工业机器人传感器
工业机器人内部传感器
根据码盘上透光区域与不透光区域分布的不同,光电编码器又可分为 相对式(增量式)和绝对式两种类型。
1)相对式光电编码器
测量旋转运动最常见的传感器是相对式光电编码器,其圆形码盘(见图4-9)上的 透光区与不透光区相互间隔,均匀分布在码盘边缘,分布密度决定测量的解析度。在 码盘两边分别装有光源及光敏元件。
1.2 速度传感器
1.测速发电机
测速发电机是一种模拟式速度传感器,它实际上是一台小型永磁式直流发电机,其 结构原理如图4-13所示。
图4-13 直流输出测速发电机结构原理图
当通过线圈的磁通量恒定时,位于磁场中的线圈旋转使线圈两端产生的电压 u(感应电动势) 与线圈(转子)的转速 成正比,即
u A
1)模拟方式
在模拟方式下,必须有一个频率/电压(F/V)变换器,用来将编码器测得的脉冲 频率转换成与速度成正比的模拟电压,其原理如图4-14所示。F/V变换器必须有良好 的零输入、零输出特性和较小的温度漂移才能满足测试要求。
图4-14 模拟方式的相对式光电编码器测速
2)数ቤተ መጻሕፍቲ ባይዱ方式
数字方式测速是利用数学方式通过计算软件计算出速度。角速度是转角对时间的一阶导数,
工业机器人基础
工业机器人内部传感器
1.1 位移传感器
1.电位器式位移传感器
电位器式位移传感器一般用于测量工业机器人的关节线位移和角位移,是 位置反馈控制中必不可少的元件,它可将机械的直线位移或角位移输入量转 换为与其成一定函数关系的电阻或电压输出。
电位器式位移传感器主要由电阻元件、骨架及电刷等组成。根据滑动 触头·运动方式的不同,电位器式位移传感器分为直线型和旋转型两种。
式中,A 为常数。
工业机器人对传感器的一般要求
工业机器人对传感器的一般要求
首先,工业机器人的传感器必须具有高精度的测量能力和快速反应能力,能够实时检测机器人的状态和运动状况,以便及时修改机器人的动作参数,满足机器人工作精度要求。
其次,传感器必须具有良好的稳定性,耐冲击,耐高温等特性,能够承受工业环境的变化,并能够在变化的环境中保持精度和准确性。
此外,从安全角度出发,工业机器人的传感器应具有自我保护和防护能力,防止误操作和意外感应等,以防止发生意外伤害或损坏的可能性。
最后,工业机器人的传感器应具有耐磨性,寿命长,使用成本低,更换成本低等特点,可以大大降低整机的使用成本,提高机器人的使用效率。
机器人技术基础课件第六章 机器人传感器
物理量
电量
目前,传感器转换后的信号大多为电信号。 因而从狭义上讲,传感器是把外界输入的非电信 号转换成电信号的装置。
6.1 机器人传感器概述
6.1.1 传感器的基本概念
2、传感器的组成
传感器一般由敏感元件、转换部分组成
基
被 测 量
敏 感 元 件
转 换 元 件
本 转 换 电
电 信 号
路
6.1 机器人传感器概述
6.2 内传感器
增量式编码器
6.2.1 位移(位置)传感器
(1)信号性质
输出信号为一串脉冲,每一个脉
冲对应一个分辨角,对脉冲进行计 数N,就是对 的累加,即,角位移 =N。
如: =0.352,脉冲N=1000,
则:
= 0.352×1000= 352
增量式编码器的信号性质
6.2 内传感器
增量式编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
光电编码器是角度(角速度)检测装置,通过光 电转换,将输出轴上的机械几何位移量转换成脉冲 数字量的传感器。具有体积小,精度高,工作可靠 等优点,应用广泛。
编码器
6.2 内传感器
6.2.1 位移(位置)传感器
2、光电编码器
轴式
套式
电信号
二进制编码
• 满足机器人控制的要求 • 满足机器人自身安全和机器人使用者的安全性要求
6.1 机器人传感器概述
6.1.4 机器人传感器的分类
