三相异步电动机及其控制电路

合集下载

三相异步电动机常用控制电路图

三相异步电动机常用控制电路图

三相异步电动机的控制电路1.直接启动控制电路直接启动即启动时把电动机直接接入电网,加上额定电压,一般来说,电动机的容量不大于直接供电变压器容量的20%—30%时,都可以直接启动。

1).点动控制合上开关S,三相电源被引入控制电路,但电动机还不能起动。

按下按钮SB,接触器KM开主触点接通,电动机定子接入三相电源起动运转。

松开按钮SB,接触器KM线圈断电,衔铁松开,常开主触点断开,电动机因断电而停转。

2).直接起动控制KM线圈通电,与SB1并联的KM的辅助常开触点闭合,以保证松开按钮SB1后KM串联在电动机回路中的KM的主触点持续闭合,电动机连续运转,从而实现连续运转控制。

接触器KM线圈断电,与SB1并联的KM的辅助常开触点断开,以保证松开按钮SB2后KM线圈持续失电,串联在电动机回路中的KM的主触点持续断开,电动机停转。

与SB1并联的KM的辅助常开触点的这种作用称为自锁。

图示控制电路还可实现短路保护、过载保护和零压保护。

a)起短路保护的是串接在主电路中的熔断器FU。

一旦电路发生短路故障,熔体立即熔断,电动机立即停转。

b)起过载保护的是热继电器FR。

当过载时,热继电器的发热元件发热,将其常闭触点断开,使接触器KM线圈断电,串联在电动机回路中的KM的主触点断开,电动机停转。

同时KM辅助触点也断开,解除自锁。

故障排除后若要重新起动,需按下FR的复位按钮,使FR的常闭触点复位(闭合)即可。

c)起零压(或欠压)保护的是接触器KM本身。

当电源暂时断电或电压严重下降时,接触器KM线圈的电磁吸力不足,衔铁自行释放,使主、辅触点自行复位,切断电源,电动机停转,同时解除自锁。

2.正反转控制 1).简单的正反转控制(1)正向起动过程。

按下起动按钮SB 1,接触器KM 1线圈通电,与SB 1并联的KM 1的辅助常开触点闭合,以保证KM 1线圈持续通电,串联在电动机回路中的KM 1的主触点持续闭合,电动机连续正向运转。

(2)停止过程。

三相异步电动机的控制

三相异步电动机的控制

92
SB3 SB1 KM 1 SB2 KM 2 KM 1 KM 2 FR KM 2 KM 1
图 5-16 带电气互锁的正反转控制 缺点: 电路在具体操作时, 若电动机处于正转状态要反转时必须先按停止按钮 SB3, 使互锁触点 KM1 闭合后按下反转起动按钮 SB2 才能使电动机反转; 若电动机处于反转状 态要正转时必须先按停止按钮 SB3,使互锁触点 KM2 闭合后按下正转起动按钮 SB1 才能 使电动机正转。
S FU SB3 KM 1 FR M 3~ KM 2 SB1 KM 1 SB2 KM 2 KM 1
(2)停止过程。按下停止按钮 SB3, 接触器 KM1 线圈断电,与 SB1 并联的 KM1 的辅助触点断开,以保证 KM1 线圈持续失电, 串联在电动机回路中的 KM1 的主触点 图 5-15 简单的正反转控制 持续断开,切断电动机定子电源,电动机停转。 (3)反向起动过程。按下起动按钮 SB2,接触器 KM2 线圈通电,与 SB2 并联的 KM2 的辅助常开触点闭合, 以保证线圈持续通电, 串联在电动机回路中的 KM2 的主触点持续 闭合,电动机连续反向运转。 缺点: KM1 和 KM2 线圈不能同时通电,因此不能同时按下 SB1 和 SB2,也不能在电动 机正转时按下反转起动按钮,或在电动机反转时按下正转起动按钮。如果操作错误,将 引起主回路电源短路。 2) .带电气互锁的正反转控制电路 将接触器 KM1 的辅助常闭触点串入 KM2 的线圈 回路中,从而保证在 KM1 线圈通电时 KM2 线圈回 路总是断开的; 将接触器 KM2 的辅助常闭触点串入 KM1 的线圈回路中,从而保证在 KM2 线圈通电时 KM1 线圈回路总是断开的。 这样接触器的辅助常闭 触点 KM1 和 KM2 保证了两个接触器线圈不能同时 通电,这种控制方式称为互锁或者联锁,这两个辅 助常开触点称为互锁或者联锁触点。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。

