·bx 1)2=(a x 1x 2+b x 1x 2)2=x 1x 2,当且仅当ax 1ax 2=bx 2bx 1,即x 1=x 2时取得等号. 所以(ax 1+bx 2)·(ax 2+bx 1)≥x 1x 2.9.(1)关于x 的不等式|x -3|+|x -4|<a 的解集不是空集,求a 的取值范围; (2)设x ,y ,z ∈R ,且x 216+y 25+z 24=1,求x +y +z 的取值范围.(1)因为|x -3|+|x -4|≥|(x -3)-(x -4)|=1,且|x -3|+|x -4|<a 的解集不是空集,所以a >1,即a 的取值范围是(1,+∞). (2)由柯西不等式,得·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 52+⎝ ⎛⎭⎪⎫z 22 ≥⎝ ⎛⎭⎪⎫4×x 4+5×y 5+2×z 22=(x +y +z )2, 即25×1≥(x +y +z )2.所以5≥|x +y +z |,所以-5≤x +y +z ≤5. 所以x +y +z 的取值范围是.10.设a 1,a 2,…,a n 为实数,证明:a 1+a 2+…+a n n≤a 21+a 22+…+a 2nn.不妨设a 1≤a 2≤a 3≤…≤a n ,由排序原理得a 21+a 22+a 23+…+a 2n =a 1a 1+a 2a 2+a 3a 3+…+a n a n , a 21+a 22+a 23+…+a 2n ≥a 1a 2+a 2a 3+a 3a 4+…+a n a 1, a 21+a 22+a 23+…+a 2n ≥a 1a 3+a 2a 4+a 3a 5+…+a n a 2,…a 21+a 22+a 23+…+a 2n ≥a 1a n +a 2a 1+a 3a 2+…+a n a n -1,以上n 个式子两边相加得n (a 21+a 22+a 23+…+a 2n )≥(a 1+a 2+a 3+…+a n )2,两边同除以n 2得a 21+a 22+a 23+…+a 2n n ≥⎝ ⎛⎭⎪⎫a 1+a 2+a 3+…+a n n 2, 所以a 21+a 22+a 23+…+a 2nn ≥a 1+a2+a 3+…+a n n,结论得证.不等式选讲1.不等式选讲是高考的选考内容之一,考查的重点是不等式的证明、绝对值不等式的解法等,命题的热点是绝对值不等式的求解,以及绝对值不等式与函数的综合问题的求解.2.此部分命题形式单一、稳定,难度中等,备考本部分内容时应注意分类讨论思想的应用.1.(选修4­5 P19习题1.2T5,P17例5改编)已知函数f(x)=|x-4|+|x-a|(a∈R)的最小值为a.(1)求实数a的值;(2)解不等式f(x)≤5.(1)f(x)=|x-4|+|x-a|≥|a-4|=a,从而解得a=2.(2)由(1)知,f(x)=|x-4|+|x-2|=⎩⎪⎨⎪⎧-2x +6(x ≤2)2(2<x ≤4)2x -6(x >4). 结合函数y =f (x )的图象知,不等式f (x )≤5的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12≤x ≤112.2.(选修4­5 P16例3、P35例3改编)已知函数f (x )=|3x -1|.(1)设f (x )≤2的解集为M ,记集合M 中的最大元素为a max ,最小元素为a min ,求a max -a min ; (2)若a ,b 为正实数,且a +b =a max ,求1a +1b的最小值.(1)f (x )≤2,即为 |3x -1|≤2,所以-2≤3x -1≤2,即-13≤x ≤1.所以M =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪-13≤ x ≤1. 即a max =1,a min =-13,a max -a min=1-⎝ ⎛⎭⎪⎫-13=43.(2)由(1)知,a +b =1,且a ,b 为正实数,所以(a +b )⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b≥2+2b a ·ab=4. 当且仅当a =b =12时取等号,即1a +1b ≥4,所以1a +1b的最小值为4.3.(选修4­5 P20习题1.2T9,P37习题3.1T8改编)(1)若关于x 的不等式|x -3|+|x -4|≤a 的解集不是空集,求a 的范围;(2)若g (x )=x ,且p >0,q >0,p +q =1,x 1,x 2∈ (1)法一:|x -3|+|x -4|≥|(x -3)-(x -4)|=1.即|x -3|+|x -4|的最小值为1.所以|x -3|+|x -4|≤a 的解集不是空集时,a ≥1. 法二:设f (x )=|x -3|+|x -4| =⎩⎪⎨⎪⎧-2x +7,x <3,1,3≤x ≤4,2x -7,x >4.函数f(x)的图象为所以f(x)min=1.则f(x)≤a的解集不是空集时,a≥1.(2)证明:由p>0,q>0,p+q=1,要证不等式pg(x1)+qg(x2)≤g(px1+qx2)成立,即为证明p x1+q x2≤px1+qx2成立.(*)法一:(分解法)要证(*)成立,即证(p x1+q x2)2≤(px1+qx2)2成立.即证:p2x1+2pq x1x2+q2x2≤px1+qx2,即证px1(1-p)+qx2(1-q)-2pq x1x2≥0.因为p+q=1.只需证pqx1+pqx2-2pq x1x2≥0成立.即证(x1-x2)2≥0.因为(x1-x2)2≥0显然成立.所以原不等式成立.法二:(柯西不等式法)因为(p x1+q x2)2=(p·px1+q·qx2)2≤=(p+q)(px1+qx2)因为p+q=1.所以(p x1+q x2)2≤px1+qx2.所以p x1+q x2≤px1+qx2.即pg(x1)+qg(x2)≤g(px1+qx2).4.(选修4­5 P19习题1.2T5,P45习题3.3T4改编)已知函数f(x)=2|x+1|+|x-2|.(1)求f(x)的最小值m;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c≥3.(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞);当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈ (1)①当x ≤-1时,原不等式可化为-x -1<-2x -2,解得x <-1;②当-1<x <-12时,原不等式可化为x +1<-2x -2,解得x <-1,此时原不等式无解;③当x ≥-12时,原不等式可化为x +1<2x ,解得x >1.综上,M ={x |x <-1或x >1}.(2)证明:因为f (a )-f (-b )=|a +1|-|-b +1|≤|a +1-(-b +1)|=|a +b |, 所以,要证f (ab )>f (a )-f (-b ), 只需证|ab +1|>|a +b |, 即证|ab +1|2>|a +b |2, 即证a 2b 2+2ab +1>a 2+2ab +b 2, 即证a 2b 2-a 2-b 2+1>0, 即证(a 2-1)(b 2-1)>0.因为a ,b ∈M ,所以a 2>1,b 2>1, 所以(a 2-1)(b 2-1)>0成立, 所以原不等式成立.。

湘教版高中数学选修4-5:不等式选讲-第1章 基本不等式和证明不等式的基本方法 复习课件

湘教版高中数学选修4-5:不等式选讲-第1章 基本不等式和证明不等式的基本方法 复习课件
答案:B
2.(2017·天津卷)若 a,b∈R,ab>0,则a4+a4bb4+1的最小 值为__________.
解析:∵a,b∈R,ab>0, ∴a4+a4bb4+1≥4a2ab2b+1=4ab+a1b≥2
4ab·a1b=4,
a2=2b2, 当且仅当4ab=a1b,
即a2= 22,

lg tlg 9-lg 8 lg 2×lg 3 >0.
∴2x>3y.


2x

5z

2lg t lg 2

5lg t lg 5

lg t2lg 5-5lg 2 lg 2×lg 5

lg tlg 25-lg 32 lg 2×lg 5 <0.
∴2x<5z.∴3y<2x<5z.
答案:D
3.若 a=ln33,b=ln22,则 a 与 b 的大小关系为__________.
谢谢
• [高考冲浪] • 1.(2017·全国卷Ⅱ)已知a>0,b>0,a3+b3=2. • (1)求证:(a+b)(a5+b5)≥4. • (2)求证:a+b≤2. 证明:(1) (a+b)(a5+b5)=a6+ab5+a5b+b6=(a3+ b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4.
第1章 基本不等式和证明 不等式的基本方法 复习课件
知识网络
专题归纳
专题一:不等式的基本性质及实数的大小比较。
• [考情分析] • 1.利用不等式的基本性质判断不等式或有关结论
是否成立,利用不等式基本性质进行数值或代数式 大小的比较,常用到分类讨论的思想。 • 2.不等式的基本性质及应用是不等式的一个基础 内容,常以客观题形式呈现,难度不大。

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

《选修4-5--不等式选讲》知识点详解+例题+习题(含详细答案)

选修4-5不等式选讲最新考纲:1.理解绝对值的几何意义,并了解下列不等式成立的几何意义及取等号的条件:(1)|a +b|≤|a|+|b|(a,b∈R).(2)|a-b|≤|a-c|+|c-b|(a,b∈R).2.会利用绝对值的几何意义求解以下类型的不等式:|ax+b|≤c,|ax+b|≥c,|x-c|+|x-b|≥a.3.了解柯西不等式的几种不同形式,理解它们的几何意义,并会证明.4.通过一些简单问题了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法、数学归纳法.ab≤0且|a ab≥0且|a定理2:如果a、b为正数,则≥,当且仅当a=b时,等号成立.定理3:如果a、b、c为正数,则≥,当且仅当a=b=c时,等号成立.定理4:(一般形式的算术—几何平均值不等式)如果a1、a2、…、a n为n个正数,则≥,当且仅当a1=a2=…=a n时,等号成立.4.柯西不等式(1)柯西不等式的代数形式:设a,b,c,d为实数,则(a2+b2)·(c2+d2)≥(ac+bd)2,当且仅当ad=bc时等号成立.(2)若a i,b i(i∈N*)为实数,则()()≥(i b i)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.(3)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α|·|β|≥|α·β|,当且仅当这两个向量同向或反向时等号成立.1(1)(2)(3)|(4)(5)[2AC[[答案] A3.设|a|<1,|b|<1,则|a+b|+|a-b|与2的大小关系是() A.|a+b|+|a-b|>2 B.|a+b|+|a-b|<2C.|a+b|+|a-b|=2 D.不能比较大小[解析]|a+b|+|a-b|≤|2a|<2.[答案] B4.若a,b,c∈(0,+∞),且a+b+c=1,则++的最大值为()A.1 B.C. D.2[∴([5[为-2≤a[解|(1)(2)把这些根由小到大排序,它们把定义域分为若干个区间.(3)在所分区间上,去掉绝对值符号组成若干个不等式,解这些不等式,求出它们的解集.(4)这些不等式解集的并集就是原不等式的解集.解绝对值不等式的关键是恰当的去掉绝对值符号.(1)(2015·山东卷)不等式|x-1|-|x-5|<2的解集是()A.(-∞,4) B.(-∞,1)C.(1,4) D.(1,5)(2)(2014·湖南卷)若关于x的不等式|ax-2|<3的解集为,则a=________.[解题指导]切入点:“脱掉”绝对值符号;关键点:利用绝对值的性质进行分类讨论.[解析](1)当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等当当(2)当当当[对点训练已知函数f(x)=|x+a|+|x-2|.(1)当a=-3时,求不等式f(x)≥3的解集;(2)若f(x)≤|x-4|的解集包含[1,2],求a的取值范围.[解](1)当a=-3时,f(x)=当x≤2时,由f(x)≥3得-2x+5≥3,解得x≤1;当2<x<3时,f(x)≥3无解;当x≥3时,由f(x)≥3得2x-5≥3,解得x≥4;所以f(x)≥3的解集为{x|x≤1或x≥4}.(2)f(x)≤|x-4|?|x-4|-|x-2|≥|x+a|.当?4右|x 1.是(2)[[解析](1)∵|x-1|+|x+2|≥|(x-1)-(x-2)|=3,∴a2+a+2≤3,解得≤a≤.即实数a的取值范围是.(2)解法一:根据绝对值的几何意义,设数x,-1,2在数轴上对应的点分别为P,A,B,则原不等式等价于P A-PB>k恒成立.∵AB=3,即|x+1|-|x-2|≥-3.故当k<-3时,原不等式恒成立.解法二:令y=|x+1|-|x-2|,则y=要使|x+1|-|x-2|>k恒成立,从图象中可以看出,只要k<-3即可.故k<-3满足题意.[答案](1)(2)(-∞,-3)解含参数的不等式存在性问题,只要求出存在满足条件的x即可;不等式的恒成立问题,可转化为最值问题,即f(x)<a恒成立?a>f(x)max,f(x)>a恒成立?a<f(x)min.(1)(2)[解-a?a-3≤x≤3.故(2)f不等式的证明方法很多,解题时既要充分利用已知条件,又要时刻瞄准解题目标,既不仅要搞清是什么,还要搞清干什么,只有兼顾条件与结论,才能找到正确的解题途径.应用基本不等式时要注意不等式中等号成立的条件.(2015·新课标全国卷Ⅱ)设a,b,c,d均为正数,且a+b=c+d,证明:(1)若ab>cd,则+>+;(2)+>+是|a-b|<|c-d|的充要条件.[解题指导]切入点:不等式的性质;关键点:不等式的恒等变形.[证明](1)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.由a+(1)ab+bc+ac≤;(2)++≥1.[证明](1)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca. 由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(2)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2(a+b+c),即++≥a+b+c.所以++≥1.———————方法规律总结————————[12条件.3.[121[解析]|2x-1|<3?-3<2x-1<3?-1<x<2.[答案](-1,2)2.若不等式|kx-4|≤2的解集为{x|1≤x≤3},则实数k=__________.[解析]∵|kx-4|≤2,∴-2≤kx-4≤2,∴2≤kx≤6.∵不等式的解集为{x|1≤x≤3},∴k=2.[答案] 23.不等式|2x+1|+|x-1|<2的解集为________.[解析]当x≤-时,原不等式等价为-(2x+1)-(x-1)<2,即-3x<2,x>-,此时-<x≤-.当-<x<1时,原不等式等价为(2x+1)-(x-1)<2,即x<0,此时-<x<0.当x≥1时,原不等式等价为(2x +1)+(x-1)<2,即3x<2,x<,此时不等式无解,综上,原不等式的解为-<x<0,即原不等式的解集为.[答案]4[[5.[故[6.[3a-1+2a=[7.若关于x的不等式|a|≥|x+1|+|x-2|存在实数解,则实数a的取值范围是__________.[解析]∵f(x)=|x+1|+|x-2|=∴f(x)≥3.要使|a|≥|x+1|+|x-2|有解,∴|a|≥3,即a≤-3或a≥3.[答案](-∞,-3]∪[3,+∞)8.已知关于x的不等式|x-a|+1-x>0的解集为R,则实数a的取值范围是__________.[解析]若x-1<0,则a∈R;若x-1≥0,则(x-a)2>(x-1)2对任意的x∈[1,+∞)恒成立,即(a-1)[(a+1)-2x]>0对任意的x∈[1,+∞)恒成立,所以(舍去)或对任意的x∈[1,+∞]恒成立,解得a<1.综上,a<1.[答案](-∞,1)9.设a,b,c是正实数,且a+b+c=9,则++的最小值为__________.[=≥2[10.[即∴[11[解析]∵|x-1|+|x|+|y-1|+|y+1|=(|1-x|+|x|)+(|1-y|+|1+y|)≥|(1-x)+x|+|(1-y)+(1+y)|=1+2=3,当且仅当(1-x)·x≥0,(1-y)·(1+y)≥0,即0≤x≤1,-1≤y≤1时等号成立,∴|x-1|+|x|+|y-1|+|y+1|的最小值为3.[答案] 312.若不等式|x+1|-|x-4|≥a+,对任意的x∈R恒成立,则实数a的取值范围是________.[解析]只要函数f(x)=|x+1|-|x-4|的最小值不小于a+即可.由于||x+1|-|x-4||≤|(x+1)-(x -4)|=5,所以-5≤|x+1|-|x-4|≤5,故只要-5≥a+即可.当a>0时,将不等式-5≥a+整理,得a2+5a+4≤0,无解;当a<0时,将不等式-5≥a+整理,得a2+5a+4≥0,则有a≤-4或-1≤a<0.综上可知,实数a的取值范围是(-∞,-4]∪[-1,0).[13(1)(2)[解若若若(2)f(x)作出函数f(x)的图象,如图所示.由图象可知,f(x)≥1,∴2a>1,a>,即a的取值范围为.14.(2015·新课标全国卷Ⅰ)已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.[解](1)当a=1时,f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.(2)a+1,0),C(a,a15(1)(2)[解f(x).(2)若a=1,f(x)=2|x-1|,不满足题设条件;若a<1,f(x)=f(x)的最小值为1-a;若a>1,f(x)=f(x)的最小值为a-1.∴对于?x∈R,f(x)≥2的充要条件是|a-1|≥2,∴a的取值范围是(-∞,-1]∪[3,+∞).16.(2015·福建卷)已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小值为4.(1)(2)[解又(2)(42=即a当且仅当==,即a=,b=,c=时等号成立.故a2+b2+c2的最小值为.。

