导数综合应用

合集下载

《导数的综合应用》教学设计

《导数的综合应用》教学设计

《导数的综合应用》教学设计教学目标:1.理解导数在实际问题中的应用并能够应用导数解决实际问题;2.掌握求解极值、最大值和最小值的方法;3.能够根据给出的实际问题建立函数模型,并通过求导得到关键信息。

教学内容:1.导数的实际应用;2.极值、最大值和最小值的求解;3.建立函数模型的方法及求解。

教学重点:1.导数在实际问题中的应用;2.如何求解极值、最大值和最小值;3.如何建立函数模型并求解。

教学难点:1.如何将实际问题转化为函数模型并利用导数求解;2.如何确定极值、最大值和最小值。

教学准备:1.教材:数学课本、复印件;2.工具:黑板、彩色粉笔、计算器。

教学过程:Step 1: 导入教师可以通过提问来引入本节课的内容,例如问学生近来有没有遇到过与导数相关的实际问题,以便唤起学生对该主题的兴趣。

Step 2: 导数的实际应用教师简要介绍导数在实际问题中的应用,如速度与加速度、边际效应与边际收益、最优化问题等。

然后通过示例问题来说明导数的应用,如在一个矩形围栏内最大化面积、确定函数的上升区间等。

Step 3: 极值、最大值和最小值教师讲解如何通过求导确定一个函数的极值、最大值和最小值,包括过程和步骤。

然后通过示例问题进行演示,让学生在演示中掌握求解的具体方法。

Step 4: 函数建模和求解教师讲解如何根据实际问题建立函数模型,并通过求导得到关键信息。

例如,在一个长方体盒子中找到体积最大的形状,可以用V = lwh去建立函数模型,然后通过求导得到关键信息。

教师可以通过示范来进行讲解。

Step 5: 练习与巩固教师布置一些练习题,让学生在课堂上或课后完成。

练习题可以包括一些具体的实际问题,让学生将其转化为函数模型并求解。

Step 6: 总结与评价教师与学生一起总结本节课的主要内容,并进行评价。

教师可以提问学生对于本节课内容的理解和掌握程度,或者让学生写一篇总结文章。

Step 7: 拓展教师可以引导学生进一步探索导数的应用,以及其他更高级的应用领域,如微分方程、优化问题等。

高考数学专题复习《导数的综合应用》PPT课件

高考数学专题复习《导数的综合应用》PPT课件
3.函数不等式的类型与解法
(1)∀x∈D,f(x)≤k⇔f(x)max≤k;∃x∈D,f(x)≤k⇔f(x)min≤k;
(2)∀x∈D,f(x)≤g(x) ⇔f(x)max≤g(x)min;∃x∈D,f(x)≤g(x) ⇔ f(x)min≤g(x)max.
4.含两个未知数的不等式(函数)问题的常见题型及具体转化策略
(+1)ln
H(x)=
,则
-1
1
=
--2ln
(-1)
2
,
2 -2+1
K'(x)= 2 >0,于是

K(x)在(1,+∞)上单调递增,
所以 K(x)>K(1)=0,于是 H'(x)>0,从而 H(x)在(1,+∞)上单调递增.由洛必达法
(x+1)x
则,可得 lim+
x-1
→1
取值范围是(-∞,2].
第三章
高考大题专项(一) 导数的综合应用




01
突破1
利用导数研究与不等式有关的问题
必备知识预案自诊
关键能力学案突破
02
突破2
利用导数研究与函数零点有关的问题
必备知识预案自诊
关键能力学案突破
【考情分析】
从近五年的高考试题来看,对导数在函数中的应用的考查常常是一大一小
两个题目,其中解答题的命题特点是:以三次函数、对数函数、指数函数及
(1)∀x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最小值>g(x)在[c,d]上的
最大值.
(2)∃x1∈[a,b],x2∈[c,d],f(x1)>g(x2)⇔f(x)在[a,b]上的最大值>g(x)在[c,d]上的

