人教版高中数学《直线和圆的方程》教案全套

合集下载

《直线和圆的方程-大单元教学设计》示范公开课教学课件【高中数学人教】

《直线和圆的方程-大单元教学设计》示范公开课教学课件【高中数学人教】

学科核心素养
1.能用解方程组的方法判断两条直线的位置关系(相交、平行和重合),并能用解方程组的方法求两条相交直线的交点坐标;2. 探索并掌握平面上两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离;3. 通过建立二元一次方程组的解的情况、两条直线的交点个数与相应两条直线的位置关系的联系,体会数形结合思想及坐标法思想.;4. 通过两点间的距离公式、点到直线的距离公式,两条平行直线的距离这个内容探索,体会研究几何度量“距离”的研究方法,进一步体会“坐标法”的思想,体会通过代数方法研究几何问题的一般思路. 在两点间距离公式、点到直线的距离公式、两条平行线之间的距离的公式的探究和推导中,蕴涵着丰富的转化与化归、数形结合、函数与方程等重要的数学思想,发展学生的数学运算、逻辑推理等核心素养.
学科核心素养
1. 回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程和圆的一般方程;2. 通过对圆的标准方程和圆的一般方程的探索,渗透坐标法,体会类比的数学思想,化归与转化的思想,发展学生的数学推理、数学运算、几何直观核心素养.
圆的方程 大单元设计专题概览
再 见
直线与圆、圆与圆的位置关系 大单元设计专题概览
通过抽象概括,认识直线,建立他们的方程
本单元中,无论是直线的倾斜角和斜率的确定,还是直线方程的建立,本质上都是将确定直线的几何要素代数化的过程,体现了坐标法的思想。本单元的学习,还蕴含着数形结合、特殊与一般、分类与整合、化归与转化等数学思想方法,利于发展学生直观想象、逻辑推理的数学核心素养
学科核心素养
主题
单元主题
本单元教学目标
整体设计
几何与代数
直线的交点坐标与距离公式
四基四能
能用解方程组的方法求两直线的交点;探索并掌握平面上两点间的距离的距离公式,点到直线的距离公式。

人教版高中数学《直线和圆的方程》全部教案

人教版高中数学《直线和圆的方程》全部教案

直线的倾斜角和斜率一、教学目标(一)知识教学点知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式.(二)能力训练点通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力.(三)学科渗透点分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想.二、教材分析1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫.2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了.3.疑点:是否有继续研究直线方程的必要?三、活动设计启发、思考、问答、讨论、练习.四、教学过程(一)复习一次函数及其图象已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上.初中我们是这样解答的:∵A(1,2)的坐标满足函数式,∴点A在函数图象上.∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上.现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系.(二)直线的方程引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是.一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应.以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线.上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的.显然,直线的方程是比一次函数包含对象更广泛的一个概念.(三)进一步研究直线方程的必要性通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究.(四)直线的倾斜角一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.按照这个定义不难看出:直线与倾角是多对一的映射关系.(五)直线的斜率倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(六)过两点的直线的斜率公式在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的.当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的.怎样用P2和P1的坐标来表示这条直线的斜率?P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q.那么:α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(七)例题例1 如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率.∵l2的倾斜角α2=90°+30°=120°,本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板.例2 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角.∴tgα=-1.∵0°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°.讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得.(八)课后小结(1)直线的方程的倾斜角的概念.(2)直线的倾斜角和斜率的概念.(3)直线的斜率公式.五、布置作业1.(1.3练习第1题)在坐标平面上,画出下列方程的直线:(1)y=x(2)2x+3y=6(3)2x+3y+6=0(4)2x-3y+6=0作图要点:利用两点确定一条直线,找出方程的两个特解,以这两个特解为坐标描点连线即可.2.(1.4练习第2题)求经过下列每两个点的直线的斜率和倾斜角:(1)C(10,8),D(4,-4);解:(1)k=2 α=arctg2.(3)k=1,α=45°.3.(1.4练习第3题)已知:a、b、c是两两不相等的实数,求经过下列每两个点的直线的倾斜角:(1)A(a,c),(b,c);(2)C(a,b),D(a,c);(3)P(b,b+c),Q(a,c+a).解:(1)α=0°;(2)α=90°;(3)α=45°.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.∵A、B、C三点在一条直线上,∴k AB=k AC.六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的一般形式一、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。

圆与直线方程高中数学教案

圆与直线方程高中数学教案

圆与直线方程高中数学教案
教学内容:圆与直线的方程
一、教学目标:
1. 理解圆的标准方程和一般方程的概念;
2. 能够根据给定的圆心和半径,写出圆的标准方程;
3. 能够通过圆心和过圆上一点的坐标,写出圆的一般方程;
4. 理解直线的点斜式和一般式方程的概念;
5. 能够根据给定的直线上两点的坐标或直线的斜率和截距,写出直线的方程。

二、教学内容:
1. 圆的标准方程和一般方程;
2. 直线的点斜式和一般式方程。

三、教学重点与难点:
重点:理解圆的标准方程和一般方程的概念,能够根据给定的条件写出圆的方程。

难点:理解直线的点斜式和一般式方程的概念,能够准确地写出直线的方程。

四、教学方法:
1. 讲解结合示例:通过解题示例帮助学生理解圆与直线的方程;
2. 课堂练习:让学生进行相关练习,巩固所学知识;
3. 课堂讨论:鼓励学生展示自己的解题思路,促进学生之间的交流。

五、教学步骤:
1. 导入:通过一个实际生活中的问题引入圆与直线的方程的概念;
2. 讲解圆的方程:分别介绍圆的标准方程和一般方程的概念,并通过示例进行讲解;
3. 讲解直线的方程:介绍直线的点斜式和一般式方程的概念,并通过示例进行讲解;
4. 练习:让学生进行相关练习,巩固所学知识;
5. 总结:总结本节课所学内容,强调重点知识点。

