西师大六年级数学上册全册教案之:第4课时 分数乘除混合运算

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西师大六年级数学上册全册教案之:第4课时分数乘除混合运算
第4课时分数乘除混合运算
【教学内容】
教科书第36页例5、试一试,练习九第10、12题及思考题。

【教学目标】
1.知识与技能:运用分数乘除法的计算方法解决分数连除、分数乘除混合的运算。

2.过程与方法:引导学生积极参与数学活动,提高计算能力,培养认真、仔细的习惯。

3.情感态度:通过相互交流、相互评价,培养学生的分析、判断、推理能力和反思意识。

【重点难点】
重点:用方程的方法。

难点:解决分数除法的实际问题
【教学过程】
一、回顾旧知,引入课题
1.计算。

138÷7/3 146÷8/5 2/8÷3/56
小结:如何计算分数除法?
2.导入新课。

这节课我们学习分数连除和乘除混合运算。

板书:分数连除和乘除混合运算。

二、探究新知
1.出示例5(1):8/9÷2/3÷4/7,学生审题
(1)观察算式特点,说说这是一道什么算式?使学生得出:这是一道分数连除算式。

(2)小组讨论,交流:根据分数除法的计算法则,分数连除应当怎样计算?
(3)学生试做,一人板演,其余学生做在练习本上。

板书:8/9÷2/3÷4/7
8/9÷2/3÷4/7=8/9×3/2÷4/7
学生审题
(4)检查计算结果,集体订正。

(5)交流汇报:哪种方法你比较喜欢?为什么?
2.出示例5(2):2/5×3/4÷6/7,学生审题。

(1)观察,说说这是一道什么算式?
小结:这是一道分数乘除混合运算的算式。

(2)比一比,看谁能又对又快地计算出结果。

(3)指名板演,交流方法,选择优化的算法。

板书:2/5×3/4÷6/7
=2/5×3/4×7/6
3.从例5的计算中可以看出:在分数连除或者分数乘除混合运算中,遇到除以一
个数时,应当怎么办?
启发学生总结出:在分数连除或者分数乘除混合运算中,遇到除以一个数时,只要乘以这个数的倒数就可以了。

三、巩固深化
1.教科书第36页“试一试”。

(1)学生独立完成。

(2)指名学生口答计算结果,集体订正。

(3)说说如何计算分数连除或者分数乘除混合运算?
2.练习九第1题。

(1)一人板演,其余学生做在练习本上。

(2)检查计算结果,集体订正。

3.练习九第12题。

先独立思考,打8折是什么意思?然后再选择自己喜欢的方法解答,汇报结果,相互进行评价。

4.思考题。

先独立思考,再小组讨论、交流、合作,汇报展示。

四、课堂小结
今天我们对什么知识进行了探究?怎样计算分数除以整数?
五、作业设计
1.课堂作业
本次课堂作业请登录查询下载“课堂作业设计”。

(word版,可修改)
2.课后作业
敬请选用《新领程》相关习题。

【板书笔记】
【教学反思】
本堂课能为学生创设自主探索的机会,引导学生通过自己的实践、探索和体验来获取知识,培养学生运用自己学过的知识去解决新问题的能力。

一、六年级数学上册应用题解答题
1.一辆大巴从广州开往韶关,行了一段路程后,离韶关还有210千米,接着又行了全程的
20%,这时已行路程与未行路程的比是3:2。

广州到韶关两地相距多少千米?(用方程解)
2.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。

小圆的半径是2cm ,大圆的半径是6cm 。

(1)当小圆从大圆上的点A 出发,沿着大圆滚动,第一次回到点A 时,小圆的圆心走过路线的长度是多少厘米?
(2)小圆未滚动时,小圆上的点M 与大圆上的点A 重合,从小圆滚动后开始计算,当点M 第10次与大圆接触时,点M 更接近大圆上的点( )。