所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。

点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。

2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。

欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。

“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。

因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1、三相异步电动机得点动控制点动正转控制线路就是用按钮、接触器来控制电动机运转得最简单得正转控制线路。

所谓点动控制就是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型得三相异步电动机得点动控制电气原理图如图3-1(a)所示。

点动正转控制线路就是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS 作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM得线圈得电、失电,接触器KM 得主触头控制电动机M得启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM得线圈得电,带动接触器KM得三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM得线圈失电,带动接触器KM得三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机得点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样得自动控制电路,控制小型电动机得自动运行。

2、三相异步电动机得自锁控制三相异步电动机得自锁控制线路如图3-2所示,与点动控制得主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2得两端并接了接触器KM得一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要得特点,就就是具有欠压与失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通与切断电动机得电源以及失压与欠压保护等)、热继电器(用做电动机得过载保护)等组成。

欠压保护:“欠压”就是指线路电压低于电动机应加得额定电压。

“欠压保护”就是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行得一种保护。

因为当线路电压下降时,电动机得转矩随之减小,电动机得转速也随之降低,从而使电动机得工作电流增大,影响电动机得正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)得现象,以致损坏电动机。

三相异步电动机的正反转控制线路

三相异步电动机的正反转控制线路

KM1
FR UV W
M 3~
FR
SB1 KM2
SB2 KM1 SB3 KM2
KM2
KM1
KM1
KM2
模拟实验室连接接触器联锁正反转控制电路
L1 L2 L3 按钮
交流接触器 热继电器
电动机
线圈
热继电器动断 触头接线柱
模拟实验室连接接触器联锁正反转控制电路
L1 L2 L3 按钮
交流接触器 热继电器
电动机
KM1
FU2 KH
SB1
KM2
KM1
KM2
SB2
SB3
KH
UV W
M 3~
KM2 KM1
KM1 Kቤተ መጻሕፍቲ ባይዱ2
三、按钮、接触器双重联锁正反转控制线路
QS FU1
FU2
L1
L2
L3
按下SB2, SB2动断触头断 开,对KM2联锁
KM1
SB2动合触头闭 合, KM1线圈得电
KH
UV W
M 3~
KH
SB1
KM2
L1
L2
L3
KM1
按下SB1,使KM1线 圈失电,各触头复位
KH
UV W
M 3~
KH
SB1
KM2
KM1
KM2
SB2
SB3
KM2 KM1
KM1 KM2
三、按钮、接触器双重联锁正反转控制线路
QS FU1 L1 L2 L3
松开SB1
KM1
FU2 KH
SB1
KM2
KM1
KM2
SB2
SB3
KH
UV W
M 3~
电动机

三相异步电动机的基本控制电路精品PPT课件

三相异步电动机的基本控制电路精品PPT课件

M
采用此种接线方式。
3~
3.异步电动机的直接起动 + 过载保护
A BC
热继电
QS
器触头
FU
KM SB1 SB2
KM
FR
KM
发热
FR
元件
电流成回路,
M
只要接两相就可以了。
3~
4.多地点控制
例如:甲、乙两地同时控制一台电机。 方法:两起动按钮并联;两停车按钮串联。
KM
SB1甲
SB2甲
KM
甲地
SB3乙
先合上开关QS
1、正转控制
按下SB1
SB1常闭触点先分断对KM2的联锁 SB1常开触点后闭合 KM1线圈得电(自锁)
KM1常闭辅助触点断开 KM1辅助触点闭合 KM1主触点闭合
电动机M正转
继续
先合上开关QS
1、反转控制
按下SB2
SB2常闭触点先分断对KM1的联锁 SB2常开触点后闭合 KM2线圈得电
SQA
KM1
SQB
KM2
FR
KM2
KM1 限位开关
控制回路
行程控制(2) --自动往复运动
电机
逆程
正程
工作要求:1. 能正向运行也能反向运行 2. 到位后能自动返回
自动往复运动控制电路
FR
SB3
KM2
SQA KM1
SB1
关键措施
限位开关采用 复合式开关。正 向运行停车的同 时,自动起动反 向运行;反之亦 然。
三相异步电动机的 基本控制电路
基本控制电路
一、三相异步电动机起动、停车(点动、连续运 行、多地点控制等) 二、三相异步电动机正反转控制 三、顺序控制 四、行程控制 五、时间控制

