2020-2021九年级数学一模试题分类汇编——圆与相似综合及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021九年级数学一模试题分类汇编——圆与相似综合及答案
一、相似
1.如图,抛物线与x轴交于两点A(﹣4,0)和B(1,0),与y轴交于点C(0,2),动点D沿△ABC的边AB以每秒2个单位长度的速度由起点A向终点B 运动,过点D作x轴的垂线,交△ABC的另一边于点E,将△ADE沿DE折叠,使点A落在点F处,设点D的运动时间为t秒.
(1)求抛物线的解析式和对称轴;
(2)是否存在某一时刻t,使得△EFC为直角三角形?若存在,求出t的值;若不存在,请说明理由;
(3)设四边形DECO的面积为s,求s关于t的函数表达式.
【答案】(1)解:把A(﹣4,0),B(1,0),点C(0,2)代入
得:,解得:,
∴抛物线的解析式为:,
对称轴为:直线x=﹣;
(2)解:存在,∵AD=2t,
∴DF=AD=2t,
∴OF=4﹣4t,
∴D(2t﹣4,0),
∵直线AC的解析式为:,∴E(2t﹣4,t),
∵△EFC为直角三角形,分三种情况讨论:
①当∠EFC=90°,则△DEF∽△OFC,
∴,即,解得:t= ;
②当∠FEC=90°,
∴∠AEF=90°,
∴△AEF是等腰直角三角形,
∴DE= AF,即t=2t,
∴t=0,(舍去),
③当∠ACF=90°,则AC2+CF2=AF2,即(42+22)+[22+(4t﹣4)2]=(4t)2,解得:t= ,∴存在某一时刻t,使得△EFC为直角三角形,此时,t= 或;
(3)解:∵B(1,0),C(0,2),
∴直线BC的解析式为:y=﹣2x+2,
当D在y轴的左侧时,S= (DE+OC)•OD= (t+2)•(4﹣2t)=﹣t2+4 (0<t<2);
当D在y轴的右侧时,如图2,
∵OD=4t﹣4,DE=﹣8t+10,S= (DE+OC)•OD= (﹣8t+10+2)•(4t﹣4),即
(2<t<).
综上所述:
【解析】【分析】(1)(1)利用待定系数法,将点A、B、C的坐标代入函数解析式,建立方程组求解即可。

(2)根据题意分别求出AD、DF、OF的长,表示出点D的坐标,利用待定系数法求出直线BC的函数解析式,表示出点E的坐标,再分三种情况讨论△EFC为直角三角形:①当∠EFC=90°,则△DEF∽△OFC,根据相似三角形的性质,列出关于t的方程求解即可;
②∠FEC=90°,∠AEF=90°,△AEF是等腰直角三角形求出t的值即可;③当∠ACF=90°,则AC2+CF2=AF2,建立关于t的方程求解即可,从而可得出答案。

(3)求得直线BC的解析式为:y=-2x+2,当D在y轴的左侧时,当D在y轴的右侧时,如图2,根据梯形的面积公式即可得到结论。

2.如图,在Rt△ABC中,,角平分线交BC于O,以OB为半径作⊙O.
(1)判定直线AC是否是⊙O的切线,并说明理由;
(2)连接AO交⊙O于点E,其延长线交⊙O于点D,,求的值; (3)在(2)的条件下,设的半径为3,求AC的长.
【答案】(1)解:AC是⊙O的切线
理由:,

