第二章 原子的结构与性质
结构化学第二章

8h2224Z e20rE
精选可编辑ppt
17
球极坐标与笛卡儿坐标的关系
精选可编辑ppt
18
Schrödinger方程在球极坐标中的形式
精选可编辑ppt
19
2. 变数分离法
令 (r,)R( r())(),代入上式 r2si并 2n 乘以
R
s R 2 i r n r 2 R r s i n si n 1 2 2 8 h 2 2( E V ) r 2 s2 i 0 n
这样的原子称为Rydberg原子。在实验室里已造出n 约为105的H原子, n 约为104的Ba原子; 在宇宙中也观察到了n 从301到300之间的跃迁。
毋庸置疑, Rydberg原子是个大胖子。事实上, 它的半径大约相当于基态 原子的十万倍! 这样一个胖原子, 即使受到微弱的电场或磁场作用, 也会显著 变形。
第二章 原子的结构和性质
精选可编辑ppt
1
精选可编辑ppt
2
在本章中,将用Schrödinger方程处理真实的化学物种, 这自然要从最简单的H原子入手。为了更具一般性,也包括 类氢离子,如He+、Li2+等,它们的区别仅在于原子序数Z的 不同。
氢是化学中最简单的物种,也是宇宙中最丰富的元素。 无论在矿石、海洋或生物体内,氢无所不在。
精选可编辑ppt
20
2. 变量分离
设ψ(r,θ,φ)=R(r)Θ(θ)Φ(φ)= R(r) Y (θ,φ). 方程两边同乘以r2/(RΘΦ)
R方程:
Y方程:
Y=ΘΦ.方程两边同乘以 sin2θ/(ΘΦ)并移项
精选可编辑ppt
21
经变数分离得到的三个分别只含,和r变量的方程依次称 为方程、方程和R方程,将方程和方程合并,Y(,) =()(),代表波函数的角度部分。
结构化学课后答案第2章习题原子的结构与性质

1. 简要说明原子轨道量子数及它们的取值范围?解:原子轨道有主量子数n ,角量子数l ,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来说,原子轨道能级只与主量子数n 相关R n Z E n22-=。
对多电子原子,能级除了与n 相关,还要考虑电子间相互作用。
角量子数l 决定轨道角动量大小,磁量子数m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
n 取值为1、2、3……;l =0、1、2、……、n -1;m =0、±1、±2、……±l ;s 取值只有21±。
2. 在直角坐标系下,Li 2+ 的Schrödinger 方程为________________ 。
解:由于Li 2+属于单电子原子,在采取“B -O” 近似假定后,体系的动能只包括电子的动能,则体系的动能算符:2228ˆ∇-=mh T π;体系的势能算符:r e r Ze V 0202434ˆπεπε-=-= 故Li 2+ 的Schrödinger 方程为:ψψE r εe mh =⎥⎦⎤⎢⎣⎡π-∇π-20222438 式中:z y x ∂∂+∂∂+∂∂=∇2222222,r = ( x 2+ y 2+ z 2)1/23. 对氢原子,131321122101-++=ψψψψc c c ,其中 131211210,,-ψψψψ和都是归一化的。
那么波函数所描述状态的(1)能量平均值为多少?(2)角动量出现在 π22h 的概率是多少?,角动量 z 分量的平均值为多少?解: 由波函数131321122101-++=ψψψψc c c 得:n 1=2,l 1=1,m 1=0; n 2=2, l 2=1,m 2=1; n 3=3,l 3=1,m 3=-1;(1)由于131211210,,-ψψψψ和都是归一化的,且单电子原子)(6.1322eV nz E -=故(2) 由于 1)l(l M +=||, l 1=1,l 2=1,l 3=1,又131211210,,-ψψψψ和都是归一化的,故()eV c eV c c eV c eV c eV c E c E c E c E cE ii i 232221223222221323222121299.1346.13316.13216.13216.13-+-=⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-+⎪⎭⎫ ⎝⎛⨯-=++==∑2223232221212h h h M c M c M c M cM ii i ++==∑则角动量为π22h 出现的概率为:1232221=++c c c(3) 由于π2hm M Z ⨯=, m 1=0,m 2=1,m 3=-1; 又131211210,,-ψψψψ和都是归一化的, 故4. 已知类氢离子 He +的某一状态波函数为:()022-023021e 222241a r a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π (1)此状态的能量为多少?(2)此状态的角动量的平方值为多少? (3)此状态角动量在 z 方向的分量为多少? (4)此状态的 n , l , m 值分别为多少? (5)此状态角度分布的节面数为多少?解:由He +的波函数()002302/1222241a 2r 2-e a r a ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛π=ψ,可以得到:Z=2,则n =2, l =0, m =0 (1) He +为类氢离子,)(6.1322eV n z E -=,则eV eV eV n z E 6.13)(226.13)(6.132222-=⨯-=-=(2) 由l =0,21)l(l M+=2,得0)10(02=+=+=221)l(l M(3) 由|m |=0, m M Z =,得00=== m M Z(4) 此状态下n =2, l =0, m =0(5) 角度分布图中节面数= l ,又l =0 ,故此状态角度分布的节面数为0。
2原子的结构与性质

1 m 0, 0 2
本章目录 总目录 阅读帮助
第二章 原子的结构和性质
根据态叠加原理,两个独立特解的线性组合仍然是 方程的解。可由此得实函数解。
1 im 1 m e cos m i sin m 2 2
m
1 im 1 e cos m i sin m 2 2
(2.1.8)
本章目录 总目录 阅读帮助
第二章 原子的结构和性质
按照偏微分关系运算可得几个典型算符在极坐标内 的情况:
ih ˆ M z 2π ih ˆ Mx sin cos cos 2π
ih ˆ My cos cos sin 2π
z r cos
: [0,2]
2 2
r x y z
2 2
(2.1.4)
cos
x
z
2
y z
2
2
1
2
(2.1.5) (2.1.6)
tan y
本章目录
x
阅读帮助
总目录
第二章 原子的结构和性质
按偏微分关系分别对式(2.1.4)、(2.1.5)、(2.1.6) 求导并 代入式(2.1.3) ,利用偏微分关系式:
单电子原子:H、 He+、 Li2+、Be3+都是只有1个 核外电子的简单体系,称为单电子原子或类氢离子。
核电荷数为 Z 的单电子原子,电子距核 r 处绕核 运动,电子和原子核吸引的位能由库仑定律可求得:
Ze 2 V 4π 0 r
体系的全能量算符(Hamilton):
2 2 2 h h Ze 2 2 ˆ H N 2 e 2 8 M N 8 me 4 0 r
结构化学习题解答(第二章)