高中数学选修4—5 不等式选讲绝对值不等式

高中数学选修4—5 不等式选讲绝对值不等式

栏目索引
2-1 已知x,y∈R,且|x+y|≤ ,|x-y|≤ ,求证:|x+5y|≤1.
1 6
1 4
证明 因为|x+5y|=|3(x+y)-2(x-y)|,
所以|x+5y|=|3(x+y)-2(x-y)|≤|3(x+y)|+|2(x-y)|=3|x+y|+2|x-y|≤3× +2× =1, 即|x+5y|≤1.
1 2
=1时取等号). (2)f(x)+f(2x)=|x-a|+|2x-a|,a<0. 当x≤a时, f(x)+f(2x)=a-x+a-2x=2a-3x,则f(x)+f(2x)≥-a;
栏目索引
当a<x< 时, f(x)+f(2x)=x-a+a-2x=-x,则- <f(x)+f(2x)<-a;
当2<x<5时,-3<2x-7<3, 所以-3≤f(x)≤3. (2)由(1)可知, 当x≤2时, f(x)≥x2-8x+15的解集为空集; 当2<x<5时, f(x)≥x2-8x+15的解集为{x|5- 3 ≤x<5};
当x≥5时, f(x)≥x2-8x+15的解集为{x|5≤x≤6}.
综上,不等式f(x)≥x2-8x+15的解集为{x|5- 3 ≤x≤6}.
栏目索引
当x≥ 时,由f(x)<2得2x<2,解得x<1,∴ ≤x<1.
1 2
1 2
所以f(x)<2的解集M={x|-1<x<1}.
(2)证明:由(1)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2 b2-1=(a2-1)(1-b2)<0, 因此|a+b|<|1+ab|.

(全国通用)高考数学一轮复习 不等式选讲 第一节 绝对值不等式习题 理 选修4-5-人教版高三选修4

(全国通用)高考数学一轮复习 不等式选讲 第一节 绝对值不等式习题 理 选修4-5-人教版高三选修4

选修4-5 不等式选讲第一节绝对值不等式[基础达标]一、填空题(每小题5分,共25分)1.若不等式A={x||3x+2|>1},B={x||x-2|≤3},则A∩B=.【解析】解不等式|3x+2|>1得3x+2<-1或3x+2>1,解得x<-1或x>-,则A=;解不等式|x-2|≤3得-3≤x-2≤3,则-1≤x≤5,则B={x|-1≤x≤5},所以A∩B=.2.(2015·某某统测)不等式|x-2|+|x+1|≤5的解集为.[-2,3]【解析】不等式|x-2|+|x+1|≤5⇔解得-2≤x<-1或-1≤x≤2或2<x≤3,所以不等式|x-2|+|x+1|≤5的解集为[-2,3].3.(2015·某某巴蜀中学三诊)已知关于x的不等式|x+2|+|x-2|≤a2解集为空集,则a的取值X围为.(-2,2)【解析】由关于x的不等式|x+2|+|x-2|≤a2解集为空集,得关于x的不等式|x+2|+|x-2|>a2解集为R,则(|x+2|+|x-2|)min>a2.又|x+2|+|x-2|≥|(x+2)-(x-2)|=4,所以a2<4,-2<a<2.4.若关于x的不等式|x-a|+|x-1|≥a恒成立,则实数a的取值X围是.【解析】由题意可得(|x-a|+|x-1|)min≥a,又|x-a|+|x-1|≥|1-a|,所以|a-1|≥a,则a-1≤-a,a≤.5.(2015·某某三模)若对于实数x,y有|1-x|≤2,|y+1|≤1,则|2x+3y+1|的最大值为.7【解析】由|2x+3y+1|=|2(x-1)+3(y+1)|≤2|x-1|+3|y+1|≤7,得|2x+3y+1|的最大值为7.二、解答题(每小题10分,共50分)6.(2015·某某高考)解不等式x+|2x+3|≥2.【解析】原不等式可化为解得x≤-5或x≥-.综上,原不等式的解集是.7.(2015·东北三省四市二模)设函数f(x)=|2x+2|-|x-2|.(1)求不等式f(x)>2的解集;(2)若对于∀x∈R,f(x)≥t2-t恒成立,某某数t的取值X围.【解析】(1)f(x)=当x<-1时,-x-4>2,x<-6,∴x<-6;当-1≤x<2时,3x>2,x>,∴<x<2;当x≥2时,x+4>2,x>-2,∴x≥2.综上所述.(2)易得f(x)min=f(-1)=-3,若对于∀x∈R,f(x)≥t2-t恒成立,则只需f(x)min=-3≥t2-t⇒2t2-7t+6≤0⇒≤t≤2,综上所述≤t≤2.8.(2015·某某实验中学质检)设函数f(x)=|x-1|+|x-3|.(1)求不等式f(x)>2的解集;(2)若不等式f(x)≤a的解集非空,某某数a的取值X围.【解析】(1)函数f(x)=方程f(x)=2的根为x1=,x2=3,由函数f(x)的图象知f(x)>2的解集为.(2)设g(x)=a,g(x)表示过点,斜率为a的直线,f(x)≤a的解集非空,即y=f(x)的图象在g(x)图象下方有图象,或与g(x)图象有交点,由图象可知a<-或a≥.9.已知函数f(x)=|2x-1|+|2x+5|,且f(x)≥m恒成立.(1)求m的取值X围;(2)当m取最大值时,解关于x的不等式|x-3|-2x≤2m-8.【解析】(1)f(x)=当-≤x≤时,函数有最小值6,所以m≤6.(2)当m取最大值6时,原不等式等价于|x-3|-2x≤4,等价于可得x≥3或-≤x<3.所以原不等式的解集为.10.(2015·某某模拟)已知函数f(x)=|x-1|+|x+a|.(1)当a=2时,解不等式f(x)≥4;(2)若a>0,且∀x∈R,f(x)≥5恒成立,求a的取值X围.【解析】(1)当a=2时,f(x)=|x-1|+|x+2|,由f(x)≥4得|x-1|+|x+2|≥4.当x≤-2时,不等式化为-x-2-x+1≥4,其解集为.当-2<x≤1时,不等式化为x+2-x+1≥4,其解集为⌀.当x>1时,不等式化为x+2+x-1≥4,其解集为.综上得f(x)≥4的解集为.(2)因为a>0,所以f(x)=|x-1|+|x+a|=因此f(x)的最小值为a+1,由f(x)≥5恒成立,即a+1≥5恒成立,解得a≥4,所以当a>0时,对于∀x∈R,使f(x)≥5恒成立的a的取值X围是[4,+∞).[高考冲关]1.(5分)集合A=[1,5],集合B={x∈R‖x+3|+|x-2|≤a+2},且A⊆B,则实数a的取值X围是.[9,+∞)【解析】由题意可得当x∈[1,5]时,关于x的不等式|x+3|+|x-2|≤a+2恒成立,则(|x+3|+|x-2|)max≤a+2,又|x+3|+|x-2|=所以当x=5时,|x+3|+|x-2|取得最大值11,故a+2≥11,解得a≥9.2.(5分)(2015·某某调研)设函数f(x)=|x-1|+|2x-a|,若关于x的不等式f(x)≥a2+1对x∈R恒成立,则实数a的取值X围是.[-2,0]【解析】当<1,a<2时,f(x)=f(x)min=f=-a+1≥a2+1,解得-2≤a≤0;当>1,a>2时,f(x)=f(x)min=f a-1≥a2+1,无解;当a=2时,不成立.综上可得实数a的取值X围是[-2,0].3.(10分)(2015·某某测试)设函数f(x)=|x-1+a|+|x-a|.(1)若a≥2,x∈R,证明f(x)≥3;(2)若f(1)<2,求a的取值X围.【解析】(1)|x-1+a|+|x-a|≥|(x-1+a)-(x-a)|=|2a-1|,又a≥2,故|2a-1|≥3,所以此时f(x)≥3.(2)f(1)=|a|+|1-a|,当a≤0时,f(1)=(-a)+(1-a)=1-2a,由f(1)<2,得1-2a<2,即-<a≤0;当0<a≤1时,f(1)=a+(1-a)=1<2恒成立,故0<a≤1;当a>1时,f(1)=a+(a-1)=2a-1,由f(1)<2,得2a-1<2,解得1<a<.综上a的取值X围是.4.(10分)(2015·某某监测)(1)已知a和b是任意非零实数.证明:≥4;(2)若不等式|2x+1|-|x+1|>k(x-1)-恒成立,某某数k的取值X围.【解析】(1)∵|2a+b|+|2a-b|≥|2a+b+2a-b|=4|a|,∴≥4.(2)记h(x)=|2x+1|-|x+1|=如图,若不等式|2x+1|-|x+1|>k(x-1)-恒成立,则函数h(x)的图象在直线g(x)=k(x-1)-的上方,又g(x)的图象恒过定点,即g(x)的图象只能在图中阴影区域内,可得k∈.5.(10分)(2015·某某二中二模)已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.(1)解不等式|g(x)|<5;(2)若对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,某某数a的取值X围.【解析】(1)由‖x-1|+2|<5,得-5<|x-1|+2<5,∴-7<|x-1|<3,-2<x<4,∴不等式|g(x)|<5的解集为(-2,4).(2)∵对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,∴{y|y=f(x)}⊆{y|y=g(x)},又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,g(x)=|x-1|+2≥2,则|a+3|≥2,解得a≥-1或a≤-5,即实数a的取值X围为(-∞,-5]∪[-1,+∞).。