作于,
是的角平分线,

AC是⊙O的切线
(2)解:连接,
是⊙O的直径,
,即 .
.
又 (同角) ,
∽ ,
(3)解:设
在和中,由三角函数定义有:
得:
解之得:
即的长为
【解析】【分析】(1)利用角平分线的性质:角平分线上的点到角两边的距离相等证得点O到AC的距离为半径长,即可证得AC与圆O相切;(2)先连接BE构造一个可以利用正切值的直角三角形,再证得∠1=∠D,从而证得两个三角形ABE与ABD相似,即可求得两个线段长的比值;(3)也可以应用三角形相似的判定与性质解题,其中AB的长度是利用勾股定理与(2)中AE与AB的比值求得的.
3.如图,在平面直角坐标系中,O为原点,四边形ABCD是矩形,点A、C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A、C重合),连结BD,作,交x轴于点E,以线段DE、DB为邻边作矩形BDEF.
(1)填空:点B的坐标为________;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值
【答案】(1)
(2)解:存在,理由如下:
∵OA=2,OC=2,
∵tan∠ACO==,
∴∠ACO=30°,∠ACB=60°
①如图(1)中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC,
∴∠DCE=∠EDC=30°,
∴∠DBC=∠BCD=60°,
∴△DBC是等边三角形,
∴DC=BC=2,
在Rt△AOC中,
∵∠ACO=30°,OA=2,
∴AC=2AO=4,
∴AD=AC-CD=4-2=2,
∴当AD=2时,△DEC是等腰三角形,
②如图(2)中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,
∴∠ABD=∠ADB=75°,
∴AB=AD=2,
综上所述,满足条件的AD的值为2或2.
(3)①如图,过点D作MN⊥AB于点M,交OC于点N。

∵A(0.2)和C(23 ,0),
∴直线AC的解析式为y=-33x+2,
设D(a,-33a+2),
∴DN=-33a+2,BM=23-a
∵∠BDE=90°,
∴∠BDM+∠NDE=90°,∠BDM+∠DBM=90°,
∴∠DBM=∠EDN,
∵∠BMD=∠DNE=90°,
∴△BMD~△DNE,
∴DEBD=DNBM=-33a+223-a=33.
②如图(2)中,作DH⊥AB于H。

在Rt△ADH中,
∵AD=x,∠DAH=∠ACO=30°,
∴DH=12AD=12x,AH=AD2-DH2=32x,
∴BH=23-32x,
在Rt△BDH中,BD=BH2+DH2=12x2+23-32x2,
∴DE=33BD=33·12x2+23-32x2,
∴矩形BDEF的面积为y=3312x2+23-32x22=33x2-6x+12,
即y=33x2-23x+43,
∴y=33x-32+3
∵33>0,
∴x=3时,y有最小值3.
【解析】【解答】(1)∵四边形AOCB是矩形,
∴BC=OA=2,OC=AB=,∠BCO=∠BAO=90°,
∴B(, 2)
【分析】(1)根据点A、C的坐标,分别求出BC、AB的长,即可求解。

(2)根据点A、C的坐标,求出∠ACO,∠ACB的度数,分两种情况讨论:①如图(1)中,当E在线段CO上时,△DEC是等腰三角形,观察图象可知,只有ED=EC;②如图(2)中,当E在OC的延长线上时,△DCE是等腰三角形,只有CD=CE,∠DBC=∠DEC=∠CDE=15°,分别求出AD的长,即可求解。

(3)①如图,过点D作MN⊥AB于点M,交OC于点N。

利用待定系数法求出直线AC的
解析式,设D(a,-a+2),分别用含a的代数式表示出DN、BM的长,再证明△BMD~△DNE,然后根据相似三角形的性质,得出对应边成比例,即可求解;②如图(2)中,作DH⊥AB于H。