1(1 1) e 2 e
(c)设轨道角动量M和Z轴的夹角为θ,则:
h 0 Mz 2 0 cos h M 2 2
θ=900
(d) 电子离核的平均距离的表达式为:
r r d
* 2 pz 2 pz
2
2 2 pz
2
Li2+离子1s态的波函数为:
(a)
27 a e
1s 3 0
2 6 r a0 3 3 0 0
1 2
3 r a0
27 D 4r 4r e a
2 2 1s 1s 2 1s 3
108 re a
2
6 r a0
d 108 6 D 2r r e 0 dr a a 6 2 2r r 0 r a0 a0 r 又 r 0 3 a0 1s电子径向分布最大值在距核 处;
1 D1s / a0
r / a0
/ a
2 3 1s 0 1
1.60 2.00 2.30 2.50 3.00
3.50
4.00 4.50 5.00 — —
0.04 0.02 0.01 0.007 0.003 0.001< 0.001
1 D1s / a0
0.42 0.29 0.21 0.17
r r sin drdd
2
0
0
0
(e)
令
2 pz
0 r 0 , r , 90 , 得: 0
节面或节点通常不包括 r 0和r , 故 2 pz 的节 面只有一个,即x,y平面(当然,坐标原点也包含在xy 平面内)。亦可直接令函数的角度部分.
第二章 原子的结构和性质习题课

主峰位于离核较 远 的范围。
8、径向分布函数D(r)= D=r2R2 ;
它表示 电子在半径为r的球面单位壳层内出现的几率
。
9、n=3,l=2,m=0表示的原子轨道是 Ψ3.2.0 。
10、 n=4的原子轨道数目为 16 ;最多可容纳的电子数为 32 。
11、 n=5时其最大的轨道角动量M为
H) = -
2s
0.1
0.3
0.2
0.1 2
0 -0.1
0 012345
r/a0
02468
r/a0
径向分布函数D:
0.6
0.3
D=r2R2
0
反映电子云的分布随半径r的变
0.24 0.16
化情况。
0.08 0
Ddr代表在半径r到r+dr两个球
0.24 0.16
壳夹层内找到电子的几率。
0.08 0
0.16
0.08
(4 - r )= 0
r 24a50
a0
a0
r = 4a0
4、解:
ψ ¥ 2π π
P=
00
0
2 1s
r
2
sinθdθdφdr
5、 解:
4
= a03
2a0 r 2e-r 2a0 dr = 0.7618
0
Na:1s22s2p63s1
Z*(3s)= 11-1.00×2 - 0.85×8 = 2.2
12、写出C原子的哈密顿算符
h2 2m
20h
6
Σ
i= 1
i2
-
。
6
Σ
6e 2
i=1 4πε0 ri
+
1 2
结构化学课后答案第2章习题原子的结构与性质

1.简要说明原子轨道量子数及它们的取值范围解:原子轨道有主量子数 n ,角量子数|,磁量子数m 与自旋量子数s ,对类氢原子(单电子原子)来2说,原子轨道能级只与主量子数n 相关E Z R 。
对多电子原子,能级除了与n 相关,还要考虑电子n间相互作用。
角量子数|决定轨道角动量大小,磁量子数 m 表示角动量在磁场方向(z 方向)分量的大小,自旋量子数s 则表示轨道自旋角动量大小。
1n 取值为 1、2、3••…;| = 0、1、2、••…、n - 1; m = 0、±1 ±2 ……±l 取值只有一。
22.在直角坐标系下,Li 2+的Schr?dinger 方程为 ______________________ 。
解:由于Li 2+属于单电子原子,在采取 “-O'近似假定后,体系的动能只包括电子的动能,则体系的动量z 分量的平均值为多少(2)由于 |M I "J l(l1), l 1=1, l 2=1, l 3=1,又,210 ,211和 31 1 都是归一化的,2 h 2 h C 2 ■ l2 l 2 1 ——C3 ■ l3 l 3 1 o 2 2 2 ------------ h 2 ------------ hc 2 11 1 ——c 3 11 1 ——2 2 2h 222故C i 2 M iC 2 M1c ; M 2 C 3 M 3 能算符:T?h 2 8 2m2;体系的势能算符:\?Ze 2 3e 2 故Li 2+的 Schr?dinger 方程为:h 22式中:22 ____x 2y 23.对氢原子,C 1210的。
那么波函数所描述状态的(4 0r3e 22r = ( x 2+ y 2+ z 2F 2z 2C 2211C 331 能量平均值为多少( 1,其中4 0r211和 31 1都是归一化2)角动量出现在 ..2h 2的概率是多少,角动解:由波函数C 1210C 2211C 3 31 1 得:n 1=2, h=1,m 1=0; n 2=2, b=1,m 2=1;出=3,l 3=1,m 3=-1;(1)由于2210, 211 和 31 1都是归一化的,且单电子原子E 13.6―(eV )故E■i C 1 E12 2 C 2 E2C 3 E32 C 11 2 113.6 =eV 22 cf 13.6 peV22113.6 ?eV13.6 2 4 C1c ; eV 13.99c j eV 2 ---------------- hC 1 ■. l1 l 1 12c : J1 1 1 — 2则角动量为、、2h2出现的概率为: 1h,m1=0,m2=1,m3=-1;又210, 211和311都是归一化的,故M z' CMih2c|m22 c 2 * 2G 0 C2 1 C32 h°3 m3h1 -22 2C2 C34.已知类氢离子He+的某一状态波函数为:321 222re-2r2a。
第二章 原子的结构和性质习题课