(括号里填A 、B 、C 或D 。

) 3.如图,用两个完全相同的正方形拼成一个长方形,图1是在长方形内所作的最大半圆,图2是长方形外的最小半圆。

我们知道:
①图1中,长方形的面积与半圆的面积比为 4
π。

②图2中,半圆的面积与长方形的面积比为
2
π。

请从上面两个结论中选择一个,写出你的证明过程。

4.小方桌的边长是1米,把它的四边撑开就成了一张圆桌(如图),圆桌的面积比原来小方桌的面积多多少平方米(即求阴影部分的面积是多少)?
5.列出综合算式,不计算。

一根电线先截去它的40%,还剩下12米,再截去多少米后,这时正好剩下这根电线全长的
1
4

6.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?
7.赵叔叔加工一批零件,计划每小时加工125个,6小时完成,实际工作效率提高20%。

实际多少时间可以完成?
8.六年级一、二、三3个班献爱心捐书,一班捐的本数是三个班总数的2
5
,二、三两个班
捐的本数比是4:3.已知三个班捐书总数为700本.求三班捐了多少本?
9.2019年12月新野到郑州的高铁正式开通,现在从新野乘高铁约需1小时30分到郑州,而乘大巴车到郑州约需4.5小时,现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几?速度提高了百分之几?
10.甲车间有男工45人,女工36人;乙车间女工人数是男工人数的120%.如果把两个车间的工人合在一起,那么男工和女工的人数正好相等.乙车间共有工人多少人?
11.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.
(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?
(2)甲饮料周日的销售比周一多百分之几?
(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?
12.在一次做“有趣的平衡”的综合实践中,小林拿来一根粗细均匀的竹竿,他从左端量到
1.2米处做一个记号A,再从右端量到1.2米处做一个记号B。

这时,他发现A、B之间的长度恰好是全长的20%,这根竹竿长度可能是多少米?(提示:请试着画图理解,然后列式求得两个不同的答案)
13.一个疏菜大棚里种植菜椒的面积是450平方米,西红柿的种植面积比菜椒少20%,比黄瓜多12.5%,这个大棚里种植黄瓜的面积是多少平方米?
14.用黑、白两种正方形的瓷砖拼成大的正方形图形,要求中间用白瓷砖,四周一圈用黑瓷砖。

(如图所示)
(1)填写下列表格。

想一想,这些数量之间有什么关系?
大正方形每边的块数3
黑瓷砖块数8
(2)如果所拼的图形中,用了64块白瓷砖,那么,黑瓷砖用了多少块?
15.按照下图方式摆放餐桌和椅子。

照这样摆下去,要坐34位客人需要多少张餐桌?(用方程解)
16.仔细观察下面的点子图,看看有什么规律.
(1)根据上面图形与数的规律接着画一画,填一填.
(2)探索填空:按照上面的规律,第6个点子图中的点子数是;第10个点子图中的点子数是.
17.美美服装公司赶制360件演出服。

甲组单独做需要8天,乙组单独做需要10天,丙组单独做需要12天。

(1)甲、乙两组合作,需要几天完成?
(2)如果甲组先完成任务的40%,剩下的任务按5:4分派给乙、丙两组。

甲、乙、丙三个组分别做了多少件演出服?
18.下图中,以圆的半径为边长的正方形的面积是75平方厘米.求圆的面积.
19.张师傅,王师傅,李师傅和孙师傅合做一批零件,张师傅做的个数与其他三人零件总数比是1:4,王师傅做的个数与其他三人零件总数比是2:3,李师傅做的个数与其余三人零件总数比是3:5,孙师傅做了90个零件.张师傅做了多少个零件?
20.甲、乙两人共同完成一项工程。

甲、乙一起做6天完成了工程的2
3
,剩下的由甲独做8
天完成,按完成的工作量分配工资,甲获得工资7000元,乙应得工资多少元?
21.聪聪读一本故事书,读完的页数比这本书总页数的1
3
还多20页。

此时,读完的页数与
未读页数的比是5:7,这本书一共有多少页?
22.打一份稿件,小红需要8小时,小明需要10小时,两人合作打了4小时,还剩5000个字,这份稿件一共有多少个字?
23.学校买来一批书,分给高年级2
5
后,剩下的按4∶3的比分给中年级和低年级。