选修4-5 不等式选讲

选修4-5 不等式选讲

选修4-5不等式选讲题组1不等式的性质和绝对值不等式1.[2015 山东,5,5分]不等式|x-1|-|x-5|<2的解集是()A.(-∞,4)B.(-∞,1)C.(1,4)D.(1,5)2.[2015重庆,16,5分]若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=.3.[2014重庆,16,5分]若不等式|2x-1|+|x+2|≥a2+a+2对任意实数x恒成立,则实数a的取值范围是.4.[2017全国卷Ⅰ,23,10分][文]已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.5.[2016全国卷Ⅰ,24,10分][文]已知函数f(x)=|x+1|-|2x-3|.(Ⅰ)在图1中画出y=f(x)的图象;(Ⅱ)求不等式|f(x)|>1的解集.图16.[2015 新课标全国Ⅰ,24,10分][文]已知函数f(x)=|x+1|-2|x-a|,a>0.(Ⅰ)当a=1时,求不等式f(x)>1的解集;(Ⅱ)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.7.[2014新课标全国Ⅱ,24,10分][文]设函数f(x)=|x+|+|x-a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.题组2不等式的证明8.[2016全国卷Ⅱ,24,10分][文]已知函数f(x)=|x-|+|x+|,M为不等式f(x)<2的解集.(Ⅰ)求M;(Ⅱ)证明:当a,b∈M时,|a+b|<|1+ab|.9.[2015 新课标全国Ⅱ,24,10分][文]设a,b,c,d均为正数,且a+b=c+d,证明:(Ⅰ)若ab>cd,则+>+;(Ⅱ)+>+是|a-b|<|c-d|的充要条件.10.[2013新课标全国Ⅱ,24,10分][文]设a,b,c均为正数,且a+b+c=1.证明:(Ⅰ)ab+bc+ac≤;(Ⅱ)++≥1.A组基础题1.[2018广东七校联考,23]已知函数f(x)=|x-a|-|2x-1|.(1)当a=2时,求f(x)+3≥0的解集;(2)当x∈[1,3]时,f(x)≤3恒成立,求a的取值范围.2.[2018湖北八校第一次联考,23]已知不等式|x|+|x-3|<x+6的解集为(m,n).(1)求m,n的值;(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.3.[2018广西桂林市、柳州市高三综合模拟,23]已知f(x)=|ax-1|,不等式f(x)≤3的解集是{x|-1≤x≤2}.(1)求a的值;(2)若)-)<k存在实数解,求实数k的取值范围.4.[2017郑州市高三第三次质量预测,23]已知函数f(x)=|x-5|-|x-2|.(1)若∃x∈R,使得f(x)≤m成立,求m的取值范围;(2)求不等式x2-8x+15+f(x)≤0的解集.B组提升题5.[2018湘东五校联考,23]已知函数f(x)=m-|x-1|-|x+1|.(1)当m=5时,求不等式f(x)>2的解集;(2)若二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,求实数m的取值范围.6.[2018河南省中原名校高三第三次质量考评,23]已知函数f(x)=|x-m|+|x+2|(m∈R),g(x)=|2x-1|+3.(1)当m=1时,求不等式f(x)≤5的解集;(2)若对任意的x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,求实数m的取值范围.7.[2017长春市高三第四次质量监测,23](1)已知函数f(x)=|x+1|+|x-a|(a>0),若不等式f(x)≥5的解集为{x|x≤-2或x≥3},求a的值;(2)已知a,b,c为正实数,且a+b+c=m,求证:++≥.8.[2017长沙市5月模拟,23]已知函数f(x)=(x+1)2.(1)证明: f(x)+|f(x)-2|≥2;+[f(x)]2的最小值.(2)当x≠-1时,求y=)答案1.A 当x<1时,不等式可化为-(x-1)+(x-5)<2,即-4<2,显然成立,所以此时不等式的解集为(-∞,1);当1≤x ≤5时,不等式可化为x-1+(x-5)<2,即2x-6<2,解得x<4,又1≤x ≤5,所以此时不等式的解集为[1,4);当x>5时,不等式可化为(x-1)-(x-5)<2,即4<2,显然不成立,所以此时不等式无解.综上,不等式的解集为(-∞,4).故选A .2.-6或4 当a=-1时,f (x )=3|x+1|≥0,不满足题意;当a<-1时,f (x )= - - , ,- - , - , - , - ,f (x )min =f (a )=-3a-1+2a=5,解得a=-6;当a>-1时,f (x )= - - , - ,- ,- , - , ,f (x )min =f (a )=-a+1+2a=5,解得a=4.3.[-1, ] |2x-1|+|x+2|=|x- |+(|x- |+|x+2|)≥0+|(x- )-(x+2)|= ,当且仅当x= 时取等号,因此函数y=|2x-1|+|x+2|的最小值是 .所以a 2+ a+2≤ ,即2a 2+a-1≤0,解得-1≤a ≤ ,即实数a 的取值范围是[-1, ].4.(1)当a=1时,不等式f (x )≥g (x )等价于x 2-x+|x+1|+|x-1|-4≤0 ①.当x<-1时,①式化为x 2-3x-4≤0,无解;当-1≤x ≤1时,①式化为x 2-x-2≤0,从而-1≤x ≤1;当x>1时,①式化为x 2+x-4≤0,从而1<x ≤- . 所以f (x )≥g (x )的解集为{x|-1≤x ≤- }.(2)当x ∈[-1,1]时,g (x )=2.所以f (x )≥g (x )的解集包含[-1,1],等价于当x ∈[-1,1]时f (x )≥2.又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且 f 1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].5.(Ⅰ)由题意可得f (x )= - , - , - ,- ,- , ,y=f (x )的图象如图D 2所示.图D 2(Ⅱ)由f(x)的表达式及图象知,当f(x)=1时,可得x=1或x=3; 当f(x)=-1时,可得x=或x=5.故f(x)>1的解集为{x|1<x<3};f(x)<-1的解集为{x|x<或x>5}.所以|f(x)|>1的解集为{x|x<或1<x<3或x>5}.6.(Ⅰ)当a=1时, f(x)>1化为|x+1|-2|x-1|-1>0.当x≤-1时,不等式化为x-4>0,无解;当-1<x<1时,不等式化为3x-2>0,解得<x<1;当x≥1时,不等式化为-x+2>0,解得1≤x<2.所以f(x)>1的解集为{x|<x<2}.(Ⅱ)由题设可得f(x)=--,-,-,-,-,所以函数f(x)的图象与x轴围成的三角形的三个顶点分别为A(-,0),B(2a+1,0),C(a,a+1),△ABC的面积为(a+1)2.由题设得(a+1)2>6,故a>2.所以a的取值范围为(2,+∞).7.(Ⅰ)由a>0,有f(x)=|x+|+|x-a|≥|x+-(x-a)|=+a≥2.所以f(x)≥2. (Ⅱ)f(3)=|3+|+|3-a|.当a>3时,f(3)=a+,由f(3)<5得3<a<.当0<a≤3时,f(3)=6-a+,由f(3)<5得<a≤3.综上,a的取值范围是(,).8.(Ⅰ)由题意可得f(x)=-,-, ,-, ,当x≤-时,由f(x)<2得-2x<2,解得x>-1,所以-1<x≤-; 当-<x<时,f(x)<2恒成立;当x≥时,由f(x)<2得2x<2,解得x<1,所以≤x<1.所以f(x)<2的解集M={x|-1<x<1}.(Ⅱ)由(Ⅰ)知,当a,b∈M时,-1<a<1,-1<b<1,从而(a+b)2-(1+ab)2=a2+b2-a2b2-1=(a2-1)(1-b2)<0.因此|a+b|<|1+ab|.9.(Ⅰ)因为(+)2=a+b+2,(+)2=c+d+2,由题设a+b=c+d,ab>cd得(+)2>(+)2.因此+>+.(Ⅱ)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(Ⅰ)得+>+.②若+>+,则(+)2>(+)2,即a+b+2>c+d+2.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,+>+是|a-b|<|c-d|的充要条件.10.(Ⅰ)由a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ca得a2+b2+c2≥ab+bc+ca.由题设得(a+b+c)2=1,即a2+b2+c2+2ab+2bc+2ca=1.所以3(ab+bc+ca)≤1,即ab+bc+ca≤.(Ⅱ)因为+b≥2a,+c≥2b,+a≥2c,故+++(a+b+c)≥2 a+b+c),即++≥a+b+c.所以++≥1.A组基础题1.(1)当a=2时,由f(x)≥-3,可得|x-2|-|2x-1|≥-3,∴,---或,---或,---,解得-4≤x<或≤x<2或x=2.综上,当a=2时,不等式f(x)+3≥0的解集为{x|-4≤x≤2}.(2)当x∈[1,3]时,f(x)≤3恒成立,即|x-a|≤3+|2x-1|=2x+2.故-2x-2≤x-a≤2x+2,即-3x-2≤-a≤x+2, ∴-x-2≤a≤3x+2对x∈[1,3]恒成立.∴a∈[-3,5].2.(1)由|x|+|x-3|<x+6,得,-或,或,--,解得-1<x<9,所以m=-1,n=9.(2)由(1)知9x+y=1.因为x>0,y>0,所以(+)(9x+y)=10++≥10+2=16, 当且仅当=,即x=,y=时取等号,所以+≥16,即x+y≥16xy..3.(1)由|ax-1|≤3,得-3≤ax-1≤3,即-2≤ax≤4,当a>0时,-≤x≤,所以--,,解得a=2;当a<0时,≤x≤-,所以-,-无解.所以a=2.(2)因为)-)=-≥--) =,所以要使)-)<k存在实数解,只需k>,所以实数k的取值范围是(,+∞).4.(1)f(x)=|x-5|-|x-2|=,, -,, -,当2<x<5时,-3<7-2x<3,所以-3≤f(x)≤3.所以m的取值范围是[-3,+∞).(2)原不等式等价于-f(x)≥x2-8x+15,由(1)可知,当x≤2时,-f(x)≥x2-8x+15的解集为空集; 当2<x<5时,-f(x)≥x2-8x+15的解集为{x|5-≤x<5}; 当x≥5时,-f(x)≥x2-8x+15的解集为{x|5≤x≤6}.综上,原不等式的解集为{x|5-≤x≤6}.B组提升题5.(1)当m=5时,f(x)=-), -), -),由f(x)>2得不等式的解集为{x|-<x<}.(2)因为二次函数y=x2+2x+3=(x+1)2+2在x=-1处取得最小值2,f(x)=-),--),-)在x=-1处取得最大值m-2,所以要使二次函数y=x2+2x+3与函数y=f(x)的图象恒有公共点,只需m-2≥2,即m≥4,所以实数m的取值范围为[4,+∞).6.(1)当m=1时,f (x )=|x-1|+|x+2|,①当x ≤-2时,f (x )=-2x-1,由-2x-1≤5,解得x ≥-3,所以-3≤x ≤-2;②当-2<x<1时,f (x )=1-x+x+2=3≤5恒成立,所以-2<x<1;③当x ≥1时,f (x )=2x+1,由2x+1≤5,解得x ≤2,所以1≤x ≤2.综上所述,不等式f (x )≤5的解集为[-3,2].(2)若对任意的x 1∈R,都有x 2∈R,使得f (x 1)=g (x 2)成立,设A={y|y=f (x )},B={y|y=g (x )},则A ⊆B ,因为f (x )=|x-m|+|x+2|≥|(x-m )-(x+2)|=|m+2|,g (x )=|2x-1|+3≥3,所以|m+2|≥3,解得m ≥1或m ≤-5,因此,实数m 的取值范围为(-∞,-5]∪[1,+∞).7.(1)因为a>0,所以f (x )=|x+1|+|x-a|= - - , - ,,- , - ,又不等式f (x )≥5的解集为{x|x ≤-2或x ≥3},解得a=2.(2)+ + =) ) ==≥ (当且仅当a=b=c= 时,取等号).8.(1)∵f (x )= (x+1)2≥0, ∴f (x )+|f (x )-2|=|f (x )|+|2-f (x )|≥|f (x )+[2-f (x )]|=|2|=2.(2)当x ≠-1时,f (x )= (x+1)2>0, ∴y= )+[f (x )]2= )+ )+[f (x )]2≥3· )· )· ) = ,当且仅当 )= )=[f (x )]2时取等号,即x=-1± 时取等号.∴y= )+[f (x )]2的最小值为 .。