六、课后作业:
1. 练习册相关练习题;
2. 查找生活中的例子,分析其中圆与直线方程的应用。

七、教学反馈:
根据学生在课堂上的表现和课后作业的完成情况,及时给予反馈,并对学生的错误进行纠正和指导。

同时,根据学生的学习情况做出相应调整,帮助学生掌握课程内容。

直线与圆的方程教学设计

直线与圆的方程教学设计

直线与圆的方程教学设计一、教学目标•理解直线与圆的定义及特性;•掌握直线的一般方程和点斜式方程的推导和运用;•掌握圆的标准方程和一般方程的推导和运用;•熟练运用直线和圆的方程求解相关问题。

二、教学内容1. 直线的方程(1)一般方程•定义一般式方程:Ax + By + C = 0;•解释A、B、C的物理意义和几何意义;•推导一般方程的标准式:y = kx + b。

(2)点斜式方程•定义点斜式方程:y - y1 = k(x - x1);•解释k和(x1, y1)的几何意义;•推导点斜式方程的一般式:Ax + By + C = 0。

2. 圆的方程(1)标准方程•定义标准方程:(x - a)² + (y - b)² = r²;•解释圆心坐标(a, b)和半径r的物理意义和几何意义;•推导标准方程的一般式:x² + y² + Dx + Ey + F = 0。

(2)一般方程•定义一般方程:x² + y² + Dx + Ey + F = 0;•解释D、E、F的物理意义和几何意义;•推导一般方程的标准式:(x - a)² + (y - b)² = r²。

三、教学过程1. 直线的方程(1)一般方程1.引导学生思考直线方程的表示方法;2.介绍直线的一般方程:Ax + By + C = 0;3.解释A、B、C的物理意义和几何意义;4.讲解一般方程的标准式:y = kx + b;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。

(2)点斜式方程1.引导学生思考点斜式方程的表示方法;2.介绍点斜式方程:y - y1 = k(x - x1);3.解释k和(x1, y1)的几何意义;4.讲解点斜式方程的一般式:Ax + By + C = 0;5.给出一个具体的例子进行讲解和演示;6.练习一些示例题,加深理解。

直线与圆的方程单元教学设计

直线与圆的方程单元教学设计

直线与圆的方程单元教学设计一、教学目标本课程设计旨在通过教授直线和圆的方程,使学生能够: - 掌握直线的一般方程和斜截式方程的概念及应用; - 掌握圆的标准方程和一般方程的概念及应用; -能够根据已知条件构造直线和圆的方程; - 能够应用直线和圆的方程解决实际问题。

二、教学重点与难点1. 教学重点•直线的一般方程和斜截式方程的应用;•圆的标准方程和一般方程的应用。

2. 教学难点•如何根据已知条件构造直线和圆的方程;•如何应用直线和圆的方程解决实际问题。

三、教学准备•教师准备:直线和圆的方程教学课件、黑板、彩色粉笔等。

•学生准备:课本、笔记本、铅笔、直尺、计算器等。

四、教学过程与内容1. 导入与引入(10分钟)•通过提问引导学生回顾已学内容,了解学生对直线和圆的掌握情况;•引入直线的方程概念,与学生分享实际应用中直线方程的重要性。

2. 直线的一般方程和斜截式方程(30分钟)•介绍直线一般方程和斜截式方程的定义和特点;•通过例题讲解,引导学生理解直线的一般方程和斜截式方程的应用方法;•练习巩固:学生在小组内完成练习题,查漏补缺。

3. 圆的标准方程和一般方程(30分钟)•介绍圆的标准方程和一般方程的定义和特点;•通过例题讲解,引导学生理解圆的标准方程和一般方程的应用方法;•练习巩固:学生在小组内完成练习题,查漏补缺。

4. 应用实例解析与讨论(20分钟)•设计一些实际问题,利用直线和圆的方程进行解析,引导学生应用已学知识解决问题;•学生小组展示解题过程和答案,并进行讨论与点评。

5. 总结与归纳(10分钟)•整理并归纳学习过程中的重点和难点;•回顾学习内容,强化关键知识点。

五、教学评估•教师可通过课堂练习、小组讨论和学生作业等方式进行评估;•评估主要针对学生对直线和圆的方程的掌握程度以及应用能力。

六、教学延伸•鼓励学生自主积累直线和圆的方程应用题,并展示在课堂上;•提供更多的实际问题,引导学生灵活运用直线和圆的方程解决问题;•推荐教学参考书籍和网站,扩展学生的学习资源。

直线和圆的方程教学设计

直线和圆的方程教学设计

直线和圆的方程教学设计引言在平面几何中,直线和圆是两个重要的概念。

直线是无限延伸的,圆是由一系列等距离于圆心的点组成的。

本教学设计旨在帮助学生掌握直线和圆的方程,理解它们的几何意义,并能应用于实际问题中。

通过引导学生从具体案例出发,探索直线和圆的方程的特点和关系,培养学生的数学思维能力和解决问题的能力。

学习目标通过本次教学,学生应能够: - 掌握直线的斜截式和点斜式的方程; - 掌握圆的标准式和一般式的方程; - 理解直线和圆的方程与其几何特征的关系; - 能够应用直线和圆的方程解决实际问题。