第二章习题课主要概念:1、核固定近似(B-O近似)2、中心力场模型3、量子数的物理意义4、屏蔽效应,钻透效应5、原子轨道及电子云的径向分布和角度分布6、自旋量子数和原子的完全态函数7、原子核外电子排布5、态函数的角度分布和电子云的角度分布态函数的角度分布节面数为l电子云的角度分布形状与原子轨道角度分布相似,但没有正负之分原子轨道轮廓图(各类轨道标度不同)7、屏蔽效应8、电子自旋与保里原理自旋量子数:电子运动除了由n 、l 、m 三个量子数确定的轨道运动外,还有另外的且与轨道运动无关的自旋运动,由自旋量子数m s 决定。
m s 只能取±1/2两个数值原子的完全态态函数应是轨道态函数和自旋态函数的乘积:ii jσ=Σσs sn.l.m.m n.l.m m Ψ=Ψη9、原子核外电子排布(1)能量最低原理(2)保里原理(3)洪特规则二、填空题1、在氢原子及类氢原子体系中E 电子决定于。
2、氢原子的E 2简并态为、、、。
3、写出类氢原子的哈密顿算符。
4、4dxy 原子轨道角动量为,径向分布函数节面数为,角度分布节面数为,总节面数为。
5、在n=3、l=1原子轨道中,m 的取值有种,分别为。
6、对于类氢原子,与轨道角动量不同,能量相同的轨道还有;能量与角动量都相同的轨道有;7、的径向分布函数图为;有个峰,个节面;主峰位于离核较的范围。
8、径向分布函数D(r)= ;它表示。
9、n=3,l=2,m=0表示的原子轨道是。
10、n=4 的原子轨道数目为;最多可容纳的电子数为。
11、n=5 时其最大的轨道角动量M 为。
12、写出C 原子的哈密顿算符。
2.1.0Ψ3s Ψ。
第二章 原子的结构和性质2.3-2.4

作图方法主要包括:
函数-变量对画图 等值面(线)图 界面图 网格图 黑点图
有些图形只能用某一种方式来画, 有些图形则可 能用几种不同方式来画。作图对象与作图方法结合 起来, 产生了错综复杂的许多种图形。
采用列表的形式, 可使这种关系变得一目了然。
2.3 原子轨道和电子云的图形表示
波函数 ( ,原子轨道) 电子云 ( ||2 ,概率密度)
当n相同,l不同时, l越 大,主峰离核越近; l越小 峰越多,而且第一个峰离 核越近,俗称钻得越深。 钻穿效应
2.3.2 原子轨道 和电子云 ||2 的角度分布
角度分布是以角度波函数 Y ,m ( , ) 在球坐标系中对 θ、角作图,其做法是在坐标系中,选原子核作为 坐标原点,在每一个(θ, )方向上引一条直线,取长 度为|Y|的线段,将这些线段的端点连接起来,在空 间形成一个曲面,根据 Y值的大小标明正负号。若 取直线的长度为|Y|2,所以直线端点构成的曲面称 为电子云 的角2 度分布。
毋庸置疑, Rydberg原子一定是个大胖子. 事实上, 它的半径 大约相当于基态原子的十万倍! 这样一个胖原子, 即使受到微弱 的电场或磁场作用, 也会显著变形.
由于 Yl,m (q ,f )只与角量子数 l 和磁量子数m有关,而 与主量子数n无关,因此 l,m 相同的状态,其原子轨 道的角度分布图都相同。如2pz, 3pz, 4pz角度部分图 形都完全相同。
原子轨道ψ的角度分布
s 00
1
4
对s-型轨道而言,只
与r有关,没有角度依赖
+
性,所以从原点到曲线
数的形式。
5. 磁量子数及角动量在磁场方向的分量
角动量在Z方向(磁场方向)的分量Lz的算符 作用于单电子原子波函数ψ,得:
结构化学讲义教案2原子结构和性质

第二章 原子结构和性质教学目的:通过H 原子薛定谔方程的求解,了解原子结构中量子数的来源,类氢离子波函数的图形及其物理意义。
掌握多电子原子的原子轨道能级等,推导原子基态光谱项。
教学重点:1.类氢离子波函数量子数的物理意义。
2.掌握多电子原子的原子轨道能级、电离能的求解。
3.推导等价、非等价电子的原子光谱项,掌握基态原子谱项的快速推算法。
第一节 单电子原子的薛定谔方程及其解引言:前面介绍了量子力学的概念,建立了量子力学的基础,下面我们要讨论原子结构的核心问题,即原子中电子的运动状态,其中最简单的体系就是原子核外只有一个电子的体系,也叫单电子原子结构,如氢原子和类氢离子(H ,Li 2+,He +,Be 3+……)。
一.建立单电子原子的Schrodinger 方程r Ze mh M h H e N 022********ˆπεππ-∇-∇-= 假设在研究电子运动时核固定不动,r Ze mh H 0222248ˆπεπ-∇-= 为了解题方便通常将x,y ,z 变量变换成极坐标变量r ,θ,φ由图可得如下关系:⎪⎭⎪⎬⎫⋅=⋅⋅=⋅⋅=θφθφθcos sin sin cos sin r z r y r x得极坐标形式的Schrodinger 方程:048sin 1sin sin 110222222222=⎪⎪⎭⎫⎝⎛++∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂ψπεπφψθθψθθθψr Ze E h m r r r r r r二、单电子Schrodinger 方程的一般解。
1. 变数分离法把含三个变量的微分方程化为三个各含一个变量的常微分方程来求解。
令()()r R r =φθψ,,Θ(θ)Φ(φ)()()φθ,,Y r R =代入薛定鄂方程,经过数学变换得三个方程:R(r)方程 ()()k E r hm r h mZe r r R r r r R =++⎪⎭⎫ ⎝⎛∂∂∂∂⋅2222022821πεπ Θ方程22sin )(sin )(sin m k =+⎪⎭⎫ ⎝⎛∂Θ∂⋅∂∂⋅Θθθθθθθθ Φ方程222)()(1m =∂Φ∂⋅Φ-φφφ 2. Φ方程的解Φ方程整理得:0222=Φ+Φm a a φ这是一个常系数2阶齐次线性方程,它的特征方程为022=+m p i m p ±=微分方程的两个特解为φim Ae m =Φ m m ±= A 由归一化求得: π21=A ∴φπim e m 21=Φ 这是解的复数形式,由于Φ是循环坐标所以()()πφφ2+Φ=Φm m 于是πφπφφ2)2(im im im im e e e e ⋅==+ 即12=πim e由欧拉公式12sin 2cos 2=+=m i m e im πππ故m 的取值必须为: 2,1,0±±=m 即取值是量子化的称为磁量子数。
原子的结构与性质