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理及接线图

三相异步电动机启动控制原理图1.三相异步电动机的点动控制点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。

所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。

典型的三相异步电动机的点动控制电气原理图如图3-1(a)所示。

点动正转控制线路是由转换开关QS、熔断器FU、启动按钮SB、接触器KM及电动机M组成。

其中以转换开关QS作电源隔离开关,熔断器FU作短路保护,按钮SB控制接触器KM的线圈得电、失电,接触器KM的主触头控制电动机M的启动与停止。

点动控制原理:当电动机需要点动时,先合上转换开关QS,此时电动机M尚未接通电源。

按下启动按钮SB,接触器KM的线圈得电,带动接触器KM的三对主触头闭合,电动机M便接通电源启动运转。

当电动机需要停转时,只要松开启动按钮SB,使接触器KM的线圈失电,带动接触器KM的三对主触头恢复断开,电动机M失电停转。

在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。

2.三相异步电动机的自锁控制三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM的一对常开辅助触头。

接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。

它主要由按钮开关SB(起停电动机使用)、交流接触器KM(用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。

欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。

“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。

因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即电动机接通电源但不转动)的现象,以致损坏电动机。

三相异步电动机正反转控制电路

三相异步电动机正反转控制电路

应用案例二:自动化设备
总结词
三相异步电动机正反转控制电路在自动化设 备领域应用广泛,能够提高设备的自动化程 度和运行效率,降低维护成本。
详细描述
自动化设备在生产过程中需要精确控制电机 运动方向和速度,三相异步电动机正反转控 制电路能够满足这些需求。例如,在自动化 生产线、自动化物流系统、自动化检测设备 等应用中,通过控制电机的正反转实现设备 的自动化运行,提高设备的运行效率和稳定 性,降低维护成本和故障率。
总结词
三相异步电动机正反转控制电路在工业生产中应用广泛,能够实现高效、精准的控制,提高生产效率和产品质量 。
详细描述
在工业生产线上,三相异步电动机正反转控制电路被广泛应用于各种机械设备的驱动,如传送带、包装机、印刷 机等。通过控制电机的正反转,可以实现设备的自动化运行,提高生产效率,减少人工干预和操作误差,确保产 品质量的稳定性和一致性。
在交通运输领域中,三相 异步电动机被用于驱动车 辆、船舶和飞机等。
02
CATALOGUE
正反转控制电路的必要性
生产需求
生产过程中,经常需要改变三相异步 电动机的旋转方向,以满足设备运行 和工艺流程的需求。例如,在物料输 送、机械手臂运动等场合,需要电动 机正反转来调整运动方向。
VS
正反转控制电路能够方便、快速地实 现电动机旋转方向的改变,提高生产 效率。
应用案例三:交通运
总结词
三相异步电动机正反转控制电路在交通运输领域应用广泛,能够提高运输效率和安全性 ,降低能耗和排放。
详细描述
在城市轨道交通、公共交通车辆、高速公路收费站等交通运输领域,三相异步电动机正 反转控制电路被广泛应用于车辆的启动、制动和方向控制。通过控制电机的正反转实现 车辆的加速、减速和转向,提高运输效率和安全性,降低能耗和排放,对环境保护和可

三相异步电动机三相异步电动机及其控制线路

三相异步电动机三相异步电动机及其控制线路

三相异步电动机三相异步电动机及其控制线路实现电能与机械能相互转换的电工设备总称为电机。

电机是利用电磁感应原理实现电能与机械能的相互转换。

把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。

它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该理解以下几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何准确使用。

5.1.1 三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成局部为定子(固定局部)和转子(旋转局部)。

此外还有端盖、风扇等附属局部,如图5-1所示。

图一图(一)是三相电动机的结构示意图1).定子三相异步电动机的定子由三局部组成:2).转子三相异步电动机的转子由三局部组成:图二鼠笼式电动机因为构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图(二)所示。