设AD=x,用含x的代数式分别表示出DH、BH的长,利用勾股定理求出BD、DE的长再根据矩形的面积公式,列出y与x的函数关系式,求出顶点坐标,即可求解。

4.在平面直角坐标系中,抛物线与轴的两个交点分别为A (-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.
(1)求抛物线的解析式和顶点C的坐标;
(2)连结AD、CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;
(3)若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P、C、Q为顶点的三角形与△ACH相似时,求点P的坐标.
【答案】(1)解:设抛物线的解析式为,
∵抛物线过点A(-3,0),B(1,0),D(0,3),
∴,解得,a=-1,b=-2,c=3,
∴抛物线解析式为,顶点C(-1,4);
(2)解:如图1,∵A(-3,0),D(0,3),
∴直线AD的解析式为y=x+3,
设直线AD与CH交点为F,则点F的坐标为(-1,2)
∴CF=FH,
分别过点C、H作AD的平行线,与抛物线交于点E,
由平行间距离处处相等,平行线分线段成比例可知,△ADE与△ACD面积相等,
∴直线EC的解析式为y=x+5,
直线EH的解析式为y=x+1,
分别与抛物线解析式联立,得,,
解得点E坐标为(-2,3),,;(3)解:①若点P在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH,
∴,
分别过点C、P作x轴的平行线,过点Q作y轴的平行线,交点为M和N,
由△CQM∽△QPN,
得 =2,
∵∠MCQ=45°,
设CM=m,则MQ=m,PN=QN=2m,MN=3m,
∴P点坐标为(-m-1,4-3m),
将点P坐标代入抛物线解析式,得,
解得m=3,或m=0(与点C重合,舍去)
∴P点坐标为(-4,-5);
②若点P在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH,
∴,
延长CD交x轴于M,∴M(3,0)
过点M作CM垂线,交CP延长线于点F,作FN x轴于点N,
∴,
∵∠MCH=45°,CH=MH=4
∴MN=FN=2,
∴F点坐标为(5,2),
∴直线CF的解析式为y= ,
联立抛物线解析式,得,解得点P坐标为( , ),
综上所得,符合条件的P点坐标为(-4,-5),( , ).
【解析】【分析】(1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax2+bx+3求出即可;(2)求出直线AD的解析式,分别过点C、H作AD的平行线,与抛物线交于点E,利用△ADE与△ACD面积相等,得出直线EC和直线EH的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P在对称轴左侧;②点P在对称轴右侧.
5.如图,抛物线与坐标轴交点分别为,,,作直线BC.
(1)求抛物线的解析式;
(2)点P为抛物线上第一象限内一动点,过点P作轴于点D,设点P的横坐标为,求的面积S与t的函数关系式;
(3)条件同,若与相似,求点P的坐标.
【答案】(1)解:把,,代入得:,
解得:,,,
抛物线的解析式为
(2)解:设点P的坐标为(t,- t×2+ t+2),
∵A(-1,0),B(3,0),
∴AB=4,
∴S=
(3)解:当∽时,,即,
整理得:,
解得:或舍去,
,,
点P的坐标为;
当∽,则,即,
整理得,
解得:或舍去,
,,
点P的坐标为,
综上所述点P的坐标为或
【解析】【分析】(1)利用待定系数法,将点A、B、C三点坐标分别代入函数解析式,建立方程组,就可求出a、b、c的值,即可解答;或设函数解析式为交点式,即y=a (x+1)(x-3),再将点C的坐标代入可解答。

(2)点P为抛物线上第一象限内一动点,因此利用二次函数解析式,由P的横坐标为t表示出点P的坐标,利用三角形的面积公式,就可得出s与t的函数解析式。

(3)分两种情况讨论:当△ ODP ∽△ COB 时;当△ ODP ∽△ BOC ,分别利用相似三角形的性质,分别得出对应边成比例,建立关于t的方程,求出t的值,就可得出点P的坐标。

6.如图,已知一次函数y=﹣ x+4的图象是直线l,设直线l分别与y轴、x轴交于点A、B.
(1)求线段AB的长度;
(2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作⊙N.
①当⊙N与x轴相切时,求点M的坐标;
②在①的条件下,设直线AN与x轴交于点C,与⊙N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P、Q,当△APQ与△CDE相似时,求点P的坐标.
【答案】(1)解:当x=0时,y=4,
∴A(0,4),
∴OA=4,
当y=0时,- x+4=0,
x=3,
∴B(3,0),
∴OB=3,
由勾股定理得:AB=5
(2)解:①如图1,过N作NH⊥y轴于H,过M作ME⊥y轴于E,
tan∠OAB= ,
∴设EM=3x,AE=4x,则AM=5x,
∴M(3x,-4x+4),
由旋转得:AM=AN,∠MAN=90°,
∴∠EAM+∠HAN=90°,
∵∠EAM+∠AME=90°,
∴∠HAN=∠AME,
∵∠AHN=∠AEM=90°,
∴△AHN≌△MEA,
∴AH=EM=3x,
∵⊙N与x轴相切,设切点为G,连接NG,则NG⊥x轴,∴NG=OH,
则5x=3x+4,
2x=4,
x=2,
∴M(6,-4);
②如图2,由①知N(8,10),
∵AN=DN,A(0,4),
∴D(16,16),
设直线DM:y=kx+b,
把D(16,16)和M(6,-4)代入得:

解得:,
∴直线DM的解析式为:y=2x-16,
∵直线DM交x轴于E,
∴当y=0时,2x-16=0,
x=8,
∴E(8,0),
由①知:⊙N与x轴相切,切点为G,且G(8,0),∴E与切点G重合,
∵∠QAP=∠OAB=∠DCE,
∴△APQ与△CDE相似时,顶点C必与顶点A对应,分两种情况:
i)当△DCE∽△QAP时,如图2,∠AQP=∠NDE,
∵∠QNA=∠DNF,
∴∠NFD=∠QAN=90°,
∵AO∥NE,
∴△ACO∽△NCE,
∴,
∴,
∴CO= ,
连接BN,
∴AB=BE=5,
∵∠BAN=∠BEN=90°,
∴∠ANB=∠ENB,
∵EN=ND,
∴∠NDE=∠NED,
∵∠CNE=∠NDE+∠NED,
∴∠ANB=∠NDE,
∴BN∥DE,
Rt△ABN中,BN= ,
sin∠ANB=∠NDE= ,
∴,
∴NF=2 ,
∴DF=4 ,
∵∠QNA=∠DNF,
∴tan∠QNA=tan∠DNF= ,
∴,
∴AQ=20,
∵tan∠QAH=tan∠OAB= ,
设QH=3x,AH=4x,则AQ=5x,
∴5x=20,
x=4,
∴QH=3x=12,AH=16,
∴Q(-12,20),
同理易得:直线NQ的解析式:y=- x+14,∴P(0,14);
ii)当△DCE∽△PAQ时,如图3,
∴∠APN=∠CDE,
∵∠ANB=∠CDE,
∵AP∥NG,
∴∠APN=∠PNE,
∴∠APN=∠PNE=∠ANB,
∴B与Q重合,
∴AN=AP=10,
∴OP=AP-OA=10-4=6,
∴P(0,-6);
综上所述,△APQ与△CDE相似时,点P的坐标的坐标(0,14)或(0,-6)
【解析】【分析】(1)由一次函数解析式容易求得A、B的坐标,利用勾股定理可求得AB
的长度;(2)①根据同角的三角函数得:tan∠OAB= ,设EM=3x,AE=4x,则AM=5x,得M(3x,-4x+4),证明△AHN≌△MEA,则AH=EM=3x,根据NG=OH,列式可得x的值,计算M的坐标即可;
②如图2,先计算E与G重合,易得∠QAP=∠OAB=∠DCE,所以△APQ与△CDE相似时,顶点C必与顶点A对应,可分两种情况进行讨论:
i)当△DCE∽△QAP时,证明△ACO∽△NCE,列比例式可得CO= ,根据三角函数得:
tan∠QNA=tan∠DNF= ,AQ=20,则tan∠QAH=tan∠OAB= ,设QH=3x,AH=4x,则AQ=5x,求出x的值,得P(0,14);
ii)当△DCE∽△PAQ时,如图3,先证明B与Q重合,由AN=AP可得P(0,-6).
7.如图,点O为矩形ABCD的对称中心,AB=5cm,BC=6cm,点E.F.G分别从A.B.C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个
点随之停止运动.在运动过程中,△EBF关于直线EF的对称图形是△EB′F.设点E.F.G运动的时间为t(单位:s).
(1)当t等于多少s时,四边形EBFB′为正方形;
(2)若以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B’与点O重合?若存在,求出t的值;若不存在,请说明理由.
【答案】(1)解:若四边形EBFB′为正方形,则BE=BF,BE=5﹣t,BF=3t,
即:5﹣t=3t,
解得t=1.25;
故答案为:1.25
(2)解:分两种情况,讨论如下:
①若△EBF∽△FCG,
则有,即,
解得:t=1.4;
②若△EBF∽△GCF,
则有,即,
解得:t=﹣7﹣(不合题意,舍去)或t=﹣7+ .
∴当t=1.4s或t=(﹣7+ )s时,以点E、B、F为顶点的三角形与以点F,C,G为顶点的三角形相似.
(3)解:假设存在实数t,使得点B′与点O重合.
如图,过点O作OM⊥BC于点M,
则在Rt△OFM中,OF=BF=3t,FM= BC﹣BF=3﹣3t,OM=2.5,
由勾股定理得:OM2+FM2=OF2,
即:2.52+(3﹣3t)2=(3t)2
解得:t=;
