北师大版完整版新精选小学小升初数学期末复习应用题训练300题和答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北师大版完整版新精选小学小升初数学期末复习应用题训练300题和答案
一、北师大小学数学解决问题六年级下册应用题
1.求圆锥的体积(单位:厘米)
2.一个盛有水的圆柱形容器,水面距容器口6厘米,从里面量这个容器底面半径为5厘米,现把一个底面半径为3厘米的圆锥形金属铸件完全浸没在水中,这时水面距容器口4.8厘米,求这个圆锥形金属铸件的高是多少?
3.求下列立体图形的体积。

4.一个圆柱形金属零件,底面半径是5厘米,高8厘米。

(1)将这个零件的表面全部涂上油漆,油漆面积是多少平方厘米?
(2)这种金属每立方厘米重10克,这个零件大约重多少克?
5.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?
6.按要求作图或填空。

(1)请你自己选定一个比,把图形A缩小后得到图形B,并画出来。

(2)你选定的比是________,缩小后的三角形面积是________。

7.一幅地图的图上距离和实际距离的关系如下:
图上距离(cm)1234567……
实际距离(km)481216202428……
(2)这幅图的比例尺是________。

(3)图上距离和实际距离成________比例关系。

(4)在这幅图上量得两地的距离是13厘米,这两地间的实际距离是多少千米?
8.工人师傅要给停车位铺地砖,若用边长为4dm的方砖铺地,则需要540块。

若改用边长为3dm的方砖铺地,需要多少块?(用比例知识解答)
9.向阳小学食堂买来1800千克面粉,5天吃了150千克。

照这样计算,这些面粉共能吃多少天?(用比例的知识解答)
10.一个近似圆锥形的小麦堆,量得底面直径4米,高1.5米,这堆小麦大约有多少立方米?
11.操作题
(1)在下面的方格图中画出一个三角形,3个顶点的位置分别A(3,3)、B(1,4)、C (1,3)。

(2)画出三角形按2:1放大后的图形。

(3)放大后的三角形与原三角形面积之比是________
12.一棵树高12米,它的影长是15米,如果同一时间地点测得小明的身高是1.6米,它的影子长多少米?(用比例解答)
13.一个直角三角形的三条边分别是6厘米、8厘米和10厘米,沿着它的一条直角边为轴旋转一周,可得到_______体,体积最小是多少?体积最大是多少?
14.武汉有轨电车车都T1线是华中地区首条现代有轨电车,时速24千米每小时,从得胜港站开往车轮广场,地图上全长28厘米。

一辆有轨电车行完全程需要多少分钟?
15.一种健身器材陀螺(如下图),上面是圆柱体,下面是圆锥体。

经过测试,当圆柱直
径4厘米,高6厘米,圆锥的高是圆柱高的时,旋转得又快又稳,求这个陀螺的体积有多大?
16.在一幅比例尺是1:3000000地图上,量得甲、乙两地间的公路长10厘米,辆汽车从甲地出发,平均时速60千米,几小时能到达乙地?
17.一根长20cm的蜡烛8分钟可以燃烧完,照着这样计算,燃烧完一根长25cm的蜡烛需要多少分钟?(用比例知识解答)
18.已知三角形的三个顶点分別为A(2,3),B(2,6),C(5,3)。

(1)请在方格纸上画出这个三角形。

(2)将画出的三角形按2:1放大,在方格纸上画出放大后的图形。

19.一个圆锥形麦堆,底面直径是6m,高1.2m。

(1)这堆小麦的体积是多少立方米?
(2)如果每立方米小麦的质量为800kg,这堆小麦的质量为多少千克?(得数保留整千克数)
20.李师傅开车从郑州去距离680km的地方运送物资。

货车每100km耗油20L,按照这个耗油量,出发时加满100L油,途中还需要加油吗?请写出判断过程。

21.长沙造纸厂的生产情况如下表,根据表回答问题.
时间(天)1234567…
生产量(吨)70140210280350420490…

(2)根据表中的数据,写出一个比例________.
(3)表中相关联的两种量成________关系.
(4)在图中描出表示时间和相应生产量的点,并把它们按顺序连接起来.
(5)估计生产550吨纸片,大约需要________天(填整数).
22.一个底面直径是2dm的圆柱形玻璃杯内盛有一些水,恰好占杯子容量的。