导数的综合应用

导数的综合应用
例1:函数 f x x ax bx a 在x=1时有极值10,求a+b 的值。
3 2
2
例2.已知 f ( x) x5 ax3 bx 1 ,当 x 1 时取得极值。且极大值比极小值大4。 (1)求a,b的值。 (2)求函数的极大值和极小值。
f ' x x 1 x 1 5 x 2 3a 5
当n 2时,f x 1
2
a ln x 1 ,
1 当a 0时,令f x 0得:
0
2 2 x1 1 1, x2 1 1, a a a x x1 x x2 此时f x 3 1 x 当x 1, x1 时,f x 0, f x 单调递减; 当x x1, 时,f x 0, f x 单调递增.
1 试确定a、b的值; 2 讨论函数f x 的单调区间; 2 3 若对任意x 0,不等式f x 2c
恒成立,求c的取值范围.
解: f 1 3 c , b c 3 c b 3. 1 1 x 4ax ln x ax 4bx 3 x 3 4a ln x a 4b 又f x 而f 1 0, a 4b 0,解得a 12.
证明: 由f ( x) e x,则f ( x) e 1. 1
x / x
当f ( x) e 1 0时,x 0,
/ x x
函数f ( x) e x在 0, 是增加的; 当f ( x) e 1 0时,x 0,
/ x
函数f ( x) e x在 , 是减少的; 0
20 当a 0时,f x 0恒成立,所以f x 无极值. 2 综上所述,当a>0时,f x 在x 1 取得 a 2 a 2 极小值,极小值为f 1 1 ln a 2 a 当a 0时,f x 无极值.