过点O作ON⊥AB于点N,则在Rt△OEN中,OE=BE=5﹣t,EN=BE﹣BN=5﹣t﹣2.5=2.5﹣t,ON=3,
由勾股定理得:ON2+EN2=OE2,
即:32+(2.5﹣t)2=(5﹣t)2
解得:t= .
∵≠ ,
∴不存在实数t,使得点B′与点O重合
【解析】【分析】(1)利用正方形的性质,得到BE=BF,列一元一次方程求解即可;(2)△EBF与△FCG相似,分两种情况,需要分类讨论,逐一分析计算;(3)本问为存在型问题.假设存在,则可以分别求出在不同条件下的t值,它们互相矛盾,所以不存在
8.已知锐角△ABC中,边BC长为12,高AD长为8
(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF 交AD于点K
①求的值
②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值
(2)若ABAC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.
【答案】(1)解:①、∵EF∥BC ∴△AEF∽△ABC ∵AD⊥BC ∴AK⊥EF
∴ = .
②∵① ② ①+②得:
又∵EH=x,AD=8,BC=12 ∴EF=12- x
∴S=EH·EF=- +12x=- +24 ∴S的最大值为24
(2)解:或.
【解析】【分析】根据EF∥BC得出△AEF∽△ABC,从而得到,求出答案;根据题意得出和,将两式相加得到,根据EH=x,得出EF=12-
x,根据S=EH·EF得出函数关系式,求出最大值;根据三角形相似,然后分两种情况得出答案
二、圆的综合
9.如图,已知△ABC中,AC=BC,以BC为直径的⊙O交AB于E,过点E作EG⊥AC于G,交BC的延长线于F.
(1)求证:AE=BE;
(2)求证:FE是⊙O的切线;
(3)若FE=4,FC=2,求⊙O的半径及CG的长.
【答案】(1)详见解析;(2)详见解析;(3).
【解析】(1)证明:连接CE,如图1所示:
∵BC是直径,∴∠BEC=90°,∴CE⊥AB;
又∵AC=BC,∴AE=BE.
(2)证明:连接OE,如图2所示:
∵BE=AE,OB=OC,∴OE是△ABC的中位线,∴OE∥AC,AC=2OE=6.
又∵EG⊥AC,∴FE⊥OE,∴FE是⊙O的切线.
(3)解:∵EF是⊙O的切线,∴FE2=FC•FB.
设FC=x,则有2FB=16,∴FB=8,∴BC=FB﹣FC=8﹣2=6,∴OB=OC=3,即⊙O的半径为3;∴OE=3.
∵OE∥AC,∴△FCG∽△FOE,∴,即,解得:CG=.
点睛:本题利用了等腰三角形三线合一定理,三角形中位线的判定,切割线定理,以及勾股定理,还有平行线分线段成比例定理,切线的判定等知识.
10.如图,AB是半圆的直径,过圆心O作AB的垂线,与弦AC的延长线交于点D,点E
在OD 上DCE B ∠=∠.
(1)求证:CE 是半圆的切线;
(2)若CD=10,2tan 3
B =,求半圆的半径.
【答案】(1)见解析;(2)413
【解析】
分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论;
(2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可.
详解:(1)证明:如图,连接CO .
∵AB 是半圆的直径,
∴∠ACB =90°.
∴∠DCB =180°-∠ACB =90°.
∴∠DCE+∠BCE=90°.
∵OC =OB ,
∴∠OCB =∠B. ∵=DCE B ∠∠,
∴∠OCB =∠DCE .
∴∠OCE =∠DCB =90°.
∴OC ⊥CE .
∵OC 是半径,
∴CE 是半圆的切线.
(2)解:设AC =2x ,
∵在Rt △ACB 中,2tan 3AC B BC =
=, ∴BC =3x .
∴()()222313AB x x x =+=.
∵OD⊥AB,
∴∠AOD=∠A CB=90°.∵∠A=∠A,
∴△AOD∽△ACB.∴AC AO
AB AD
=.
∵113
2
OA AB x
==,AD=2x+10,