2015届高考数学(人教,理科)大一轮复习配套讲义:第六章 不等式、推理与证明及不等式选讲

2015届高考数学(人教,理科)大一轮复习配套讲义:第六章 不等式、推理与证明及不等式选讲

第六章不等式、推理与证明及不等式选讲(选修4-5)第一节不等关系与不等式1.实数大小顺序与运算性质之间的关系a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b.2.不等式的基本性质1.在应用传递性时,注意等号是否传递下去,如a≤b,b<c⇒a<c.2.在乘法法则中,要特别注意“乘数c的符号”,例如当c≠0时,有a>b⇒ac2>bc2;若无c≠0这个条件,a>b⇒ac2>bc2就是错误结论(当c=0时,取“=”).[试一试]1.(2013·北京高考)设a,b,c∈R,且a>b,则()A .ac >bc B.1a <1b C .a 2>b 2D. a 3>b 3解析:选D 由性质知选D. 2.12-1________3+1(填“>”或“<”). 解析:12-1=2+1<3+1. 答案:<1.不等式的倒数性质 (1)a >b ,ab >0⇒1a <1b ;(2)a <0<b ⇒1a <1b ;(3)a >b >0,0<c <d ⇒a c >bd ;(4)0<a <x <b 或a <x <b <0⇒1b <1x <1a .2.不等式的分数性质 (1)真分数的性质:b a <b +m a +m ;b a >b -m a -m (b -m >0); (2)假分数的性质:a b >a +m b +m ;a b <a -m b -m (b -m >0). [练一练]若0<a <b ,c >0,则b +c a +c 与a +cb +c 的大小关系为________.答案:b +c a +c >a +c b +c的大小1.已知a 121212,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =ND .不确定解析:选B M -N =a 1a 2-(a 1+a 2-1) =a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1), 又∵a 1∈(0,1),a 2∈(0,1), ∴a 1-1<0,a 2-1<0.∴(a 1-1)(a 2-1)>0,即M -N >0. ∴M >N .2.若实数a ≠1,比较a +2与31-a 的大小.解:a +2-31-a =-a 2-a -11-a =a 2+a +1a -1∴当a >1时,a +2>31-a ;当a <1时,a +2<31-a .[类题通法]比较大小的常用方法(1)作差法:一般步骤是:①作差;②变形;③定号;④结论.其中关键是变形,常采用配方、因式分解、有理化等方法把差式变成积式或者完全平方式.当两个式子都为正数时,有时也可以先平方再作差.(2)作商法:一般步骤是:①作商;②变形;③判断商与1的大小;④结论. (3)特值法:若是选择题、填空题可以用特值法比较大小;若是解答题,可先用特值探究思路,再用作差或作商法判断.注意:用作商法时要注意商式中分母的正负,否则极易得出相反的结论.不等式的性质[典例] >b 且c >d ”的A .充分不必要条件 B .既不充分也不必要条件 C .充分必要条件D .必要不充分条件(2)若a >0>b >-a ,c <d <0,则下列结论:①ad >bc ;②a d +bc <0;③a -c >b -d ;④a ·(d -c )>b (d -c )中成立的个数是( )A .1B .2C .3D .4[解析] (1)由“a +c >b +d ”不能得知“a >b 且c >d ”,反过来,由“a >b 且c >d ”可得知“a +c >b +d ”,因此“a +c >b +d ”是“a >b 且c >d ”的必要不充分条件,选D.(2)法一:∵a >0>b ,c <d <0,∴ad <0,bc >0, ∴ad <bc ,故①错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bd cd <0,故②正确.∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,故③正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ), 故④正确,故选C. 法二:取特殊值. [答案] (1)D (2)C [类题通法]判断多个不等式是否成立,需要逐一给出推理判断或反例说明.常用的推理判断需要利用不等式的性质,常见的反例构成方式可从以下几个方面思考:(1)不等式两边都乘以一个代数式时,考察所乘的代数式是正数、负数或0;(2)不等式左边是正数,右边是负数,当两边同时平方后不等号方向不一定保持不变; (3)不等式左边是正数,右边是负数,当两边同时取倒数后不等号方向不变等. [针对训练](2014·北京东城区综合练习)若a >b >0,则下列不等式不成立的是( ) A.1a <1bB .|a |>|b |C .a +b <2abD.⎝⎛⎭⎫12a <⎝⎛⎭⎫12b解析:选C ∵a >b >0,∴1a <1b,且|a |>|b |,a +b >2ab ,又2a >2b ,∴⎝⎛⎭⎫12a <⎝⎛⎭⎫12b ,选C. 不等式性质的应用[典例] ,2≤f (1)≤4.求 [解] f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b .设m (a +b )+n (a -b )=4a -2b .则⎩⎪⎨⎪⎧ m +n =4,m -n =-2,解得⎩⎪⎨⎪⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.即f (-2)的取值范围为[5,10].又∵1<f (-1)≤2,2≤f (1)<4, ∴5<3f (-1)+f (1)<10, 故5<f (-2)<10.故f (-2)的取值范围为(5,10). [类题通法]利用不等式性质可以求某些代数式的取值范围,但应注意两点:一是必须严格运用不等式的性质;二是在多次运用不等式的性质时有可能扩大了变量的取值范围.解决的途径是先建立所求范围的整体与已知范围的整体的等量关系,最后通过“一次性”不等关系的运算求解范围.[针对训练]若α,β满足⎩⎪⎨⎪⎧-1≤α+β ≤1,1≤α+2β ≤3,试求α+3β的取值范围.解:设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.则⎩⎪⎨⎪⎧ x +y =1,x +2y =3,解得⎩⎪⎨⎪⎧x =-1,y =2.∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, 两式相加,得1≤α+3β≤7. ∴α+3β的取值范围为[1,7].第二节一元二次不等式及其解法一元二次不等式与相应的二次函数及一元二次方程的关系1.二次项系数中含有参数时,则应先考虑二次项是否为零,然后再讨论二次项系数不为零时的情形,以便确定解集的形式.2.当Δ<0时,易混ax 2+bx +c >0(a >0)的解集为R 还是∅. [试一试]1.(2013·浙江高考)设集合S ={x |x >-2},T ={x |x 2+3x -4≤0},则(∁R S )∪T =( ) A .(-2,1] B .(-∞,-4] C .(-∞,1]D .[1,+∞)解析:选C T = {x |-4≤x ≤1},根据补集定义, ∁R S ={x |x ≤-2},所以(∁R S )∪T ={x |x ≤1},选C.2.不等式ax 2+bx +2>0的解集是⎝⎛⎭⎫-12,13,则a +b 的值是( ) A .10 B .-10 C .14D .-14解析:选D 由题意知-12、13是ax 2+bx +2=0的两根.则a =-12,b =-2.a +b =-14.故选D.3.不等式x 2+ax +4<0的解集不是空集,则实数a 的取值范围是________. 解析:∵不等式x 2+ax +4<0的解集不是空集,∴Δ=a 2-4×4>0,即a 2>16. ∴a >4或a <-4.答案:(-∞,-4)∪(4,+∞)1.由二次函数图像与一元二次不等式的关系得到的两个常用结论(1)不等式ax 2+bx +c >0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c >0,或⎩⎪⎨⎪⎧ a >0,Δ<0.(2)不等式ax 2+bx +c <0对任意实数x 恒成立⇔⎩⎪⎨⎪⎧ a =b =0,c <0,或⎩⎪⎨⎪⎧a <0,Δ<0.2.分类讨论思想解含参数的一元二次不等式,可先考虑因式分解,再对根的大小进行分类讨论;若不能因式分解,则可对判别式进行分类讨论,分类要不重不漏.[练一练]若不等式mx 2+2mx +1>0的解集为R ,则m 的取值范围是________. 解析:①当m =0时,1>0显然成立. ②当m ≠0时,由条件知⎩⎪⎨⎪⎧m >0,Δ=4m 2-4m <0. 得0<m <1, 由①②知0≤m <1. 答案:[0,1)一元二次不等式的解法[典例] (1)0<x 2-x -2≤4; (2)x 2-4ax -5a 2>0(a ≠0). [解] (1)原不等式等价于⎩⎪⎨⎪⎧ x 2-x -2>0,x 2-x -2≤4⇔⎩⎪⎨⎪⎧x 2-x -2>0,x 2-x -6≤0⇔⎩⎪⎨⎪⎧ (x -2)(x +1)>0,(x -3)(x +2)≤0⇔⎩⎪⎨⎪⎧x >2或x <-1,-2≤x ≤3.借助于数轴,如图所示,原不等式的解集为{}x |-2≤x <-1或2<x ≤3. (2)由x 2-4ax -5a 2>0知(x -5a )(x +a )>0. 由于a ≠0故分a >0与a <0讨论. 当a <0时,x <5a 或x >-a ; 当a >0时,x <-a 或x >5a .综上,a <0时,解集为{}x |x <5a 或x >-a ;a >0时,解集为{}x |x >5a 或x <-a . [类题通法]1.解一元二次不等式的一般步骤:(1)对不等式变形,使一端为0且二次项系数大于0,即ax 2+bx +c >0(a >0),ax 2+bx +c <0(a >0);(2)计算相应的判别式;(3)当Δ≥0时,求出相应的一元二次方程的根; (4)根据对应二次函数的图像,写出不等式的解集.2.解含参数的一元二次不等式,要把握好分类讨论的层次,一般按下面次序进行讨论:首先根据二次项系数的符号进行分类,其次根据根是否存在,即Δ的符号进行分类,最后在根存在时,根据根的大小进行分类.[针对训练] 解下列不等式: (1)-3x 2-2x +8≥0; (2)ax 2-(a +1)x +1<0(a >0).解:(1)原不等式可化为3x 2+2x -8≤0, 即(3x -4)(x +2)≤0. 解得-2 ≤x ≤43,所以原不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪-2≤x ≤43. (2)原不等式变为(ax -1)(x -1)<0, 因为a >0,所以a ⎝⎛⎭⎫x -1a (x -1)<0. 所以当a >1时,解为1a <x <1;当a =1时,解集为∅; 当0<a <1时,解为1<x <1a.综上,当0<a <1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1<x <1a ; 当a =1时,不等式的解集为∅;当a >1时,不等式的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪1a<x <1.一元二次不等式与其对应的函数与方程之间存在着密切的联系.在解决具体的数学问题时,要注意三者之间的相互联系,并在一定条件下相互转换.对于一元二次不等式恒成立问题,常根据二次函数图像与x 轴的交点情况确定判别式的符号,进而求出参数的取值范围.归纳起来常见的命题角度有:(1)形如f (x )≥0(x ∈R )确定参数的范围; (2)形如f (x )≥0(x ∈[a ,b ])确定参数范围; (3)形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围.角度一 形如f (x )≥0(x ∈R )确定参数的范围1.(2013·重庆高考)设0≤α≤π,不等式8x 2-(8sin α)x +cos 2α≥0对x ∈R 恒成立,则α的取值范围为________.解析:根据题意可得(8sin α)2-4×8cos 2α≤0,即2sin 2α-cos 2α≤0,2sin 2α-(1-2sin 2 α)≤0,即-12≤sin α≤12.因为0≤α≤π,故α∈06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦, 答案:06π⎡⎤⎢⎥⎣⎦,∪56ππ⎡⎤⎢⎥⎣⎦,角度二 形如f (x )≥0(x ∈[a ,b ])确定参数范围2.对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求a 的取值范围. 解:函数f (x )=x 2+(a -4)x +4-2a 的对称轴为x =-a -42=4-a2.①当4-a2<-1,即a >6时,f (x )的值恒大于零等价于f (-1)=1+(a -4)×(-1)+4-2a >0, 解得a <3,故有a ∈∅;②当-1≤4-a2≤1,即2≤a ≤6时,只要f ⎝⎛⎭⎫4-a 2=⎝⎛⎭⎫4-a 22+(a -4)×4-a 2+4-2a >0,即a 2<0,故有a ∈∅;③当4-a 2>1,即a <2时,只要f (1)=1+(a -4)+4-2a >0, 即a <1,故有a <1.综上可知,当a <1时,对任意x ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零. 角度三 形如f (x )≥0(参数m ∈[a ,b ])确定x 的范围3.对任意a ∈[-1,1],函数f (x )=x 2+(a -4)x +4-2a 的值恒大于零,求x 的取值范围. 解:由f (x )=x 2+(a -4)x +4-2a =(x -2)a +x 2-4x +4, 令g (a )=(x -2)a +x 2-4x +4.由题意知在[-1,1]上,g (a )的值恒大于零,∴⎩⎪⎨⎪⎧g (-1)=(x -2)×(-1)+x 2-4x +4>0,g (1)=(x -2)+x 2-4x +4>0, 解得x <1或x >3.故当x <1或x >3时,对任意的a ∈[-1,1],函数f (x )的值恒大于零. [类题通法]恒成立问题及二次不等式恒成立的条件(1)解决恒成立问题一定要清楚选谁为主元,谁是参数.一般地,知道谁的范围,就选谁当主元,求谁的范围,谁就是参数.(2)对于二次不等式恒成立问题,恒大于0就是相应的二次函数的图像在给定的区间上全部在x 轴上方;恒小于0就是相应的二次函数的图像在给定的区间上全部在x 轴下方.一元二次不等式的应用[典例] 件,年销量是a 件.现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格是4元/件.经测算,该商品价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k .该商品的成本价为3元/件.(1)写出该商品价格下降后,经销商的年收益y 与实际价格x 的函数关系式;(2)设k =2a ,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?[解] (1)设该商品价格下降后为x 元/件, 则由题意可知年销量增加到⎝⎛⎭⎫k x -4+a 件,故经销商的年收益y =⎝⎛⎭⎫kx -4+a (x -3),5.5≤x ≤7.5.(2)当k =2a 时,依题意有⎝⎛⎭⎫2ax -4+a (x -3)≥(8-3)a ×(1+20%),化简得x 2-11x +30x -4≥0,解得x ≥6或4<x ≤5.又5.5≤x ≤7.5,故6≤x ≤7.5,即当实际价格最低定为6元/件时,仍然可以保证经销商2014年的收益比2013年至少增长20%.[类题通法]构建不等式模型解决实际问题不等式的应用问题常常以函数为背景,多是解决实际生活、生产中的最优化问题等,解题时,要仔细审题,认清题目的条件以及要解决的问题,理清题目中各量之间的关系,建立恰当的不等式模型进行求解.[针对训练]某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围. 解:(1)由题意得y =100⎝⎛⎭⎫1-x 10·100⎝⎛⎭⎫1+850x . 因为售价不能低于成本价, 所以100⎝⎛⎭⎫1-x10-80≥0. 所以y =f (x )=20(10-x )(50+8x ),定义域为[0,2]. (2)由题意得20(10-x )(50+8x )≥10 260, 化简得8x 2-30x +13≤0. 解得12≤x ≤134.所以x 的取值范围是⎣⎡⎦⎤12,2.第三节绝对值不等式(选修4-5)1.绝对值三角不等式(1)定理1:如果a ,b 是实数,则|a +b |≤|a |+|b |,当且仅当ab ≥0时,等号成立.(2)定理2:如果a ,b ,c 是实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立.2.绝对值不等式的解法(1)含绝对值的不等式|x |<a 与|x |>a 的解集①|ax +b |≤c ⇔-c ≤ax +b ≤c ; ②|ax +b |≥c ⇔ax +b ≥c 或ax +b ≤-c .(3)|x -a |+|x -b |≥c (c >0)和|x -a |+|x -b |≤c (c >0)型不等式的解法有以下几种: ①利用绝对值不等式的几何意义求解的思想; ②利用“零点分段法”求解;③通过构造函数,利用函数的图象求解.1.对于绝对值三角不等式,易忽视等号成立的条件.对|a +b |≥|a |-|b |,当且仅当a >-b >0时,等号成立,对|a |-|b |≤|a -b |≤|a |+|b |,如果a <-b <0当且仅当|a |≥|b |且ab ≥0时左边等号成立,当且仅当ab ≤0时右边等号成立.2.形如|x -a |+|x -b |≥c (c >0)的不等式解法在讨论时应注意分类讨论点处的处理及c 的符号判断,若c <0则不等式解集为R.[试一试]1.(2013·广东高考)不等式|x 2-2|<2的解集是( ) A .(-1,1) B .(-2,2) C .(-1,0)∪(0,1)D .(-2,0)∪(0,2)解析:选D 由|x 2-2|<2得-2<x 2-2<2,即0<x 2<4,所以-2<x <0或0<x <2. 2.不等式|x -2|-|x -1|>0的解集为( ) A.⎝⎛⎭⎫-∞,32 B.⎝⎛⎭⎫-∞,-32 C.⎝⎛⎭⎫32,+∞D.⎝⎛⎭⎫-32,+∞ 解析:选A 原不等式等价于|x -2|>|x -1|, 则(x -2)2>(x -1)2,解得x <32.含绝对值不等式的常用解法1.基本性质法:对a ∈R +,|x |<a ⇔-a <x <a ,|x |>a ⇔x <-a 或x >a . 2.平方法:两边平方去掉绝对值符号.3.零点分区间法(或叫定义法):含有两个或两个以上绝对值符号的不等式,可用零点分区间法脱去绝对值符号,将其转化为与之等价的不含绝对值符号的不等式(组)求解.4.几何法:利用绝对值的几何意义,画出数轴,将绝对值转化为数轴上两点的距离求解. 5.数形结合法:在直角坐标系中作出不等式两边所对应的两个函数的图象,利用函数图象求解.[练一练]1.已知不等式|2x -t |+t -1<0的解集为(-12,12),则t =( )A .-1B .0C .1D .2解析:选B |2x -t |<1-t ,t -1<2x -t <1-t , 2t -1<2x <1,t -12<x <12,∴t =0.2.若存在实数x 使|x -a |+|x -1|≤3成立,则实数a 的取值范围是________. 解析:利用绝对值不等式的性质求解. ∵|x -a |+|x -1|≥|(x -a )-(x -1)|=|a -1|, 要使|x -a |+|x -1|≤3有解,可使|a -1|≤3,∴-3≤a -1≤3,∴-2≤a ≤4. 答案:[-2,4]绝对值不等式的解法1.在实数范围内,不等式|x -12|+|x +12|≤3的解集为____________.解析:法一:分类讨论去绝对值号解不等式.当x >12时,原不等式转化为2x ≤3⇒x ≤32;当-12≤x ≤12时,原不等式转化为1≤3,恒成立;当x <-12时,原不等式转化为-2x ≤3⇒x ≥-32.综上知,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.法二:利用几何意义求解.不等式⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12≤3,其几何意义为数轴上到12,-12两点的距离之和不超过3的点的集合,数形结合知,当x =32或x =-32时,到12,-12两点的距离之和恰好为3,故当-32≤x ≤32时,满足题意,则原不等式的解集为⎩⎨⎧⎭⎬⎫x |-32≤x ≤32.答案:⎩⎨⎧x ⎪⎪⎭⎬⎫-32≤x ≤32 2.(2013·西安质检)若关于x 的不等式|x -a |<1的解集为(1,3),则实数a 的值为________. 解析:原不等式可化为a -1<x <a +1,又知其解集为(1,3),所以通过对比可得a =2. 答案:23.如果关于x 的不等式|x -3|-|x -4|<a 的解集不是空集,则实数a 的取值范围是________.解析:法一:令y 1=|x -3|-|x -4| =⎩⎪⎨⎪⎧1, x >4,2x -7, 3≤x ≤4,-1,x <3.y 2=a . 如图要使|x -3|-|x -4|<a 的解集不是空集,则a 的取集范围是a >-1.法二:注意到||x -3|-|x -4||≤|(x -3)-(x -4)|=1,-1≤|x -3|-|x -4|≤1.若不等式|x -3|-|x -4|<a 的解集是空集,则有|x -3|-|x -4|≥a 对任意的x ∈R 都成立,即有(|x -3|-|x -4|)min ≥a ,a ≤-1.因此,由不等式|x -3|-|x -4|<a 的解集不是空集可得,实数a 的取值范围是a >-1.答案:(-1,+∞) [类题通法]利用零点分类讨论法解绝对值不等式时,注意分类讨论时要不重不漏.绝对值不等式的证明[典例] ,不等式f (x )<4M . (1)求M ;(2)当a ,b ∈M 时,证明:2|a +b |<|4+ab |. [解] (1)f (x )=|x +1|+|x -1|=⎩⎪⎨⎪⎧-2x ,x <-1,2,-1≤x ≤1,2x ,x >1,当x <-1时,由-2x <4,得-2<x <-1; 当-1≤x ≤1时,f (x )=2<4,∴-1≤x ≤1; 当x >1时,由2x <4,得1<x <2,∴M =(-2,2).