简析导数的概念在高等数学中的综合应用

简析导数的概念在高等数学中的综合应用

简析导数的概念在高等数学中的综合应用导数是高等数学中重要的概念之一,它在数学应用中有着广泛的应用。

下面将简要分析导数的概念在高等数学中的综合应用。

导数的定义可以用于求函数的极值。

函数在局部最大或最小点处的导数为0。

我们可以通过计算函数的导数,并求解导数为0的解,来确定函数的最大和最小值。

这在优化问题中有着重要的应用。

我们想要求解一个函数的最大值,可以计算函数的导数,然后将导数为0的解代入函数中,得到这个函数的最大值。

这种方法被广泛应用于经济学、物理学、工程学等领域的最优化问题。

导数的概念也可以应用于解析几何。

在解析几何中,我们经常需要求解曲线在某一点的切线方程。

根据导数的定义,曲线在某一点的切线的斜率等于曲线在该点的导数。

通过计算曲线在给定点的导数,我们可以求解曲线在该点的切线方程,从而研究曲线的性质。

这种方法在解析几何中有着重要的应用,用于研究曲线的变化趋势、曲线之间的关系等问题。

导数的概念还可以用于求解微分方程。

微分方程是数学中重要的方程类型之一,广泛应用于工程学、物理学等领域。

通过将微分方程转化为关于函数导数的方程,我们可以利用导数的定义,求解微分方程的解析解。

这种方法在工程学中的控制系统设计、物理学中的系统动力学等问题中有着广泛的应用。

通过求解微分方程的解析解,可以得到系统的稳定性、响应特性等重要信息。

导数的概念在微积分中还有其他的应用。

通过导数的概念,我们可以求解曲线的弧长、曲率等重要的几何性质。

导数也被用于求解函数的反函数。

通过求解函数的导数和反函数的导数之间的关系,可以确定反函数的导数,并计算反函数在给定点的导数值。

这些应用在几何、函数论、微积分中都有着重要的应用。

导数的概念在高等数学中有着广泛的应用。

它可以用于求解函数的极值,解析几何中的切线方程,微分方程的解析解等问题。

导数的概念在几何、函数论、微积分等数学分支中都有重要的应用,为研究和解决复杂问题提供了有力的数学工具。

导数的综合应用

导数的综合应用

所以Δ=81-12(6-m)≤0,得m≤-34,
对于任意实
若 方 程 f ( x ) =即m的最大值为-34.
数x,
0有且仅有一
f′(x)≥m恒
个实根,求a
成立,求m 的取值范围.
的最1大.值;设函数f(x)=x3-92x2+6x-a.
(2)因为当x<1时,f′(x)>0; 当1<x<2时,f′(x)<0;当x>2时,f′(x)>0, 所以当x=1时,f(x)取极大值f(1)=52-a; 当x=2时,f(x)取极小值f(2)=2-a. 故当f(2)>0或f(1)<0时,方程f(x)=0仅有一个实根. 解得a<2或a>52.
1.求参数的取值范围
与导数相关的参数范围问题是高考中 考查的一个重点,大多
给出函数的单调性,属运用导数研究 函数单调性的逆向问题,解
题关键在于灵活运用等价转化、分类 讨论、数形结合等思想方法,
建立关于字母参数的不等关系.
2.用导数方法证不等式
用导数证不等式的一般步骤是:构造可 导函数→研究单调性
数单调递增,∴当 x=20 时,y 取得最小值,∴此轮船以 20 公里/ 小时的速度使行驶每公里的费用总和最小.
思想与方法
例题:(2011 年“江南十校” 联考)已知函数 f(x)=ax3+ bx2+
cx 在 x=±1 处取得极 值,且在 x=0 处的切 线的斜率为-3.
8.利用数形结 合思想讨论函 数的图象及性
(2)V=a2h=2 2(-x3+30x2),V′=6 2x(20-x), 由V′=0得x=0(舍)或x=20. 当x∈(0,20)时,V′>0;当x∈(20,30)时,V′<0. 所以当x=20时,V取得极大值,也是最大值. 此时ha=12,即包装盒的高与底面边长的比值为12.