已知中
年级分得240本,这批书一共有多少本?
24.小红读一本故事书,第一天读了全书的1
6
,第二天读了36页。

这时已读页数与剩下页
数的比是5∶7,小红再读多少页就能读完这本书?
25.一件工作,由甲单独做要15天完成,现在由甲、乙两人各做3天后,余下的工作由乙
单独做。

如果甲、乙两人工作效率的比是2∶3,乙完成这件工作还需要多少天?
26.仙居目前的居民用电电价是0.55元/千瓦时。

为了倡导建设“节约型社会”,鼓励市民安
装分时电表实行峰谷时谷电价,具体收费标准如下:
时段峰时(8:00~22:00)谷时(22:00~次日8:00)每千瓦时电价(元)0.630.43
孔强家一年用电4800千瓦时,其中峰时用电量与谷时用电量的比是5:7,如果孔强家安装
分时电表,一年能节约多少钱?
27.一辆客车和一辆货车上午8:00同时分别从甲、乙两地出发相向而行,客车每小时行驶
60千米,当行驶了全程的
7
12
时与货车相遇。

已知货车行驶完全程要8小时,两车相遇是什
么时刻?甲、乙两地间的路程是多少千米?
28.甲、乙二人同时从A地走向B地,当甲走了全程的5
7
时,乙走了全程的
3
5
;当甲离B
地还有1
7
时,乙离B地还有50米,A、B两地相距多少米?
29.六(1)班女生人数比全班人数的3
5
多2人,男生有22人,全班有多少人?
30.一项工程,甲乙两队合作需12天完成,乙丙两队合作需15天完成,甲丙两队合作需20天完成,如果由甲乙丙三队合作需几天完成?
31.一个食堂买回一批面粉,第一天吃了1
5
,第二天吃了40 kg,第三天吃的等于前两天吃
的总和,最后还剩16 kg.这批面粉有多少千克?
32.张明和李丽进行口算比赛,两人在10分钟的时间里一共完成了230道题,张明比李丽
多做了1
11
.他们两人各做了多少道题?
33.一辆大巴车从濮阳开往郑州,行了一段路程后,离郑州还有135千米,接着又行了全程的20%,这时已行路程和未行路程的比是3∶2,濮阳与郑州相距多少千米?
34.一杯盐水,第一次加入一定量的水后,盐占盐水的20%;第二次又加入同样多的水,盐水的含盐百分比变为15%;
(1)第二次又加入同样多的水,盐水的含盐百分比变为15%,则盐:盐水=(________:________)。

(2)若第三次再加入同样多的水,含盐率为百分之几?
35.有一座四层楼房,每个窗户的4块玻璃分别涂上红色和白色,每个窗户代表一个数字,每层楼有三个窗户,由左向右表示一个三位数,四个楼层表示的三位数有:791、275、362、612。

问:第二层楼表示哪个三位数?
36.观察下面点阵中的规律,回答下面的问题:
①方框内的点阵包含了()个点。

②照这样的规律,第12个点阵中应包含多少个点?
我是这样想的:
37.如图所示,两个圆周只有一个公共点A,大圆直径AB为48厘米,小圆直径AC为30厘米,甲、乙两虫同时从A点出发,甲虫以每秒0.5厘米的速度顺时针沿大圆圆周爬行,乙虫以同样速度顺时针沿小圆圆周爬行(本题 取3)
(1)问乙虫第一次爬回到A点时,需要多少秒?
(2)两虫沿各自圆周不间断地反复爬行,能否出现这样的情况:乙虫爬回到A点时甲虫恰好爬到B点?如果可能,求此时乙虫至少爬了几圈;如果不可能,请说明理由。

