孝昌县三中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
孝昌县三中2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 图
1是由哪个平面图形旋转得到的( )
A .
B .
C .
D . 2. 若,[]0,1b ∈,则不等式2
2
1a b +≤成立的概率为( )
A .
16π B .12π C .8π D .4
π 3. 在正方体ABCD ﹣A 1B 1C 1D 1中,点E 为底面ABCD 上的动点.若三棱锥B ﹣D 1EC 的表面积最大,则E 点位于( )
A .点A 处
B .线段AD 的中点处
C .线段AB 的中点处
D .点D 处
4. 函数y=2x 2﹣e |x|在[﹣2,2]的图象大致为( )
A .
B .
C .
D .
5. 一个多面体的直观图和三视图如图所示,点M 是边AB 上的动点,记四面体FMC E -的体 积为1V ,多面体BCE ADF -的体积为2V ,则
=2
1
V V ( )1111]
A .
4
1 B .31 C .21
D .不是定值,随点M 的变化而变化
6. 已知f (x )=x 3
﹣3x+m ,在区间[0,2]上任取三个数a ,b ,c ,均存在以f (a ),f (b ),f (c )为边长的
三角形,则m 的取值范围是( )
A .m >2
B .m >4
C .m >6
D .m >8
7. 函数y=
(x 2
﹣5x+6)的单调减区间为( )
A .(,+∞)
B .(3,+∞)
C .(﹣∞,)
D .(﹣∞,2)
8. 已知直线34110m x y +-=:与圆2
2
(2)4C x y -+=:交于A B 、两点,P 为直线3440n x y ++=:上任意
一点,则PAB ∆的面积为( )
A . B. C. D.
9. 为得到函数的图象,只需将函数y=sin2x 的图象( )
A .向左平移个长度单位
B .向右平移个长度单位
C .向左平移
个长度单位
D .向右平移个长度单位
10.有下列说法:
①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适.
②相关指数R 2来刻画回归的效果,R 2值越小,说明模型的拟合效果越好.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好.
其中正确命题的个数是( )
A .0
B .1
C .2
D .3
11.等比数列{a n }中,a 3,a 9是方程3x 2﹣11x+9=0的两个根,则a 6=( )
A .3
B .
C .±
D .以上皆非
12.某人以15万元买了一辆汽车,此汽车将以每年20%的速度折旧,如图是描述汽车价值变化的算法流程图,则当n=4吋,最后输出的S 的值为( )
A .9.6
B .7.68
C .6.144
D .4.9152
二、填空题
13.对于函数(),,y f x x R =∈,“|()|y f x =的图象关于y 轴对称”是“()y f x =是奇函数”
的 ▲ 条件. (填“充分不必要”, “必要不充分”,“充要”,“既不充分也不必要”) 14.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .
15.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
16.设MP 和OM 分别是角
的正弦线和余弦线,则给出的以下不等式:
①MP <OM <0;②OM <0<MP ;③OM <MP <0;④MP <0<OM , 其中正确的是 (把所有正确的序号都填上).
17.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,…其中从第三个数起,每一个数都等于他前面两个数的和.该数列是一个非常美丽、和谐的数列,有很多奇妙的属性.比如:随着数列项数的增加,前一项与后一项之比越逼近黄金分割0.6180339887….人们称该数列{a n }为“斐波那契数列”.若把该数列{a n }的每一项除以4所得的余数按相对应的顺序组成新数列{b n },在数列{b n }中第2016项的值是 . 18.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .
三、解答题
19.函数f(x)=sin2x+sinxcosx.
(1)求函数f(x)的递增区间;
(2)当x∈[0,]时,求f(x)的值域.
20.已知数列{a n}满足a1=﹣1,a n+1=(n∈N*).
(Ⅰ)证明:数列{+}是等比数列;
(Ⅱ)令b n=,数列{b n}的前n项和为S n.
①证明:b n+1+b n+2+…+b2n<
②证明:当n≥2时,S n2>2(++…+)
21.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽100
(Ⅱ)生产一件元件A ,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B ,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,
(ⅰ)记X 为生产1件元件A 和1件元件B 所得的总利润,求随机变量X 的分布列和数学期望; (ⅱ)求生产5件元件B 所获得的利润不少于140元的概率.