教学过程1. 直线的方程1.1 斜截式方程斜截式方程可以表示为:y=kx+b,其中k表示直线的斜率,b表示直线与y轴相交的截距。

示例1:给定一条直线,斜率为2,截距为−3,求直线的方程。

解析:直线的斜截式方程为y=2x−3。

1.2 点斜式方程点斜式方程可以表示为:y−y1=k(x−x1),其中(x1,y1)是直线上的一点,k 是直线的斜率。

示例2:给定一条通过点(2,4)的直线,斜率为−1,求直线的方程。

解析:直线的点斜式方程为y−4=−1(x−2),化简后得到y=−x+6。

2. 圆的方程2.1 标准式方程标准式方程可以表示为:(x−ℎ)2+(y−k)2=r2,其中(ℎ,k)是圆心的坐标,r是圆的半径。

示例3:给定一个圆心坐标为(3,−2),半径为5的圆,求圆的方程。

解析:圆的标准式方程为(x−3)2+(y+2)2=25。

2.2 一般式方程一般式方程可以表示为:x2+y2+Dx+Ey+F=0,其中D、E、F是系数。

示例4:给定一个圆的一般式方程为x2+y2−4x+6y−7=0,求圆的圆心和半径。

解析:通过化简方程,可得(x−2)2+(y+3)2=4。

因此,圆的圆心坐标为(2,−3),半径为2。

3. 应用与拓展3.1 应用实例应用实例可以帮助学生将所学知识应用于实际问题,并培养解决问题的能力。

实例5:在平面直角坐标系中,过点(1,2)且平行于直线y=3x−4的直线的方程是多少?解析:直线平行于y=3x−4,斜率相同,因此直线的斜率为3。

直线与圆的方程教案

直线与圆的方程教案

直线与圆的方程教案一、引言在平面几何中,直线和圆是基本的几何元素,它们的方程是解决许多几何问题的关键。

本教案将介绍直线与圆的方程及其应用。

二、直线的方程1. 一般式方程直线的一般式方程可以表示为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

通过该方程,可以方便地确定直线的斜率和截距。

2. 截距式方程直线的截距式方程可以表示为x/a + y/b = 1,其中a和b表示直线与x轴和y轴的截距。

该方程可以更直观地描述直线在坐标系中的位置和倾斜程度。

3. 点斜式方程直线的点斜式方程可以表示为y - y1 = m(x - x1),其中m为直线的斜率,(x1, y1)为直线上的一点。

通过该方程,可以直接得到直线的斜率和一个点的坐标。

三、圆的方程1. 标准方程圆的标准方程可以表示为(x - h)² + (y - k)² = r²,其中(h, k)表示圆心的坐标,r表示圆的半径。

通过该方程,可以方便地确定圆的圆心坐标和半径。

2. 参数方程圆的参数方程可以表示为x = h + r·cosθ,y = k + r·sinθ,其中(h, k)表示圆心的坐标,r表示圆的半径,θ为参数,取值范围为0到2π。

通过该方程,可以根据参数θ的变化描述圆上的点。

四、直线与圆的交点1. 相切情况当直线与圆相切时,直线只与圆相交于一个点。

可以通过解直线与圆的方程组来确定相切点的坐标。

2. 相离情况当直线与圆相离时,直线与圆没有交点。

3. 相交情况当直线与圆相交时,直线与圆有两个交点。

可以通过解直线与圆的方程组来确定交点的坐标。

五、应用示例1. 判断直线与圆的位置关系通过求解直线与圆的方程组,可以判断直线与圆的位置关系,包括相切、相离或相交。

2. 求直线与圆的交点坐标通过解直线与圆的方程组,可以求得直线与圆的交点坐标,进而进行进一步的几何推理和计算。

3. 圆的切线问题直线与圆相切时,直线为圆的切线。

直线和圆的方程教案

直线和圆的方程教案

直线和圆的方程教案一、教学目标1. 知识与技能:(1)理解直线和圆的方程的基本概念;(2)掌握直线的斜截式、截距式和一般式方程的求法;(3)掌握圆的标准方程和一般方程的求法。

2. 过程与方法:(1)通过实例引导学生认识直线和圆的方程;(2)利用数形结合的方法,理解直线和圆的方程之间的关系;(3)培养学生的运算能力和解决问题的能力。

3. 情感态度与价值观:(1)激发学生对数学的兴趣和好奇心;(2)培养学生克服困难的意志和合作精神;(3)引导学生认识到数学在实际生活中的应用。

二、教学内容1. 直线的方程(1)直线方程的基本概念;(2)直线的斜截式方程;(3)直线的截距式方程;(4)直线的一般式方程。

2. 圆的方程(1)圆的方程的基本概念;(2)圆的标准方程;(3)圆的一般方程。

三、教学重点与难点1. 教学重点:(1)直线和圆的方程的基本概念;(2)直线的斜截式、截距式和一般式方程的求法;(3)圆的标准方程和一般方程的求法。

2. 教学难点:(1)直线和圆的方程的求法;(2)直线和圆的位置关系的理解。

四、教学过程1. 导入:通过实例引导学生认识直线和圆的方程,激发学生的兴趣和好奇心。

2. 教学新课:(1)讲解直线方程的基本概念,引导学生理解直线的斜截式、截距式和一般式方程的求法;(2)讲解圆的方程的基本概念,引导学生掌握圆的标准方程和一般方程的求法。

3. 巩固练习:布置一些有关直线和圆的方程的练习题,帮助学生巩固所学知识。

4. 课堂小结:五、课后作业1. 完成教材上的相关练习题;2. 查找生活中与直线和圆相关的实例,分析其方程的应用。

教学评价:通过课后作业的完成情况、课堂练习和学生的参与程度,评价学生对直线和圆的方程的理解和应用能力。

六、教学策略1. 数形结合:通过图形展示直线和圆的方程,使学生更直观地理解方程的含义和应用。

2. 实例分析:通过生活中的实例,引导学生认识直线和圆的方程,提高学生的学习兴趣。

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套题目:人教版高中数学《直线和圆的方程》教案全套导语:数学是一门精密细致的学科,它以其独特的思维方式和精确的推理方法在人类文明发展中起到了重要的作用。