(2)证明:a ,b ∈M 即-2<a <2,-2<b <2.∵4(a +b )2-(4+ab )2=4(a 2+2ab +b 2)-(16+8ab +a 2b 2)=(a 2-4)·(4-b 2)<0,∴4(a +b )2<(4+ab )2,∴2|a +b |<|4+ab |.又|x +1|+|x -1|≥|(x +1)-(x -1)|=2,∴a ≤2. 故a 的取值范围为(2,+∞). [类题通法]证明绝对值不等式主要有三种方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明; (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明; (3)转化为函数问题,数形结合进行证明. [针对训练](2014·乌鲁木齐高三诊断性测验)设函数f (x )=|x -1|+|x -2|. (1)求证:f (x )≥1; (2)若f (x )=a 2+2a 2+1成立,求x 的取值范围.解:(1)证明:f (x )=|x -1|+|x -2|≥|(x -1)-(x -2)|=1. (2)∵a 2+2a 2+1=a 2+1+1a 2+1=a 2+1+1a 2+1≥2,∴要使f (x )=a 2+2a 2+1成立,需且只需|x -1|+|x -2|≥2,即⎩⎪⎨⎪⎧ x <1,1-x +2-x ≥2或⎩⎪⎨⎪⎧ 1≤x <2,x -1+2-x ≥2或⎩⎪⎨⎪⎧x ≥2,x -1+x -2≥2,解得x ≤12或x ≥52,故x 的取值范围是⎝⎛⎦⎤-∞,12∪⎣⎡⎭⎫52,+∞.绝对值不等式的综合应用[|2x +a |,g (x )=(1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈⎣⎡⎭⎫-a 2,12时,f (x )≤g (x ),求a 的取值范围.[解] (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧-5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x<2}.(2)当x ∈⎣⎡⎭⎫-a 2,12时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈⎣⎡⎭⎫-a 2,12都成立. 故-a 2≥a -2,即a ≤43.从而a 的取值范围是⎝⎛⎦⎤-1,43. [类题通法]1.研究含有绝对值的函数问题时,根据绝对值的定义,分类讨论去掉绝对值符号,转化为分段函数,然后数形结合解决是常用的思维方法.2.对于求y =|x -a |+|x -b |或y =|x +a |-|x -b |型的最值问题利用绝对值三角不等式更方便.形如y =|x -a |+|x -b |的函数只有最小值,形如y =|x -a |-|x -b |的函数既有最大值又有最小值.[针对训练](2013·辽宁模拟)已知f (x )=|x +a |+|x -2|. (1)当a =-1时,解关于x 的不等式f (x )>5;(2)已知关于x 的不等式f (x )+a <2 014(a 是常数)的解集是非空集合,求实数a 的取值范围. 解:(1)构造函数g (x )=|x -1|+|x -2|-5, 则g (x )=⎩⎪⎨⎪⎧-2x -2(x ≤1),-4(1<x <2),2x -8(x ≥2).令g (x )>0,则x <-1或x >4,∴原不等式的解集为(-∞,-1)∪(4,+∞). (2)∵f (x )+a =|x +a |+|x -2|+a ≥|a +2|+a , 又关于x 的不等式f (x )+a <2 014的解集是非空集合,∴|a +2|+a <2 014,解得a <1 006.第四节二元一次不等式(组)及简单的线性规划问题1.二元一次不等式(组)表示的平面区域2.1.画出平面区域.避免失误的重要方法就是首先使二元一次不等式化为ax +by +c >0(a >0).2.线性规划问题中的最优解不一定是唯一的,即可行域内使目标函数取得最值的点不一定只有一个,也可能有无数多个,也可能没有.[试一试]1.(2013·全国卷Ⅱ)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≥0,x +y -1≥0,x ≤3,则z =2x -3y 的最小值是( ) A .-7 B .-6 C .-5D .-3解析:选B 作出不等式组表示的可行域,如图(阴影部分).易知直线z =2x -3y 过点C 时,z 取得最小值.由⎩⎪⎨⎪⎧ x =3,x -y +1=0,得⎩⎪⎨⎪⎧x =3,y =4,∴z min =2×3-3×4=-6,故选B. 2.如图所示的平面区域(阴影部分)满足不等式________.答案:x +y -1>01.确定二元一次不等式表示平面区域的方法二元一次不等式所表示的平面区域的确定,一般是取不在直线上的点(x 0,y 0)作为测试点来进行判定,满足不等式的则平面区域在测试点所在的直线的一侧,反之在直线的另一侧.2.求二元一次函数z =ax +by (ab ≠0)的最值的方法将函数z =ax +by 转化为直线的斜截式:y =-a b x +z b ,通过求直线的截距zb 的最值间接求出z 的最值.(1)当b >0时,截距z b 取最大值时,z 也取最大值;截距zb 取最小值时,z 也取最小值;(2)当b <0时,截距z b 取最大值时,z 取最小值;截距zb 取最小值时,z 取最大值.[练一练](2013·陕西高考)若点(x ,y )位于曲线y =|x -1|与y =2所围成的封闭区域,则2x -y 的最小值为________.解析:由题意知y =⎩⎪⎨⎪⎧x -1(x ≥1),1-x (x <1),作出曲线y =|x -1|与y =2所围成的封闭区域,如图中阴影部分所示,即得过点A (-1,2)时,2x -y 取最小值-4.答案:-41.不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.34解析:选C 平面区域如图所示.解⎩⎪⎨⎪⎧x +3y =4,3x +y =4得A (1,1), 易得B (0,4),C ⎝⎛⎭⎫0,43, |BC |=4-43=83.∴S △ABC =12×83×1=43.2.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )恰有9个,其中整点是指横、纵坐标都是整数的点,则整数a 的值为( )A .-3B .-2C .-1D .0解析:选C 不等式组所表示的平面区域如图中阴影部分,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0);当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点,故选C.3.如图阴影部分表示的区域可用二元一次不等式组表示为________.解析:两直线方程分别为x -2y +2=0与x +y -1=0. 由(0,0)点在直线x -2y +2=0右下方可知x -2y +2≥0, 又(0,0)点在直线x +y -1=0左下方可知x +y -1≥0,即⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0为所表示的可行域. 答案:⎩⎪⎨⎪⎧x +y -1≥0,x -2y +2≥0[类题通法]二元一次不等式(组)表示平面区域的判断方法:直线定界,测试点定域.注意不等式中不等号有无等号,无等号时直线画成虚线,有等号时直线画成实线.测试点可以选一个,也可以选多个,若直线不过原点,测试点常选取原点.求目标函数的最值线性规则问题是高考的重点,而线性规划问题具有代数和几何的双重形式,多与函数、平面向量、数列、三角、概率、解析几何等问题交叉渗透,自然地融合在一起,使数学问题的解答变得更加新颖别致.归纳起来常见的命题角度有:(1)求线性目标函数的最值; (2)求非线性目标的最值; (3)求线性规划中的参数. 角度一 求线性目标函数的最值1.(1)(2013·湖南高考)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2x ,x +y ≤1,y ≥-1,则x +2y 的最大值是( )A .-52B .0 C.53D.52(2)如果函数x 、y 满足条件⎩⎪⎨⎪⎧x -y +1≥0,y +1≥0,x +y +1≤0,那么z =2x -y 的最大值为( )A .2B .1C .-2D .-3解析:(1)选C 不等式组表示的平面区域为图中阴影部分.平行移动y =-12x +12z ,可知该直线经过y =2x 与x +y =1的交点A ⎝⎛⎭⎫13,23时,z 有最大值为13+43=53.(2)选B 如图作出可行域,当z 经过直线y +1=0与x +y +1=0的交点(0,-1)时,z max=1.角度二 求非线性目标的最值2.(1)(2013·山东高考)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x -y -2≥0,x +2y -1≥0,3x +y -8≤0所表示的区域上一动点,则直线OM 斜率的最小值为( )A .2B .1C .-13D .-12解析:选C 已知的不等式组表示的平面区域如图中阴影所示,显然当点M 与点A 重合时直线OM 的斜率最小,由直线方程x +2y -1=0和3x +y -8=0,解得A (3,-1),故OM 斜率的最小值为-13. (2)(2014·长春调研)若实数x ,y 满足⎩⎪⎨⎪⎧12≤x ≤1,y ≥-x +1,y ≤x +1,则y +1x的取值范围是________.解析:由题可知y +1x =y -(-1)x -0,即为求不等式所表示的平面区域内的点与(0,-1)的连线斜率k 的取值范围,由图可知k ∈[1,5].答案:[1,5]角度三 求线性规划中的参数3.(1)(2013·浙江高考)设z =kx +y ,其中实数x ,y 满足⎩⎪⎨⎪⎧x +y -2≥0,x -2y +4≥0,2x -y -4≤0.若z 的最大值为12,则实数k =________.解析:画出可行域,根据线性规划知识,目标函数取最大值12时,最优解一定为(4,4),这时12=4k +4,k =2.答案:2(2)(2014·江西七校联考)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0,x +2y -8≤0,x ≤3.若点⎝⎛⎭⎫3,52是使ax -y 取得最小值的唯一的可行解,则实数a 的取值范围为________.解析:记z =ax -y ,注意到当x =0时,y =-z ,即直线z =ax -y 在y 轴上的截距是-z .在坐标平面内画出题中的不等式组表示的平面区域,结合图形可知,满足题意的实数a 的取值范围为a <-12.答案:⎝⎛⎭⎫-∞,-12 [类题通法]1.求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.2.常见的目标函数有: (1)截距型:形如z =ax +by .求这类目标函数的最值常将函数z =ax +by 转化为直线的斜截式:y =-a b x +zb ,通过求直线的截距zb的最值间接求出z 的最值.(2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a .注意:转化的等价性及几何意义.线性规划的实际应用[典例] (2013·两种型号的客车安排名客人旅行,A ,B 两种车辆的载客量分别为36人和60人,租金分别为1 600元/辆和2 400元/辆,旅行社要求租车总数不超过21辆,且B 型车不多于A 型车7辆,则租金最少为( )A .31 200元B .36 000元C .36 800元D .38 400元[解析] 设租用A 型车x 辆,B 型车y 辆,目标函数为z =1 600x +2 400y ,则约束条件为⎩⎪⎨⎪⎧36x +60y ≥900,y -x ≤7,y +x ≤21,x ,y ∈N ,作出可行域,如图中阴影部分所示,可知目标函数过点(5,12)时,有最小值z min =36 800(元).[答案] C [类题通法]求解线性规划应用题的注意点(1)明确问题中的所有约束条件,并根据题意判断约束条件中是否能够取到等号. (2)注意结合实际问题的实际意义,判断所设未知数x ,y 的取值范围,特别注意分析x ,y 是否是整数、非负数等.(3)正确地写出目标函数,一般地,目标函数是等式的形式. [针对训练]某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克,B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A 、B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是( )A .1 800元B .2 400元C .2 800元D .3 100元解析:选C 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,则⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y≥0,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点A (4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值,最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.第五节基本不等式与柯西不等式(选修4-5)1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.3.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)4.平均值不等式(1)定理:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.我们称a +b +c 3为正数a ,b ,c 的算术平均值,3abc 为正数a ,b ,c 的几何平均值,定理中的不等式为三个正数的算术—几何平均值不等式,简称为平均值不等式.(2)一般形式的算术—几何平均值不等式:如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a nn ≥na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.5.柯西不等式(1)柯西不等式的代数形式:设a 1,a 2,b 1,b 2均为实数,则(a 21+a 22)(b 21+b 22)≥(a 1b 1+a 2b 2)2(当且仅当a 1b 2=a 2b 1时,等号成立).(2)柯西不等式的向量形式:设α,β为平面上的两个向量,则|α||β|≥|α·β|. (3)二维形式的三角不等式:设x 1,y 1,x 2,y 2∈R ,那么x 21+y 21+x 22+y 22≥(x 1-x 2)2+(y 1-y 2)2.(4)柯西不等式的一般形式:设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0或存在一个数k ,使a i =kb i (i =1,2,…,n )时,等号成立.1.求最值时要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件. 2.多次使用基本不等式时,易忽视取等号的条件的一致性. 3.使用柯西不等式或平均值不等式时易忽视等号成立的条件. [试一试]1.“a >0且b >0”是“a +b2≥ab ”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A2.已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A.13B.12C.34D.23解析:选B 由0<x <1,故3-3x >0,则x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.3.已知x 2+y 2=10,则3x +4y 的最大值为( ) A .510 B .410 C .310D .210解析:选A ∵(32+42)(x 2+y 2)≥(3x +4y )2, 当且仅当3y =4x 时等号成立, ∴25×10≥(3x +4y )2, ∴(3x +4y )max =510.1.活用几个重要的不等式a 2+b 2≥2ab (a ,b ∈R );b a +ab ≥2(a ,b 同号).ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R );⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R ).2.巧用“拆”“拼”“凑”在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.[练一练] 若x >1,则x +4x -1的最小值为________. 解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5利用基本不等式求最值[典例] (1)(2013·四川高考)已知函数f (x )=4x +ax (x >0,a >0)在x =3时取得最小值,则a =________.[解析] f (x )=4x +ax ≥24x ·a x =4a (x >0,a >0),当且仅当4x =ax,即a =4x 2时取等号,则由题意知a =4×32=36.[答案] 36(2)(2014·长春调研)若两个正实数x ,y 满足2x +1y =1,并且x +2y >m 2+2m 恒成立,则实数m 的取值范围是________.[解析] x +2y =(x +2y )⎝⎛⎭⎫2x +1y =2+4y x +x y +2≥8,当且仅当4y x =xy ,即x =2y =4时等号成立.由x +2y >m 2+2m 恒成立,可知m 2+2m <8,m 2+2m -8<0,解得-4<m <2.[答案] (-4,2)(3)(2013·山东高考改编)设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则zxy 的最小值为________.[解析] z =x 2-3xy +4y 2(x ,y ,z ∈R +),∴z xy =x 2-3xy +4y 2xy =x y +4y x-3≥2x y ·4yx-3=1. 当且仅当x y =4yx ,即x =2y =4时“=”成立.[答案] 1解:由(3)知当zxy取最小值时x =2y .∴z =x 2-3xy +4y 2=4y 2-6y 2+4y 2=2y 2,∴x +2y -z =2y +2y -2y 2=-2y 2+4y =-2(y -1)2+2. ∴当y =1时,x +2y -z 取最大值2. [类题通法]两个正数的和与积的转化基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,因此可以用在一些不等式的证明中,还可以用于求代数式的最值或取值范围.如果条件等式中,同时含有两个变量的和与积的形式,就可以直接利用基本不等式对两个正数的和与积进行转化,然后通过解不等式进行求解.[针对训练](1)当x >0时,则f (x )=2xx 2+1的最大值为________. (2)已知log 2a +log 2b ≥1,则3a +9b 的最小值为________.(3)已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x ≤22=1,当且仅当x =1x ,即x =1时取等号.(2)由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b ≥2×3a +2b2(当且仅当3a =32b ,即a =2b 时取等号).又∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号), ∴3a +9b ≥2×32=18.即当a =2b 时,3a +9b 有最小值18.(3)由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.答案:(1)1 (2)18 (3)10基本不等式的实际应用[典例] 经调查测算,该产品的年销售量(即该厂的年产量)x 万件与年促销费用m 万元(m ≥0)满足x =3-km +1(k 为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2013年生产该产品的固定投入为8万元.每生产一万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).(1)将2013年该产品的利润y 万元表示为年促销费用m 万元的函数; (2)该厂家2013年的促销费用投入多少万元时,厂家的利润最大? [解] (1)由题意知,当m =0时,x =1(万件), ∴1=3-k ⇒k =2,∴x =3-2m +1, 每件产品的销售价格为1.5×8+16xx(元), ∴2013年的利润y =1.5x ×8+16xx -8-16x -m=-⎣⎡⎦⎤16m +1+(m +1)+29(m ≥0).(2)∵m ≥0时,16m +1+(m +1)≥216=8, ∴y ≤-8+29=21,当且仅当16m +1=m +1⇒m =3(万元)时,y max =21(万元).故该厂家2013年的促销费用投入3万元时,厂家的利润最大为21万元. [类题通法]利用基本不等式求解实际应用题的方法(1)问题的背景是人们关心的社会热点问题,如“物价、销售、税收、原材料”等,题目往往较长,解题时需认真阅读,从中提炼出有用信息,建立数学模型,转化为数学问题求解.(2)当运用基本不等式求最值时,若等号成立的自变量不在定义域内时,就不能使用基本不等式求解,此时可根据变量的范围用对应函数的单调性求解.[针对训练](2013·湖南省五市十校联合检测)某化工企业2012年底投入100万元,购入一套污水处理设备.该设备每年的运转费用是0.5万元,此外每年都要花费一定的维护费,第一年的维护费为2万元,由于设备老化,以后每年的维护费都比上一年增加2万元.设该企业使用该设备x 年的年平均污水处理费用为y (单位:万元).(1)用x 表示y ;(2)当该企业的年平均污水处理费用最低时,企业需重新更换新的污水处理设备.则该企业几年后需要重新更换新的污水处理设备.。

