高中物理电磁感应现象习题一轮复习word
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理电磁感应现象习题一轮复习word
一、高中物理解题方法:电磁感应现象的两类情况
1.如图所示,竖直放置、半径为R的圆弧导轨与水平导轨ab、在处平滑连接,且轨道间距为2L,cd、足够长并与ab、以导棒连接,导轨间距为L,b、c、在一条直线上,且与平行,右侧空间中有竖直向上、磁感应强度大小为B的匀强磁场,均匀的金属棒pq和gh垂直导轨放置且与导轨接触良好。
gh静止在cd、导轨上,pq从圆弧导轨的顶端由静止释放,进入磁场后与gh没有接触。
当pq运动到时,回路中恰好没有电流,已知pq的质量为2m,长度为2L,电阻为2r,gh的质量为m,长度为L,电阻为r,除金属棒外其余电阻不计,所有轨道均光滑,重力加速度为g,求:
(1)金属棒pq到达圆弧的底端时,对圆弧底端的压力;
(2)金属棒pq运动到时,金属棒gh的速度大小;
(3)金属棒gh产生的最大热量。
【答案】(1) (2) (3)
【解析】【分析】金属棒pq下滑过程中,根据机械能守恒和牛顿运动定律求出对圆弧底端的压力;属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,根据动量定理求出金属棒gh的速度大小;金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,根据能量守恒求出金属棒gh产生的最大热量;
解:(1)金属棒pq下滑过程中,根据机械能守恒有:
在圆弧底端有
根据牛顿第三定律,对圆弧底端的压力有
联立解得
(2)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电流逐渐减小,当回路电流第一次减小为零时,pq运动到ab、导轨的最右端,此时有
对于金属棒pq有
对于金属棒gh有
联立解得
(3)金属棒pq进入磁场后在ab、导轨上减速运动,金属棒gh在cd、导轨上加速运动,回路电路逐渐减小,当回路电流第一次减小为零时,回路中产生的热量为
该过程金属棒gh产生的热量为
金属棒pq到达cd、导轨后,金属棒pq加速运动,金属棒gh减速运动,回路电流逐渐减小,当回路电流第二次减小为零时,金属棒pq与gh产生的电动势大小相等,由于此时金属棒切割长度相等,故两者速度相同均为v,此时两金属棒均做匀速运动,根据动量守恒定律有
金属棒pq从到达cd、导轨道电流第二次减小为零的过程,回路产生的热量为
该过程金属棒gh产生的热量为
联立解得
2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef、gh、pq 水平,磁感应强度大小均为B,区域I的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L;将一个质量为m,电阻为R,对角线长为2L的正方形金属线圈从图示位置由静止释放(线圈的d点与磁场上边界f等高,线圈平面与磁场垂直),下落过程中对角线ac始终保持水平,当对角线ac刚到达cf时,线圈恰好受力平衡;当对角线ac 到达h时,线圈又恰好受力平衡(重力加速度为g).求:
(1)当线圈的对角线ac刚到达gf时的速度大小;
(2)从线圈释放开始到对角线ac到达gh边界时,感应电流在线圈中产生的热量为多少?
【答案】(1)1224mgR v B L = (2)322
44
2512m g R Q mgL B L
=- 【解析】 【详解】
(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:
112E B Lv =⨯
感应电流:11E I R
=
由力的平衡得:12BI L mg ⨯= 解以上各式得:122
4mgR
v B L =
(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势
2222E B Lv =⨯
感应电流:2
2E I R
=
由力的平衡得:222BI L mg ⨯= 解以上各式得:222
16mgR
v B L =
设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:
22122
mg L Q mv ⨯-=
解以上各式得:322
44
2512m g R Q mgL B L =-
3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电源电动势为E (不计内阻),导体棒ab 初始静止不动,导体棒 ab 在运动过程中始终与导轨垂直, 且接触良好。
已知导体棒的质量为m ,磁感应强度为B ,导轨间距为L ,导体棒及导轨电阻均不计,电阻R 已知。
闭合电键,导体棒在安培力的作用下开始运动,则: (1)导体棒的最终速度?