22.(本小题满分12分)已知两点)0,1(1 F 及)0,1(2F ,点P 在以1F 、2F 为焦点的椭圆C 上,且1PF 、21F F 、 2PF 构成等差数列. (I )求椭圆C 的方程;
(II )设经过2F 的直线m 与曲线C 交于P Q 、两点,若2
2
2
11PQ F P FQ =+,求直线m 的方程.
23.已知椭圆
的左焦点为F ,离心率为,过点M (0,1)且与x 轴平行的直线被椭圆G 截得的线段长为.
(I )求椭圆G 的方程;
(II )设动点P 在椭圆G 上(P 不是顶点),若直线FP 的斜率大于
,求直线OP (O 是坐标原点)的斜率
的取值范围.
24.已知﹣2≤x≤2,﹣2≤y≤2,点P的坐标为(x,y)
(1)求当x,y∈Z时,点P满足(x﹣2)2+(y﹣2)2≤4的概率;(2)求当x,y∈R时,点P满足(x﹣2)2+(y﹣2)2≤4的概率.
孝昌县三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1.【答案】A
【解析】
试题分析:由题意得,根据旋转体的概念,可知该几何体是由A选项的平面图形旋转一周得到的几何体故选A.
考点:旋转体的概念.
2.【答案】D
【解析】
考点:几何概型.
3.【答案】A
【解析】解:如图,
E为底面ABCD上的动点,连接BE,CE,D1E,
对三棱锥B﹣D1EC,无论E在底面ABCD上的何位置,
面BCD1的面积为定值,
要使三棱锥B﹣D1EC的表面积最大,则侧面BCE、CAD1、BAD1的面积和最大,
而当E与A重合时,三侧面的面积均最大,
∴E点位于点A处时,三棱锥B﹣D1EC的表面积最大.
故选:A.
【点评】本题考查了空间几何体的表面积,考查了数形结合的解题思想方法,是基础题.
4.【答案】D
【解析】解:∵f(x)=y=2x2﹣e|x|,
∴f(﹣x)=2(﹣x)2﹣e|﹣x|=2x2﹣e|x|,
故函数为偶函数,
当x=±2时,y=8﹣e2∈(0,1),故排除A,B;
当x∈[0,2]时,f(x)=y=2x2﹣e x,
∴f′(x)=4x﹣e x=0有解,
故函数y=2x2﹣e|x|在[0,2]不是单调的,故排除C,
故选:D
5.【答案】B
【解析】
考点:棱柱、棱锥、棱台的体积.
6.【答案】C
【解析】解:由f′(x)=3x2﹣3=3(x+1)(x﹣1)=0得到x1=1,x2=﹣1(舍去)
∵函数的定义域为[0,2]
∴函数在(0,1)上f ′(x )<0,(1,2)上f ′(x )>0, ∴函数f (x )在区间(0,1)单调递减,在区间(1,2)单调递增,
则f (x )min =f (1)=m ﹣2,f (x )max =f (2)=m+2,f (0)=m
由题意知,f (1)=m ﹣2>0 ①; f (1)+f (1)>f (2),即﹣4+2m >2+m ②
由①②得到m >6为所求.
故选C
【点评】本题以函数为载体,考查构成三角形的条件,解题的关键是求出函数在区间[0,2]上的最小值与最大值
7. 【答案】B
【解析】解:令t=x 2
﹣5x+6=(x ﹣2)(x ﹣3)>0,可得 x <2,或 x >3,
故函数y=
(x 2
﹣5x+6)的定义域为(﹣∞,2)∪(3,+∞).
本题即求函数t 在定义域(﹣∞,2)∪(3,+∞)上的增区间.
结合二次函数的性质可得,函数t 在(﹣∞,2)∪(3,+∞)上的增区间为 (3,+∞), 故选B .
8. 【答案】 C
【解析】解析:本题考查圆的弦长的计算与点到直线、两平行线的距离的计算.
圆心C 到直线m 的距离1d =,||AB ==m n 、之间的距离为3d '=,∴PAB ∆
的面积为
1
||2
AB d '⋅=,选C . 9. 【答案】A
【解析】解:∵
,
只需将函数y=sin2x 的图象向左平移个单位得到函数
的图象.
故选A .
【点评】本题主要考查诱导公式和三角函数的平移.属基础题.
10.【答案】C
【解析】解:①在残差图中,残差点比较均匀地落在水平的带状区域内,说明选用的模型比较合适,正确.
②相关指数R 2来刻画回归的效果,R 2值越大,说明模型的拟合效果越好,因此②不正确.