1)按被测物理量分类 常见的被测物理量
机械量:长度,厚度,位移,速度,加速度, 旋转角,转数,质量,重量,力,力矩;
热工量:温度、热量、比热容、热流、 热 分布、压力(压强)、压差、真空度、流 量、流速、物位、 液位、界面、噪声
简述工业机器人传感器的作用
工业机器人传感器的作用1. 简介工业机器人传感器是用于感知和获取环境信息的设备,它们能够帮助工业机器人实现精准的定位、避障、检测和控制等功能。
传感器在工业机器人系统中起着至关重要的作用,它们能够使机器人具备感知能力,从而能够更好地适应复杂多变的工作环境。
本文将详细介绍工业机器人传感器的作用,包括定位传感器、力传感器、视觉传感器、接触传感器和温度传感器等。
2. 定位传感器定位传感器是工业机器人中常用的传感器之一,它能够帮助机器人准确地定位自身的位置,以便实现精确的运动控制。
常见的定位传感器包括编码器、惯性测量单元(IMU)和全球定位系统(GPS)等。
•编码器:编码器能够测量机器人关节的角度或位置,通过将测量值与预设值进行比较,可以实现机器人的运动控制和定位。
•IMU:IMU是一种集成了加速度计、陀螺仪和磁力计等传感器的设备,它能够测量机器人的加速度、角速度和方向等信息,从而实现机器人的姿态估计和运动控制。
•GPS:GPS是一种全球定位系统,能够通过卫星信号定位机器人的位置,广泛应用于需要室外定位的工业机器人。
定位传感器能够使工业机器人实现高精度的定位和运动控制,提高工作效率和精度。
3. 力传感器力传感器是用于测量机器人与外界物体之间的力或压力的传感器,它能够帮助机器人实现精确的力控制和力检测。
常见的力传感器包括压电传感器、应变传感器和力/扭矩传感器等。
•压电传感器:压电传感器能够将受力转化为电信号,通过测量电信号的变化,可以得到机器人与外界物体之间的压力信息。
•应变传感器:应变传感器能够测量物体受力后的应变变化,通过测量应变的大小,可以得到机器人与外界物体之间的力信息。
•力/扭矩传感器:力/扭矩传感器能够测量机器人施加在外界物体上的力和扭矩,从而实现力控制和力检测。
力传感器能够使工业机器人具备对外界物体的感知和控制能力,实现精确的力控制和力检测。
4. 视觉传感器视觉传感器是工业机器人中常用的传感器之一,它能够帮助机器人获取环境的视觉信息,实现目标识别、物体定位和视觉导航等功能。
常见的工业机器人传感器类型和作用介绍
常见的工业机器人传感器类型和作用介绍工业机器人是现代工业生产中的重要设备,它可以自动完成各种工艺操作,提高生产效率和质量。
而机器人要实现自主操作和与环境的交互,就必须依赖传感器来获取各种信息。
下面将介绍一些常见的工业机器人传感器类型及其作用。
1.视觉传感器:视觉传感器是机器人中应用最广泛的传感器之一,可以帮助机器人获取周围环境的图像信息,实现目标识别、位置定位、检测等功能。
常见的视觉传感器包括CCD相机、CMOS相机等,其分辨率越高,精度越高。
2.力传感器:力传感器可以测量机器人与周围环境之间的力和力矩,实现精确控制和操作。
常见的力传感器有电容式、压阻式、电感式等,可以应用于装配、抓取、力控处置等任务。
3.距离传感器:距离传感器可以测量机器人与物体之间的距离,实现避障、定位等功能。
常见的距离传感器包括激光传感器、超声波传感器、红外线传感器等,可以用于测距、测量高度等任务。
4.光电传感器:光电传感器可以检测物体的存在、颜色、形状等特性,实现物体识别、分类、定位等功能。
常见的光电传感器有光电开关、光幕、光电编码器等,可以应用于自动分拣、装配等任务。
5.温度传感器:温度传感器可以测量机器人周围环境的温度变化,实现温度控制、安全保护等功能。
常见的温度传感器包括热敏电阻、热电偶等,可以用于焊接、烤箱等工作环境中。
6.声音传感器:声音传感器可以检测周围环境中的声音,实现语音交互、声音控制等功能。