(2)在整个过程中电源释放了多少电能? (3)在导体棒运动过程中,电路中的电流是否等于
E
R
,试判断并分析说明原因。
【答案】(1)E v BL =;(2) 2
22
2mE B L
;(3)见解析 【解析】 【分析】 【详解】
(1) 闭合电键,导体棒在安培力的作用下开始运动做加速运动,导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,安培力减小,加速度减小,当加速度为0时,速度达到最大值,之后做匀速运动,此时感应电动势与电源电动势相等。
设导体棒的最终速度v ,则有
E BLv =
解得
E
v BL
=
(2)在整个过程中电源释放的电能转化为导体棒的动能,导体棒获得的动能为
2
222
122k mE E mv B L
∆== 所以在整个过程中电源释放的电能为2
22
2mE B L
(3)在导体棒运动过程中,闭合电键瞬间,电路中的电流等于
E
R
,导体棒在安培力的作用下开始运动做加速运动。
之后导体棒运动后切割磁感线产生感应电流,使得通过导体棒的电流减小,当感应电动势与电源电动势相等时,电路中电流为0,因此在导体棒运动过程中,电路中的电流只有在闭合电键瞬间等于
E
R
,之后逐渐减小到0。
4.如图所示,足够长且电阻忽略不计的两平行金属导轨固定在倾角为α=30°绝缘斜面上,导轨间距为l =0.5m 。
沿导轨方向建立x 轴,虚线EF 与坐标原点O 在一直线上,空间存在
垂直导轨平面的磁场,磁感应强度分布为1
()00.60.8()0T x B x T x -<⎧=⎨+≥⎩
(取磁感应强度B
垂直斜面向上为正)。
现有一质量为10.3m =kg ,边长均为l =0.5m 的U 形框cdef 固定在导轨平面上,c 点(f 点)坐标为x =0。
U 形框由金属棒de 和两绝缘棒cd 和ef 组成,棒de 电阻为10.2R =Ω。
另有一质量为20.1=m kg ,长为l =0.5m ,电阻为20.2R =Ω的金属棒ab 在离EF 一定距离处获得一沿斜面向下的冲量I 后向下运动。
已知金属棒和U 形框与导
轨间的动摩擦因数均为μ=
(1)若金属棒ab 从某处释放,且I =0.4N·s ,求释放瞬间金属棒ab 上感应电流方向和电势差ab U ;
(2)若金属棒ab 从某处释放,同时U 形框解除固定,为使金属棒与U 形框碰撞前U 形框
能保持静止,求冲量I 大小应满足的条件。
(3)若金属棒ab 在x =-0.32m 处释放,且I =0.4N·
s ,同时U 形框解除固定,之后金属棒ab 运动到EF 处与U 形框发生完全非弹性碰撞,求金属棒cd 最终静止的坐标。
【答案】(1)感应电流方向从b 到a ;0.1V;(2)0.48N ⋅s ;(3)2.5m 【解析】 【分析】 【详解】
(1)金属棒获得冲量I 后,速度为
2
4m/s I
v m =
= 根据右手定则,感应电流方向从b 到a ; 切割磁感线产生的电动势为
1E B lv =
其中11B =T ;
金属棒ab 两端的电势差为
1212
0.1V ab B lv
U R R R =
=+
(2)由于ab 棒向下运动时,重力沿斜面的分力与摩擦力等大反向,因此在安培力作用下运动,ab 受到的安培力为
2212212
B l v F m a R R ==+
做加速度减小的减速运动;由左手定则可知,cd 棒受到安培力方向沿轨道向上,大小为
21212
B B l v F R R =+安
其中21T B =;
因此获得冲量一瞬间,cd 棒受到的安培力最大,最容易发生滑动 为使线框静止,此时摩擦力沿斜面向下为最大静摩擦力,大小为
11cos sin m f m g m g μαα==
因此安培力的最大值为12sin m g θ; 可得最大冲量为
()12122
122sin 0.48m m g R R I B B l α+==N·s
(3)当I =0.4N·
s 时,金属棒获得的初速度为04/v m s =,其重力沿斜面分力与摩擦力刚好相等,在安培力作用下做加速度减小的减速,而U 形框在碰撞前始终处于静止; 设到达EF 时速度为1v ,取沿斜面向下为正,由动量定理得