38.一项工程,甲单独做30天完成,乙单独做40天完成,现在两人一起做,共用25天完成,其间甲休数是乙休息天数的2倍。

乙休息几天?
39.水果店运来一批橘子,第一天卖出总数的40%,第二天卖出140千克,剩下的与卖出的重量比是1:3,这批橘子重多少千克?
40.
为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同种植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵.五、六年级分别种植了多少棵?
【参考答案】***试卷处理标记,请不要删除
一、六年级数学上册应用题解答题
1.350千米 【分析】
分析题干,根据这时已行路程与未行路程的比是3∶ 2,则未行路程占全程的
25,而全程的2
5
与全程的20%的和是210千米,可得到等量关系广州、韶关两地相距多少千米×(20%+2
5
)=210,据此列出方程解答即可。

【详解】
解:设广州到韶关两地相距x 千米。

220%2105x ⎛
⎫+= ⎪⎝

3
2105
x = 333210555
x ÷=÷ 350x =
答:广州到韶关两地相距350千米。

【点睛】
本题考查列方程解决问题、百分数、比的意义,解答本题的关键是根据题意找到等量关系:广州、韶关两地相距多少千米×(20%+2
5
)=210。

2.(1)50.24厘米 (2)B 【分析】
(1)当小圆从大圆上的点 A 出发,沿着大圆滚动,第一次回到点 A 时,小圆的圆心走过路线的长度是半径为6+2=8厘米的圆一周的长度;
(2)小圆的半径是 2cm ,大圆的半径是 6cm ,则小圆滚动3圈后才能回到A 点,这个过程中M 点与大圆接触3次;M 第9次与大圆接触时,小圆又回到A 点,小圆第10次与大圆接触时,是走了大圆一周的1
3
,即12.56厘米,更接近于B 点。

【详解】
(1)2×3.14×(2+6) =2×3.14×8 =50.24(厘米)
答:小圆的圆心走过路线的长度是50.24厘米。

(2)根据分析可得,当点 M 第10次与大圆接触时,点 M 更接近大圆上的点B 。

【点睛】
本题考查圆的周长,解答本题的关键是分析圆的运动轨迹。

3.证明①,设正方形的边长为r,S长=2r×r=2r2,S半=πr2× 1
2
=
1
2
πr2,S长:S半=2 2:
1 2πr2=
4。

证明②,设半圆的半径为r,S半=1
2
πr2,S长=
1
2
πr2×4÷2=r2,S半:S长=
1
2
πr2:r2=
1
2
π。

【详解】
证明①,设正方形的边长为r,长方形的面积=长×宽,所以图中S长=2r×r=2r2,半圆的面
积=πr2×1
2
,所以图中S半=πr2×
1
2
=
1
2
πr2,然后作比即可;
证明②,设半圆的半径为r,半圆的面积=πr2×1
2
,所以图中S半=
1
2
πr2,内长方形的
面积=半圆的面积×4÷π,所以图中S长=1
2
πr2×4÷2=r2,然后作比即可。

4.57平方米
【解析】
【分析】
如图,连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,且每一条直角边都是圆的半径;一个等腰直角三角形的面积就是正方形面积的,由于正方形的面积是1×1=1平方米,所以一个等腰直角三角形的面积就是平方米,即r2÷2=,可求得r2是,进而求得圆桌的面积,再求出面积差.
【详解】
连接正方形的对角线,把正方形平均分成了4个等腰直角三角形,如下图:
每一条直角边都是圆的半径;
正方形的面积:1×1=1(平方米) 小等腰直角三角形的面积就是平方米
即:r 2÷2=,r 2=;
圆桌的面积:3.14×r 2
=3.14×
=1.57(平方米);
1.57﹣1=0.57(平方米);
答:圆桌的面积比原来小方桌的面积多0.57平方米.
5.()112140%140%4
⎛⎫
÷-⨯-- ⎪⎝
⎭ 【分析】
根据题意可得,12米占这根电线总长度的()140%-,据此求出这根电线总长度。