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案导数复习函数的极值与最值,导数的综合运用

数学教案-导数复习函数的极值与最值,导数的综合运用教案章节:一、函数的极值概念与判定1. 学习目标:理解函数极值的概念,掌握函数极值的判定方法。

2. 教学内容:介绍函数极值的定义,分析函数极值的判定条件,举例说明函数极值的判定方法。

3. 教学过程:(1) 引入函数极值的概念,解释函数在某一点取得最大值或最小值的意义。

(2) 讲解函数极值的判定条件,如导数为零或不存在,以及函数在该点附近的单调性变化。

(3) 举例说明函数极值的判定方法,如通过导数的正负变化来判断函数的增减性。

二、函数的最值问题1. 学习目标:理解函数最值的概念,掌握函数最值的求解方法。

2. 教学内容:介绍函数最值的概念,分析函数最值的求解方法,举例说明函数最值的求解过程。

3. 教学过程:(1) 引入函数最值的概念,解释函数在整个定义域内取得最大值或最小值的意义。

(2) 讲解函数最值的求解方法,如通过导数的研究来确定函数的极值点,进而求得最值。

(3) 举例说明函数最值的求解过程,如给定一个函数,求其在定义域内的最大值和最小值。

三、导数的综合运用1. 学习目标:掌握导数的综合运用方法,能够运用导数解决实际问题。

2. 教学内容:介绍导数的综合运用方法,分析导数在实际问题中的应用,举例说明导数的综合运用过程。

3. 教学过程:(1) 讲解导数的综合运用方法,如通过导数研究函数的单调性、极值、最值等。

(2) 分析导数在实际问题中的应用,如优化问题、速度与加速度的关系等。

(3) 举例说明导数的综合运用过程,如给定一个实际问题,运用导数来解决问题。

四、实例分析与练习1. 学习目标:通过实例分析与练习,巩固函数极值与最值的求解方法,提高导数的综合运用能力。

2. 教学内容:分析实例问题,运用函数极值与最值的求解方法,进行导数的综合运用练习。

3. 教学过程:(1) 分析实例问题,引导学生运用函数极值与最值的求解方法来解决问题。

(2) 进行导数的综合运用练习,让学生通过实际问题来运用导数,巩固所学知识。

导数的综合应用

导数的综合应用

第十二讲导数的综合应用教学目标:1、利用导数研究函数的零点或方程的根2、利用导数解决恒成立及参数求解问题3、会利用导数解决某些简单的实际问题.一、知识回顾课前热身知识点1、不等式恒成立问题的求解方法(1)由不等式恒成立求解参数取值范围问题常采用的方法是分离参数求最值,即要使a≥g(x)恒成立,只需a≥g(x)max,要使a≤g(x)恒成立,只需a≤g(x)min.另外,当参数不宜进行分离时,还可直接求最值建立关于参数的不等式求解,例如,要使不等式f(x)≥0恒成立,可求得f(x)的最小值h(a),令h(a)≥0即可求出a 的取值范围.(2)参数范围必须依靠不等式才能求出,求解参数范围的关键就是找到这样的不等式.知识点2、利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x),根据实际意义确定定义域;(2)求函数y=f(x)的导数f′(x),解方程f′(x)=0得出定义域内的实根,确定极值点;(3)比较函数在区间端点和极值点处的函数值大小,获得所求的最大(小)值;(4)还原到原实际问题中作答.二、例题辨析推陈出新例1、(2012·福建高考)已知函数f(x)=e x+ax2-e x,a∈R.(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求函数f(x)的单调区间;(2)试确定a的取值范围,使得曲线y=f(x)上存在唯一的点P,曲线在该点处的切线与曲线只有一个公共点P.[解答](1)由于f′(x)=e x+2ax-e,曲线y=f(x)在点(1,f(1))处的切线斜率k=2a=0,所以a=0,即f(x)=e x-e x. 此时f′(x)=e x-e,由f′(x)=0得x=1. 当x∈(-∞,1)时,有f′(x)<0;当x∈(1,+∞)时,有f′(x)>0. 所以f(x)的单调递减区间为(-∞,1),单调递增区间为(1,+∞).(2)设点P(x0,f(x0)),曲线y=f(x)在点P处的切线方程为y=f′(x0)(x-x0)+f(x0),令g(x)=f(x)-f′(x0)(x -x0)-f(x0),故曲线y=f(x)在点P处的切线与曲线y=f(x)只有一个公共点P等价于函数g(x)有唯一零点.因为g(x0)=0,且g′(x)=f′(x)-f′(x0)=e x-e x0+2a(x-x0).①若a≥0,当x>x0时,g′(x)>0,则x>x0时,g(x)>g(x0)=0;当x<x0时,g′(x)<0,则x<x0时,g(x)>g (x 0)=0.