常见的声音传感器有麦克风、声纳等,可以应用于机器人导航、语音识别等任务。
7.气体传感器:气体传感器可以检测周围环境中的气体浓度和成分,实现气体分析、安全监测等功能。
常见的气体传感器有气体传感电阻、气体传感器阵列等,可以应用于有害气体探测、环境监测等任务。
8.触摸传感器:触摸传感器可以感知机器人与物体接触的力和位置,实现精确控制和安全保护。
常见的触摸传感器有电容触摸传感器、压阻触摸传感器等,可以用于装配、物体操纵等任务。
简述工业机器人内部传感器的分类和原理
工业机器人内部传感器的分类和原理一、引言工业机器人是一种能够自动执行各种任务的可编程装置,常用于组装、焊接、搬运等工业生产过程中。
为了能够准确、安全地完成任务,工业机器人内部配备了一系列传感器,用于感知周围环境和自身状态。
本文将介绍工业机器人内部传感器的分类和原理。
二、传感器的分类根据传感器的功能和原理,可以将工业机器人内部传感器分为以下几类:1. 位置传感器位置传感器用于测量机器人在三维空间中的位置和姿态。
常见的位置传感器包括激光测距传感器、光电开关和编码器等。
•激光测距传感器:利用激光束发射器和接收器进行测距,通过测量激光束的往返时间来计算距离。
激光测距传感器具有高精度和长测距范围等优点,常用于工业机器人的精确定位。
•光电开关:利用光电效应,测量光线的遮挡情况。
通过光电开关可以检测物体的存在和位置,常用于机器人的末端效应器控制。
•编码器:通过测量电机转子的旋转角度,确定机器人的位置。
编码器可以直接安装在机器人的关节上,或者通过传动装置间接测量,用于机器人的运动控制和位置反馈。
2. 接触传感器接触传感器用于检测机器人与物体之间的接触力和接触位置。
常见的接触传感器包括力敏电阻、压电传感器和光纤传感器等。
•力敏电阻:利用电阻值与受力之间的关系,测量接触力的大小。
力敏电阻可以分布在机器人的末端效应器上,实时监测与工件的接触力,用于力控制任务。
•压电传感器:利用材料的压电效应,将压力转化为电信号。
压电传感器可以测量接触力的大小和变化情况,常用于机器人的触摸感应和力控制。
•光纤传感器:通过光纤的折射和反射,测量机器人与物体之间的距离和接触位置。
光纤传感器具有高精度和快速响应的特点,常用于机器人的微小力控制和物体定位。
3. 视觉传感器视觉传感器用于获取机器人周围环境的图像信息,实现图像识别和目标跟踪等功能。
常见的视觉传感器包括摄像头、3D视觉传感器和红外传感器等。
•摄像头:通过光学镜头和图像传感器,捕捉机器人周围环境的图像。
传感器在工业机器人的应用
传感器在工业机器人的应用
传感器在工业机器人的应用非常广泛。
以下是一些常见的应用:
1. 位置传感器:工业机器人通常需要知道自己的位置和姿态。
位置传感器可以提供关节角度、关节位置、机械手的末端位置等信息。
2. 力传感器:工业机器人可能需要根据不同的任务调整自己的力量。
力传感器可以测量机器人与工件之间的力量,并帮助机器人调整自己的姿态和力量。
3. 视觉传感器:工业机器人通常需要“看”工作区域和工件以执行任务。
视觉传感器可以帮助机器人检测工件的位置、形状和颜色,以便进行精确的操作。
4. 激光测距传感器:激光测距传感器可以测量机器人到工件的距离,帮助机器人避免碰撞和进行精确定位。
5. 温度传感器:工业机器人可能需要监测温度以防止过热或过冷。
温度传感器可以帮助机器人监测环境温度和机器人自身的温度。
6. 气体传感器:工业机器人可能需要检测有害气体或环境气体。
气体传感器可以帮助机器人监测气体浓度,以确保工作环境安全。
除了以上列举的传感器,还有许多其他类型的传感器可以用于
工业机器人,具体取决于机器人所执行的任务和应用。
这些传感器的应用可以提高机器人的精度、安全性和效率,使其更加智能化和自主化。
工业机器人外部传感器
图4-27 超声波式接近觉传感器工作原理图