因为第二次截取的长度占这根电线长度的1140%4⎛⎫-- ⎪⎝⎭,最后求出第二次截取的长度即可。

【详解】
()112140%140%4⎛⎫÷-⨯-- ⎪⎝
⎭ =20×0.35
=7.5(米)
答:需再截去7.5米,这时正好剩下这根电线全长的四分之一。

【点睛】
本题考查百分数,解答本题的关键是找准单位“1”。

6.420米
【分析】
第一天挖了全长的20%,第二天比第一天多挖72米,此时两天挖好两个全长的20%多72米,已挖的部分与未挖部分的比是4∶3,已经挖好的部分占全长的
443+,则72米对应的分率是全长的
443+去掉两个20%,用分量÷分率即可求出全长。

【详解】
72÷(
443+-20%-20%) =72÷635
=72×35 6
=420(米)
答:这条水渠长420米。

【点睛】
要分析找准单位“1”的量及72米所对应的分率。

7.5小时
【分析】
计划每小时加工125个,即为工作效率,实际工作效率提高20%,那么每小时完成150个,求出工作总量,然后除以实际的工作效率,得到实际的时间。

【详解】
()
125120%
⨯+
125 1.2
=⨯
150
=(个)
1256150
⨯÷
750150

5
=(小时)
答:实际5小时可以完成。

【点睛】
本题考查的是工程问题,=÷
工作时间工作总量工作效率,随后也可以按照正反比例求解。

8.180本
【详解】
700×2
5
=280(本)
(700﹣280)×
3 43 +
=420×3 7
=180(本)
答:三班捐书180本.
9.67%;200%
【分析】
①要求现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几,可用乘大巴的时间减去乘高铁的时间,再用这个差除以乘大巴的时间,即(大-小)÷大,就是所求;
②可以把路程看作单位“1”,则乘高铁的速度就是
1
1.5
、乘大巴的速度是
1
4.5
,依据(大-小)
÷小,可计算出速度提高了百分之几。

【详解】
①1小时30分=1.5小时
(4.5-1.5)÷4.5
=3÷4.5
≈66.67%
②(11.5-14.5
)÷14.5 222399
⎛⎫=-÷ ⎪⎝⎭ 4299=
÷ 200%=
答:现在乘高铁到郑州用的时间比乘大巴车到郑州节省66.67%;速度提高了200%。

【点睛】
本题分别考查了一个数比另一个数多百分之几、一个数比另一个数少百分之几。

其中第二小问还要调动有关单位“1”的知识。

10.99人
【解析】
【详解】
45﹣36=9(人)
120%:1=6:5
9÷(6﹣5)×(6+5)
=9×11
=99(人)
答:乙车间共有工人99人.
11.(1)周二;(2)40%;(3)286箱, 270箱
【详解】
(1)从统计图中看出周二时,两种品牌饮料的销售量相差最大;
(2)(350﹣250)÷250
=100÷250
=40%
答:甲饮料周日的销售比周一多40%。

(3)(350+250+270+200+230+320+385)÷7
=2005÷7
≈286(箱)
(300+220+200+230+250+320+370)÷7
=1890÷7
=270(箱)
答:甲饮料这个星期平均每天销售约286箱,乙饮料这个星期平均每天销售270箱.12.2米或3米
【分析】
方法一:如图所示,这根竹竿的距离小于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1+A、B之间的长度是全长的百分之几);
方法二:如图所示,这根竹竿的距离大于两次量出的米数之和,所以这根竹竿的长度=(第一量出的米数+第二次量出的米数)÷(1-A、B之间的长度是全长的百分之几)。

【详解】

(1.2+1.2)÷(1+20%)=2(米)

(1.2+1.2)÷(1-20%)=3(米)
答:这根竹竿可能是2米或3米。

13.450×(1–20%)÷(1+12.5%)=320(平方米)
【详解】

14.(1)4,5,6,7
12,16,20,24
(2)36块
【分析】
(1)大正方形每边的块数每增加1块,所用的黑瓷砖块数就增加4块;
(2)白瓷砖的总块数是每个边上的块数的平方,而黑瓷砖的总数量是白瓷砖一边的数量加1的四倍。