现将一个铁块完全浸没在水中,水面上升了5cm,这时水面距杯口还有4cm。

这个铁块的体积是多少?这个杯子的容积是多少升?
23.(如图所示)一个棱长6cm的正方体,从正方体的底面向内挖去一个最大的圆锥体,这个圆锥的体积是多少cm3?
24.儿童节,爸爸送给高兴一个圆锥形的玩具(如图)。

如果要用一个长方体的盒子包装它,这个盒子的表面积至少多少平方厘米?
25.把一个底面半径是2厘米的圆柱体,沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,(如图)已知拼成后长方体表面积比原来圆柱表面积增加了60平方厘米,这个长方体的体积是多少?
26.下图是甲、乙两辆汽车行驶的路程和时间的关系图。

(1)甲车的路程与时间________,乙车的路程和时间________。

A.成正比例
B.成反比例
C.不成比例
(2)若乙车按目前的平均速度继续行驶,能不能追上甲车?请说明理由。

27.
(1)上图中用数值比例尺表示是(),李红家在学校西偏北40°方向的800m处,请标出李红家的位置。

(2)如果从李红家修一条管道到淳南路,怎样修最短?请在图中画出来。

28.在一个圆柱形储水桶里,把一段底面半径为7厘米的圆柱形钢材全部放人水中,这时水面上升10厘米.把这段钢材竖着拉出水面6厘米,水面下降3厘米。

求这段钢材的体积。

29.做一个底面周长是18.84分米、高10分米的圆柱形无盖铁皮水桶,
(1)水桶的占地面积多大?
(2)水桶可以容纳多少升水?
30.请按要求完成下面的操作。

(1)画出圆形向上平移5格后的图形,平移后圆心的位置用数对表示是()。

(2)过B点作直线a的垂线,点B到直线a的距离是______。

(3)以P点为顶点画一个直角三角形,然后将它绕P点顺时针旋转90°。

31.在比例尺是1:20000000的地图上量得甲、乙两地间的铁路长6厘米。

两列高速列车分别从甲、乙两地同时相对开出,已知从甲地开出的列车平均每小时行315千米,从乙地开出的列车平均每小时行285千米,几小时后两车能相遇?
32.学校要建一个长60m、宽50m的长方形活动场地,请你画出活动场地的平面图。

计算:
画图:
33.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
34.把一块棱长10厘米的正方体铁块熔铸成一个底面直径是2分米的圆锥形铁块,这个圆锥形铁块的高约是多少厘米?(得数保留一位小数)
35.把一个圆柱的侧面展开后得到一个长18厘米,宽12厘米的长方形,这个圆柱的体积最大可能是多少立方厘米?(π取近似值3)
36.在一张长方形彩纸上摆满小正方形,每个小正方形面积与所需小正方形的数量如表:每个小正方形的面积/cm24916
所需小正方形的数量/个2169654
________比例关系.
(2)如果采用面积是36cm2的小正方形来摆满这张长方形彩纸,需要多少个小正方形?(用比例方法解答)
37.下面哪个圆能和左边这张长方形纸围成圆柱?围成的较大的圆柱体积是多少?较小的呢?(得数保留两位小数)
38.操作实践,动手动脑。

(1)画出三角形AOB关于直线MN对称的图形。

(2)若B点的位置可以用(x,y)表示,则A点的位置为________。

(3)画出三角形AOB绕点A逆时针旋转90°后的图形。

39.新民小区有个圆柱形喷泉池,喷泉池底面半径10米,深0.8米。

(1)这个喷泉池的容积是多少立方米?
(2)喷泉池的侧面与底面粉刷了水泥,粉刷水泥的面积是多少平方米?
40.木工师傅加工一块长方体木块(如图),它的底面是正方形。

将它削成圆柱(阴影部分),削去部分的体积是8.6dm3。

原来长方体木块的体积是多少?
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题六年级下册应用题
1.解:3.14×(6÷2)2 ×9÷3
=3.14×9×3
=3.14×27
=84.78(立方厘米)
答:圆锥的体积是84.78立方厘米。

【解析】【分析】圆锥体积=π×半径的平方×高÷3,据此解答。

2.解:3.14×52×(6-4.8)÷÷(3.14×32)
=3.14×25×1.2×3÷(3.14×9)
=3.14×90÷3.14÷9
=10(厘米)
答:这个圆锥形金属铸件的高是10厘米。