被测距离L有:
L VT 2
1.4 视觉传感器
1.视觉传感器概述
视觉传感器又称为摄像管,它是采用光电转换原理摄取平面光学图像,并 使其转换为电子图像信号的器件。
视觉传感器必须具备两个作用:一是将光信号转换为电信号;二 是将平面图像上的像素进行点阵取样,并把这些像素按时间取出。
视觉传感器在工业机器人中的应用类型大致可以分为三类,即视 觉检验、视觉导引和过程控制;其应用领域包括电子工业、汽车工 业、航空工业以及食品和制药等。
2.光导摄像管
如图4-29(a)所示,光导摄像管外面有一圆柱形玻璃外壳2,内部有位于一端 的电子枪7以及位于另一端的屏幕1和光敏层3。加在线圈6,9上的电压将电子束聚 焦并使其偏转。偏转电路驱使电子束对光敏层的内表面扫描以便“读取”图像。
图4-24 振动式滑觉传感器
1.3 接近觉传感器
接近觉传感器是工业机器人用来探测自身与周围物体之间相对位置或距离的一 种传感器,它探测的距离一般在几毫米到十几厘米之间。接近觉传感器按照转换原 理的不同,可分为电涡流式、光纤式和超声波式等类型。
1.电涡流式接近觉传感器
当导体在一个不均匀的磁场中运动或处于一个交变磁场中时,其 内部便会产生感应电流。这种感应电流称为电涡流,这一现象称为电 涡流现象,电涡流式接近觉传感器便是利用这一原理制作的。
(a)结构
(b)电子束扫描方式 图4-29 光导摄像管
1—屏幕;2—玻璃外壳;3—光敏层;4—网格;5—电子束; 6—光束聚焦线圈;7—电子枪;8—引脚;9—光束偏转线圈
3.CCD传感器
CCD传感器与一般摄像管相比,具有重量轻、体积小、寿命长、功耗低等优点, 它使用一种高感光度的半导体材料制成,能将光线转变成电荷,通过模/数转换器 转换成数字信号。数字信号经过压缩以后的数据传输至计算机,并借助于计算机的 处理手段,根据任务需要反馈给执行器。
关于机器人传感器的种类介绍
关于机器人传感器的种类介绍随着智能化的程度提高,机器人传感器应用越来越多。
智能机器人主要有交互机器人、传感机器人和自主机器人3种。
从拟人功能出发,视觉、力觉、触觉最为重要,早已进入实用阶段,听觉也有较大进展,其它还有嗅觉、味觉、滑觉等,对应有多种传感器,所以机器人传感产业也形成了生产和科研力量。
1、内传感器机器介机电一体化的产品,内传感器和电机、轴等机械部件或机械结构如手臂(Arm)、手腕(Wrist)等安装在一起,完成位置、速度、力度的测量,实现伺服控制。
2、位置(位移)传感器直线移动传感器有电位计式传感器和可调变压器两种。
角位移传感器有电位计式、可调变压器(旋转变压器)及光电编码器三种,其中光电编码器有增量式编码器和绝对式编码器。
增量式编码器一般用于零位不确定的位置伺服控制,绝对式编码器能够得到对应于编码器初始锁定位置的驱动轴瞬时角度值,当设备受到压力时,只要读出每个关节编码器的读数,就能够对伺服控制的给定值进行调整,以防止机器人启动时产生过剧烈的运动。
3、速度和加速度传感器速度传感器有测量平移和旋转运动速度两种,但大多数情况下,只限于测量旋转速度。
利用位移的导数,特别是光电方法让光照射旋转圆盘,检测出旋转频率和脉冲数目,以求出旋转角度,及利用圆盘制成有缝隙,通过二个光电二极管辨别出角速度,即转速,这就是光电脉冲式转速传感器。
此外还有测速发电机用于测速等。
应变仪即伸缩测量仪,也是一种应力传感器,用于加速度测量。
加速度传感器用于测量工业机器人的动态控制信号。
一般有由速度测量进行推演、已知质量物体加速度所产生动力,即应用应变仪测量此力进行推演。
还有就是下面所说的方法:与被测加速度有关的力可由一个已知质量产生。
这种力可以为电磁力或电动力,最终简化。
传感器在工业机器人中应用
传感器在工业机器人中应用工业机器人是面向工业领域的多关节机械手或多自由度的机器人。