而高中数学作为数学学科中的一部分,是培养学生分析和解决问题的能力的重要途径之一。

其中《直线和圆的方程》这一部分,是高中数学中的一个重要内容。

本文将为大家介绍人教版高中数学《直线和圆的方程》教案全套。

一、教学目标:1. 了解直线和圆的基本概念;2. 掌握直线和圆的方程的求解方法;3. 能够应用所学的知识解决实际问题。

二、教学重点:1. 直线和圆的方程的推导和求解;2. 直线和圆的方程在实际问题中的应用。

三、教学难点:直线和圆的方程的综合应用。

四、教学准备:1. 教材:人教版高中数学教材《直线和圆的方程》;2. 视频教学资料:相关的教学视频;3. 课件:用于辅助教学的课件。

五、教学过程:本套教案共分为两个单元:直线的方程和圆的方程。

1. 直线的方程第一课时:(1)引入问题:通过观察直线和平面上的点,让学生自己总结直线的特点;(2)介绍直线的斜率和截距的概念,让学生理解斜率和截距的含义;(3)讲解直线的一般式方程和斜截式方程,通过具体的例子进行解析;(4)让学生完成练习,巩固所学的内容。

第二课时:(1)复习上一节课所学的内容,回答学生提出的问题;(2)通过实例讲解直线的点斜式方程和两点式方程;(3)让学生进行练习,巩固所学的内容。

第三课时:(1)通过总结前面所学的内容,让学生分析直线的方程和直线的性质之间的关系;(2)通过实例引导学生理解直线的方向角和倾斜角的概念;(3)讲解直线的参数方程,通过具体的例子进行解析;(4)通过练习检查学生对直线方程的掌握程度。

2. 圆的方程第四课时:(1)引入问题:通过观察圆和平面上的点,让学生自己总结圆的特点;(2)介绍圆的标准方程和一般方程的概念,让学生理解圆的方程的推导过程;(3)通过具体的例子进行解析,讲解如何求解圆的方程;(4)让学生进行练习,巩固所学的内容。

【精品教案】高中数学必修2第四章《直线与圆的方程的应用》教案

【精品教案】高中数学必修2第四章《直线与圆的方程的应用》教案

4.2.3 直线与圆的方程的应用
一、教学目标
1、知识与技能
(1)理解直线与圆的位置关系的几何性质;
(2)利用平面直角坐标系解决直线与圆的位置关系;
(3)会用“数形结合”的数学思想解决问题.
2、过程与方法
用坐标法解决几何问题的步骤:
第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;
第二步:通过代数运算,解决代数问题;
第三步:将代数运算结果“翻译”成几何结论.
3、情态与价值观
让学生通过观察图形,理解并掌握直线与圆的方程的应用,培养学生分析问题与解决问题的能力.
二、教学重点、难点:
重点与难点:直线与圆的方程的应用.
三、教学设想。

高中数学直线和圆教案

高中数学直线和圆教案

高中数学直线和圆教案
课题:直线和圆
一、教学目标:
1. 知识与技能:掌握直线和圆的基本概念、性质和公式;能够运用直线和圆的知识解决相关问题。

2. 过程与方法:通过例题分析、思维导向和讨论等方式,培养学生的数学思维和解决问题的能力。

3. 情感态度与价值观:鼓励学生积极思考、勇于探索,培养他们对数学的兴趣和自信心。

二、教学内容:
1. 直线的概念及斜率、方向角的相关性质;
2. 圆的概念及圆心、半径、弦、弧、切线等基本概念;
3. 直线和圆的位置关系及相关公式。

三、教学过程:
1. 引入:通过给出一道直线和圆的问题,让学生思考直线和圆之间的关系,并引出本节课的主题。

2. 学习直线的知识点:讲解直线的概念、斜率、方向角等基本知识,并通过例题演示如何计算直线的斜率和方向角。

3. 学习圆的知识点:讲解圆的概念、圆心、半径、弦、弧、切线等基本知识,并通过例题演示如何计算圆的相关参数。

4. 直线和圆的位置关系:讲解直线和圆的位置关系及相关公式,并通过例题演示如何判断直线和圆的位置关系。

5. 练习与巩固:布置练习题,让学生独立解题,并对答案进行核对和讲解。

6. 总结与拓展:总结本节课的重点知识,拓展相关知识,激发学生兴趣和探索欲望。

四、课堂评价:
考核学生对直线和圆的基本概念、性质以及相关公式的掌握情况,包括思维能力、解题能力等方面的评价。

五、课后作业:
1. 完成课后练习题;
2. 总结笔记,复习本节课所学知识。

高中数学直线与圆教案

高中数学直线与圆教案

高中数学直线与圆教案
教学目标:
1. 理解直线与圆的性质及相关定理
2. 掌握直线与圆的交点求解方法
3. 能够应用所学知识解决相关问题
教学重点:
1. 直线与圆的公共部分
2. 直线与圆的交点求解
教学难点:
1. 利用直线与圆的性质解决较复杂问题
2. 应用所学知识综合思考
教学准备:
1. 教材:高中数学教材
2. 教具:黑板、粉笔、几何工具
教学步骤:
一、导入(5分钟)
引入直线与圆的概念,让学生了解它们之间的关系,并激发学生学习兴趣。

二、讲解直线与圆的性质(15分钟)
1. 直线与圆的位置关系
2. 直线与圆的交点情况
3. 直线与圆相交时的性质
三、示范求解例题(15分钟)
通过实际例题,演示如何求解直线和圆的交点,让学生掌握方法和技巧。