22212012
B l vt
m v m v R R -=-+ 其中0.32m vt x == 解得
12m/s v =
金属棒与U 形线框发生完全非弹性碰撞,由动量守恒得
()11122m v m m v =+
因此碰撞后U 形框速度为
20.5m/s v =
同理:其重力沿斜面的分力与滑动摩擦力等大反向,只受到安培力的作用,当U 形框速度为v 时,其感应电流为
12
de ab B lv B lv
I R R -=
+
其中,de B ,ab B 分别为de 边和ab 边处的磁感应强度,电流方向顺时针,受到总的安培力为
()22
12
de ab de ab
B B l v
F B Il B Il R R -=-=
+
其中,,0.8cd ab B B kl k -== 由动量定理得
()2412212
0k l vt
m m v R R -=-++ 因此向下运动的距离为
()()1221224
2m m m v R R s k l ++==
此时cd 边的坐标为
x =2.5m
5.某同学在学习电磁感应后,认为电磁阻尼能够承担电梯减速时大部分制动的负荷,从而减小传统制动器的磨损.如图所示,是该同学设计的电磁阻尼制动器的原理图.电梯箱与配重质量都为M ,通过高强度绳子套在半径1r 的承重转盘上,且绳子与转盘之间不打
滑.承重转盘通过固定转轴与制动转盘相连.制动转盘上固定了半径为2r 和3r 的内外两个金属圈,金属圈内阻不计.两金属圈之间用三根互成120︒的辐向导体棒连接,每根导体棒电阻均为R .制动转盘放置在一对励磁线圈之间,励磁线圈产生垂直于制动转盘的匀强磁场(磁感应强度为B ),磁场区域限制在120︒辐向角内,如图阴影区所示.若电梯箱内放置质量为m 的货物一起以速度v 竖直上升,电梯箱离终点(图中未画出)高度为h 时关闭动力系统,仅开启电磁制动,一段时间后,电梯箱恰好到达终点.
(1)若在开启电磁制动瞬间,三根金属棒的位置刚好在图所示位置,则此时制动转盘上的电动势E 为多少?此时a 与b 之间的电势差有多大?
(2)若忽略转盘的质量,且不计其它阻力影响,则在上述制动过程中,制动转盘产生的热量是多少?
(3)若要提高制动的效果,试对上述设计做出二处改进.
【答案】(1)22321()2Bv r r E r -=
,22321
()6Bv r r U r -= (2)2
1()2Q M m v mgh =+-(3) 若要提高制动的效果,可对上述设计做出改进:增加外金属圈的半径r 3或减小内金属圈的半径r 2 【解析】 【分析】 【详解】
(1)在开启电磁制动瞬间,承重转盘的线速度为v ,所以,角速度
1
v r ω=
所以,制动转盘的角速度1
v
r ω=,三根金属棒的位置刚好在图2所示位置,则fe 切割磁感线产生电动势
22321
()2Bv r r B S E t t r -∆Φ⋅∆===∆∆
所以干路中的电流
223E E
I R R R R R
=
=+
+ 那么此时a 与b 之间的电势差即为路端电压
22321
()
6
Bv r r U E IR r -=-=
(2)电梯箱与配重用绳子连接,速度相同;由能量守恒可得
21
(2)()2
m M v m M gh Mgh Q +=+-+ 解得:
21
()2
Q M m v mgh =
+- (3)若要提高制动的效果,那么在相同速度下,要使h 减小,则要使制动转盘产生的热量增加,即在相同速度下电功率增大,,速度为v 时的电功率
222223221()362
B v r r E P Rr R
-== 所以,若要提高制动的效果,可增加外金属圈的半径r 3或减小内金属圈的半径r 2或减小金属棒的电阻或减小承重盘的半径r 1.
6.如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P .
【答案】(1)0Bdv R ;(2)220B d v mR ;(3)222
0()B d v v R
-;
【解析】 【分析】
本题的关键在于导体切割磁感线产生电动势E =Blv ,切割的速度(v )是导体与磁场的相对
速度,分析这类问题,通常是先电后力,再功能.