图(二)是三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

三相异步电动机基本控制电路全

三相异步电动机基本控制电路全

电源
一部分接成星形,
一部分接成三角形
原始状态
起动结束后
换成三角形联结法
投入全电压
3. 三相绕线转子电动机的起动控制
➢ 转子电路中串接电阻 ➢ 转子电路中串接频敏变阻器
转子绕组串接电阻起动
优点:减小起动电流、提高起动转矩 适用:要求起动转矩较大的场合
起动时,电阻被短接的方式: 三相电阻不平衡短接法(用凸轮控制器)
~ SB1
SBF
KMF
FR
KMF
SBR
KMR
KMR
KMR
KMF
互锁
电器联锁(互锁)作用:两个接触器的辅
助常闭触头互相控制。正转时,SBR不起 作用;反转时,SBF不起作用。从而避免 两接触器同时工作造成主回路短路。
1.鼠笼式电机的正反转控制(3)--双重联锁
~ SB1
机械联锁
SBF
KMF
SBR
KMR
可逆运行反接制动
正转:KSF合 反转:KSR合
可逆运行反接制动
正转:KSF合 反转:KSR合
2. 防止电源电压恢复时, 电动机自行起动而造成 设备和人身事故
3. 避免多台电动机同时起 动造成电网电压的严重 下降。
异步机的直接起动----点动+连续运行控制
方法一: 用钮子开关SA
✓ 断开:点动控制 ✓ 合上:长动控制
异步机的直接起动----点动+连续运行控制
方法二:用复合按钮。
QK
~ SB1
而使线圈保持通电的控制方式
自锁触头: 起自锁作用的辅助常开触头
工作原理:
按下按钮(SB1),线圈(KM)通电, 电机起动;同时,辅助触头(KM)闭合, 即使按钮松开,线圈保持通电状态,电机 连续运行。

三相异步电动机的基本控制电路

三相异步电动机的基本控制电路



基异
本步
控电
制动 电机 路的
点 动 控



1.2
第8页
(a)
图7-15 点动控制电路
(b)


基异
本步
控电
制动 电机 路的
正 反 转 控



1.3
1 接触器无互锁的正反转控制电路
第9页
如图7-16所示为接触器无互锁的正反转控制电路,其工作原理如下: 合上电源开关QS,按下正转启动按钮SB2,KM1线圈通电,其主触头闭 合,接通正序电源,电动机正转。同时,KM1辅助常开触头闭合自锁。按下 停止按钮SB1,KM1线圈断电,电动机停止。反转时,按下反转启动按钮 SB3,KM2线圈通电,其主触头闭合,接通反序电源,电动机反转。 此电路存在的问题是:若KM1,KM2同时通电动作,将会造成电源两相 (L1和L3相)短路,因此,此电路在实际中不能采用。
图7-14 接触器控制的单向控制电路


基异
本步
控电
制动 电机 路的
单 相 控



1.1
2 接触器控制的单向控制电路
第5页
电路的工作原理如下: 电动机启动时,合上电源开关QS,按下启动按钮SB2,KM线圈通电, 其三相主触头闭合,电动机接通三相电源启动。同时,与启动按钮SB2并联 的接触器常开辅助触头闭合。松开SB2后,KM线圈仍通过自身的常开辅助 触头保持通电状态,电动机继续运转。这种依靠接触器自身的常开辅助触头 保持线圈通电的方法称为自锁(或自保),这种起自锁作用的常开辅助触头 称为自锁触头(或自保触头)。 电动机停止时,按下停止按钮SB1,KM线圈断电,其三相主触头断开, 电动机停止旋转。同时,KM的常开辅助触头也断开。此时,即使放开停止 按钮SB1,KM线圈也不会通电,电动机不会再次启动。

三相笼型异步电动机正反转控制电路

三相笼型异步电动机正反转控制电路

三相笼型异步电动机正反转控制电路
三相笼型异步电动机正反转控制电路是用于控制三相笼型异步电动机的正反转运动的电路。

它由三相交流电源、三相电动机、正、反转按钮开关、接触器等元件组成。

正转控制电路中,控制电路的L1、L2、L3三条相线上依次连
接接触器K1、K2、K3。

正转按钮开关S1、S2、S3分别与控
制电路的L1、L2、L3相线相连,当按下正转按钮时,控制电
路的L1、L2、L3三条相线上的电流依次通过接触器K1、K2、K3流向电动机的U、V、W三个线圈,使电动机正转运动。

反转控制电路中同样连接控制电路的L1、L2、L3三条相线,
反转按钮开关S4、S5、S6分别与控制电路的L1、L2、L3相
线相连,当按下反转按钮时,控制电路的L1、L2、L3三条相
线上的电流依次通过接触器K3、K2、K1流向电动机的W、V、U三个线圈,使电动机反转运动。