原子的结构与性质原子是构成所有物质的基本单位,也是化学研究的基础。
原子是由质子、中子和电子构成的,每个原子的质子数是固定的,称作原子序数。
但是中子数可变,同种元素的原子的质子数相同,但中子数不同,称为同位素。
原子的电子数也可以变化,同种元素的原子在电子数不同的情况下具有不同的化学性质。
原子的结构先来说说原子的基本结构。
原子由中心的原子核和绕核运动的电子构成。
原子核由质子和中子组成,质子带正电荷,中子无电荷。
电子带负电荷,它们在原子核周围高速运动,形成电子壳层。
原子核直径约为10^-15米,它带有正电荷,故原子是带正电荷的。
核内的质子和中子是稳定的,因为它们彼此之间的相互作用力变化不大。
电子壳层数量的不同会对原子性质产生明显的影响。
原子的第一层最多容纳2个电子,第二层最多容纳8个电子。
这意味着带一定电子数的不同元素具有不同的化学性质。
例如,氢原子只有一个电子,因此它比较容易失去电子成为正离子;又例如,氧原子由8个电子构成,因此它比较容易接受两个电子成为负离子。
原子的性质原子的性质涉及它们化学和物理方面的各种特征。
其中一些是:化学性质原子的化学性质包括其倾向于接受、捐赠或共享电子的方式。
这对于它们在化学反应中的行为非常重要。
元素周期表列出了元素的化学性质。
例如,氧原子是高度电负的,也就是它更倾向于吸收电子;另一方面,金属元素如铜和铁更倾向于捐赠电子。
物理性质原子的物理性质包括原子的质量、大小、密度和熔点等。
这些性质主要受到原子核和电子互相作用的影响。
原子的重量原子的重量可以通过原子质量或相对原子质量来表示。
原子质量等于原子核内质子和中子的质量之和,相对原子质量等于元素的原子质量与碳-12相对的比率。
例如,氧-16的原子质量为15.995 u,相对原子质量为16 u。
同位素可以有不同的原子质量和不同的相对原子质量。
原子的大小原子的大小可以通过测量原子的原子半径来确定。
原子半径是从原子核到最外层电子的平均距离。
结构化学第二章

cos q cos f 抖 sin f + r r 抖 r sin q f q
(2.1.11)
抖 = sin q sin f 抖 y
cos q sin f 抖 cos f + + r r 抖 r sin q f q
(2.1.12)
抖 sin q = cos q 抖 z r r q
(2.1.13)
这样就可以根据直角坐标(x,y,z)和球坐标(r,θ,φ)之间的变 换关系推出球坐标形式的物理量算符.例如角动量沿z轴分量的算 Ù 符( M z )可由(2.1.11)、(2.1.12)式推得如下
tan f = y / x
按偏微分关系
(2.1.6)
抖 = 抖 x
骣r 鼢 抖 骣q 抖 骣f 珑 鼢 + + 珑 鼢 珑x 抖 桫 x 抖 桫 x 桫 r q
f
(2.1.7)
将(2.1.4)式对x求偏导,并按(2.1.3)式关系带如,得
骣r ÷ ¶ 2r ç ÷= 2 x = 2r sin q cos f ç ÷ ç¶ x 桫
ì ï ï Y1,± 1 = í ï ï î
3 py = sin q sin f 4p 3 px = sin q cos f 4p
量子数的允许值
2.2.1主量子数n(The principal quantum number, n) 在解R方程中,为了使解得的函数Rnl收敛,必须使 4 2
me En = 2 8e0 h2
= - 2.178 10- 18 J = - 13.595eV
若以电子质量me代替折合质量μ,那么
E1 = - 2.180? 10
- 18
J
13.606eV
结构化学复习-资料

②会解F方程,了解主量子n,角量子数l,磁量子数m的物理
含义及取值范围;单电子原子的能级公式。 ③屏蔽常数的计算,电离能的计算; ④掌握角动量耦合规则,会推求原子光谱项,会推求基谱项。
第二章 原子的结构和性质
2.1 单电子原子的Schrödinger 方程及其解
ns态 D(r)4r2n2s
径向分布图的讨论
0.6
0.3
☆1s态:核附近D为0;r=a0时,D极大。表
0 0.24
明在r=a0附近,厚度为dr的球壳夹层内找
0.16 0.08
到电子的几率要比任何其它地方同样厚度 0
的球壳夹层内找到电子的几率大。
0.24 0.16
0.08
D1,0(r)4r2 1s24(aZ0)3r2e2aZ 0r
的轨道在核附近有较大的几率。可以证
0
0.12
明,核附近几率对降低能量的贡献显著。 0.08
Pb2+ 比 Pb4+, Bi3+ 比 Bi5+的稳定的原因
0.04 0
就是6s电子比6p电子钻得更深可以更好
0.12 0.08
的避免其它电子的屏蔽效应, 6s电子不 0.04
易电离,只电离6p电子。
0 0
1s 2s 2p 3s 3p 3d
径向分布图的讨论
0.6
0.3
0
☆每一n和l确定的状态,有n-l个
0.24 0.16
极大值和n-l-1个D值为0的点。
0.08 0
0.24
Dn.l (r) r2R2n.l (r)
0.16 0.08
2zr
r2(blrl bl1rl1 bn1rn1)2e na0
第二章原子构与性质§21氢原子和类氢原子的薛定谔方程及其