2015年高中数学步步高大一轮复习讲义(文科)第四章4.5

2015年高中数学步步高大一轮复习讲义(文科)第四章4.5

基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
【 例 1】
函数y=Asin(ωx+φ)的图像及变换
设函数 f(x)=sin ωx+
思维启迪 解析 思维升华
π π 3cos ωx ( ω >0) 的周期为 π. (2)令 X=2x+ ,则 y=2sin2x+3 =2sin X. 3 (1)求它的振幅、初相; 列表,并描点画出图像: (2) 用五点法作出它在长度为一 π π π 7π 5π - x 6 12 3 12 6 个周期的闭区间上的图像; π 3π X 0 π 2π 2 2 (3)说明函数 f(x)的图像可由 y= y=sin X 0 1 0 -1 0 sin x 的图像经过怎样的变换而 π y=2sin2x+3 0 2 0 -2 0 得到.
1 3 π (1) 求它的振幅、初相; =2( sin ωx+ cos ωx)=2sin(ωx+ ), 2 2 3 (2) 用五点法作出它在长度为一 2π 个周期的闭区间上的图像; 又∵T=π,∴ ω =π,即 ω=2. (3)说明函数 f(x)的图像可由 y= π ∴f(x)=2sin(2x+3). sin x 的图像经过怎样的变换而 π ∴函数 f(x)=sin ωx+ 3cos ωx 的振幅为 2,初相为3. 得到.
答案
(1) × (2) × (3) √ (4) × (5) √ (6) √
解析
A
A
C
π 6,6
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
【 例 1】
函数y=Asin(ωx+φ)的图像及变换
设函数 f(x)=sin ωx+