【解析】【分析】水面上升部分水的体积就是圆锥的体积,水面上升的高度是(6-4.8)厘米,根据圆柱的体积公式计算出水面上升部分水的体积,也就是圆锥的体积。

用圆锥的体
积除以,再除以圆锥的底面积即可求出圆锥的高度。

3.解:3.14×(202-102)×100
=3.14×(400-100)×100
=3.14×30000
=94200(cm3)
【解析】【分析】用横截面的面积乘长即可求出立体图形的体积,横截面的面积是一个圆环,由此根据公式计算即可。

4.(1)解:3.14×52×2+3.14×5×2×8=157+251.2=408.2(cm2)
答:油漆面积是408.2平方厘米。

(2)解:3.14×52×8=628(cm3)
628×10=6280(克)。

答:这个零件大约重6280克。

【解析】【分析】(1)在零件的表面全部涂上油漆,就是求圆柱的表面积,圆柱的表面积=底面积×2+侧面积,即S=2πr2+2πrh。

(2)先求圆柱的体积V=πr2h,因为每立方厘米重10克,看这个零件有多少立方厘米就有多少个10克,即可求出零件的重量。

5.解:5cm:8m
=5cm:800cm
=1:160
答:这张照片的比例尺是1:160。

【解析】【分析】先把单位进行换算,即1m=100cm,那么比例尺=图上距离:实际距离。

6.(1)
(2)1:2;6cm2
【解析】【分析】根据自己设定的比作图即可;三角形的面积=底×高÷2,据此作答即可。

7.(1)解:
(2)1:400000
(3)正
(4)解:13÷
=5200000(厘米)
=52千米
答:两地间的实际距离是52千米。

【解析】【分析】(1)横轴表示图上距离,纵轴表示实际距离,据此先描点,后连线即可。

(2)比例尺=图上距离:实际距离;
(3)图上距离:实际距离的比值不变,所以图上距离和实际距离成正比例关系。

(4)实际距离=图上距离÷比例尺。

8.解:设若用边长为3dm的方砖铺地,需要x块。

32x=540×42
9x÷9=8640÷9
x=960
答:若改用边长为3dm的方砖铺地,需要960块。

【解析】【分析】方砖的面积×需要的块数=停车位的面积(一定),据此解答即可。

9.解:设:这些面粉一共能吃x天。

=
150 x=1800×5
x=9000÷150
x=60
答:这些面粉一共能吃30天。

【解析】【分析】照这样计算的意思就是每天吃面粉的重量不变,这样吃面粉的重量与吃的天数成正比例。

先设出未知数,然后根据每天吃面粉的重量不变列出比例,解比例求出
共能吃的天数即可。

10.解:3.14×()2×1.5×
=3.14×4×0.5
=6.28(立方米)
答:这堆小麦大约有6.28立方米。

【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式直接计算即可。

11.(1)
(2)
(3)4∶1
【解析】【分析】(1)数对中第一个数表示列,第二个数表示行,根据数对确定每个点的位置,然后画出三角形;
(2)按2:1放大后的三角形的两条直角边分别是4格、2格,根据两条直角边的长度画出放大后的三角形;
(3)三角形面积=底×高÷2,三角形面积扩大的倍数是两条直角边扩大倍数的乘积,所以三角形面积扩大4倍,由此写出面积比即可。

12.解:12:15=1.6:x
12x=15×1.6
12x=24
x=24÷12
x=2
答:它的影子长2米。

【解析】【分析】树高:它的影长=小明的身高:它的影子长,据此列比例,根据比例的基本性质解比例。

13.解:沿着它的一条直角边为轴旋转一周,可得到圆锥体,
×62×3.14×8=301.44(立方厘米)
×82×3.14×6=401.92(立方厘米)
答:体积最小是301.44立方厘米,体积最大是401.92立方厘米。

【解析】【分析】直角三角形沿着它的一条直角边为轴旋转一周,可得到圆锥体;圆锥的体积=×πr2h。

14.解:28÷=1680000(厘米)=16.8(千米),16.8÷24=0.7(小时),0.7×60=42(分钟)。

答:一辆有轨电车行完全程需要42分钟。

【解析】【分析】用图上距离除以比例尺求出实际距离,把实际距离换算成千米,用实际距离除以电车速度即可求出需要的时间,把时间换算成分钟即可。

15.解:圆柱的体积:3.14×(4÷2)2 ×6=75.36(立方厘米)
圆锥的体积: ×3.14×(4÷2)2 ×6× =18.84(立方厘米)
陀螺的体积:75.36+18.84=94.2(立方厘米)
答:这个陀螺的体积有94.2立方厘米。