第二章 原子结构与性质§2.1.氢原子和类氢原子的薛定谔方程及其解 2.1.1.单电子原子的薛定谔方程H 原子和He +、Li 2+ 等类氢离子是单原子,它们的核电荷数为Z ,若把原子的质量中心放在坐标原点上,绕核运动的电子离核的距离为r ,电子的电荷为-e ,其静电作用势能为:r Ze V 024πε-=将势能代入薛定谔方程:得 0)(22282=ψ++ψ∇rZe h mE π或ψ=ψ-∇-E rZe mh ][22228π为了解题方便,将x 、y 、z 变量换成极坐标变量r 、θ、φ。
其关系:φθcos sin r x = φθsin sin r y =φcos r z =2222z y x r++=21)/(cos 222z y x Z ++=θx y tg /=φ})(sin )({2222sin 1sin 1212φθθθθθ∂∂∂∂∂∂∂∂∂∂++=∇r rr r 代入薛定谔方程:)()(sin )(2222222228sin 11sin 1121=ψ++++∂∂∂ψ∂∂∂∂∂∂∂rZe h mr r r rr E r πφθθθθθ2.1.2.分离变量§法:上述的方程是含三个度量的偏微分方程,要解这个方程可用度数分离法将其化为三个分别只含一个度量的常微分方程求解。
含:)()()(),,(φθθΦΘ=Φψr R r 代入方程:并乘以ΘΦR r θ22sin 移项可得:)(sin )(sin )(228sin 2sin 122222V E r r hu d d d ddr dR drdR d d ----=ΘΘΦΦθθπθθθθφ左边不含r 、θ,右边不含φ,欲左右两边相等必等于同一个常数(-m 2 )Φ-=Φ222m d d φ, 而右边可为:(除以sin θ))(sin )()(sin1sin 8212222θθθθπθd d d d m hur dr dR drdR V E r ΘΘ-=-+ 则有:K d d d d m =-ΘΘ)(sin sin1sin 22θθθθθK E r rZe hur dr dR drdR =++)()(2222821π2.1.3.方程解的结果 2.1.3.1.Φ(φ)方程的解0222=Φ+Φm d d φ这是一个常系数二阶齐次线性方程,有两个复函数的独立解。
原子的结构和性质

原子的结构和性质原子是物质的基本构建单元,由一个中心核和绕核运动的电子组成。
原子的结构和性质对于理解物质的性质和化学反应机制至关重要。
本文将从原子的结构、原子的物理性质、原子的化学性质和原子的性质的变化等方面进行阐述。
首先,原子的结构主要由原子核和电子组成。
原子核是位于原子中心的带正电荷的粒子,由质子和中子组成。
质子带正电荷,中子不带电荷。
电子是带负电荷的粒子,围绕在原子核外层的电子壳中。
原子核的质量集中在质子和中子上,而电子的质量很小。
原子的物理性质包括质量、电荷和大小。
原子的质量可以通过质子和中子的数量来确定,通常用原子质量单位来表示。
原子的电荷由电子和质子的数量决定,通常情况下原子是电中性的,即正电荷和负电荷平衡。
原子的大小通常通过原子半径来表示,原子半径的大小和电子壳的分布有关,一般来说,原子的半径越大,中心核和外层电子之间的距离越远。
原子的化学性质主要涉及原子的化学键和化学反应。
原子通过与其他原子形成化学键来形成化合物。
化学键主要包括共价键和离子键。
共价键是通过电子共享来形成的,如在氢气分子中,两个氢原子共享一对电子。
离子键是由正离子和负离子之间的吸引力形成的,如氯化钠中的氯离子和钠离子。
化学反应是指原子之间的重新排列以形成新的化学物质。
在化学反应中,原子的化学键会被打破和形成,导致反应物变为产物。
原子的性质会随着原子的变化而变化。
首先,原子的性质可以通过元素周期表来归类和预测。
元素周期表是按照原子序数排列的表格,元素周期规律地从左到右和从上到下排列。
在同一周期中,原子的大小和电负性呈现出规律性的变化。
在同一族中,原子的性质也会有相似之处,如同一族的元素通常具有相似的化学性质。
其次,原子的性质还与原子的能级结构有关。
原子中的电子按照能级填充,每个能级可以容纳一定数量的电子。
不同能级的电子具有不同的能量。
最外层的电子被称为价电子,它们对于原子的化学性质起着重要的作用。
价电子的数量和分布决定了原子的化学键和化学反应。
第二章 原子结构与性质

③ 电子填入顺序 基态原子: ns →(n–2)f→ (n–1)d→ np 价电子电离: np →ns→(n1)d → (n–2)f 徐光宪: 原子 (n+0.7l), 离子(n+0.4l) 越大能级越高
28
ⅠA-ⅡA ⅠB-ⅡB
ⅢA-ⅧA ⅢB-Ⅷ
La系 Ac系
例:氩(Z=18)的电子组态 1s2 2s22p6 3s23p6 Fe (Z=26) Cu (Z=29)
轨道角动量与z轴的夹角
e m mμB 2. 磁矩在磁场方向的分量量子化: μz 2me
3. m决定磁场中轨道的空间方向,磁矩与外磁场的作用能
18
2.4 电子的自旋运动与泡利原理
一. 电子的自旋运动
19
●自旋角动量量子化
Ls s(s 1)
电子的自旋量子数 s ≡1/2
26
四. 原子核外电子的排布规则 1. Pauli不相容原理 2. 能量最低原理 3. Hund规则:简并轨道上全充满、半充满或全空较稳定 4. 原子的构造: ① 电子组态:确定每个电子的n,l ② 电子层:ns2到ns2np6构成一个能级组 4(N) 3(M) 2(L) 1 2 0 1 2 3 0 1 0 2s 2p 3s 3p 3d 4s 4p 4d 4f 0 0 0 0 0 0 0 0 0 ±1 ±1 ±1 ±1 ±1 ±1 ±2 ±2 ±2 ±3 亚层轨道数 1 1 3 5 7 3 5 1 3 1 42 12 22 32 电子层轨道数 27 第n能层有n2个“轨道”,可以容纳2n2个电子 电子层 1(K) 角量子数l 0 电子亚层符号 1s 0 磁量子数m 可能取值
7
氢原子或类氢离子的轨道波函数举例 轨道 n
1s 2s
第二章-原子的结构和性质