(1)根据电磁感应定律的公式可得知产生的电动势,结合闭合电路的欧姆定律,即可求得MN 刚扫过金属杆时,杆中感应电流的大小I ;
(2)根据第一问求得的电流,利用安培力的公式,结合牛顿第二定律,即可求得MN 刚扫过金属杆时,杆的加速度大小a ;
(3)首先要得知,PQ 刚要离开金属杆时,杆切割磁场的速度,即为两者的相对速度,然后结合感应电动势的公式以及功率的公式即可得知感应电流的功率P . 【详解】
(1)感应电动势 0E Bdv = 感应电流E I R =
解得0Bdv I R
= (2)安培力 F BId = 牛顿第二定律 F ma =
解得220
B d v a mR
=
(3)金属杆切割磁感线的速度0=v v v '-,则
感应电动势 0()E Bd v v =-
电功率2
E P R
= 解得2220()B d v v P R -=
【点睛】
该题是一道较为综合的题,考查了电磁感应,闭合电路的欧姆定律以及电功电功率.对于法拉第电磁感应定律是非常重要的考点,经常入选高考物理压轴题,平时学习时要从以下几方面掌握. (1)切割速度v 的问题
切割速度的大小决定了E 的大小;切割速度是由导体棒的初速度与加速度共同决定的.同时还要注意磁场和金属棒都运动的情况,切割速度为相对运动的速度;不难看出,考电磁感应的问题,十之八九会用到牛顿三大定律与直线运动的知识. (2)能量转化的问题
电磁感应主要是将其他形式能量(机械能)转化为电能,可由于电能的不可保存性,很快又会想着其他形式能量(焦耳热等等)转化. (3)安培力做功的问题
电磁感应中,安培力做的功全部转化为系统全部的热能,而且任意时刻安培力的功率等于系统中所有电阻的热功率. (4)动能定理的应用
动能定理当然也能应用在电磁感应中,只不过同学们要明确研究对象,我们大多情况下是通过导体棒的.固定在轨道上的电阻,速度不会变化,显然没有用动能定理研究的必要.
7.如图所示,两根电阻忽略不计、互相平行的光滑金属导轨竖直放置,相距L=1m ,在水平虚线间有与导轨所在平面垂直的匀强磁场,磁感应强度B=0.5T ,磁场区域的高度d=1m ,导体棒a 的质量m a =0.2kg 、电阻R a =1Ω;导体棒b 的质量m b =0.1kg 、电阻R b =1.5Ω.它们分别从图中M 、N 处同时由静止开始在导轨上无摩擦向下滑动,b 匀速穿过磁场区域,且当b 刚穿出磁场时a 正好进入磁场,重力加速度g=10m/s 2,不计a 、b 棒之间的相互作用,导体棒始终与导轨垂直且与导轨接触良好,求:
(1)b棒穿过磁场区域过程中克服安培力所做的功;
(2)a棒刚进入磁场时两端的电势差;
(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系.【答案】(1)b棒穿过磁场区域过程中克服安培力所做的功为1J;(2)a棒刚进入磁场时两端的电势差为3.3V;
(3)保持a棒以进入时的加速度做匀变速运动,对a棒施加的外力随时间的变化关系为
F=0.45t﹣1.1.
【解析】
【分析】
(1)b在磁场中匀速运动,其安培力等于重力,根据重力做功情况求出b棒克服安培力分别做的功.
(2)b进入磁场做匀速直线运动,受重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律和切割产生感应电动势大小公式,求出b做匀速直线运动的速度大小.a、b都在磁场外运动时,速度总是相等,b棒进入磁场后,a棒继续加速运动而进入磁场,根据运动学速度时间公式求解出a进入磁场时的速度大小,由E=BLv求出a棒产生的感应电动势,即可求得a棒刚进入磁场时两端的电势差.
(3)根据牛顿第二定律求出a棒刚进入磁场时的加速度,再根据牛顿第二定律求出保持a 棒以进入时的加速度做匀变速运动时外力与时间的关系式.
【详解】
(1)b棒穿过磁场做匀速运动,安培力等于重力,则有:BI1L=m b g,
克服安培力做功为:W=BI1Ld=m b gd=0.1×10×1=1J
(2)b棒在磁场中匀速运动的速度为v1,重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律得:
=m b g,v b===10m/s,
b棒在磁场中匀速运动的时间为t1,d=v b t1,t1===0.1s,a、b都在磁场外运动时,速度
总是相等的,b棒进入磁场后,a棒继续加速t1时间而进入磁场,a棒进入磁场的速度为
v a,v a=v b+gt1=10+10×0.1=11m/s.
电动势为:E=BLv a=0.5×1×11=5.5V,a棒两端的电势差即为路端电压为:
U===3.3V.
(3)a 棒刚进入磁场时的加速度为a ,根据牛顿第二定律得:m a g ﹣BI 2L=m a a,
a=g ﹣=g ﹣=10﹣=4.5m/s 2,
要保持加速度不变,加外力F ,根据牛顿第二定律得:F+m a g ﹣BIL=m a a
得:F=t=×t=0.45t ﹣1.1.