【详解】
(1)
大正方形每边的块数增加1块,所用的黑瓷砖数就增加4块;
(2)64=8×8;
(8+1)×4
=9×4
=36(块);
答:黑瓷砖用了36块。

【点睛】
解答本题的关键是根据图形找到规律,再根据规律来求解。

15.8张
【分析】
设有n张桌子,根据桌子数量×4+2=能坐的人数,列出方程解答即可。

【详解】
解:设有n张桌子。

4n+2=34
4n=32
n=8
答:要坐34位客人需要8张餐桌。

【点睛】
关键是看懂图示,找到等量关系。

16.(1)
(2)27;65
【详解】
(2)第6个点子图中的点子数是:
2+3+4+5+6+7
=2+5+(3+7+4+6)
=27(个)
第10个点子图中的点子数是:
2+3+4+5+6+7+8+9+10+11
=13×5
=65(个)
答:第6个点子图中的点子数是27个,第10个点子图中的点子数是65个.
17.(1)409
天 (2)甲:144件
乙:120件
丙:96件
【分析】
(1)工作时间=工作总量÷工作效率,工作效率=工作总量÷工作时间,据此解答即可; (2)甲组先完成任务的40%,剩下的任务占60%,求出剩下的任务;剩下的任务按 5∶4 分派给乙、丙,则乙完成的占剩下任务的九分之五,丙完成的占剩下任务的九分之四。

【详解】
(1)111810⎛⎫÷+ ⎪⎝⎭ 9140
=÷ 409
=(天) 答:甲、乙两组合作,需要
409天完成。

(2)360×40%=144(件)
()360140%⨯-
3600.6⨯=
216=(件)
521612054⨯
+=(件) 42169654
⨯+=(件) 答:甲、乙、丙三个组分别做了144,120,96件演出服。

【点睛】
本题考查工程问题、百分数、按比例分配,解答本题的关键是掌握按比例分配解决问题的方法。

【详解】
2222753.1475235.5r cm S r cm π===⨯=圆()
()
19.720个
【详解】
90÷(1﹣11+4﹣22+3﹣33+5)×11+4
=90÷(1﹣1
5﹣25﹣38)×15
=90÷140×15
=3600×1
5
=720(个);
答:张师傅做了720个零件.
20.5000元
【分析】
把一项工程看作单位“1”,根据工作总量÷工作时间=工作效率,可求出甲的工作效率,再根据具体时间可求出甲6天的工作总量,进而求得乙的工作总量。

用甲的工资除以甲的工作总量即可求出完成工程总工资,进而求得乙的工资。

【详解】 甲的工作效率为:2(1)83
-÷ =1138
⨯ =124
甲6天完成的工作量:
116244⨯= 乙的工作总量:23-14=512
甲的工作总量:1-
512=712 770007000500012
÷-=(元) 答:乙应得工资5000元。

【点睛】
本题考查工程问题,把一项工程看作单位“1”是解题的关键。

【分析】
可设这本书一共有x 页,根据读完的页数与未读页数的比是5:7可知,已读的页数是整本书的557+;据此根据已读的页数又是这本书总页数的13
还多20页列方程,求解即可。

【详解】
解:设这本书一共有x 页。

1520357
x x +=+ 12012
x = 240x =
答:这本书一共有240页。

【点睛】
列方程解应用问题,认真读题,找出等量关系,列出方程是解题关键。

22.50000个
【分析】
先计算两人4小时完成了几分之几,求出剩下的5000字占全部的几分之几,再求出总的字数。

【详解】
1188
÷= 111010
÷= 11981040
+= 9944010
⨯= 9111010
-= 150005000010÷
=(个) 答:这份稿件一共有50000个字。

【点睛】
量率对应求单位“1”,在分数除法应用题中广泛应用,但量和率一定要对应。

23.700本
【分析】 用24074÷ 算出的是分给高年级25后剩下的书的本数,420本对应的分率是 215⎛⎫- ⎪⎝⎭
,所以
用242015⎛⎫÷- ⎪⎝⎭
可求出这批书一共有多少本。