工业机器人是自动执行工作的机器装置,是靠自身动力和控制能力来实现各种功能的一种机器。
它可以接受人类指挥,也可以按照预先编排的程序运行,现代的工业机器人还可以根据人工智能技术制定的原则纲领行动。
在工业自动化领域,机器需要传感器提供必要的信息,以正确执行相关的操作。
机器人已经开始应用大量的传感器以提高适应能力。
绝大多数智能机器人的外部传感器,可以大致分为触觉传感器,接近传感器、力学传感器,以及视觉、滑觉、热觉等多种类型的传感器。
例如有很多的协作机器人集成了力矩传感器和摄像机,以确保在操作中拥有更好的视角,同时保证工作区域的安全等。
用于避障的传感器避障可以说是各种机器人最基本的功能,不然机器人一走动就碰到花花草草就不好了。
机器人并不一定要通过视觉感知自己前方是否有障碍物,它们也可以通过触觉或像蝙蝠那样通过声波感知。
因此,检测机器人前方是否存在障碍物的传感器,可以分为接触式和非接触式的。
最典型的接触式测障传感器便是碰撞开关(图1)。
碰撞开关的工作原理非常简单,完全依靠内部的机械结构来完成电路的导通和中断。
图1 碰撞开关在机器人上的用法多数是将探测臂加长,扩大探测范围和灵敏度。
当机器人撞到前面的障碍物,碰撞开关的信号端便可返回一个高电平,控制芯片由此可以知道小车面前存在着障碍物。
非接触式测障开关一般的工作原理与声纳和雷达相似,发射声波或某种射线,遇到障碍物,声波或射线被反射回来,并被传感器接收,这时传感器就认为发现了障碍物。
我们最常用的便是发射和接收红外线的传感器(图3,图4)。
图3 红外发射管图4 红外接收管红外测障传感器成本较低(当然比碰撞开关还是要高一点),电路简单,检测范围大。
如果在电路中加上一个电位器,就可以随时调节传感器的检测范围。
这种检测方式为非接触式,控制起来更加方便、灵活。
但这种测障方式也有缺点,多个红外传感器之间容易互相干扰,因此在传感器的布局上需要多花心思,安装位置也要尽可能地避免红外信号的碰撞。
第四章 工业机器人传感系统
第四章 工业机器人传感系统
4.2 内 部 传 感 器
4.2.1 位置传感器 目前,机器人系统中使用的位置传感器一般是编码器。
编码器是将物理量转换为数字格式的设备。编码器在机器人 运动控制系统中的功能是将位置和角度参数转换为数字量。 通过使用电接触、磁效应、电容效应和光电转换的机制可以 形成各种类型的编码器。
第四章 工业机器人传感系统
电路板 光检测器 挡板 码盘 光源
外壳
LED 透镜
发射部分
码盘
发光二极管 比较器
A A
B B I I
信号处理电路
定位信号 处理电路
检测部分
Ucc 4
A 3
B 5
I 2
GND 1
图4-1 旋转光电编码器工作原理
第四章 工业机器人传感系统
1. 绝对型光电编码器 绝对型光电编码器具有绝对位置的记忆装置,可以测量旋 转轴或移动轴的绝对位置,因此它已广泛应用于机器人系统。 对于线性移动轴或旋转轴,在确定编码器的安装位置后,绝 对参考零位置就确定了。通常,绝对型光电编码器的绝对零 位的存储要依靠不间断的供电电源。目前,一般使用高效的 锂离子电池进型光电编码器的编码盘由几个同心圆组成,这些同 心圆可以称为码道,在这些码道上,沿径向顺序具有各自不 同的二进制权值。每个码道根据其权值分为遮光和投射段, 分别表示二进制0和1。与码道个数相同的光电器件分别与各 自对应的码道对准并沿码盘的半径直线排列,可以通过这些 光电器件的检测结果来产生绝对位置的二进制编码。
第四章 工业机器人传感系统
第四章 工业机器人传感系统
4.1 工业机器人传感器概述 4.2 内部传感器 4.3 外部传感器 4.4 传感器的选型 4.5 工业机器人典型传感器系统 思考题
工业机器人传感器的分类
工业机器人传感器的分类
工业机器人传感器可以根据其测量的物理量和应用领域进行分类。
以下是常见的分类方式:
1. 位置和运动传感器:用于测量机器人的位置和运动,包括编码器、激光测距仪、光电开关等。
2. 力和扭矩传感器:用于测量机器人与环境或工件之间的力和扭矩,包括力传感器、扭力传感器、压力传感器等。
3. 视觉传感器:用于机器人的视觉感知,包括摄像头、3D视觉系统、激光扫描仪等。
4. 声音和振动传感器:用于检测周围的声音和振动,包括麦克风、振动传感器等。
5. 温度和湿度传感器:用于测量环境的温度和湿度,包括温度传感器、湿度传感器等。
6. 气体和液体传感器:用于检测气体和液体的浓度、压力或流量,包括气体传感器、液位传感器等。
7. 磁力和电感传感器:用于测量磁力和电感,包括磁力传感器、电感传感器等。
8. 化学传感器:用于检测环境中的化学物质,包括气体传感器、酸碱传感器等。
9. 光学传感器:用于测量光的强度和颜色,包括光传感器、颜色传感器等。
这仅是常见的分类方式,随着技术的发展,还会涌现出更多类型的工业机器人传感器。
工业机器人传感器知识点
工业机器人传感器知识点工业机器人传感器是现代工业领域中的重要组成部分,起着检测、控制和反馈信号的作用。
它们通过感知周围环境和运动状态,使机器人能够与外部环境进行交互,并完成精确的任务。
本文将介绍工业机器人传感器的常见类型和其在机器人应用中的关键作用。
一、力/扭矩传感器力/扭矩传感器是工业机器人中最常见的传感器之一,用于测量力的大小和方向,以及扭矩的大小。
它们通常安装在机器人的关节或结束执行器上,用于实时监测机器人运动中的受力情况。
力/扭矩传感器的数据可以用于机器人的力控制、防碰撞和物体抓取等应用。
二、视觉传感器视觉传感器是工业机器人中另一个重要的传感器类型。
它们通过图像识别和处理技术,使机器人能够感知和理解其周围环境中的图像信息。
视觉传感器可以用于目标定位、物体检测、品质检测和导航等任务。
常见的视觉传感器包括相机、光电传感器和激光雷达等。
三、接近传感器接近传感器主要用于检测和感知物体的接近或距离,常见的工作原理包括电容、电感和光学等。
接近传感器广泛应用于工业机器人中的物体检测、位置控制和机器人与外部环境的交互等。
它们具有高灵敏度、快速响应和高可靠性的特点。
姿态传感器主要用于测量和感知机器人的姿态、姿势和方向等信息。
它们通常安装在机器人的关节或终端执行器上,可以实时监测和反馈机器人的姿态变化。
姿态传感器在工业机器人的运动控制、路径规划和姿态校准等方面起着关键作用。
常见的姿态传感器包括陀螺仪、加速度计和磁场传感器等。
五、温度传感器温度传感器用于测量和感知机器人及其周围环境的温度变化。
它们通常安装在机器人关键部件或工作区域中,以监测机器人的温度状态并及时采取措施。
温度传感器在工业机器人的温度控制、过热保护和环境监测等方面发挥着重要作用。
六、力矩传感器力矩传感器用于量化和感知机器人执行器或关节的力矩输出。
它们通常安装在机器人的执行器和关节部件上,以实时监测机器人的扭矩输出。
力矩传感器可以提供机器人的负载变化、力矩控制和碰撞侦测等信息,为机器人运动和控制提供支持。
常见的工业机器人传感器类型和作用介绍
常见的工业机器人传感器类型和作用介绍
1、光传感器光传感器可以识别光或电压的变化,然后根据光的变化产生相应的电压差。
工业机器人常用的光传感器有光伏电池和光敏电阻等。
2、扭矩传感器扭矩传感器可以识别工业机器人手臂及末端工具施加的力,为工业机器人提供了触觉。
一般工业机器人的扭矩传感器会安装在工业机器人和工具之间,以监控机器人施加在工具上的力。
3、接近传感器接近传感器可以在不需要对物体有物理接触的情况下对物体进行检测,工作方式也比较简单。
常见的接近传感器是由发射器发射电磁波,接收器接收并分析物体返回的信号。
工业机器人常用的接近传感器有红外收发器,可以通过红外光束的反射和捕获来来识别障碍物,检测附近物体的存在。
4、加速度传感器加速度传感器可以通过动力和静力来测量加速度和倾斜度。