第二章 原子的结构和性质一、概念及问答题1、频率规则:当电子由一个定态跃迁到另一个定态时,就会吸收或发射频率为h E /∆υ=的光子,或中E ∆为两个定态之间的能量差2、玻恩-奥本海默近似:由于原子核的质量比电子大几千倍,而电子绕核运动的速度又很大,随着核的运动,电子会迅速建立起相对于核运动的定态,因此假定在研究电子运动状态时,核固定不动,电子的运动可以绕核随时进行调整,而随时保持定态,这个近似称为玻恩-奥本海默近似。
3、中心力场近似:将多电子原子中的其它所有电子对某一个电子的排斥作用看成是球对称的,是只与径向有关的力场,这就是中心力场近似。
4、单电子近似:在不忽略电子相互作用的情况下,用单电子波函数来描述多电子原子中单个电子的运动状态,这种近似称为单电子近似。
5、原子轨道能:原子轨道能是指和单电子波函数相应的能量。
6、第一电离能:气态原子失去一个电子成为一价气态正离子所需的最低能量称为原子的第一电离能7、原子处在基态时核外电子排布原则(1)Pauli 不相容原理:在一个原子中,没有两个电子有完全相同的4个量子数,即一个原子轨道最多只能容纳两个电子,而且这两个电子必须自旋相反。
(2)能量最低原理:在不违背Pauli 原理的条件下,电子优先占据能级较低的原子轨道,使整个原子体系能量处于最低,这样的状态是原子的基态。
(3)Hund 规则:在能级高低相等的轨道上,电子尽可能分占不同的轨道,且自旋平行;能级高低相等的轨道上全充满和半充满的状态比较稳定。
8、基态:原子中的电子都处于一定的运动状态,每一状态都具有一定的能量。
在无外来作用时,原子中各个电子都尽可能处于最低的能级,从而使整个原子的能量最低。
原子的这状态称为基态。
9、原子吸收光谱:将一束白光通过某一物质,若该物质中的原子吸收其中某些波长的光而发生跃迁,则白光通过物质后将出现一系列暗线,如此产生的光谱称为原子吸收光谱。
或者说原子吸收光谱是由已分散成蒸气状态的基态原子吸收光源所发出的特征辐射后在光源光谱中产生的暗线形成的。
第二章 原子结构与性质