【解析】【分析】圆柱体积=底面积×高,圆锥体积=底面积×高×,陀螺的体积=圆柱体积+圆锥体积。

16.解:10÷
=30000000cm
=300km
300÷60=5(小时)
答:5小时能到达乙地。

【解析】【分析】时间=路程÷速度,路程=图上距离÷比例尺。

17.解:设燃烧完一根长25cm的蜡烛需要x分钟。

=
20x=200
x=10
答:燃烧完一根长25cm的蜡烛需要10分钟。

【解析】【分析】本题可以设燃烧完一根长25cm的蜡烛需要x分钟,题中存在的比例关
系是:=,据此解出x的值即可。

18.(1)
(2)
【解析】【分析】(1)数对中,第一个数表示这个点所在的列,第二个数表示这个点所在的行,据此作图即可;
(2)把一个数按照2:1放大,就是把这个图形的每条边都扩大2倍。

19.(1)解:(6÷2)2×3.14×1.2×
=9×3.14×1.2×
=28.26×0.4
=11.304(立方米)
答:这堆小麦的体积是11.304立方米。

(2)解:11.304×800≈9043(千克)
答:这堆小麦的质量为9043千克。

【解析】【分析】(1)这堆小麦的体积=π×(底面直径÷2)2×h×,据此代入数据作答即可;
(2)这堆小麦的质量=这堆小麦的体积×每立方米小麦的质量,据此代入数据作答即可。

20.解:设100L油能行驶x千米。

100:20=x:100
20x=100×100
x=10000÷20
x=500
500<680
答:途中还需要加油。

【解析】【分析】耗油量不变,行驶的路程与耗油的质量成正比例,设100L油能行驶x千米,根据耗油量不变列出比例,解比例求出100L油能行驶的路程,然后与680千米比较后即可确定途中是否需要加油。

21.(1)时间;生产量
(2)1:70=2:140(答案不唯一)
(3)正
(4)
(5)8
【解析】【解答】解:(1)表中相关联的量是时间和生产量;
(2)根据表中的数据,写出一个比例是:1:70=2:140;
(3)表中相关联的两种量成正比例;
(5)估计生产550吨纸片,大约需要8天。

故答案为:(1)时间;生产量;(2)1:70=2:140(答案不唯一);(3)正;(5)8。

【分析】(1)表格中变化的两个量就是相关联的两个量;
(2)根据表格中相对应的数据写出两个比值相等的比并组成比例即可;
(3)两个相关联的量的比值一定,二者成正比例关系;
(4)根据每组对应的数据描出对应的点,然后顺次连接各点成线即可;
(5)根据每天的生产量估计出生产550吨纸片大约需要的天数。

22.解:2dm=20cm
(20÷2)2×3.14×5=1570cm3
(5+4)÷(1-)=15cm
15÷5×1570=4710cm3=4.71升
答:这个铁块的体积是1570cm3,这个杯子的容积是4.71升。

【解析】【分析】先把单位进行换算,即2dm=20cm,那么这个铁块的体积=(玻璃杯的底面直径÷2)2×π×水面上升的高度;玻璃杯的高度=(水面上升的高度+水面上升后水面距杯口的距离)÷(1-原来水占杯子容量的几分之几),所以这个杯子的容积=玻璃杯的高度÷水面上升的高度×铁块的体积。

23.解:底面半径:6÷2=3(厘米)
3.14×3×3×6÷3
=28.26×6÷3
=169.56÷3
=56.52(立方厘米)
答:这个圆锥的体积是56.52立方厘米。

【解析】【分析】圆锥体的底面直径是6厘米,高是6厘米,圆锥体积=π×半径的平方×高÷3,据此解答。

24.解:6×6×2+6×10×4
=72+240
=312(平方厘米)
答:这个盒子的表面积至少312平方厘米。

【解析】【分析】盒子的底面边长至少是6cm,高至少是10cm,根据长方体表面积公式计算盒子的表面积即可。

25.解:圆柱的高=60÷2÷2=15(厘米)
长方体的长=3.14×2=6.28(厘米)
长方体的宽=2厘米,长方体的宽=圆柱的高=15厘米,
所以长方体的体积=6.28×2×15
=12.56×15
=188.4(立方厘米)
答:这个长方体的体积是188.4立方厘米。