2015年高中数学步步高大一轮复习讲义(文科)第五章54

2015年高中数学步步高大一轮复习讲义(文科)第五章54

=2sin2B+cos(2B-60°) =1-cos 2B+cos(2B-60°)
=1-cos 2B+cos 2Bcos 60°+
sin 2Bsin 60°
=1-12cos
2B+
3 2 sin
2B
=1+sin(2B-30°),
最大值时,B 的大小.
当 2B-30°=90°,即 B=60°时,
函数取最大值 2.
题型三
平面向量在解析几何中的应用
【例 3】 已知平面上一定点 C(2,0)
和直线 l:x=8,P 为该平面上一 动点,作 PQ⊥l,垂足为 Q,且(P→C +12P→Q)·(P→C-12P→Q)=0.
思维启迪 解析 思维升华
(2)∵P→E=P→N+N→E, P→F=P→N+N→F, 又N→E+N→F=0. ∴P→E·P→F=P→N2-N→E2
所以∠BAC 的平分线垂直于 BC,所以 AB=AC. 又 cos∠BAC=|AA→ →BB|·|AA→ →CC|=12,所以∠BAC=3π.
所以△ABC 为等边三角形.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型二
平面向量在三角函数中的应用
【例 2】 已知在锐角△ABC 中,两 思维启迪 解析 思维升华
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型三
平面向量在解析几何中的应用
【例 3】 已知平面上一定点 C(2,0) 思维启迪 解析 思维升华
和直线 l:x=8,P 为该平面上一 动点,作 PQ⊥l,垂足为 Q,且(P→C +12P→Q)·(P→C-12P→Q)=0.
(1)求动点 P 的轨迹方程;

选修4-5不等式选讲

选修4-5不等式选讲
选修4-5 不等式选讲
根据课程标准,本专题介绍一些重 要的不等式和它们的证明、数学归纳法 和它的简单应用。
本专题的内容是在初中阶段掌握了 不等式的基本概念,学会了一元一次不 等式、一元一次不等式组的解法,多数 学生在学习高中必修课五个模块的基础 上展开的.作为一个选修专题,教科书 在内容的呈现上保持了相对的完整性.
第二部分讨论了有关绝对值不等式的性质及 绝对值不等式的解法.绝对值是与实数有关 的一个基本而重要的概念,讨论关于绝对值 的不等式具有重要的意义.
• 绝对值三角不等式是一个基本的结论,教 科书首先引导学生借助于实数在数轴上的 表示和绝对值的几何意义,探究归纳出绝 对值三角不等式,接着联系向量形式的三 角不等式,得到绝对值三角不等式的几何 解释,最后用代数方法给出证明.这样, 数形结合,引导学生多角度认识这个不等 式,逐步深化对它的理解.利用绝对值三 角不等式可以解决一种特殊形式的函数的 极值问题,教科书安排了一个这样的实际 问题。
• 课程标准对于本专题的几个教学内容都明 确的教学要求,如:对于解含有绝对值的 不等式,只要求能解几种特殊类型的不等 式,不要求学生会解各种类型的含有绝对 值的不等式。对于数学归纳法证明不等式 的要求也只要求会证明一些简单问题。只 要求通过一些简单问题了解证明不等式的 基本方法,会利用所学的不等式证明一些 简单不等式,等等。
数学归纳法证明一些简单问题。 7.会用数学归纳法证明贝努利不等式:
(1+x)n >1+nx(x>-1,n为正整数)。
了解当n为实数时贝努利不等式也成立。
• 8.会用上述不等式证明一些简单问 题。能够利用平均值不等式、柯西 不等式求一些特定函数的极值。
• 9.通过一些简单问题了解证明不等 式的基本方法:比较法、综合法、 分析法、反证法、放缩法。

高考真题:选修4-5不等式选讲

高考真题:选修4-5不等式选讲

选修4-5不等式选讲一、填空题1.[2015•重庆卷,16]若函数f(x)=|x+1|+2|x-a|的最小值为5,则实数a=________.2.[2014•陕西卷,15A]设a,b,m,n∈R,且a2+b2=5,ma+nb=5,则m2+n2的最小值为________3. [2013•陕西卷,15(2)]在实数范围内,不等式||x-2|-1|≤1的解集为________.4. [2013•重庆卷,16]若关于实数x的不等式|x-5|+|x+3|<a无解,则实数a的取值范围是________.5. [2013•陕西卷,15A]已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为________.二.解答题1.[2018•全国Ⅰ,23]已知f(x)=|x+1|-|ax-1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.2.[2018•全国Ⅱ,23]设函数f(x)=5-|x+a|-|x-2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.3.[2018•全国Ⅲ,23]设函数f(x)=|2x+1|+|x-1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞),f(x)≤ax+b,求a+b的最小值.4.[2017•全国Ⅰ,23]已知函数f(x)=-x2+ax+4,g(x)=|x+1|+|x-1|.(1)当a=1时,求不等式f(x)≥g(x)的解集;(2)若不等式f(x)≥g(x)的解集包含[-1,1],求a的取值范围.5.[2017•全国Ⅱ,23]已知a>0,b>0,a3+b3=2.证明:(1)(a+b)(a5+b5)≥4;(2)a+b≤2.6.[2017•全国Ⅲ,23]已知函数f(x)=|x+1|-|x-2|.(1)求不等式f(x)≥1的解集;(2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.7.[2017•江苏卷,21D]已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明:ac+bd≤8.8.[2016•全国Ⅰ,23]已知函数f(x)=|x+1|-|2x-3|.(1)画出y=f(x)的图象;(2)求不等式|f(x)|>1的解集.9.[2016•全国Ⅲ,24]已知函数f(x)=|2x-a|+a.(1)当a=2时,求不等式f(x)≤6的解集;(2)设函数g(x)=|2x-1|.当x∈R时,f(x)+g(x)≥3,求a的取值范围.10.[2016•江苏卷,21D]设a>0,|x-1|<a3,|y-2|<a3,求证:|2x+y-4|<a.11.[2015•全国Ⅰ,24]已知函数f(x)=|x+1|-2|x-a|,a>0.(1)当a=1时,求不等式f(x)>1的解集;(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.12. [2015•陕西卷,24]已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值; (2)求at +12+bt 的最大值.13. [2014•全国Ⅰ,24]若a >0,b >0,且1a +1b =ab .(1)求a 3+b 3的最小值;(2)是否存在a ,b ,使得2a +3b =6?并说明理由.14. [2014•全国Ⅱ,24]设函数f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |(a >0).(1)证明:f (x )≥2;(2)若f (3)<5,求a 的取值范围.15. [2013•福建卷,21(3)]设不等式|x -2|<a (a ∈N *)的解集为A ,且32∈A ,12A .(1)求a 的值;(2)求函数f (x )=|x +a |+|x -2|的最小值.16.[2013•全国Ⅰ,24]已知函数f (x )=|2x -1|+|2x +a |,g (x )=x +3. (1)当a =-2时,求不等式f (x )<g (x )的解集;(2)设a >-1,且当x ∈[-a 2,12)时,f (x )≤g (x ),求a 的取值范围.17. [2013•辽宁卷,24]已知函数f (x )=|x -a |,其中a >1.(1)当a =2时,求不等式f (x )≥4-|x -4|的解集;(2)已知关于x 的不等式|f (2x +a )-2f (x )|≤2的解集为{x |1≤x ≤2},求a 的值.18.[2013•全国Ⅱ,24]设a ,b ,c 均为正数,且a +b +c =1,证明: (1)ab +bc +ca ≤13;(2)a 2b +b 2c +c 2a ≥1.19.[2016•全国Ⅱ,24]已知函数f (x )=⎪⎪⎪⎪x -12+⎪⎪⎪⎪x +12,M 为不等式f (x )<2的解集. (1)求M ;(2)证明:当a ,b ∈M 时,|a +b |<|1+ab |.20.[2015•全国Ⅱ,24]设a ,b ,c ,d 均为正数,且a +b =c +d ,证明: (1)若ab >cd ,则a +b >c +d ;(2)a +b >c +d 是|a -b |<|c -d |的充要条件.选修4-5 不等式选讲答案1.答案 -6或4解析 当a ≤-1时, f (x )=⎩⎪⎨⎪⎧-3x +2a -1(x ≤a ),x -2a -1(a <x ≤-1),3x -2a +1(x >-1),∴f (x )min =-a -1,∴-a -1=5,∴a =-6. 当a >-1时,f (x )=⎩⎪⎨⎪⎧-3x +2a -1(x ≤-1),-x +2a +1(-1<x ≤a ),3x -2a +1(x >a ),∴f (x )min =a +1,∴a +1=5,∴a =4.综上,a =-6或a =4.2.解析 A .运用柯西不等式求解.根据柯西不等式(ma +nb )2≤(a 2+b 2)(m 2+n 2),得25≤5(m 2+n 2),m 2+n 2≥5, m 2+n 2的最小值为 5.3.答案 [0,4]解析 原不等式可转化为-1≤|x -2|-1≤1,故0≤|x -2|≤2,解得0≤x ≤4,故所求不等式的解集为[0,4].4.答案 (-∞,8]解析 由绝对值的几何意义得|x -5|+|x +3|的最小值为8,若|x -5|+|x +3|<a 无解,应有a ≤8.故a 的取值范围是(-∞,8].5.答案 2解析 (am +bn )(bm +an )=ab (m 2+n 2)+mn (a 2+b 2)≥2mnab +mn (a 2+b 2)=mn (a +b )2=mn =2,当且仅当m =n =2时等号成立.一、解答题1.解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为(2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].2.解 (1)当a =1时,f (x )=⎩⎪⎨⎪⎧2x +4,x ≤-1,2,-1<x ≤2,-2x +6,x >2.可得f (x )≥0的解集为{x |-2≤x ≤3}.(2)f (x )≤1等价于|x +a |+|x -2|≥4.而|x +a |+|x -2|≥|a +2|,且当x =2时等号成立.故f (x )≤1等价于|a +2|≥4.由|a +2|≥4可得a ≤-6或a ≥2,所以a 的取值范围是(-∞,-6]∪[2,+∞).3.解 (1)f (x )=⎩⎪⎨⎪⎧-3x ,x <-12,x +2,-12≤x <1,3x ,x ≥1.y =f (x )的图象如图所示.(2)由(1)知,y =f (x )的图象与y 轴交点的纵坐标为2,且各部分所在直线斜率的最大值为3,故当且仅当a ≥3且b ≥2时,f (x )≤ax +b 在x ∈[0,+∞)上成立,因此a +b 的最小值为5.4.解 (1)当a =1时,不等式f (x )≥g (x )等价于 x 2-x +|x +1|+|x -1|-4≤0.①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1; 当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172.所以f (x )≥g (x )的解集为x -1≤x ≤-1+172.(2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2. 又f (x )在[-1,1]的最小值必为f (-1)与f (1)之一, 所以f (-1)≥2且f (1)≥2,得-1≤a ≤1. 所以a 的取值范围为[-1,1].5.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 2-b 2)2≥4. (2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b ) ≤2+3(a +b )24(a +b )=2+3(a +b )34,所以(a +b )3≤8,因此a +b ≤2. 6.解 (1)f (x )=⎩⎪⎨⎪⎧-3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2; 当x >2时,由f (x )≥1,解得x >2. 所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x .而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54, 且当x =32时,|x +1|-|x -2|-x 2+x =54,故m 的取值范围为⎝⎛⎦⎤-∞,54. 7.证明 由柯西不等式,得(ac +bd )2≤(a 2+b 2)(c 2+d 2).因为a 2+b 2=4,c 2+d 2=16, 所以(ac +bd )2≤64, 因此ac +bd ≤8.8.解 (1)f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.(2)由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或x >5. 所以|f (x )|>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <13或1<x <3或x >5. 9.解 (1)当a =2时,f (x )=|2x -2|+2.解不等式|2x -2|+2≤6得-1≤x ≤3. 因此f (x )≤6的解集为{x |-1≤x ≤3}. (2)当x ∈R 时,f (x )+g (x )=|2x -a |+a +|1-2x |≥|2x -a +1-2x |+a =|1-a |+a ,当x =12时等号成立,所以当x ∈R 时,f (x )+g (x )≥3等价于|1-a |+a ≥3.①当a ≤1时,①等价于1-a +a ≥3,无解. 当a >1时,①等价于a -1+a ≥3,解得a ≥2. 所以a 的取值范围是[2,+∞). 10.证明 因为|x -1|<a 3,|y -2|<a3,所以|2x +y -4|=|2(x -1)+(y -2)|≤2|x -1|+|y -2|<2×a 3+a3=a .11.解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0. 当x ≤-1时,不等式化为x -4>0,无解; 当-1<x <1时,不等式化为3x -2>0,解得23<x <1;当x ≥1时,不等式化为-x +2>0,解得1≤x <2.所以f (x )>1的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪23<x <2. (2)由题设可得,f (x )=⎩⎪⎨⎪⎧x -1-2a ,x <-1,3x +1-2a ,-1≤x ≤a ,-x +1+2a ,x >a .所以函数f (x )的图象与x 轴围成的三角形的三个顶点分别为A 2a -13,0,B (2a +1,0),C (a ,a +1),△ABC 的面积为23(a +1)2.由题设得23(a +1)2>6,故a >2.所以a 的取值范围为(2,+∞). 12.解 (1)由|x +a |<b ,得 -b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4,解得a =-3,b =1. (2)-3t +12+t =34-t +t ≤[(3)2+12][(4-t )2+(t )2] =24-t +t =4, 当且仅当4-t 3=t1,即t =1时等号成立, 故(-3t +12+t )max =4. 13.解 (1)由ab =1a +1b≥2ab,得ab ≥2,且当a =b =2时等号成立. 故a 3+b 3≥2a 3b 3≥42,且当a =b =2时等号成立. 所以a 3+b 3的最小值为4 2. (2)由(1)知,2a +3b ≥26ab ≥4 3.由于43>6,从而不存在a ,b ,使得2a +3b =6.14.解 (1)证明:由a >0,得f (x )=⎪⎪⎪⎪⎪⎪x +1a +|x -a |≥⎪⎪⎪⎪⎪⎪x +1a -(x -a )=1a +a ≥2.所以f (x )≥2.(2)f (3)=⎪⎪⎪⎪⎪⎪3+1a +|3-a |. 当a >3时,f (3)=a +1a , 由f (3)<5得3<a <5+212. 当0<a ≤3时,f (3)=6-a +1a , 由f (3)<5得1+52<a ≤3.综上,a 的取值范围是⎝ ⎛⎭⎪⎫1+52,5+212.15.解 (1)因为32∈A ,且12A ,所以⎪⎪⎪⎪32-2<a ,且⎪⎪⎪⎪12-2≥a ,解得12<a ≤32.又因为a ∈N *,所以a =1. (2)因为|x +1|+|x -2|≥|(x +1)-(x -2)|=3,当且仅当(x +1)(x -2)≤0,即-1≤x ≤2时取到等号,所以f (x )的最小值为3. 16.解 (1)当a =-2时,不等式f (x )<g (x )化为|2x -1|+|2x -2|-x -3<0.设函数y =|2x -1|+|2x -2|-x -3,则y =⎩⎪⎨⎪⎧ -5x ,x <12,-x -2,12≤x ≤1,3x -6,x >1.其图象如图所示.从图象可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}.(2)当x ∈[-a 2,12)时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3.所以x ≥a -2对x ∈[-a 2,12)都成立. 故-a 2≥a -2,即a ≤43. 从而a 的取值范围是(-1,43]. 17.解 (1)当a =2时,f (x )+|x -4|=⎩⎪⎨⎪⎧ -2x +6, x ≤2,2, 2<x <4,2x -6,x ≥4.当x ≤2时,由f (x )≥4-|x -4|得-2x +6≥4,解得x ≤1;当2<x <4时,f (x )≥4-|x -4|无解;当x ≥4时,由f (x )≥4-|x -4|得2x -6≥4,解得x ≥5;所以f (x )≥4-|x -4|的解集为{x |x ≤1或x ≥5}.(2)记h (x )=f (2x +a )-2f (x ),则h (x )=⎩⎪⎨⎪⎧ -2a , x ≤0,4x -2a ,0<x <a ,2a , x ≥a .由|h (x )|≤2,解得a -12≤x ≤a +12. 又已知|h (x )|≤2的解集为{x |1≤x ≤2}.所以⎩⎨⎧ a -12=1,a +12=2,于是a =3.18.解 证明:(1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca 得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1.所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13. (2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 故a 2b +b 2c +c 2a +(a +b +c )≥2(a +b +c ),即a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 19.解 (1)f (x )=⎩⎪⎨⎪⎧ -2x ,x ≤-12,1,-12<x <12,2x ,x ≥12.当x ≤-12时,由f (x )<2得-2x <2, 解得x >-1;当-12<x <12时,f (x )<2; 当x ≥12时,由f (x )<2得2x <2,解得x <1. 所以f (x )<2的解集M ={x |-1<x <1}.(2)证明:由(1)知,当a ,b ∈M 时,-1<a <1,-1<b <1,从而(a +b )2-(1+ab )2=a 2+b 2-a 2b 2-1=(a 2-1)(1-b 2)<0.因此|a +b |<|1+ab |.20.证明 (1)因为(a +b )2=a +b +2ab ,(c +d )2=c +d +2cd ,由题设a +b =c +d ,ab >cd 得(a +b )2>(c +d )2. 因此a +b >c +d .(2)①若|a -b |<|c -d |,则(a -b )2<(c -d )2,即(a +b )2-4ab <(c +d )2-4cd .因为a +b =c +d ,所以ab >cd .由(1)得a +b >c +d . ②若a +b >c +d ,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd.于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。

