九年级上册数学 圆 几何综合达标检测(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学圆几何综合达标检测(Word版含解析)

一、初三数学圆易错题压轴题(难)

1.在圆O中,C是弦AB上的一点,联结OC 并延长,交劣弧AB于点D,联结AO、BO、AD、BD.已知圆O的半径长为5,弦AB的长为8.

(1)如图1,当点D是弧AB的中点时,求CD的长;

(2)如图2,设AC=x,ACO

OBD

S

S=y,求y关于x的函数解析式并写出定义域;

(3)若四边形AOBD是梯形,求AD的长.

【答案】(1)2;(2)

2825

x x x

-+

(0<x<8);(3)AD=

14

5

或6.

【解析】

【分析】

(1)根据垂径定理和勾股定理可求出OC的长.

(2)分别作OH⊥AB,DG⊥AB,用含x的代数式表示△ACO和△BOD的面积,便可得出函数解析式.

(3)分OB∥AD和OA∥BD两种情况讨论.

【详解】

解:(1)∵OD过圆心,点D是弧AB的中点,AB=8,

∴OD⊥AB,AC=

1

2

AB=4,

在Rt△AOC中,∵∠ACO=90°,AO=5,

∴22

AO AC

-,

∴OD=5,

∴CD=OD﹣OC=2;

(2)如图2,过点O作OH⊥AB,垂足为点H,

则由(1)可得AH=4,OH=3,

∵AC=x,

∴CH=|x﹣4|,

在Rt△HOC中,∵∠CHO=90°,AO=5,

∴22

HO HC

+22

3|x4|

+-2825

x x

-+

∴CD=OD ﹣OC=5

过点DG ⊥AB 于G ,

∵OH ⊥AB ,

∴DG ∥OH ,

∴△OCH ∽△DCG , ∴OH OC DG CD

=, ∴DG=OH CD OC ⋅

35, ∴S △ACO =12AC ×OH=12x ×3=32

x , S △BOD =12BC (OH +DG )=12(8﹣

x )×(3

35)=32(8﹣

x ) ∴y=ACO OBD S S

=()323582x x -

(0<x <8) (3)①当OB ∥AD 时,如图3,

过点A 作AE ⊥OB 交BO 延长线于点E ,过点O 作OF ⊥AD ,垂足为点F ,

则OF=AE ,

∴S=

12AB•OH=12OB•AE , AE=AB OH OB ⋅=245

=OF , 在Rt △AOF 中,∠AFO=90°,

AO=5,

∴75

∵OF 过圆心,OF ⊥AD ,

∴AD=2AF=145. ②当OA ∥BD 时,如图4,过点B 作BM ⊥OA 交AO 延长线于点M ,过点D 作DG ⊥AO ,垂足为点G ,

则由①的方法可得DG=BM=245

, 在Rt △GOD 中,∠DGO=90°,DO=5,

∴GO=22DO DG -=

75,AG=AO ﹣GO=185

, 在Rt △GAD 中,∠DGA=90°, ∴AD=22AG DG +=6

综上得AD=

145或6.

故答案为(1)2;(2)y=()

2825x x x -+(0<x <8);(3)AD=145或6. 【点睛】

本题是考查圆、三角形、梯形相关知识,难度大,综合性很强.

2.如图①,一个Rt △DEF 直角边DE 落在AB 上,点D 与点B 重合,过A 点作二射线AC 与斜边EF 平行,己知AB=12,DE=4,DF=3,点P 从A 点出发,沿射线AC 方向以每秒2个单位的速度运动,Q 为AP 中点,设运动时间为t 秒(t >0)•

(1)当t=5时,连接QE ,PF ,判断四边形PQEF 的形状;

(2)如图②,若在点P 运动时,Rt △DEF 同时沿着BA 方向以每秒1个单位的速度运动,当D 点到A 点时,两个运动都停止,M 为EF 中点,解答下列问题:

①当D 、M 、Q 三点在同一直线上时,求运动时间t ;

②运动中,是否存在以点Q 为圆心的圆与Rt △DEF 两个直角边所在直线都相切?若存在,求出此时的运动时间t ;若不存在,说明理由.

【答案】(1)平行四边形EFPQ 是菱形;(2)t=

;当t 为5秒或10秒时,以点Q 为圆

心的圆与Rt △DEF 两个直角边所在直线都相切.

【解析】 试题分析:(1)过点Q 作QH ⊥AB 于H ,如图①,易得PQ=EF=5,由AC ∥EF 可得四边形EFPQ 是平行四边形,易证△AHQ ∽△EDF ,从而可得AH=ED=4,进而可得AH=HE=4,根据

垂直平分线的性质可得AQ=EQ,即可得到PQ=EQ,即可得到平行四边形EFPQ是菱形;(2)①当D、M、Q三点在同一直线上时,如图②,则有AQ=t,EM=EF=,AD=12-t,DE=4.由EF∥AC可得△DEM∽△DAQ,然后运用相似三角形的性质就可求出t的值;

②若以点Q为圆心的圆与Rt△DEF两个直角边所在直线都相切,则点Q在∠ADF的角平分线上(如图③)或在∠FDB的角平分线(如图④)上,故需分两种情况讨论,然后运用相似三角形的性质求出AH、DH(用t表示),再结合AB=12,DB=t建立关于t的方程,然后解这个方程就可解决问题.

试题解析:(1)四边形EFPQ是菱形.

理由:过点Q作QH⊥AB于H,如图①,

∵t=5,∴AP=2×5=10.

∵点Q是AP的中点,

∴AQ=PQ=5.

∵∠EDF=90°,DE=4,DF=3,

∴EF==5,

∴PQ=EF=5.

∵AC∥EF,

∴四边形EFPQ是平行四边形,且∠A=∠FEB.

又∵∠QHA=∠FDE=90°,

∴△AHQ∽△EDF,

∴.

∵AQ=EF=5,

∴AH=ED=4.

∵AE=12-4=8,

∴HE=8-4=4,

∴AH=EH,

∴AQ=EQ,

∴PQ=EQ,

∴平行四边形EFPQ是菱形;

(2)①当D、M、Q三点在同一直线上时,如图②,

相关文档
最新文档