【解析】【分析】圆柱沿底面直径垂直于高切成若干等份,再拼成一个近似长方体,表面积增加的是2个圆柱的底面半径×圆柱的高的长方形,代入数值即可计算出圆柱的高,这个长方形的长为圆柱底面周长的一半即π×半径,长方体的宽为圆柱底面半径,长方体的高为圆柱的高,最后根据长方体的体积=长×宽×高,计算即可得出答案。

26.(1)A;C
(2)解:420÷6=70(千米/小时)
70<80
所以,按照目前的平均速度,乙车不能追上甲车。

【解析】【解答】(1)240÷3=80(千米/小时)
480÷6=80(千米/小时)
因为甲车的路程与时间的比值是定值,所以,甲车的路程与时间程正比例。

120÷1=120(千米/小时)
(180-120)÷(4-1)
=60÷3
=20(千米/小时)
(420-180)÷(6-4)
=240÷2
=120(千米/小时)
因为乙车的路程与时间的比值不是定值,所以,乙车的路程与时间不成比例。

故答案为:(1)A;C。

【分析】(1)两个量的比值是定值,则两个量成正比例,据此判断即可。

(2)乙车的平均速度=总路程÷总时间,甲车的速度=路程÷时间,代入数值计算,并比较两车的速度即可判断。

27.(1)解:上图中用数值比例尺表示是1:40000,。

(2)解:红色线段表示管道路线,
【解析】【分析】(1)观察图可知,此图是按“上北下南,左西右东”来规定方向的,图上距离1厘米表示实际距离400米,比例尺是1:40000,然后以学校为观测点,根据方向和距离,找出李红家的位置;
(2)从直线外一点到直线的连线中,垂直线段最短,据此过李红家所在的位置向淳南路作垂线,这条垂线段就是管道的路线。

28.解: 3.14×7²×(6÷3×10)
=3.14×49×20
=3.14×980
=3077.2(立方厘米)
答:这段钢材的体积是3077.2立方厘米。

【解析】【分析】钢材的体积=πr2×高,高=6÷3×10。

29.(1)解:这个水桶的底面半径是:18.84÷3.14÷2=3(分米)
3.14×3²=28.26(平方分米)
答:水桶的占地面积是28.26平方分米。

(2)解:3.14×3²×10
=3.14×90
=282.6(立方分米)
=282.6(升)
答:水桶的容积是282.6升。

【解析】【分析】(1)根据圆周长公式,用底面周长除以3.14再除以2即可求出底面半径。

然后根据圆面积公式计算出占地面积即可;
(2)根据圆柱的体积公式,用底面积乘高即可求出水桶的容积。

30.(1)解:

平移后圆心的位置用数对表示是(2,8)。

(2)解:
点B到直线a的距离是=2。

(3)
【解析】【分析】(1)平移圆时,可以先把圆心平移,然后根据半径的长短画出圆即可;用数对表示点的位置,这个点在第几行,数对中的第一个数就是几,在第几列,数对中的第二个数就是几;
(2)过一点作已知直线的垂线,把三角尺的一边与边重合,平移三角尺,使得这个点出现在另一条直角边商,沿着这条边画出的线就是垂线,然后标上直角符号即可;
直角三角形斜边的长度=;
(3)将一个图形绕其上面一点顺时针旋转一定的度数,先把这个点连接的边顺时针旋转相同的度数,然后把剩下的边连接起来即可。

31.解:6÷
=6×20000000
=120000000(厘米)
=1200(千米)
1200÷(315+285)
=1200÷600
=2(小时)
答:2小时后两车能相遇。

【解析】【分析】实际距离=图上距离÷比例尺,据此求出实际距离;实际距离÷(甲车速度+乙车速度)=相遇时间。

32.解:计算:60m=6000cm,50m=5000cm,
6000×=6(cm),5000×=5(cm),
画图:
【解析】【分析】先确定比例尺,然后把实际距离的长和宽都换算成厘米,用实际长度乘比例尺求出图上距离,然后根据图上距离画出图形即可。

33.解:底面周长:25.12÷2=12.56(厘米)
底面半径:12.56÷3.14÷2
=4÷2
=2(厘米)
两个底面积和:3.14×22×2
=12.56×2
=25.12(平方厘米)
侧面积:12.56×8
=100.48(平方厘米)
表面积:25.12+100.48=125.6(平方厘米)
答:原来圆柱的表面积是125.6平方厘米。