【详解】 240÷47
=420(本) 420÷(1)25
- =420÷35
=700(本)
答:这批书一共有700本。

【点睛】
本题考查按比例分配、分数除法,解答本题的关键是掌握按比例分配解题的方法。

24.84页
【分析】
设这本书有x 页,通过已读页数与剩下页数的比可知,已读页数占总页数的
557+,未读页数占总页数的757
+,根据总页数×第一天读的对应分率+第二天读的页数=总页数×已读页数的对应分率,列出方程求出全书总页数,用全书总页数×未读页数的对应分率即可。

【详解】
解:设这本书有x 页。

1536657
15366125136126
1364
x x x x x x x +=++=-== 144x =
77144144845712
⨯=⨯=+(页) 答:小红再读84页就能读完这本书。

【点睛】
关键是找到等量关系,理解分数乘法和比的意义。

25.5天
【分析】 甲的工作效率是115,根据甲、乙的工作效率之比,求出乙的工作效率是110,甲、乙两人各
做3天后,还剩下1
,交给乙单独做还需要5天。

2
【详解】
1
÷=
115
15
11
⨯=
÷23
1510
11
133
-⨯-⨯
1510
13
=--
1
510
1
=
2
11
÷=(天)
5
210
答:乙完成这件工作还需要5天。

【点睛】
工程问题,主要是利用工作效率、工作时间、工作总量的关系求解,
工作效率工作时间工作总量。

⨯=
26.176元
【分析】
根据单价×数量=总价,求出孔强家安装分时电表的费用;根据比的意义,用总用电量÷峰时和谷时用电量总份数,求出一份数对应用电量,一份数用电量分别乘峰时和谷时对应份数,求出峰时和谷时用电量,峰时用电量×单价+谷时用电量×单价=安装分时电表总费用,再求出安装前和安装后的费用差即可。

【详解】
4800×0.55=2640(元)
4800÷(5+7)
=4800÷12
=400(千瓦时)
400×5=2000(千瓦时)
400×7=2800(千瓦时)
2000×0.63+2800×0.43
=1260+1204
=2464(元)
2640-2464=176(元)
答:装分时电表,一年能节约176元钱。

【点睛】
关键是理解比的意义,按比例分配应用题关键是先求出一份数。

27.11时20分;2400
7
千米
【分析】
根据题意可知,相同的时间内,客车行驶了全程的
7
12
,货车行驶了全程的
5
12
,则两车行驶
的路程比为7∶5;当时间一定是,路程比和速度比相同,则两车的速度比也为7∶5,用60÷7×5即可求出货车的速度,用货车的速度乘时间即可求出全程;用总路程除以它们的速度和即可求出相遇的时间,再加上开始的时间,即可求出相遇的时刻。

【详解】
根据题意可知,两车的速度比为7∶5;
60÷7×5
=60
7
×5
=300
7
(千米);
300 7×8=
2400
7
(千米);
2400 7÷(60+
300
7

=2400
7
÷
720
7
=31
3
(小时);
8时+31
3
小时=11
1
3
时,即11时20分;
答:两车相遇是11时20分,甲、乙两地间的路程是2400
7
千米。

【点睛】
根据题意,先求出两车的速度比是解答本题的关键,进而求出货车的速度和全程,从而解答。

28.1250
7

【详解】
相同时间内:甲乙的速度比就是5
7

3
5
=25:21;
乙的速度就是甲的21
25
,相同时间内,已走的路程就是甲的
21
25
1﹣1
7

6
7
6 7×
21
25

18
25
50÷(1﹣18 25

=50÷7 25
=1250
7
(米)
答:A、B两地相距1250
7
米.
29.60人【分析】
将全班人数看作单位“1”,男生人数+2刚好是全班人数的1-3
5
,用男生人数÷对应分率即
可。