ZW-高考数学 大一轮复习讲义课件:选修4-5 不等式选讲 2

ZW-高考数学 大一轮复习讲义课件:选修4-5 不等式选讲 2

No Image
第十九页,编辑于星期六:六点 四十九分。
No Image
第二十页,编辑于星期六:六点 四十九分。
Байду номын сангаас
第二十一页,编辑于星期六:六点 四十九分。
No Image
第二十二页,编辑于星期六:六点 四十九分。
No Image
第二十三页,编辑于星期六:六点 四十九分。
No Image
第二十四页,编辑于星期六:六点 四十九分。
第十二页,编辑于星期六:六点 四十九分。
第十三页,编辑于星期六:六点 四十九分。
第十四页,编辑于星期六:六点 四十九分。
热点命题·突破 02
课堂升华 强技提能
第十五页,编辑于星期六:六点 四十九分。
第十六页,编辑于星期六:六点 四十九分。
第十七页,编辑于星期六:六点 四十九分。
第十八页,编辑于星期六:六点 四十九分。
智维私教
985/211重点高校
大学生实时一对一
人教A版·高中数学·一轮提升
中国政法大学 王洁老师
第一页,编辑于星期六:六点 四十九分。
选考部分
第二页,编辑于星期六:六点 四十九分。
选修4-5
不等式选讲
第三页,编辑于星期六:六点 四十九分。
第二节 不等式的证明
第四页,编辑于星期六:六点 四十九分。
第二十五页,编辑于星期六:六点 四十九分。
No Image
第二十六页,编辑于星期六:六点 四十九分。
第二十七页,编辑于星期六:六点 四十九分。
No Image
第二十八页,编辑于星期六:六点 四十九分。
No Image
第二十九页,编辑于星期六:六点 四十九分。

2015届高三数学(文)湘教版一轮复习配套课件:选修4-5 第1节 绝对值不等式

2015届高三数学(文)湘教版一轮复习配套课件:选修4-5 第1节 绝对值不等式

数学
首页
上一页
下一页
末页
第二十三页,编辑于星期五:九点 四十三分。
第一节 绝对值不等式 结束
[针对训练] (2013·辽宁模拟)已知 f(x)=|x+a|+|x-2|. (1)当 a=-1 时,解关于 x 的不等式 f(x)>5; (2)已知关于 x 的不等式 f(x)+a<2 014(a 是常数)的解集是非空集 合,求实数 a 的取值范围. 解:(1)构造函数 g(x)=|x-1|+|x-2|-5,
2.形如|x-a|+|x-b|≥c(c>0)的不等式解法在讨论时应 注意分类讨论点处的处理及 c 的符号判断,若 c<0 则不等式 解集为 R.
数学
首页
上一页
下一页
末页
第四页,编辑于星期五:九点 四十三分。
第一节 绝对值不等式 结束
[试一试] 1.已知不等式|2x-t|+t-1<0 的解集为(-12,12),求 t 的值.
求实数 a 的值. 解:原不等式可化为 a-1<x<a+1,又知其解集为(1,3),
所以通过对比可得 a=2.
数学
首页
上一页
下一页
末页
第十一页,编辑于星期五:九点 四十三分。
第一节 绝对值不等式 结束
3.如果关于 x 的不等式|x-3|-|x-4|<a 的解集不是空集,求 实数 a 的取值范围. 解:注意到||x-3|-|x-4||≤|(x-3)-(x-4)|=1,-1≤|x- 3|-|x-4|≤1.若不等式|x-3|-|x-4|<a 的解集是空集,则有 |x-3|-|x-4|≥a 对任意的 x∈R 都成立,即有(|x-3|-|x- 4|)min≥a,a≤-1.因此,由不等式|x-3|-|x-4|<a 的解集不 是空集可得,实数 a 的取值范围是 a>-1.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修4-5 不等式选讲
一、填空题
1.不等式|2x -1|<3的解集为________.
解析 ①当2x -1≥0,即x ≥12时,不等式变为2x -1<3,得x <2,∴12≤x <
2.②当2x -1<0即x <12时,不等式变为-(2x -1)<3即x >-1,∴-1<x <12,
综上不等式解集为{x |-1<x <2}.
答案 (-1,2)
2.已知x >0,则函数y =x (1-x 2)的最大值为________.
解析 ∵y =x (1-x 2),∴y 2=x 2(1-x 2)2=2x 2(1-x 2)(1-x 2)·12.
∵2x 2+(1-x 2)+(1-x 2)=2,
∴y 2
≤12⎝ ⎛⎭⎪⎫2x 2+1-x 2+1-x 233=427. 当且仅当2x 2=1-x 2
,即x =33时取等号. ∴y ≤239.∴y 的最大值为239.
答案 239
3.对于x ∈R ,不等式|x +10|-|x -2|≥8的解集为________. 解析 法一 (零点分段法)由题意可知,
⎩⎨⎧ x ≤-10,-x -10+x -2≥8或⎩⎨⎧ -10<x <2,x +10+x -2≥8或⎩⎨⎧
x ≥2,x +10-x +2≥8, 解得x ≥0,故原不等式的解集为{x |x ≥0}.
法二 (几何意义法)如图,在数轴上令点A 、B 的坐标分别为-10,2,在x 轴上任取一点P ,其坐标设为x ,则|P A |=|x +10|,|PB |=|x -2|,观察数轴可知,要使|P A |-|PB |≥8,则只需x ≥0.故原不等式的解集为{x |x ≥0}.
答案 {x |x ≥0}
4.若不等式|x +1|+|x -2|≥a 对任意x ∈R 恒成立,则a 的取值范围是________. 解析 由于|x +1|+|x -2|≥|(x +1)-(x -2)|=3.所以只需a ≤3即可.
答案 (-∞,3]
5.若不等式|x +1|+|x -3|≥a +4a 对任意的实数x 恒成立,则实数a 的取值范围是
________.
解析 当a <0时,显然成立;
当a >0时,∵|x +1|+|x -3|的最小值为4,
∴a +4a ≤4.∴a =2.
综上可知a 的取值范围是(-∞,0)∪{2}.
答案 (-∞,0)∪{2}
6.设x ,y ,z ∈R ,若x 2+y 2+z 2=4,则x -2y +2z 的最小值为________时,(x ,y ,z )=________.
解析 ∵(x -2y +2z )2≤(x 2+y 2+z 2)[12+(-2)2+22]=4×9=36,∴x -2y +2z
最小值为-6,此时x 1=y -2=z 2
. 又∵x 2+y 2+z 2=4,∴x =-23,y =43,z =-43.
答案 -6 ⎝ ⎛⎭
⎪⎫-23,43,-43 7.若对任意x >0,x x 2+3x +1
≤a 恒成立,则a 的取值范围是________. 解析 ∵a ≥x x 2+3x +1=1x +1x +3
对任意x >0恒成立,设u =x +1x +3,
∴只需a ≥1u 恒成立即可.
∵x >0,∴u ≥5(当且仅当x =1时取等号).
由u ≥5,知0<1u ≤15,∴a ≥15.
答案 ⎣⎢⎡⎭
⎪⎫15,+∞
8.已知h >0,a ,b ∈R ,命题甲:|a -b |<2h :命题乙:|a -1|<h 且|b -1|<h ,则甲是乙的________条件.
解析 |a -b |=|a -1+1-b |≤|a -1|+|b -1|<2h ,故由乙能推出甲成立,但甲成立不能推出乙成立,所以甲是乙的必要不充分条件.
答案 必要不充分
二、解答题
9.对于任意实数a (a ≠0)和b ,不等式|a +b |+|a -2b |≥|a |(|x -1|+|x -2|)恒成立,试求实数x 的取值范围.
解 原不等式等价于|a +b |+|a -2b ||a |≥|x -1|+|x -2|,设b a =t ,则原不等式变为|t +1|+|2t -1|≥|x -1|+|x -2|对任意t 恒成立.
因为|t +1|+|2t -1|=⎩⎪⎨⎪⎧ 3t ,t ≥12,-t +2,-1<t <12,-3t ,t ≤-1,
在t =12时取到最小值为32.
所以有32≥|x -1|+|x -2|=⎩⎨⎧
2x -3,x ≥2,1,1<x <2,
3-2x ,x ≤1,
解得x ∈⎣⎢⎡⎦⎥⎤34,94. 10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1].
(1)求m 的值;
(2)若a ,b ,c ∈R +,且1a +12b +13c =m ,求证:a +2b +3c ≥9.
解 (1)因为f (x +2)=m -|x |,
所以f (x +2)≥0等价于|x |≤m ,
由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }.
又f (x +2)≥0的解集为[-1,1],故m =1.
(2)由(1)知1a +12b +13c =1,又a ,b ,c ∈R +,由柯西不等式得
a +2
b +3
c =(a +2b +3c )⎝ ⎛⎭
⎪⎫1a +12b +13c ≥⎝
⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。

相关文档
最新文档