四、学生练习(20分钟)
布置练习题,让学生独立思考并解答,引导他们灵活运用所学知识。

五、总结归纳(5分钟)
总结本节课的重点内容,强化学生对直线与圆的理解和掌握。

教学延伸:
1. 探究直线与圆的其他性质和定理
2. 进一步应用所学知识解决实际问题
教学反思:
本节课主要围绕直线与圆的性质展开,通过讲解、示范和练习让学生逐步理解和掌握相关
知识。

在教学过程中,要尽可能提供多样化的例题,引导学生灵活运用所学知识解决问题。

同时,要注重培养学生的逻辑思维能力和解决问题的能力,让他们在实践中不断提高。

人教版高中数学必修2-4.2《直线与圆的方程应用》教学设计

人教版高中数学必修2-4.2《直线与圆的方程应用》教学设计

4.2 直线、圆的位置关系4.2.3 直线与圆的方程应用(朱海军)一、教学目标(一)核心素养通过直线与圆方程的综合应用,熟练掌握使用代数法来解决问题的方法. (二)学习目标1.坐标法解决直线和圆的应用问题(分析,建系,抽象出数学问题).2.与圆有关的最值问题.3.与圆有关的中点弦问题.(三)学习重点综合使用直线与圆的方程来解决问题.(四)学习难点1.将实际问题转化为数学问题.2.在运用坐标系证明几何问题时,合理建立直角坐标系的方法.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材中的例题4,了解将实际问题转化为数学问题的具体例子;(2)记一记:用坐标法解决几何问题的步骤第一步:建立适当的平面直角坐标系,用坐标和方程表示问题中的几何元素,将平面几何问题转化为代数问题;第二步:通过代数运算,解决代数问题;第三步:将代数运算结果“翻译”成几何结论.(3)做一做:完成课后习题2,体会使用直线与圆方程解决问题的过程.2.预习自测(1)赵州桥的跨度是37.4米,圆拱高约为7.2米,求这座圆拱桥的拱圆方程. 【知识点】将实际问题转化为数学问题的方法.【数学思想】代数法【解题过程】放在一元二次方程中,我们可以画出拱圆图形是一个抛物线,则设拱圆的方程为c bx ax y ++=2,顶点在y 轴上若跨度两边的点在x 轴上,则方程过点(-18.75,0)、(18.75,0)、(0,7.2),将这三个点代入方程,解出a,b,c 即可若拱圆的顶点在x 轴上,则方程过点(-18.75,-7.2)、(18.75,-7.2)、(0,0),将这三个点代入方程,解出a,b,c 即可.但是由于此题要求的是拱圆方程,则我们必须求出的是一个圆的方程,因此我们可以设圆心坐标为原点,半径为r ,则圆拱桥的方程为222r y x =+,则有,半径与跨度一般、半径减圆拱高的线段构成一个直角三角形.有:()2222.775.18-+=r r ,解出r =28.0再代入圆的方程即可. 【思路点拨】建立直角坐标系【答案】2220.28=+y x(2)如果实数,x y 满足等式22(2)3x y -+=,那么xy 的最大值是________. 【知识点】直线与圆的最值问题【数学思想】化归与转化【解题过程】分析可知,x y 的最值是过原点的直线与圆相切时的直线的斜率,设:0,l kx y l d k -====则圆心到的距离则所以x y 【思路点拨】xy 看成(,)x y 与(0,0)连线的斜率【答 (3)过圆22(2)4x y +-=外一点(2,2)A -,引圆的两条切线,切点为12,T T , 则直线12TT 的方程为________.【知识点】切线、切点弦【数学思想】方程思想【解题过程】设切点12,T T 为1122(,),(,)x y x y ,则1AT 的方程为11(2)(2)4x x y y +--=,同理2AT 的方程为22(2)(2)4x x y y +--=,则。

《直线和圆的方程》单元教学设计

《直线和圆的方程》单元教学设计

《直线和圆的方程》单元教学设计【教学设计思路】教材分析:直线是解析几何中的灵魂,而圆是在解析几何中的最简单的曲线.这节课安排在学习了如何求直线的方程,直线的倾斜角和斜率;圆的方程的求法之后,学习三大圆锥曲线之前,旨在培养解析几何中的数形集合的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.学情分析:所教班级是文科班,学生的层次处于我校的中等偏下水平,应该说学生的认知水平和思维品质还可以,学习习惯和风气比较好,相对自觉,而且学生对前面的有关直线和圆中的基本知识点已经有了较好的掌握。

但考虑到本节课的重要性,教师授课时还须充分发挥学生的主观能动性,留给学生更多的思维空间,培养学生在解析几何中的运算意识,以及注意如何减少运算量。

【知识与技能】(1)掌握圆的切线方程,能根据过定点熟练地写出圆的切线方程,也能根据圆的切线方程熟练地求出切线长.(2)掌握圆和直线的位置关系的判定方法,(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关直线中的简单问题. 【教学重点,难点】(1)注意在解析几何中要“一题多解” (2) 如何提高学生运算能力(3)培养学生简化运算过程的意识能力. 辅助手段:多媒体课件 教学安排:1课时 【教学过程】一 课前预习:(1)若圆(x-a)2+(y-b) 2=r 2,那么点(x 0,y 0)在()()()()()()⎪⎩⎪⎨⎧>-+-⇔<-+-⇔=-+-⇔220202202022020r b y a x r b y a x r b y a x 圆外圆内圆上 (2)直线与圆的位置关系直线与圆有三种位置关系:相离、相切和相交。