第二章原子结构与性质1. 填空题(1) He+离子的薛定谔方程为。
(2) 用分离变量法解类氢原子薛定谔方程采用的主要近似是。
(3) 已知Cu 的原子序数为29,写出核外电子排布。
(4) He+的2s电子能量比He(1s12s1)中2s电子能量。
(填高或低)(5) 钠的电子组态为1s22s22p63s1,其光谱项为,光谱支项为。
(6) 写出d2可能的总轨道角量子数。
(7) 离核越近径向函数R1s(r)其值,离核越近径向分布函数D=r2R1s2(r) 。
(8) 氢原子态函数Ψ(r,θ,φ) 可以写作R(r),Θ(θ), (φ) 三个函数的乘积,它们由量子数; ; 来规定。
(9) 如一原子的轨道磁量子数m=0, 主量子数n≤2,则可能的轨道为。
(10) 在一定电子组态下,描写多电子原子状态的量子数是。
(11) 两个氢原子,第一个的电子处于主量子数n=1的轨道,第二个处于n=4的轨道,原子势能较低的是,原子电离能较低的是。
(12) 多电子原子中的一个光谱项支项3D2,据此给出原子的总轨道角动量量子数,原子的总自旋角动量量子数,原子总角动量量子数,在磁场中分裂出个塞曼能级。
(13) 氢原子的态函数Ψ3,2,1,其轨道能量为,轨道角动量,轨道角动量在磁场方向的分量为。
(14) 氢原子3d电子轨道角动量沿磁场方向分量的可能值为。
(15) 对于氢原子及类氢离子的1s电子来说,出现在半径为r,厚度为d r的球壳内,各个方向的概率密度(填相等或不相等),对于2p x电子(填相等或不相等)。
(16) 同电子组态光谱项稳定性比较:3P1D; 3P21P02. 选择题(1) 关于四个量子数n, l, m, m s,下列叙述正确的是: ·············································· ( )A、由实验测定;B、解类氢原子薛定谔方程得到的;C、解类氢原子薛定谔方程得到的n, l, m, 由电子自旋假设引入m sD、由自旋假设引入的(2) 决定多电子原子轨道的能量是: ···································································( )A、nB、n, l, ZC、n+0.4lD、n, m(3) 用来表示核外某电子运动状态的下列各组量子数(n,l,m,m s)合理的是: ··················· ( )A、2, 1, 0, 0B、0, 0, 0, 12C、3, 1, 2,12D、2, 1, -1, -12(4) 氢原子3d状态轨道角动量沿磁场方向的分量最大值是:····································( )A、5B、4C、3D、2(5) 如下表达式为径向分布函数的是: ·······························································( )A、R2B、R2drC、r2R2D、r2R2d r(6) R n,l(r)-r图中,节点数为·············································································· ( )A、n-1个B、n-l-1个C、n-l+1个D、n-l-2个(7) 原子的电子云角度分布图应该用如下哪一个函数对参数作图······························ ( )A、|Y l,m(θ,φ)|2B、R n,l(r)C、Y l,m(θ,φ)D、|R n,l(r)Y l,m(θ,φ)|2(8) 对于单电子原子,在无外场时,能量相同的轨道数是: ······································· ( )A、n2B、2(l+1)C、n-1D、n-l-1(9) 已知Ca的第一激发态的电子组态为[Ar]3d14s1, 其光谱支项有如下四种,指出能量最低的光谱项:A、1D2B、3D3C、3D2D、3D1(10) 求解氢原子薛定谔方程,我们常采用下列哪些近似?······································( )①核固定②变数分离③以电子质量代替折合质量④球极坐标A、①③B、①②C、①④D、①②③④(11) 基态铬原子(原子序数是24)的核外电子排布为: ············································( )A、[Ar]3d44s2B、[Ar]3d54s1C、[Ar]3d64s0D、4s24p4(12) 某多电子原子中电子具有下列量子数(n,l,m,m s),其中轨道角动量最大的是: ·······( )A、2,1,-1,12B、2,0,0,-12C、3,1,1,-12D、3,2,-1,12(13)描述原子轨道3d z2的一组量子数是: ····························································· ( )A、2,1,0B、3,2,0C、3,1,0D、3,2,1(14)3d z2轨道的角动量大小为: ·········································································( )A、B、 C、0 D(15) He+中一个电子处于径向分布图中总节面为3的d态,则该电子的能量应为:·······( )A、1E1B、19E1C、14E1D、116E1(16) 氢原子中处于Ψ2pz状态,其角动量在下列哪一个轴上的投影有确定值?···············( )A、x轴B、y轴C、z轴D、x轴和y轴(17) 对于类氢原子的基态, 下列结论不正确的是: ·················································( )A、E相同B、M z相同C、简并度相同D、l相同(18) Be3+ 的一个电子所处的轨道,能量等于氢原子1s轨道能,该轨道可能是: ······( )A、1sB、2sC、4dD、3p(19) 4d 的径向分布函数图的极大值数与节面数分别是: ··········································( )A、2,1B、2, 3C、4,2D、1,3(20) 下列是关于s轨道波函数ψ的认识,正确的是:················································( )A、ψ的值随着r的增大而减小B、ψ的节面数为nC、当r趋于无穷大时,ψ趋于0D、ψ2s-r曲线在r=2a0处达到最低点(21) 对氢原子和类氢离子的量子数l,下列叙述不正确的是:·····································( )A、l的取值规定了m的取值范围B、它的取值与体系能量大小有关C、它的最大可能取值由解R方程决定D、它的取值决定了M=(22) 对于氢原子和类氢离子的径向分布D(r)-r图,下列叙述错误的是:························( )A、径向峰数与节面数都与n,l有关B、l相同,n愈大,则最高峰离核愈远C、核周围电子出现的概率为0D、最高峰所对应的r处,电子出现的概率密度最大(23) 电子在核附近有非零概率密度的原子轨道是:··············································( )A、ψ3pB、ψ4dC、ψ2pD、ψ2s(24) 电子云图是下列哪一种函数的图形?··························································( )A、D(r)B、ψ2(r,θ,φ)C、R2(r)D、ψ(r,θ,φ)(25) 已知类氢波函数ψ2px的各种图形,推测ψ3px图形,下列说法错误的是:····················( )A、角度部分的图形相同B、电子云图相同C、径向分布函数图不同D、界面图不同(26) He+离子的3d和4s的能级次序为:······························································( )A、3d >4sB、3d < 4sC、3d = 4sD、存在交叉(27) 电子组态d9s1的光谱项是: ········································································ ( )A、3F,1DB、1D,3DC、2P,3PD、1S,2P(28) Fe的电子组态为[Ar]3d64s2,其能量最低的光谱支项是:····································( )A、5D4B、3P2C、5D0D、1S0(29) Cu的基谱项为,与其基谱项不同的原子是:····································( )A、AgB、AuC、ZnD、K(30) 已知Rh的基谱项为4F9/2,则它的价电子组态是:··········································( )A、s1d8B、s0d9C、s2d8D、s0d103. 简答题(1) 请用光谱项语言叙述洪特规则。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