通过对正反转按钮开关的控制,可以实现三相笼型异步电动机的正反转运动。

三相异步电动机自锁控制电路连线

三相异步电动机自锁控制电路连线

三相异步电动机自锁控制电路连线三相异步电动机自锁控制电路是一种常见的电路,它可以实现电动机的自锁控制,从而保证电动机的安全运行。

本文将介绍三相异步电动机自锁控制电路的连线方法和工作原理。

一、三相异步电动机自锁控制电路的连线方法三相异步电动机自锁控制电路的连线方法比较简单,主要包括电源线、控制线和电机线三部分。

其中,电源线连接电源,控制线连接控制器,电机线连接电动机。

具体来说,三相异步电动机自锁控制电路的连线方法如下:1. 将电源线的三根导线分别连接到电源的三个相位上,即L1、L2、L3。

2. 将控制线的三根导线分别连接到控制器的三个输出端子上,即U、V、W。

3. 将电机线的三根导线分别连接到电动机的三个绕组上,即U1、V1、W1。

4. 将电动机的三个绕组中的任意两个绕组交叉连接,即U1和V1交叉连接,或者V1和W1交叉连接,或者W1和U1交叉连接。

5. 将电动机的另一个绕组连接到控制器的一个输入端子上,即U、V或W。

6. 将控制器的另一个输入端子连接到电源的任意一个相位上,即L1、L2或L3。

7. 将控制器的输出端子连接到电动机的另一个绕组上,即U1、V1或W1。

8. 将控制器的自锁开关连接到电源的任意一个相位上,即L1、L2或L3。

以上就是三相异步电动机自锁控制电路的连线方法,下面将介绍它的工作原理。

二、三相异步电动机自锁控制电路的工作原理三相异步电动机自锁控制电路的工作原理比较简单,主要是通过控制器来控制电动机的启动和停止,从而实现电动机的自锁控制。

具体来说,当控制器的自锁开关关闭时,电源的电流无法通过控制器,电动机无法启动。

当控制器的自锁开关打开时,电源的电流可以通过控制器,控制器会将电流分配到电动机的不同绕组上,从而使电动机启动。

当电动机启动后,控制器会监测电动机的运行状态,如果电动机出现故障或者超载,控制器会自动停止电动机的运行,从而保护电动机的安全运行。

此时,控制器的自锁开关会自动关闭,电源的电流无法通过控制器,电动机无法再次启动,从而实现了电动机的自锁控制。

三相异步电动机的电气控制

三相异步电动机的电气控制
顺c)序实起现动了、M1逆起序动停后止,。M2才能起动,而M2停止后,M1才能停止的的控制要求,即
11
主电路实现的顺序的控制电路
12
控制电路实现顺序控制的控制电路
13
多地控制
概念
能在两地或多地控制同一台电动机的控制方式叫电动机的多地控制。
特点
两地的起动按钮并联在一起,停止按钮串联在一起。这样就可以分别在 甲、乙两地起、停同一台电动机,达到操作方便的目的。
互锁作用:正转时,SB3不起作用;反转时,SB2 不起作用。从而避免两接触器同时工作造成主回路 短路。
7
带有双重互锁的正反转控制
含有双重互锁的正反转控制
FR
SB1
SB2
SB3 KMR KMF
KM1 SB3
KMR
KMF KMR
SB2
机械 互锁
电气 互锁
8
自动往返控制
控制要求:
按下起动按钮后,电动机根据撞快1或2可以自动实现正反转的循环运动,并具 有零压、欠压、短路和过载保护。
21
Y-∆降压起动控制电路
控制电路
工作原理
KM1线圈得电
按下SB2
KM3线圈得电
KT线圈通电
KM2主触头闭合 KM2自锁触头闭合
KM2互锁触头分断
KM1自锁触头闭合 KM1主触头闭合 KM3主触头闭合 KM3互锁触头分断 KT常闭触头延时闭合
KM3主触头分断
KM3互锁触头闭合 KT常开触头延时闭合
电动机△形联结全压运行
KT线圈断电
KT触头分断
电动机Y形起动
KM3线圈得电 电动机暂时断电 电动机暂时断电
KM2线圈得电
22
Y-∆降压起动控制电路