【详解】
(22+2)÷(1-3
5

=24÷2 5
=60(人)
答:全班有60人。

【点睛】
关键是确定单位“1”,找到部分数量以及对应分率。

30.10天
【分析】
我们通常把工作总量“一项工程”看成单位“1”.工作效率=工作量÷工作时间=1÷工作时间,即
工作时间的倒数.设这项工程为单位“1”,则甲乙合作的工作效率是
1
12
,乙丙合作的工作效
率为
1
15
,甲丙合作的工作效率为
1
20
.因此甲乙丙三队合作的工作效率的两倍为
1
12

1
15

1 20,所以甲乙丙三队合作的工作效率为(
1
12

1
15

1
20
)÷2=
1
10
.因此三队合作完成这
项工程的时间为1÷
1
10
=10(天).
【详解】
1÷[(
1
12

1
15

1
20
)÷2]
=1÷[1
5
÷2]
=1÷110
=10(天)
答:甲乙丙三队合作需10天完成.
31.160kg
【解析】
【详解】
()116402121605⎛⎫+⨯÷-⨯= ⎪⎝⎭
(kg) 32.李丽做了110道,张明做了120道
【详解】
解法一
李丽:230÷(1+
111+1)=110(道) 张明:230−110=120(道) 解法二
解:设李丽做了x 道题.
x+x (1+
111)=230 x=110
张明:110×(1+111
)=120(道) 答:李丽做了110道,张明做了120道.
33.225千米
【分析】
根据已行路程和未行路程的比是3∶2,可知未行的路程占总路程的
232
+ ,则135千米占总路程的(
232++20%),根据分数除法的意义解答即可。

【详解】
135÷(232++20%) =135÷35
=225(千米)
答:濮阳与郑州相距225千米。

【点睛】
此题考查比与百分数的综合应用,关键是找出135千米对应的分率,根据已知一个数的几分之几是多少求这个数用除法来解答。

34.(1)3;20
(2)解:将原来有盐水看成单位1,设第一次加入水x,则第一次加入水x后,盐占盐水的20%,此时含盐(1+x)×20%。

同理,第二次加入同样多的水x,含盐(1+x+x)×15%。

因为盐的量没有发生变化,所以(1+x)×20%=(1+x+x)×15%,x=0.5
则第三次再加入同样多的水,含盐率:(1+0.5)×20%÷(1+0.5×3)=0.12=12%。

【详解】
(1)盐水的含盐率=盐的质量÷(盐的质量+水的质量),所以将含盐率写成分数的形式,然后化成比即可;
(2)可以用分数作答,即设第一次加入水x,把原来有盐水看成单位“1”,那么第一次加水后,盐的质量=(原来盐水的质量+水的质量)×第一次加水后的含盐率,第二次加水后,盐的质量=(原来盐水的质量+水的质量+水的质量)×第二次加水后的含盐率,由于整个过程中,盐的质量没有发生变化,所以第一次加水后盐的质量=第二次加水后盐的质量,据此可以解得x的值,那么第三次再加入同样多的水后的含盐率=盐的质量÷(原来盐水的质量+每次加入水的质量×3),据此作答即可。

35.612
【分析】
给出的四个数中362和612的个位数字相同,第二和第四层右边窗户符号也相同,可以肯定这两层分别代表362和612。

这两个数中又有数字6是一样的,对照第二层和第四层的窗户,可以确定第二层代表612。

【详解】
第二层代表612,因为362和612的个位数字相同,又有数字6是一样的,对照第二层和第四层的窗户,所以第二层代表612。

【点睛】
本题考查数与形,解答本题的关键是根据数字的特征找到图形规律。

36.①13;②34个;我是这样想的:竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34(个)。

【分析】
①第(1)个点阵有1个点,第(2)点阵有4个点,第(3)个点阵有7个点,第(4)个点阵有10个点,从第(2)开始,每一个点阵比前一个多3个点,则第(5)有10+3=13个点。

②竖直方向的点与序列号相同,两个斜线上的点数比序列号少1,所以第12个点阵中应包含12+11+11=34 (个)
【详解】。

相关文档
最新文档