8.一种可测速的跑步机的测速原理如图所示。
该机底面固定有间距为L 、宽度为d 的平行金属电极。
电极间充满磁感应强度为B ,方向垂直纸面向里的匀强磁场,左侧与电压表和电阻R 相连接。
绝缘橡胶带上每隔距离d 就嵌入一个电阻为r 的平行细金属条,跑步过程中,绝缘橡胶带跟随脚步一起运动,金属条和电极之间接触良好且任意时刻仅有一根金属条处于磁场中。
现在测出t 时间内电压表读数为恒为U ,设人与跑步机间无相对滑动,求:
(1)判断电阻R 的电流方向;
(2)该人跑步过程中,是否匀速?给出定性判断理由;
(3)求t 时间内的平均跑步速度;
(4)若跑步过程中,人体消耗的能量有20%用于克服磁场力做功,求t 时间内人体消耗的能量。
【答案】(1)电阻R 的电流方向向下;(2)是匀速;(3)R r v U BLR +=
;(4)2
5()R r t E UR += 【解析】
【分析】
【详解】 (1)由题意且根据右手定则可知,流经电阻R 的电流方向向下;
(2)(3)金属条做切割磁感线运动产生的电动势大小为E BLv =, 回路中的电流大小为E I R r
=+, 伏特表的示数为U IR =,
解得
R r v U BLR
+= 由于伏特表示数恒定,所以速度也恒定,说明该人跑步过程中,是匀速;速度为
R r v U BLR +=
(4)金属条中的电流为 I r
BLv R =
+ 金属条受的安培力大小为 A F BIL =
时间t 内金属条克服安培力做功为
22222()A B L v t R r U t W F vt R r R
+===+ 所以t 时间内人体消耗的能量
22
5()0.2W R r U t E R +==
9.如图所示,有一光滑、不计电阻且足够长的平行金属导轨,间距L =0.5m ,导轨所在的平面与水平面的倾角为37°,导轨空间内存在垂直导轨平面的匀强磁场。
现将一质量m =0.2kg 、电阻R =2Ω的金属杆水平靠在导轨处,与导轨接触良好。
(g =10m/s 2,sin37°=0.6,cos37°=0.8)
(1)若磁感应强度随时间变化满足B =4+0.5t (T ),金属杆由距导轨顶部1m 处释放,求至少经过多长时间释放,会获得沿斜面向上的加速度。
(2)若磁感应强度随时间变化满足2
20.10.1B t =+ (T ),t =0时刻金属杆从离导轨顶端s 0=1m 处静止释放,同时对金属杆施加一个外力,使金属杆沿导轨下滑且没有感应电流产生,求金属杆下滑5m 所用的时间。
(3)若匀强磁场大小为定值,对金属杆施加一个平行于导轨向下的外力F ,其大小为F =(v +0.8)N ,其中v 为金属杆运动的速度,使金属杆以恒定的加速度a =10m/s 2沿导轨向下做匀加速运动,求匀强磁场磁感应强度B 的大小。
【答案】(1)30.4s ; (2)5; (3)22T 。
【解析】
【详解】
(1)设金属杆长为L ,距离导轨顶部为x ,经过t s 后,金属杆有沿着导轨向上的加速度,此时安培力等于重力沿导轨的分力,则:
F A =mgsinθ,
A E F BIL B
L R
== , 其中: 0.25V BLx E t
=
= , 所以: 40.5E t L mgsin R
θ+()= , 解得:
t =30.4s 。
(2)由金属杆与导轨组成的闭合电路中,磁通量保持不变,经过t s 的位移为s ,则:
B 1Ls 0=B 2L (s+s 0),
金属杆做初速度为零的匀加速直线运动,
s =5m ,
代入数据解得:t =
(3)对金属杆由牛顿第二定律:
A mgsin F F ma θ+﹣= ,
其中:
22A F BIL B L v R
== 解得:
22B mgsin L v F R
ma θ+-=, 代入数据得:
2
2128
B v +-()= , 所以,
2
108
B -= ,
解得:B = 。
10.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求
(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ;
(2) 0~t 1时间内通过电阻R 1的电荷量q .
【答案】(1)2020n B r E t π=(2)20120
3n B t r q Rt π= 【解析】
【详解】
(1)由法拉第电磁感应定律E n t φ∆=∆有2020
n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ②
由闭合电路的欧姆定律有电阻R 1中的电流E I R =总
③ 0~t 1时间内通过电阻R1的电荷量1q It = ④ 由①②③④式得20120
3n B t r q Rt π=。