故g (x )只有唯一零点x =x 0.由P 的任意性知,a ≥0不合题意.②若a <0,令h (x )=e x -e x 0+2a (x -x 0),则h (x 0)=0,h ′(x )=e x +2a . 令h ′(x )=0,得x =ln(-2a ),记x *=ln(-2a ),则当x ∈(-∞,x *)时,h ′(x )<0,从而h (x )在(-∞,x *)内单调递减;当x ∈(x *,+∞)时,h ′(x )>0,从而h (x )在(x *,+∞)内单调递增.a .若x 0=x *,由x ∈(-∞,x *)时,g ′(x )=h (x )>h (x *)=0;由x ∈(x *,+∞)时,g ′(x )=h (x )>h (x *)=0.所以g (x )在R 上单调递增. 所以函数g (x )在R 上有且只有一个零点x =x *.b .若x 0>x *,由于h (x )在(x *,+∞)内单调递增,且h (x 0)=0,则当x ∈(x *,x 0)时,有g ′(x )=h (x )<h (x 0)=0,g (x )>g (x 0)=0;任取x 1∈(x *,x 0)有g (x 1)>0. 又当x ∈(-∞,x 1)时,易知g (x )=e x +ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)<e x 1+ax 2-(e +f ′(x 0))x -f (x 0)+x 0f ′(x 0)=ax 2+bx +c ,其中b =-(e +f ′(x 0)),c =e x 1-f (x 0)+x 0f ′(x 0).由于a <0,则必存在x 2<x 1,使得ax 22+bx 2+c <0.所以g (x 2)<0,故g (x )在(x 2,x 1)内存在零点,即g (x )在R 上至少有两个零点.c .若x 0<x *,仿b 并利用e x>x 36,可证函数g (x )在R 上至少有两个零点. 综上所述,当a <0时,曲线y =f (x )上存在唯一点P (ln(-2a ),f (ln(-2a ))),曲线在该点处的切线与曲线只有一个公共点P .变式练习1.设函数f (x )=ln x -12ax 2-bx . (1)当a =b =12时,求f (x )的最大值; (2)令F (x )=f (x )+12ax 2+bx +a x (0<x ≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a 的取值范围; (3)当a =0,b =-1时,方程2mf (x )=x 2有唯一实数解,求正数m 的值.解:(1)依题意,知f (x )的定义域为(0,+∞),当a =b =12时,f (x )=ln x -14x 2-12x ,f ′(x )=1x -12x -12=-(x +2)(x -1)2x,令f ′(x )=0,解得x =1(x =-2舍去).当0<x <1时,f ′(x )>0,此时f (x )单调递增;当x >1时,f ′(x )<0,此时f (x )单调递减.所以f (x )的极大值为f (1)=-34. 又因为f ′(x )=0在(0,+∞)上有唯一解,所以f (x )的最大值为-34.(2)由题意得F (x )=ln x +a x ,x ∈(0,3],则k =F ′(x 0)=x 0-a x 20≤12在x 0∈(0,3]上恒成立,所以a ≥⎝⎛⎭⎫-12x 20+x 0max ,x 0∈(0,3]. 当x 0=1时,-12x 20+x 0取得最大值12,所以a ≥12. (3)因为方程2mf (x )=x 2有唯一实数解,所以x 2-2m ln x -2mx =0有唯一实数解.设g (x )=x 2-2m ln x -2mx ,则g ′(x )=2x 2-2mx -2m x.令g ′(x )=0,即x 2-mx -m =0.因为m >0,x >0,所以x 1=m -m 2+4m 2<0(舍去), x 2=m +m 2+4m 2.当x ∈(0,x 2)时,g ′(x )<0,g (x )在(0,x 2)上单调递减;当x ∈(x 2,+∞)时,g ′(x )>0,g (x )在(x 2,+∞)上单调递增;当x =x 2时,g ′(x 2)=0,g (x )取最小值g (x 2).因为2mf (x )=x 2有唯一实数解,则⎩⎪⎨⎪⎧ g (x 2)=0,g ′(x 2)=0,即⎩⎪⎨⎪⎧x 22-2m ln x 2-2mx 2=0,x 22-mx 2-m =0,所以2m ln x 2+mx 2-m =0.又因为m >0,所以2ln x 2+x 2-1=0.(*)设函数h (x )=2ln x +x -1,当x >0时,h (x )是增函数,所以h (x )=0至多有一解.