三相异步电动机电气控制线路

三相异步电动机电气控制线路
为了方便线路投入运行后的日常维护和排除故障,必 须按规定给原理图标注线号。应将主电路与辅助电路 分开标注,各自从电源端起,各相线分开,顺次标注 到负荷端。标注时应作到每段导线均有线号,并且一 线一号,不得重复。
16
在接线图中,各电器元件都要按照在安装板或控制柜 中的实际安装位置绘出,元件所占据的面积按它的实 际尺寸依照统一的比例绘制;各电器元件之间的位置 关系视安装盘的面积大小、长宽比例及连接线的顺序 来决定。
24
2.检查端子接线是否牢固
检查所有端子上的接线的接触情况,用 手一一摇动、拉拨端子上的接线,不允 许有松脱现象。避免通电试车时因虚接 造成麻烦,将故障排除在通电之前。
25
3.电阻测量法检查线路
电阻测量法必须断电进行。电阻测量法可以分为分段 测量法和分阶测量法。检查时,把万用表拨到(R*1) 电阻档,若用分段测量法,就逐段测量各个触点之间 的电阻。若所测电路并联了其他电路,测量时必须将 被测电路与其他电路断开。
7
绘制电气原理图应遵守下面的基本原则
(7)在原理图的上方,将图分成若干图区,从左到右 用数字编号,这是为了便于检索电气线路,方便阅读 和分析。图区的编号下方的文字表明它对应的下方元 件或电路的功能,以便于理解电路的工作原理。 (8)在电气原理图的下方附图表示接触器和继电器的 线圈与触点的从属关系。在接触器和继电器的线圈的 下方给出相应的文字符号,文字符号的下方要标注其 触点的位置的索引代号,对未使用的触点用“×”表 示。
3
CW6132型普通车床的电气原理图
1
电源开关
2
3
主轴
冷却泵
4
控制电路
5
6
电源指示
照明
3-50Hz QS

三相异步电动机正、反转控制电路

三相异步电动机正、反转控制电路

三相异步电动机正、反转控制电路下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言三相异步电动机是工业生产中常见的一种电动机,它具有结构简单、使用方便等优点,因此被广泛应用于机械设备中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章三相异步电动机及其控制线路
5.1 三相异步电动机
实现电能与机械能相互转换的电工设备总称为电机。

电机是利用电磁感应原理实现电能与机械能的相互转换。

把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。

在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。

它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。

对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。

5.1.1 三相异步电动机的结构与工作原理
1.三相异步电动机的构造
三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。

此外还有端盖、风扇等附属部分,如图5-1所示。

图5-1 三相电动机的结构示意图
1).定子
三相异步电动机的定子由三部分组成:
定子定子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片
内圆上有均匀分布的槽,其作用是嵌放定子三相绕组
AX、BY、CZ。

定子绕组三组用漆包线绕制好的,对称地嵌入定子铁心槽内的相同的线圈。

这三相绕组可接成星形或三角形。

机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组2).转子
三相异步电动机的转子由三部分组成:
转子转子铁心
由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片
外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。

转子绕组
转子绕组有两种形式:
鼠笼式-- 鼠笼式异步电动机。

绕线式-- 绕线式异步电动机。

转轴转轴上加机械负载
鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。

为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。

2.三相异步电动机的转动原理
1).基本原理
为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。

图5-2 三相异步电动机工作原理
(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。

(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。

感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。

转子转动的方向和磁极旋转的方向相同。

(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。

2).旋转磁场
(1).产生
图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。

并接成星形与三相电源U 、V 、W 相联。

则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。

00sin sin(120)sin(120)U m V m W m i I t i I t i I t ωωω=⎧⎪=-⎨⎪=+⎩
图 5-3 三相异步电动机定子接线
当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。

当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。

当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A 流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。

可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。

随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地
A i A i
B i
C X B Y
C
Z
旋,因此称为旋转磁场。

图 5-4 旋转磁场的形成
(2).旋转磁场的方向
旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。

这时,转子的旋转方向也跟着改变。

3).三相异步电动机的极数与转速
(1).极数(磁极对数p )
三相异步电动机的极数就是旋转磁场的极数。

旋转磁场的极数和三相绕组的安排有关。

当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;
当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;
同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p )空间角。

极数p 与绕组的始端
之间的空间角θ的关系为: 0120p θ=
ωt i i A i B i C O 120° 240° 360°×××××······(a) ωt = 0° (b) ωt = 120° (c) ωt = 240°A A A X X X B B B Y Y Y C C C Z Z Z ×。

相关文档
最新文档