有两种判断方法:(1) 代数法(判别式法)⎪⎩⎪⎨⎧⇔<∆⇔=∆⇔>∆相离相切相交000(2) 几何法,圆心到直线的距离⎪⎩⎪⎨⎧⇔>⇔=⇔<相离相切相交r d r d r d一般宜用几何法。

高中数学上学期《直线与圆的方程》教学设计

高中数学上学期《直线与圆的方程》教学设计

4.2.3直线与圆的方程的应用
教学要求:利用直线与圆的位置关系解决一些实际问题
教学重点:直线的知识以及圆的知识
教学难点:用坐标法解决平面几何.
教学过程:
I复习准备:
(1)直线方程有几种形式? 分别为什么?
(2)圆的方程有几种形式?分别是哪些?
(3)求圆的方程时,什么条件下,用标准方程?什么条件下用一般方程?
(4)直线与圆的方程在生产.生活实践中有广泛的应用.想想身边有哪些呢?
II讲授新课:
例1.某圆拱形桥圆拱跨度AB=20米,拱高OP=4米,建造时每间隔4米需要用一根支柱支撑,求第二根支柱的高度(精确0.01m)
例2.已知内接于圆的四边形的对角线互相垂直,求证圆心到一边距
离等于这条边所对这条边长的一半.(提示建立平面直角坐标系)
.
巩固练习:
1.赵州桥的跨度是37.4m.圆拱高约为7.2m.求这座圆拱桥的拱圆
的方程
2.用坐标法证明:三角形的三条高线交于一点
3.求出以曲线2225
=-的交点为顶点的多边形的面积.
y x
+=与213
x y
4.机械加工后的产品是否合格,要经过测量检验某车间的质量检测员利用三个同样的量球以及两块不同的长方体形状的块规检测一个圆弧形零件的半径.已知量球的直径为2厘米,并测出三个不同高度和三个相应的水平距离,求圆弧零件的半径.
III小结:用坐标法解题的步骤:
1建立平面直角坐标系,将平南几何问题转化为代数问题;
2利用公式对点的坐标及对应方程进行运算,解决代数问题:
3根据我们计算的结果,作出相应的几何判断.
.IV作业:课本P132练习第4题;。

高二数学直线和圆的方程教案 人教版 【精编】

高二数学直线和圆的方程教案 人教版 【精编】

高二数学直线和圆的方程教案一、知识框架二、重点难点重点:直线的倾斜角和斜率,直线方程的点斜式、两点式,直线方程的一般式;两条直线平行与垂直的条件,两条直线的夹角,点到直线的距离;用二元一次不等式表示平面区域,简单的线性规划问题;曲线与方程的概念,由已知条件列出曲线方程;圆的标准方程和一般方程,圆的参数方程;难点:解析几何的基本量;对称问题;直线与圆的位置关系;与圆和直线有关的轨迹问题;三、知识点解析1、直线(1)直线的方程:1)直线的倾斜角、斜率及直线的方向向量:①直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角;若直线和x 轴平行或重合时,则倾斜角为0o ;直线倾斜角的取值范围是0180α≤<o o ;②直线的斜率:倾斜角α不是90o的直线,它的倾斜角的正切叫做这条直线的斜率,用k 来表示,即tan (90)k αα=≠o ;倾斜角是90o 的直线没有斜率;倾斜角不是90o 的直线都有斜率,其取值范围是(,)-∞+∞;③直线的方向向量:设111222(,),(,)F x y F x y 是直线上不同的两点,则向量122121(,)F F x x y y =--u u u u r 称为直线的方向向量;向量211221211(1,)(1,)y y F F k x x x x -==--u u u u r 也是该直线的方向向量,k 是直线的斜率; ④直线斜率的求法:(ⅰ)定义法:依据直线的斜率定义tan (90)k αα=≠o 求得;(ⅱ)公式法:已知直线过两点111222(,),(,)F x y F x y ,且12x x ≠,则斜率2121y y k x x -=-;(ⅲ)方向向量法:若(,)a m n =r 为直线的方向向量,则直线的斜率m k n=; 2)直线方程的五种形式:(ⅰ)斜截式:y kx b =+;(ⅱ)点斜式:00()y y k x x -=-;(ⅲ)两点式:111212y y x x y y x x --=--;(ⅳ)截距式:1x y a b+=;(ⅴ)一般式:0Ax By C ++=。

直线和圆的方程教案

直线和圆的方程教案

第一教时 直线的倾斜角和斜率(1)教材:7.1直线的倾斜角和斜率目的:1、初步了解“直线的方程”和“方程的直线”的概念,为今后进一步学习曲线与方程的概念打下基础;2、了解直线的倾斜角概念,理解直线的斜率概念,会准确地表述直线的倾斜角和斜率的定义,知道每条直线都存在唯一的倾斜角,但不 是每条直线都有斜率;3、已知直线的倾斜角(或斜率),会求直线的斜率(或倾斜角);4、培养和提高学生的联系、对应、转化等辩证思维。

过程: 一、新课1、"直线的方程"和"方程的直线"的概念(1)请一名学生作出函数y=2x +1的图像,引导大家分析:①有序数对(0,1)满足函数y=2x+1,在直线l 上就有一点A ,它的坐标 是(0,1),即函数y=2x+1⇒有序实数对(x ,y )−−−→←一一对应点⇒直线l ;②反过来,直线l 上点P (1,3),则有序实数对(1,3)就满足函数y=2x+1, 即直线l ⇒点−−−→←一一对应有序实数对(x ,y )⇒函数y=2x+1。

归纳:一般地,满足函数式y=kx+b 的每一对x,y 的值,都是直线l 上的 点的坐标(x,y );反之,直线l 上每一点的坐标(x,y )都满足函数式y=kx+b 。