因为h (1)=0,所以方程(*)的解为x 2=1,即m +m 2+4m 2=1,解得m =12. 例2、 已知函数f (x )=e x -ax ,其中a >0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合;(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2))(x 1<x 2),记直线AB 的斜率为k ,证明:存在x 0∈(x 1,x 2),使f ′(x 0)=k 成立.[解答] (1)f ′(x )=e x -a ,令f ′(x )=0得x =ln a .当x <ln a 时,f ′(x )<0,f (x )单调递减;当x >ln a 时,f ′(x )>0,f (x )单调递增,故当x =ln a 时,f (x )取最小值f (ln a )=a -a ln a .于是对一切x ∈R ,f (x )≥1恒成立,当且仅当a -a ln a ≥1.①令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增;当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当a =1时,①式成立. 综上所述,a 的取值集合为{1}.(2)由题意知,k =f (x 2)-f (x 1)x 2-x 1=e x 2-e x 1x 2-x 1-a ,令φ(x )=f ′(x )-k =e x -e x 2-e x 1x 2-x 1,则φ(x 1)=-e x 1x 2-x 1[e x 2-x 1-(x 2-x 1)-1],φ(x 2)=e x 2x 2-x 1[e x 1-x 2-(x 1-x 2)-1].令F (t )=e t -t -1,则F ′(t )=e t -1.当t <0时,F ′(t )<0,F (t )单调递减;当t >0时,F ′(t )>0,F (t )单调递增.故当t ≠0时,F (t )>F (0)=0,即e t -t -1>0.从而e x 2-x 1-(x 2-x 1)-1>0,e x 1-x 2-(x 1-x 2)-1>0,又e x 1x 2-x 1>0,e x 2x 2-x 1>0,所以φ(x 1)<0,φ(x 2)>0. 因为函数y =φ(x )在区间[x 1,x 2]上的图象是连续不断的一条曲线,所以存在x 0∈(x 1,x 2),使φ(x 0)=0,即f ′(x 0)=k 成立.若将函数“f (x )=e x -ax ,a >0”改为“f (x )=e ax -x ,a ≠0”,试解决问题(1).解:若a <0,则对一切x >0,f (x )=e ax -x <1,这与题设矛盾.又a ≠0,故a >0.而f ′(x )=a e ax -1,令f ′(x )=0得x =1a ln 1a . 当x <1a ln 1a 时,f ′(x )<0,f (x )单调递减;当x >1a ln 1a时,f ′(x )>0,f (x )单调递增.故当x =1a ln 1a 时,f (x )取最小值f ⎝⎛⎭⎫1a ln 1a =1a -1a ln 1a . 于是对一切x ∈R ,f (x )≥1恒成立,当且仅当-1a ln 1a≥1.①令g (t )=t -t ln t ,则g ′(t )=-ln t .当0<t <1时,g ′(t )>0,g (t )单调递增;当t >1时,g ′(t )<0,g (t )单调递减.故当t =1时,g (t )取最大值g (1)=1.因此,当且仅当1a=1,即a =1时,①式成立. 综上所述,a 的取值集合为{1}.变式练习2.已知f (x )=(x 2-a )e x ,a ∈R . (1)若a =3,求f (x )的单调区间和极值;(2)已知x 1,x 2是f (x )的两个不同的极值点,且|x 1+x 2|≥|x 1x 2|,求实数a 的取值集合M ;(3)在(2)的条件下,若不等式3f (a )<a 3+32a 2-3a +b 对于a ∈M 都成立,求实数b 的取值范围. 解:(1)∵a =3,∴f (x )=(x 2-3)e x . 令f ′(x )=(x 2+2x -3)e x =0⇒x =-3或x =1. 当x ∈(-∞,-3)∪(1,+∞)时,f ′(x )>0;x ∈(-3,1)时,f ′(x )<0,∴f (x )的单调递增区间为(-∞,-3),(1,+∞);单调递减区间为(-3,1).∴f (x )的极大值为f (-3)=6e -3;极小值为f (1)=-2e.(2)令f ′(x )=(x 2+2x -a )e x =0,即x 2+2x -a =0,由题意其两根为x 1,x 2,∴x 1+x 2=-2,x 1x 2=-a , 故-2≤a ≤2.