1
13
2
210
13
x
x
x
=
+
.
解得 x=8.
∴138413
OA=⨯=.
则半圆的半径为413.
点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形.
11.如图,在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长.【答案】(1)证明见解析(2)3
【解析】
试题分析:(1)根据圆周角定理得出∠ACD=90°以及利用∠PAC=∠PBA得出
∠CAD+∠PAC=90°进而得出答案;
(2)首先得出△CAG∽△BAC,进而得出AC2=AG·AB,求出AC即可.
试题解析:(1)连接CD,如图,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠CAD+∠D=90°,
∵∠PAC=∠PBA,∠D=∠PBA,
∴∠CAD+∠PAC=90°,
即∠PAD=90°,
∴PA⊥AD,
∴PA是⊙O的切线;
(2)∵CF⊥AD,
∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,
∴∠ACF=∠D,
∴∠ACF=∠B,
而∠CAG=∠BAC,
∴△ACG∽△ABC,
∴AC:AB=AG:AC,
∴AC2=AG•AB=12,
∴AC=23.
12.如图1,以边长为4的正方形纸片ABCD的边AB为直径作⊙O,交对角线AC于点E.(1)图1中,线段AE=;
(2)如图2,在图1的基础上,以点A为端点作∠DAM=30°,交CD于点M,沿AM将四边形ABCM剪掉,使Rt△ADM绕点A逆时针旋转(如图3),设旋转角为α(0°<α<150°),在旋转过程中AD与⊙O交于点F.
①当α=30°时,请求出线段AF的长;
②当α=60°时,求出线段AF的长;判断此时DM与⊙O的位置关系,并说明理由;
③当α=°时,DM与⊙O相切.
【答案】(1)2(2)①2②2,相离③当α=90°时,DM与⊙O相切
【解析】(1)连接BE,∵AC是正方形ABCD的对角线,∴∠BAC=45°,∴△AEB是等腰直角三角形,又∵AB=8,∴AE=4;
(2)①连接OA、OF,由题意得,∠NAD=30°,∠DAM=30°,故可得∠OAM=30°,
∠DAM=30°,则∠OAF=60°,又∵OA=OF,∴△OAF是等边三角形,∵OA=4,∴AF=OA=4;
②连接B'F,此时∠NAD=60°,∵AB'=8,∠DAM=30°,∴AF=AB'cos∠DAM=8×=4;此时DM与⊙O的位置关系是相离;
③∵AD=8,直径的长度相等,∴当DM与⊙O相切时,点D在⊙O上,故此时可得
α=∠NAD=90°.
点睛:此题属于圆的综合题,主要是仔细观察每一次旋转后的图形,根据含30°角的直角三角形进行计算,另外在解答最后一问时,关键是判断出点D的位置,有一定难度.
13.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.
【答案】10cm
【解析】
分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在
Rt△AOD中,根据勾股定理求出这个圆形截面的半径.
详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,
∵OC⊥AB
∴BD=1
2
AB=
1
2
×16=8cm
由题意可知,CD=4cm
∴设半径为xcm,则OD=(x﹣4)cm
在Rt△BOD中,
由勾股定理得:OD2+BD2=OB2
(x﹣4)2+82=x2
解得:x=10.
答:这个圆形截面的半径为10cm.
点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行
求解.
14.如图1,等边△ABC 的边长为3,分别以顶点B 、A 、C 为圆心,BA 长为半径作¶AC 、
¶CB
、¶BA ,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点l 为对称轴的交点.
(1)如图2,将这个图形的顶点A 与线段MN 作无滑动的滚动,当它滚动一周后点A 与端点N 重合,则线段MN 的长为 ;
(2)如图3,将这个图形的顶点A 与等边△DEF 的顶点D 重合,且AB ⊥DE ,DE =2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;
(3)如图4,将这个图形的顶点B 与⊙O 的圆心O 重合,⊙O 的半径为3,将它沿⊙O 的圆周作无滑动的滚动,当它第n 次回到起始位置时,点I 所经过的路径长为 (请用含n 的式子表示)