③比较两个模型的拟合效果,可以比较残差平方和的大小,残差平方和越小的模型,拟合效果越好,正确.
综上可知:其中正确命题的是①③. 故选:C .
【点评】本题考查了“残差”的意义、相关指数的意义,考查了理解能力和推理能力,属于中档题.
11.【答案】C
【解析】解:∵a 3,a 9是方程3x 2
﹣11x+9=0的两个根, ∴a 3a 9=3,
又数列{a n }是等比数列,
则a
62
=a 3a 9=3,即a 6=±
.
故选C
12.【答案】C
【解析】解:由题意可知,设汽车x 年后的价值为S ,则S=15(1﹣20%)x
, 结合程序框图易得当n=4时,S=15(1﹣20%)4
=6.144.
故选:C .
二、填空题
13.【答案】必要而不充分 【解析】
试题分析:充分性不成立,如2
y x =图象关于y 轴对称,但不是奇函数;必要性成立,()y f x =是奇函数,
|()||()||()|f x f x f x -=-=,所以|()|y f x =的图象关于y 轴对称.
考点:充要关系
【名师点睛】充分、必要条件的三种判断方法.
1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.
2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.
3.集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件. 14.【答案】 (0,5) .
【解析】解:∵y=a x 的图象恒过定点(0,1),
而f(x)=a x+4的图象是把y=a x的图象向上平移4个单位得到的,
∴函数f(x)=a x+4的图象恒过定点P(0,5),
故答案为:(0,5).
【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.
15.【答案】.
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==.
故答案为:.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
16.【答案】
②
【解析】解:由MP,OM分别为角的正弦线、余弦线,如图,
∵,
∴OM<0<MP.
故答案为:②.
【点评】本题的考点是三角函数线,考查用作图的方法比较三角函数的大小,本题是直接比较三角函数线的大小,在大多数此种类型的题中都是用三角函数线比较三个函数值的大小.
17.【答案】0.
【解析】解:1,1,2,3,5,8,13,…除以4所得的余数分别为1,1,2,3,1,0,;1,1,2,3,1,0…,即新数列{b n}是周期为6的周期数列,
∴b2016=b336×6=b6=0,
故答案为:0.
【点评】本题主要考查数列的应用,考查数列为周期数性,属于中档题.
18.【答案】(0,)∪(64,+∞).
【解析】解:∵f(x)是定义在R上的偶函数,
∴f(log8x)>0,等价为:f(|log8x|)>f(2),
又f(x)在[0,+∞)上为增函数,
∴|log8x|>2,∴log8x>2或log8x<﹣2,
∴x>64或0<x<.
即不等式的解集为{x|x>64或0<x<}
故答案为:(0,)∪(64,+∞)
【点评】本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.
三、解答题
19.【答案】
【解析】解:(1)…(2分)
令解得…
f(x)的递增区间为…(6分)
(2)∵,∴…(8分)
∴,∴…(10分)
∴f(x)的值域是…(12分)
【点评】本题考查两角和与差的三角函数,二倍角公式的应用,三角函数的最值,考查计算能力.
20.【答案】
【解析】(Ⅰ)证明:∵数列{a n}满足a1=﹣1,a n+1=(n∈N*),∴na n=3(n+1)a n+4n+6,
两边同除n(n+1)得,,
即,
也即,
又a1=﹣1,∴,
∴数列{+}是等比数列是以1为首项,3为公比的等比数列.
(Ⅱ)(ⅰ)证明:由(Ⅰ)得,=3n﹣1,∴,
∴,
原不等式即为:<,
先用数学归纳法证明不等式:
当n≥2时,,
证明过程如下:
当n=2时,左边==<,不等式成立
假设n=k时,不等式成立,即<,
则n=k+1时,左边=
<+
=<,
∴当n=k+1时,不等式也成立.
因此,当n≥2时,,
当n≥2时,<,
∴当n≥2时,,
又当n=1时,左边=,不等式成立
故b n+1+b n+2+…+b2n<.
(ⅱ)证明:由(i)得,S n=1+,
当n≥2,=(1+)2﹣(1+)2
=
=2﹣,
,
…
=2•,
将上面式子累加得,﹣,
又<
=1﹣
=1﹣,
∴,
即>2(),
∴当n≥2时,S n2>2(++…+).
【点评】本题考查等比数列的证明,考查不等式的证明,解题时要认真审题,注意构造法、累加法、裂项求和法、数学归纳法、放缩法的合理运用,综合性强,难度大,对数学思维能力的要求较高.