又Δ=4+4a >0,∴-1<a ≤2. ∴M ={a |-1<a ≤2}.(3)原不等式等价于b >3f (a )-a 3-32a 2+3a 对a ∈M 都成立,记g (a )=3f (a )-a 3-32a 2+3a (-1<a ≤2), 则g ′(a )=3(a 2+a -1)(e a -1),令g ′(a )=0,则a =5-12或a =0⎝ ⎛⎭⎪⎫a =-1-52舍去. 故当a 变化时,g ′(a ),g (a )的变化情况如下表:a(-1,0) 0 ⎝ ⎛⎭⎪⎫0,5-12 5-12 ⎝ ⎛⎭⎪⎫5-12,2 2 g ′(a )+ 0 - 0 +g (a ) 极大值 极小值6e 2-8 又∵g (0)=0,g (2)=6e 2-8,∴g (a )max =6e 2-8,∴b >6e 2-8. 故实数b 的取值范围为(6e 2-8,+∞).例3、随着生活水平的不断提高,人们越来越关注身体健康,而电视广告在商品市场中占有非常重要的地位.某著名保健品生产企业为了占有更多的市场份额,拟在2013年通过电视广告进行一系列促销活动.经过市场调查和测算,保健品的年销量x (单位:百万件)与年促销费t (单位:百万元)之间满足:3-x 与t +2成反比例.如果不搞促销活动,保健品的年销量只能是1百万件,2013年生产该保健品的固定费用为5百万元,每生产1百万件保健品需再投入40百万元的生产费用.若将每件保健品的售价定为“其生产成本的150%”与“平均每件促销费的m 倍(0<m ≤1.2)”之和,则当年生产的保健品恰能销完.假设2013年该企业的保健品恰能销完,且该企业的年产量最大为2.6百万件.(1)将2013年的利润y (单位:百万元)表示为促销费t 的函数;(2)该企业2013年的促销费投入多少百万元时,企业的年利润最大?(注:利润=销售收入-生产成本-促销费,生产成本=固定费用+生产费用)[解答] (1)因为年销量x 百万件与年促销费t 百万元之间满足:3-x 与t +2成反比例,所以设t +2=k 3-x(k ≠0).由题意知,当t =0时,x =1,代入得0+2=k 3-1,解得k =4.所以t +2=43-x ,即x =3-4t +2(t ≥0).由该企业的年产量最大为2.6百万件可得,x =3-4t +2≤2.6,解得t ≤8.由于2013年的年销量为x 百万件,则生产成本为y 1=5+40x ,促销费用为t ,年销售收入为y 2=150%×y 1+mt . 所以2013年的利润y =y 2-y 1-t =12y 1+(m -1)t =12×(5+40x )+(m -1)t . 将x =3-4t +2代入上式,得 y =12×⎣⎢⎡⎦⎥⎤5+40×⎝ ⎛⎭⎪⎫3-4t +2+(m -1)t =2.5+60-80t +2+(m -1)t =62.5-80t +2+(m -1)t (0≤t ≤8,0<m ≤1.2). (2)由(1)知,y =62.5-80t +2+(m -1)t (0≤t ≤8),所以y ′=80(t +2)2+(m -1).当1≤m ≤1.2时,m -1≥0,80(t +2)2≥0,所以y ′=80(t +2)2+(m -1)≥0,此时函数在[0,8]上单调递增,所以当t =8时,年利润y 取得最大值,最大值为62.5-808+2+(m -1)×8=46.5+8m (百万元);当0<m <1时,由y ′=0解得t = 801-m -2,函数在⎝ ⎛⎦⎥⎤0, 801-m -2上单调递增,在⎝ ⎛⎦⎥⎤ 801-m -2,8上单调递减.所以当t = 801-m -2时,函数取得最大值,最大值为62.5-80⎝ ⎛⎭⎪⎫ 801-m -2+2+(m -1)·⎝ ⎛⎭⎪⎫ 801-m -2=64.5-85(1-m )-2m (百万元).综上,若1≤m ≤1.2,则当促销费投入t =8时,企业的年利润y 取得最大值,最大值为46.5+8m (百万元);若0<m <1,则当促销费投入t =801-m -2时,企业的年利润y 取得最大值,最大值为64.5-85(1-m )-2m (百万元). 变式练习3.某商场预计2013年1月份起前x 个月,顾客对某商品的需求总量p (x )(单位:件)与x 的关系近似地满足p (x )=12x (x +1)(39-2x )(x ∈N *,且x ≤12).该商品第x 月的进货单价q (x )(单位:元)与x 的近似关系是q (x )=⎩⎪⎨⎪⎧ 150+2x (x ∈N *,且1≤x ≤6),185-160x (x ∈N *,且7≤x ≤12). (1)写出2013年第x 月的需求量f (x )(单位:件)与x 的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,试问商场2013年第几月销售该商品的月利润最大,最大月利润为多少元?