因此,一次函数y=kx+b 的图像是一条直线,它是以满足y=kx+b 的每一 对x,y 的值为坐标的点构成的。

(2)讲解:从方程的角度看,函数y=kx+b 也可以看作是二元一次方程 y -kx -b =0,这样,满足一次函数y=kx+b 的每一对x,y 的值“变成了二元一次方程y -kx -b =0的解” ,使方程和直线建立了联系。

板书:定义“直线的方程”和“方程的直线” ,强调定义中两个条件必 须同时满足,缺一不可。

例1、已知方程2x+3y+6=0(1) 把这个方程改写成一次函数式; (2) 画出这个方程所对应的直线; (3) 点(23,1)是否在直线l 上?2、直线的倾斜角设问1:在直角坐标系中,过点P 的一条直线绕P 点旋转,不管旋转多少周,它对x 轴的位置有几种情况?画图表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版高中数学《直线和圆的方程》教案全套直线的倾斜角和斜率一、教学目标(一)知识教学点知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式.(二)能力训练点通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力.(三)学科渗透点分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想.二、教材分析1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫.2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了.3.疑点:是否有继续研究直线方程的必要?三、活动设计启发、思考、问答、讨论、练习.四、教学过程(一)复习一次函数及其图象已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上.初中我们是这样解答的:∵A(1,2)的坐标满足函数式,∴点A在函数图象上.∵B(2,1)的坐标不满足函数式,∴点B不在函数图象上.现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.)讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系.(二)直线的方程引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗?一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是.一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应.以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线.上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的.显然,直线的方程是比一次函数包含对象更广泛的一个概念.(三)进一步研究直线方程的必要性通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究.(四)直线的倾斜角一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.直线倾斜角角的定义有下面三个要点:(1)以x轴正向作为参考方向(始边);(2)直线向上的方向作为终边;(3)最小正角.按照这个定义不难看出:直线与倾角是多对一的映射关系.(五)直线的斜率倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k表示,即直线与斜率之间的对应不是映射,因为垂直于x轴的直线没有斜率.(六)过两点的直线的斜率公式在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2),由于两点可以确定一条直线,直线P1P2就是确定的.当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的.怎样用P2和P1的坐标来表示这条直线的斜率?P2分别向x轴作垂线P1M1、P2M2,再作P1Q⊥P2M,垂足分别是M1、M2、Q.那么:α=∠QP1P2(图1-22甲)或α=π-∠P2P1Q(图1-22乙)综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:对于上面的斜率公式要注意下面四点:(1)当x1=x2时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到.(七)例题例1 如图1-23,直线l1的倾斜角α1=30°,直线l2⊥l1,求l1、l2的斜率.∵l2的倾斜角α2=90°+30°=120°,本例题是用来复习巩固直线的倾斜角和斜率以及它们之间的关系的,可由学生课堂练习,学生演板.例2 求经过A(-2,0)、B(-5,3)两点的直线的斜率和倾斜角.∴tgα=-1.∵0°≤α<180°,∴α=135°.因此,这条直线的斜率是-1,倾斜角是135°.讲此例题时,要进一步强调k与P1P2的顺序无关,直线的斜率和倾斜角可通过直线上的两点的坐标求得.(八)课后小结(1)直线的方程的倾斜角的概念.(2)直线的倾斜角和斜率的概念.(3)直线的斜率公式.五、布置作业1.(1.3练习第1题)在坐标平面上,画出下列方程的直线:(1)y=x(2)2x+3y=6(3)2x+3y+6=0(4)2x-3y+6=0作图要点:利用两点确定一条直线,找出方程的两个特解,以这两个特解为坐标描点连线即可.2.(1.4练习第2题)求经过下列每两个点的直线的斜率和倾斜角:(1)C(10,8),D(4,-4);解:(1)k=2 α=arctg2.(3)k=1,α=45°.3.(1.4练习第3题)已知:a、b、c是两两不相等的实数,求经过下列每两个点的直线的倾斜角:(1)A(a,c),(b,c);(2)C(a,b),D(a,c);(3)P(b,b+c),Q(a,c+a).解:(1)α=0°;(2)α=90°;(3)α=45°.4.已知三点A(a,2)、B(3,7)、C(-2,-9a)在一条直线上,求实数a的值.∵A、B、C三点在一条直线上,∴k AB=k AC.