21.【答案】
【解析】解:(Ⅰ)元件A为正品的概率约为.
元件B为正品的概率约为.
(Ⅱ)(ⅰ)∵生产1件元件A 和1件元件B 可以分为以下四种情况:两件正品,A 次B 正,A 正B 次,A 次B 次.
∴随机变量X 的所有取值为90,45,30,﹣15.
∵P (X=90)==;P (X=45)=
=
;P (X=30)=
=;
P (X=﹣15)=
=
.
∴随机变量X 的分布列为:
EX=
.
(ⅱ)设生产的5件元件B 中正品有n 件,则次品有5﹣n 件.
依题意得 50n ﹣10(5﹣n )≥140,解得
.
所以 n=4或n=5. 设“生产5件元件B 所获得的利润不少于140元”为事件A ,
则P (A )==
.
22.【答案】
【解析】【命题意图】本题考查椭圆标准方程和定义、等差数列、直线和椭圆的位置关系等基础知识,意在考查转化与化归的数学思想的运用和综合分析问题、解决问题的能力.
(II )①若m 为直线1=x ,代入
1342
2=+y x 得2
3±=y ,即)23 , 1(P ,)23 , 1(-Q
直接计算知2
9PQ =,2
25||||2121=
+Q F P F ,22
2
11
PQ F P FQ ?,1=x 不符合题意 ; ②若直线m 的斜率为k ,直线m 的方程为(1)y k x =-
由⎪⎩
⎪⎨⎧-==+
)1(1342
2x k y y x 得0)124(8)43(2222=-+-+k x k x k 设11(,)P x y ,22(,)Q x y ,则2221438k k x x +=+,2
2214312
4k k x x +-=⋅
由222
11PQ F P FQ =+得,11
0F P FQ ? 即0)1)(1(2121=+++y y x x ,0)1()1()1)(1(2121=-⋅-+++x k x k x x
0)1())(1()1(2212212=+++-++k x x k x x k
代入得0438)1()143124)(1(2
22
222
=+⋅-+++-+k k k k k k ,即0972=-k 解得773±=k ,直线m 的方程为)1(7
7
3-±
=x y 23.【答案】
【解析】解:(I )∵
椭圆
的左焦点为F
,离心率为
,
过点M (0,1)且与x 轴平行的直线被椭圆G
截得的线段长为.
∴
点
在椭圆G
上,又离心率为
,
∴
,解得
∴椭圆G
的方程为.
(II )由(I )可知,椭圆G
的方程为.∴点F 的坐标为(﹣1,0).
设点P 的坐标为(x 0,y 0)(x 0≠﹣1,x 0≠0),直线FP 的斜率为k ,
则直线FP 的方程为y=k (x+1),
由方程组
消去y 0
,并整理得
.
又由已知,得,解得或﹣1<x0<0.
设直线OP的斜率为m,则直线OP的方程为y=mx.
由方程组消去y0,并整理得.
由﹣1<x0<0,得m2>,
∵x0<0,y0>0,∴m<0,∴m∈(﹣∞,﹣),
由﹣<x0<﹣1,得,
∵x0<0,y0>0,得m<0,∴﹣<m<﹣.
∴直线OP(O是坐标原点)的斜率的取值范围是(﹣∞,﹣)∪(﹣,﹣).
【点评】本题考查椭圆方程的求法,考查直线的斜率的取值范围的求法,是中档题,解题时要认真审题,注意椭圆与直线的位置关系的合理运用.
24.【答案】
【解析】解:如图,点P所在的区域为长方形ABCD的内部(含边界),
满足(x﹣2)2+(y﹣2)2≤4的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).
(1)当x,y∈Z时,满足﹣2≤x≤2,﹣2≤y≤2的点有25个,
满足x,y∈Z,且(x﹣2)2+(y﹣2)2≤4的点有6个,
依次为(2,0)、(2,1)、(2,2)、(1,1)、(1,2)、(0,2);
∴所求的概率P=.
(2)当x,y∈R时,
满足﹣2≤x≤2,﹣2≤y≤2的面积为:4×4=16,
满足(x﹣2)2+(y﹣2)2≤4,且﹣2≤x≤2,﹣2≤y≤2的面积为:=π,
∴所求的概率P==.
【点评】本题考查的知识点是几何概型概率计算公式,计算出满足条件和所有基本事件对应的几何量,是解答的关键,难度中档.。