此算符中的自变量rij为电子i与电子j之间的距离! 不能采用象处理类H原子那样的分离变量法求解。
• 中心力场模型(近似) • 有两种极限情况 (1)电子1离核很远,电子2离核很近; ---------电子1受到的有效核电荷数为+e!电子1的 波函数则与H原子的波函数类似! (2)电子1离核很近,电子2离核很远。 --------电子1受到的有效核电荷数为+2e!电子1的 波函数则与He+离子的波函数类似! • 实际上电子1所受到的有效核电荷数应是上述两 种情况的平均!由于电子在空间出现的几率密 度不随时间而改变,电子2的存在实际上是在空 间形成一个带负电荷的势场,与原子核形成的 正电势场一道作用于电子1!
• 这样方程就可通过分离变量法进行求解! 令 (r, , ) R (r)()() 代入上面的方程并在两边同乘r2sin2/,进行移 项可得:
sin 2 2 R sin 1 2 r sin 2 r R r Ze2 2 2 2 2 r sin E 4 0 r
y r sin sin z r cos r2 x 2 y2 z2
2 1 2 1 1 2 sin 2 2 (r, , ) 2 r 2 r sin r r r r sin Ze2 2 2 E (r, , ) 0 4 0 r
1/ 2 m /2 m l m l m
d
d(cos)
(cos2 1) l
• R方程的解
1 d 2 d 2 Ze2 2 r R (r ) 2 E r l(l 1) 0 R (r ) dr dr 4 0 r e 4 Z 2 E n 2 2 2 (J ) 13.6 Z 2 / n 2 (eV) 8 0 h n
e
1
• 对于波函数m=(2)-½ exp(im),是角动 量在Z方向分量算符的本征函数!
ih ih ˆ M z y x x 2 y 2
3 ih m ˆ M z m (2) 2 hm 2
• • • • • •
三个量子数可能的取值及相互关系 n=1,2,3,…. (决定体系的能量) l=0,1,2,…,n-1 (s, p, d, f, ….) m=0, ±1,±3, …, ±l 当l=0,为s态,如: 1s, 2s, 3s等。 当l=1,m=0, ±1时 如:210(= 2pz) 21-1(= 2py) 21+1(= 2px)
• 中心力场模型 对n个电子的原子体系,对电子I而言,将其它 n-1个电子对i电子的排斥势场作为相当于ie的同 号电荷在原子核位置上对i电子产生排斥作用。 其中i称为i电子的屏蔽常数。 Z i 1 2 ˆ Hi i 则i电子的Hamilton算符为: 2 r
i
ˆ E H i i i i ˆ H ˆ H
但波函数描述的是微观粒子的运动状态, 要用波函数和概率密度2作图,因此, 需求出波函数的实数解!可通过假定IV, 即态叠加原理---线性组合、归一化可得!
m m 1 1 / 2 cos m 1 1 / 2 sin m
• 方程的解
1 d d m2 sin () l(l 1) 2 () 0 sin d d sin
由量子力学假定III可得,单电子原子的定态薛定 谔方程为: 2 2 2
h h Ze 2 2 2 N 2 e E 40 r 8 m 8 M
• 玻恩-奥本海默(Born-Opperheimer)近似(又 称绝热近似) -----在研究电子运动时,核可近似认为是固定不 动的!(由于电子绕核运动速度要比核本身的 运动速度快103~104倍) 这样薛定谔方程可简化为: 2 注意:这里用的 h 2 Ze 2 2 E 是折合质量! 40 r 8 但这个方程仍然难以求解。用球极坐标分离变量! x r sin cos 用球极坐标代入得:
i 1 i n i
体系的总波函数为: 体系总能量为:
E
E
i i 1 i
n
(i)
• 在中心力场模型中,每个电子的运动由各自波 函数描述,这些波函数都是类氢波函数,每一 波函数都有各自一套量子数表征!与其它电子 无关! • 在原子中的单电子波函数称为原子轨道; • 在分子中的单电子波函数称为分子轨道; • 屏蔽常数的计算(Slater近似法) (1)将电子分为内外层; (2)外层各组电子对内层电子0) (4)相邻内一组对外一组=0.85(d,f =1.00) (5)更内各组对外一组=1.00
这是一个变系数微分方程(Legendre方程)! lm, l=0,1,2,。。。
l,m () BPl (cos) (1 cos2 ) m Pl (cos) 2 l l! 2l 1 (l m )! B 2 ( l m )!
第二章 原子的结构与性质
• 2.1 单电子原子
– 薛定谔方程及其求解 – 四个量子数及其相应的物理量 – 波函数和电子云图
• 2.2 多电子原子的结构
– 多电子原子薛定谔方程---中心力场、自洽场模型
– 原子轨道能级 – 原子核外电子排布规则 • 2.3 原子光谱
– 光谱项 – 原子光谱
2.1.1 单电子原子的Schrö dinger方程(H,He+,Li2+)
2.1.3 波函数和电子云图 • 注意点: 1. 节点与节面概念及与n,l的关系! 2. 会计算在某一体积元内电子出现的概率! 3. 注意不同电子云径向分布函数随r变化的特点! 4. 注意不同角度分布函数Yl,m(, )的形状特征! 它与n无关!只与, 有关!此在化学反应上十 分有意义!
2.2 多电子原子体系
2
0 2
m d
m
2
0
A 2 e im e im d 1 1
A 2 1, A
2
确定m取值的范围,根据单值函数: m () m ( 2) 这样, m=0,±1,±2, e im e im( 2 ) 等式才成立!! im 2
• • • • • • •
原子单位制 质量 1 a.u. =me 电量 1 a.u. =e 长度 1 a.u. =a0 (基态H原子半径) 角动量 1 a.u. =h/2 能量 1 a.u. =e2/40a0 在原子单位制下,Hamilton算符简化为:
n n 1 2 ˆ Z 1 1 H i 2 i 1 2 i j rij i 1 ri
Laguerre方程,用级数求解法,引出第三个量子 数n!nl+1,n=1,2,3,。。。 因此单电子原子的薛定谔方程的解为 : n,l,m=Rn(r)l,m()m()=Rn,l(r)Yl,m(, ) 其中, Rn,l(r)径向波函数; Yl,m(, )角度波函数. d=r2sindd
Ze2 E 4 r 0
此式左右两边又各只含有一个变量!要使该式成 立,惟有左右两边同时等于一个常数,令为 l(l+1),则有:
1 m 2 () sin l(l 1)() (2) 2 sin sin
2.2.1 多电子原子薛定谔方程 对于具有n个电子的原子体系,在玻恩--奥本海默 近似下,体系的能量包含: • 有n个电子的动能; • 各个电子受原子核的吸引能; • 各电子间的相互排斥能。 体系的Hamilton算符等于:
2 n 2 2 n Ze 1 e ˆ 2 H i 2 i1 2 i j 40 rij i 1 40 ri
• 要使该等式成立,惟有两边同时等于一个常数! 令这个常数为-m2,方程右边可得:
而方程右边再经移项可得:
2 () 2 m () (1) 2
1 m2 1 2 2r 2 sin r R 2 2 sin sin R r r
• 自旋量子数s和自旋磁量子数
n,l,m(r, , )描述的是电子在空间坐标变化的运 动,而称为轨道波函数(轨道) 电子的运动包含: 轨道运动(用n,l,m(r, , )描述) 自旋运动(用描述) 它们组成完全波函数! 自旋运动有两种状态(、) 自旋量子数 s=1/2 自旋磁量子数ms=±1/2 M s s(s 1) 自旋角动量 自旋角动量在磁场方向的分量:Msz=msh/2 自旋磁矩 |s|= gs[s(s+1)]1/2 B (gs=2.00232) 自旋磁矩 s在磁场分量: sz= -gsmsB
• 写出哈密顿算符的表达式 折合质量 =memn/(me+mn) 电子的动能为T=(px2+py2+pz2)/2 电子的势能: V Ze2 / 40 r 因此,体系的哈密顿算符为:
2 2 2 h h Ze 2 2 ˆ H N e 2 2 40 r 8 M 8 m
2.1.2
量子数和有关物理量
• 主量子数 n: 决定状态的能量 ; 基态 \ 激发态 \ 简并 态(n2) • 角量子数l和轨道角动量<M2=l(l+1)> 决定电子轨道角动量<“轨道形状>、电子轨道 磁矩的取值、与n一道决定多电子原子体系的能量 磁矩 =(l(l+1))1/2B (B玻尔磁子) • 磁量子数m和角动量在磁场方向的分量 ˆ M m M z z m=0,±1,±2,….,±l z= -m B (塞曼效应证实)
1 V(i, j) ( j) j ( j)d j rij
j
它只与电子i的坐标有关!