六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的点斜式、斜截式、两点式和截距式一、教学目标(一)知识教学点在直角坐标平面内,已知直线上一点和直线的斜率或已知直线上两点,会求直线的方程;给出直线的点斜式方程,能观察直线的斜率和直线经过的定点;能化直线方程成截距式,并利用直线的截距式作直线.(二)能力训练点通过直线的点斜式方程向斜截式方程的过渡、两点式方程向截距式方程的过渡,训练学生由一般到特殊的处理问题方法;通过直线的方程特征观察直线的位置特征,培养学生的数形结合能力.(三)学科渗透点通过直线方程的几种形式培养学生的美学意识.二、教材分析1.重点:由于斜截式方程是点斜式方程的特殊情况,截距式方程是两点式方程的特殊情况,教学重点应放在推导直线的斜截式方程和两点式方程上.2.难点:在推导出直线的点斜式方程后,说明得到的就是直线的方程,即直线上每个点的坐标都是方程的解;反过来,以这个方程的解为坐标的点在直线上.的坐标不满足这个方程,但化为y-y1=k(x-x1)后,点P1的坐标满足方程.三、活动设计分析、启发、诱导、讲练结合.四、教学过程(一)点斜式已知直线l的斜率是k,并且经过点P1(x1,y1),直线是确定的,也就是可求的,怎样求直线l的方程(图1-24)?设点P(x,y)是直线l上不同于P1的任意一点,根据经过两点的斜率公式得注意方程(1)与方程(2)的差异:点P1的坐标不满足方程(1)而满足方程(2),因此,点P1不在方程(1)表示的图形上而在方程(2)表示的图形上,方程(1)不能称作直线l的方程.重复上面的过程,可以证明直线上每个点的坐标都是这个方程的解;对上面的过程逆推,可以证明以这个方程的解为坐标的点都在直线l上,所以这个方程就是过点P1、斜率为k的直线l的方程.这个方程是由直线上一点和直线的斜率确定的,叫做直线方程的点斜式.当直线的斜率为0°时(图1-25),k=0,直线的方程是y=y1.当直线的斜率为90°时(图1-26),直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1.(二)斜截式已知直线l在y轴上的截距为b,斜率为b,求直线的方程.这个问题,相当于给出了直线上一点(0,b)及直线的斜率k,求直线的方程,是点斜式方程的特殊情况,代入点斜式方程可得:y-b=k(x-0)也就是上面的方程叫做直线的斜截式方程.为什么叫斜截式方程?因为它是由直线的斜率和它在y轴上的截距确定的.当k≠0时,斜截式方程就是直线的表示形式,这样一次函数中k和b的几何意义就是分别表示直线的斜率和在y轴上的截距.(三)两点式已知直线l上的两点P1(x1,y1)、P2(x2,y2),(x1≠x2),直线的位置是确定的,也就是直线的方程是可求的,请同学们求直线l的方程.当y1≠y2时,为了便于记忆,我们把方程改写成请同学们给这个方程命名:这个方程是由直线上两点确定的,叫做直线的两点式.对两点式方程要注意下面两点:(1)方程只适用于与坐标轴不平行的直线,当直线与坐标轴平行(x1=x2或y1=y2)时,可直接写出方程;(2)要记住两点式方程,只要记住左边就行了,右边可由左边见y就用x代换得到,足码的规律完全一样.(四)截距式例1 已知直线l在x轴和y轴上的截距分别是a和b(a≠0,b≠0),求直线l的方程.此题由老师归纳成已知两点求直线的方程问题,由学生自己完成.解:因为直线l过A(a,0)和B(0,b)两点,将这两点的坐标代入两点式,得就是学生也可能用先求斜率,然后用点斜式方程求得截距式.引导学生给方程命名:这个方程是由直线在x轴和y轴上的截距确定的,叫做直线方程的截距式.对截距式方程要注意下面三点:(1)如果已知直线在两轴上的截距,可以直接代入截距式求直线的方程;(2)将直线的方程化为截距式后,可以观察出直线在x轴和y轴上的截距,这一点常被用来作图;(3)与坐标轴平行和过原点的直线不能用截距式表示.(五)例题例2 三角形的顶点是A(-5,0)、B(3,-3)、C(0,2)(图1-27),求这个三角形三边所在直线的方程.本例题要在引导学生灵活选用方程形式、简化运算上多下功夫.解:直线AB的方程可由两点式得:即 3x+8y+15=0这就是直线AB的方程.BC的方程本来也可以用两点式得到,为简化计算,我们选用下面途径:由斜截式得:即 5x+3y-6=0.这就是直线BC的方程.由截距式方程得AC的方程是即 2x+5y+10=0.这就是直线AC的方程.(六)课后小结(1)直线方程的点斜式、斜截式、两点式和截距式的命名都是可以顾名思义的,要会加以区别.(2)四种形式的方程要在熟记的基础上灵活运用.(3)要注意四种形式方程的不适用范围.五、布置作业1.(1.5练习第1题)写出下列直线的点斜式方程,并画出图形:(1)经过点A(2,5),斜率是4;(4)经过点D(0,3),倾斜角是0°;(5)经过点E(4,-2),倾斜角是120°.解:2.(1.5练习第2题)已知下列直线的点斜方程,试根据方程确定各直线经过的已知点、直线的斜率和倾斜角:解:(1)(1,2),k=1,α=45°;(3)(1,-3),k=-1,α=135°;3.(1.5练习第3题)写出下列直线的斜截式方程:(2)倾斜角是135°,y轴上的截距是3.4.(1.5练习第4题)求过下列两点的直线的两点式方程,再化成截距式方程,并根据截距式方程作图.(1)P1(2,1)、P2(0,-3);(2)A(0,5)、B(5,0);(3)C(-4,-3)、D(-2,-1).解:(图略)六、板书设计直线方程的一般形式一、教学目标(一)知识教学点掌握直线方程的一般形式,能用定比分点公式设点后求定比.(二)能力训练点通过研究直线的一般方程与直线之间的对应关系,进一步强化学生的对应概念;通过对几个典型例题的研究,培养学生灵活运用知识、简化运算的能力.(三)学科渗透点通过对直线方程的几种形式的特点的分析,培养学生看问题一分为二的辩证唯物主义观点.二、教材分析1.重点:直线的点斜式、斜截式、两点式和截距式表示直线有一定的局限性,只有直线的一般式能表示所有的直线,教学中要讲清直线与二元一次方程的对应关系.2.难点:与重点相同.3.疑点:直线与二元一次方程是一对多的关系.同条直线对应的多个二元一次方程是同解方程.三、活动设计分析、启发、讲练结合.四、教学过程(一)引入新课点斜式、斜截式不能表示与x轴垂直的直线;两点式不能表示与坐标轴平行的直线;截距式既不能表示与坐标轴平行的直线,又不能表示过原点的直线.与x轴垂直的直线可表示成x=x0,与x轴平行的直线可表示成y=y0。

相关文档
最新文档