【解析】【分析】底面周长=增加的表面积÷增加的高,底面半径=底面周长÷2π,底面积=π底面半径2,侧面积=底面周长×高,圆柱的表面积=两个底面面积和+侧面的面积,据此解答即可。

34.解:正方体体积:10×10×10=1000(立方厘米)
圆锥的底面半径:2分米=20厘米,20÷2=10(厘米)
圆锥的高:1000×3÷(3.14×102)=3000÷314≈9.6(厘米)
答:这个圆锥形铁块的高约是9.6厘米。

【解析】【分析】圆锥的高=圆锥体积×3÷底面积,圆锥体积=正方体体积=棱长3,底面积=π×半径2。

35.解:第一种情况:18÷3÷2
=6÷2
=3(厘米)
3×3²×12
=3×9×12
=27×12
=324(立方厘米)
第二种情况:12÷3÷2
=4÷2
=2(厘米)
3×2²×18
=3×4×18
=12×18
=216(立方厘米)
324立方厘米>216立方厘米
答:这个圆柱的体积最大可能是324立方厘米。

【解析】【分析】此题分两种情况,(1)当底面周长是18厘米时,高是12厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积;(2)当底面周长是12厘米时,高是18厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积。

36.(1)反
(2)解:设需要多x个小正方形.
36x=216×4
36x÷36=216×4÷36
x=24
答:需要24个小正方形。

【解析】【分析】(1)经过计算,每个小正方形的面积×所需小正方形的数量是一个定值,所以每个小正方形的面积与所需小正方形的数量成反比例关系;
(2)本题可以设需要x个小正方形,题中存在的比例关系是:36×需要面积是36cm2的小正方形的个数=4×需要面积是4cm2的小正方形的个数,据此代入数据和字母作答即可。

37.解:A:4×3.14=12.56cm
B:3×3.14=9.42cm
C:2×3.14=6.28cm
所以A中和C中的圆能和左边这张长方形纸围成圆柱;
(4÷2)2×3.14×6.28≈78.88(cm3)
较小:(2÷2)2×3.14×12.56≈39.44(cm3)
答:围成的较大的圆柱体积是78.88cm3,较小的是39.44cm3。

【解析】【分析】圆柱的底面周长=底面直径×π,先分别算出这三个圆的周长,然后与长方形的长和宽相等的圆能围成圆柱,最后利用圆柱的体积=(直径÷2)2×π×h,计算出较大和较小的圆柱的体积。

38.(1)解:如图所示:
(2)(x+3,y+2)
(3)解:如图所示:
【解析】【分析】(1)画轴对称图形的方法:①点出关键点,找出所有的关键点,即图形中所有线段的端点;②确定关键点到对称轴的距离,关键点离对称轴多远,对称点就离对称轴多远;③点出对称点;④连线,按照给出的一半图形将所有对称点连接成线段。

(2)用数对表示位置,先表示列,后表示行; A点的位置为(列数+3,行数+2)。

(3)旋转作图,把一个图形绕其上面一点逆时针旋转一定的度数,先把这个点连接的边逆时针旋转指定的度数,然后把剩下的边连接起来即。

39.(1)解:π×10²×0.8=80π(立方米)
答:这个喷泉池的容积是80π立方米。

(2)解:2×π×10×0.8+π×10²=116π(平方米)
答:粉刷水泥的面积是116π平方米。

【解析】【分析】(1)这个喷泉池的容积=πr2h;
(2)粉刷水泥的面积=πr2+2πrh。

40.解:设底面边长是1,高是h,则阴影部分底面积与长方体体积的比是:
(3.14×12××h):(1×1×h)=0.785h:h=157:200
8.6÷(200-157)×200
=8.6÷43×200
=0.2×200
=40(立方分米)
答:原来长方体木块的体积是40立方分米。

【解析】【分析】可以设底面边长是1,高是h,用阴影部分底面积乘高表示出圆柱的体积,根据长方体体积公式表示出长方体体积。

写出圆柱体积与长方体体积的最简比是157:200,那么削去部分的份数是(200-157),由此用削去部分的体积除以削去部分的份数求出每份数,用每份数乘200求出长方体体积。

相关文档
最新文档