【答案】(1)3π;(2)27π;(3)3. 【解析】
试题分析:(1)先求出¶AC 的弧长,继而得出莱洛三角形的周长为3π,即可得出结论; (2)先判断出莱洛三角形等边△DEF 绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;
(3)先判断出莱洛三角形的一个顶点和O 重合旋转一周点I 的路径,再用圆的周长公式即可得出.
试题解析:解:(1)∵等边△ABC 的边长为3,∴∠ABC =∠ACB =∠BAC =60°,
¶¶¶AC BC AB ==,∴¶¶AC BC
l l ==¶AB l =603180
π⨯=π,∴线段MN 的长为¶¶¶AC BC AB
l l l ++=3π.故答案为3π; (2)如图1.∵等边△DEF 的边长为2π,等边△ABC 的边长为3,∴S 矩形AGHF =2π×3=6π,
由题意知,AB ⊥DE ,AG ⊥AF ,∴∠BAG =120°,∴S 扇形BAG =
2
1203360
π⨯=3π,∴图形在运动过程中所扫过的区域的面积为3(S 矩形AGHF +S 扇形BAG )=3(6π+3π)=27π;
(3)如图2,连接BI 并延长交AC 于D .∵I 是△ABC 的重心也是内心,∴∠DAI =30°,
AD =12AC =3
2
,∴OI =AI =
3
2
30AD cos DAI cos ∠=︒
=3,∴当它第1次回到起始位置时,点I
所经过的路径是以O 为圆心,OI 为半径的圆周,∴当它第n 次回到起始位置时,点I 所经过的路径长为n •2π•3=23n π.故答案为23n π.
点睛:本题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出¶AC 的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF 扫过的图形,解(3)的关键是得出点I 第一次回到起点时,I 的路径,是一道中等难度的题目.
15.对于平面直角坐标系xoy 中的图形P ,Q ,给出如下定义:M 为图形P 上任意一点,N 为图形Q 上任意一点,如果M ,N 两点间的距离有最小值,那么称这个最小值为图形P ,Q 间的“非常距离”,记作d (P ,Q ).已知点A (4,0),B (0,4),连接AB . (1)d (点O ,AB )= ;
(2)⊙O 半径为r ,若d (⊙O ,AB )=0,求r 的取值范围;
(3)点C (-3,-2),连接AC ,BC ,⊙T 的圆心为T (t ,0),半径为2,d (⊙T ,△ABC ),且0<d <2,求t 的取值范围.
【答案】(1)222)224r ≤≤;(3)25252t -<<-或6<r <8. 【解析】 【分析】
(1)如下图所示,由题意得:过点O 作AB 的垂线,则垂线段即为所求;
(2)如下图所示,当d (⊙O ,AB )=0时,过点O 作OE ⊥AB ,交AB 于点E ,则:OB=2, OE=22,即可求解;
(3)分⊙T 在△ABC 左侧、⊙T 在△ABC 右侧两种情况,求解即可. 【详解】
(1)过点O 作OD ⊥AB 交AB 于点D ,
根据“非常距离”的定义可知,
d (点O ,AB )=OD=2AB =22
442
+=22; (2)如图,
当d (⊙O ,AB )=0时,
过点O 作OE ⊥AB,则OE=22,OB=OA=4, ∵⊙O 与线段AB 的“非常距离”为0, ∴224r ≤≤;
(3)当⊙T 在△ABC 左侧时, 如图,
当⊙T 与BC 相切时,d=0, 2236+35,
过点C 作CE ⊥y 轴,过点T 作TF ⊥BC,则△TFH ∽△BEC,
∴TF TH
BE BC
=,
即2
=
635
TH
,
∴TH=5,
∵HO∥CE,
∴△BHO∽△BEC,
∴HO=2,
此时T(-5-2,0);
当d=2时,如图,
同理可得,此时T(252
--);∵0<d <2,
∴25252
t
--<<--;
当⊙T在△ABC右侧时,如图,
当p=0时,t=6,
当p=2时,t=8.
∵0<d <2,
∴6<r <8;
综上,25252t --<<--或6<r <8. 【点睛】
本题主要考查圆的综合问题,解题的关键是理解并掌握“非常距离”的定义与直线与圆的位置关系和分类讨论思想的运用.
16.如图,已知AB 是⊙O 的直径,点C 、D 在⊙O 上,∠D =60°且AB =6,过O 点作OE ⊥AC ,垂足为E . (1)求OE 的长;
(2)若OE 的延长线交⊙O 于点F ,求弦AF 、AC 和弧CF 围成的图形(阴影部分)的面积.(结果保留π)
【答案】(1)OE 的长为32
; (2)阴影部分的面积为32
π 【解析】 (1)OE=
32 (2)S=32
π。

相关文档
最新文档