通过对这两个力的测量,机器人可以确定移动物体所需要的加速度,并且确定机器人的平衡情况。
工业机器人的传感器ppt课件
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
5.2 工业机器人内部传感器 1 概述
内部传感器中,位置传感器和速度传感器,是当今 机器人反馈控制中不可缺少的元件。 现已有多种传感器大量生产,但倾斜角传感器、方 位角传感器及振动传感器等用作机器人内部传感器的 时间不长,其性能尚需进一步改进。
工业机器人的感觉系统包括:
◦ 传感器; ◦ 通过传感器获得数据的处理。
2、工业机器人常用传感器的分类
机器人传感器按用途可分为内部传感器和外部传感 器。
内部传感器装在操作机上,包括位移、速度、加速 度传感器,是为了检测机器人操作机内部状态,在伺 服控制系统中作为反馈信号。
外部传感器,如视觉、触觉、力觉距离等传感器, 是为了检测作业对象及环境与机器人的联系。
17
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
◦ 光纤传感器
这种传感器包括由一束光纤构成的光缆和一个可变形的反 射表面。光通过光纤束投射到可变形的反射材料上, 反射光按相反方向通过光纤束返回。如果反射表面是 平的,则通过每条光纤所返回的光的强度是相同的。 如果反射表面因与物体接触受力而变形,则反射的光 强度不同。用高速光扫描技术进行处理,即可得到反 射表面的受力情况。
关于编码器 编码器输出表示位移增量的编码器脉冲信号,并带有符 号。 据检测原理,编码器可分为:光学式、磁式、感应式和 电容式。 根据其刻度方法及信号输出形式,分为增量式编码器和 绝对式编码器。 作为机器人位移传感器,光电编码器应用最为广泛。
工业机器人的触觉传感器有哪些?作用是什么-
工业机器人的触觉传感器有哪些?作用是什么?AGV自动搬运车不仅可以提高整个生产效率,改善物流管理,还可以实现整个生产物流的自动化.智能化、柔性化,增加安全性。
AGV由小车组成的自动物流系统在整个自动化生产中发挥着巨大的作用,保证了物料运输的准确性.及时性.有效避免和消除人为过失造成的产品和运输损坏。
智能搬运机器人的主流导航方式如下:磁条导航磁条导航被认为是一种非常成熟的导航技术。
磁条铺设在智能搬运机器人的运行路线上。
智能搬运机器人通过测量路径上的磁场信号来获得车辆与目标跟踪路径之间的位置偏差,从而实现车辆的控制和导航。
磁条导航的优点是成本低.技术成熟可靠,定位稳定性好,使用方便。
磁条导航的缺点是需要施工地面,施工工作量大,地表卡容易丢失,路线变化时需要重新铺设磁条,柔性差,维护成本高,只能沿磁条行走,能避让,或通过控制系统实时更改任务。
磁钉导航磁钉导航模式是通过磁导航传感器检测磁钉的磁信号来找到行驶路径,只是使用磁带导航到间歇性感应,所以磁钉之间的距离不能太大,两个磁钉之间的智能搬运机器人处于距离测量状态,需要编码器测量行走距离。
其次,磁钉导航中使用的控制模块与磁带导航控制模块相同。
磁钉导航的优点是成本低.技术成熟可靠,磁钉埋在地下,隐秘性好.美观。
磁钉抗干扰强,耐磨性强,耐酸碱.油污等影响可用于室外.室内。
磁钉导航的缺点是智能搬运机器人导航线路中不能存在其他磁性物质。
智能搬运机器人磁钉导航线路一次铺设,后续修改线路必须进行二次操作。
智能搬运机器人磁钉导航施工将对地面进行一定的破坏功能,即在地面开孔,然后回填,严格的施工技术要求,以恢复原地面的美观要求。
Slam激光导航Slam激光导航又称自然导航,目前是智能搬运机器人zui采用二维激光扫描仪测量现场环境的先进导航技术.学习和绘制导航环境,智能搬运机器人在没有周围环境信息的情况下,让移动机器人根据自己的传感器和对周围环境的感知定位自己并增量构建周围环境地图。