解:(1)当x =1时,f (1)=p (1)=37,当2≤x ≤12,且x ∈N *时,f (x )=p (x )-p (x -1)=12x (x +1)(39-2x )-12(x -1)·x (41-2x )=-3x 2+40x .经验证x =1符合f (x )=-3x 2+40x (x ∈N *,且1≤x ≤12).(2)该商场预计第x 月销售该商品的月利润为g (x )=⎩⎪⎨⎪⎧ (-3x 2+40x )(35-2x )(x ∈N *,且1≤x ≤6),(-3x 2+40x )·160x (x ∈N *,且7≤x ≤12),即g (x )=⎩⎪⎨⎪⎧6x 3-185x 2+1 400x (x ∈N *,且1≤x ≤6),-480x +6 400(x ∈N *,且7≤x ≤12), 当1≤x ≤6,且x ∈N *时,g ′(x )=18x 2-370x +1 400,令g ′(x )=0,解得x =5,x =1409(舍去).当1≤x ≤5时,g ′(x )>0,当5<x ≤6时,g ′(x )<0,∴当x =5时,g (x )max =g (5)=3 125(元).∴当7≤x ≤12,且x ∈N *时,g (x )=-480x +6 400是减函数,当x =7时,g (x )max =g (7)=3 040(元), 综上,商场2013年第5个月的月利润最大,最大利润为3 125元.三、归纳总结 方法在握归纳1、 利用导数解决含有参数的单调性问题可将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.归纳2、将不等式的证明、方程根的个数的判定转化为函数的单调性、极值问题处理.四、拓展延伸 能力升华例1、 (2012·山东高考)已知函数f (x )=ln x +k e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.[解] (1)由f (x )=ln x +k e x ,得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x ex (1-x -x ln x ),x ∈(0,+∞),令h (x )=1-x -x ln x ,x ∈(0,+∞), 当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)证明:因为g (x )=(x 2+x )f ′(x ),所以g (x )=x +1e x (1-x -x ln x ),x ∈(0,+∞). 因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e x x +1(1+e -2). 由(2)h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -ln e -2),x ∈(0,+∞), 因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x ∈(e -2,+∞)时,h ′(x )<0,h (x )单调递减. 所以h (x )的最大值为h (e -2)=1+e -2,故1-x -x ln x ≤1+e -2.设φ(x )=e x -(x +1).因为φ′(x )=e x -1=e x -e 0,所以当x ∈(0,+∞)时,φ′(x )>0,φ(x )单调递增,φ(x )>φ(0)=0,故当x ∈(0,+∞)时,φ(x )=e x -(x +1)>0,即e x x +1>1.所以1-x -x ln x ≤1+e -2<e x x +1(1+e -2).因此对任意x >0,g (x )<1+e -2. 变式练习(2012·辽宁高考)设f (x )=ln(x +1)+x +1+ax +b (a ,b ∈R ,a ,b 为常数),曲线y =f (x )与直线y =32x 在(0,0)点相切.(1)求a ,b 的值;(2)证明:当0<x <2时,f (x )<9x x +6. 解:(1)由y =f (x )过(0,0)点,得b =-1.由y =f (x )在(0,0)点的切线斜率为32, 又y ′|x =0=⎪⎪⎪⎝⎛⎭⎪⎫1x +1+12x +1+a x =0=32+a ,得a =0. (2)证明:法一:由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2,故x +1<x 2+1. 记h (x )=f (x )-9x x +6,则h ′(x )=1x +1+12x +1-54(x +6)2=2+x +12(x +1)-54(x +6)2<x +64(x +1)-54(x +6)2=(x +6)3-216(x +1)4(x +1)(x +6)2.令g (x )=(x +6)3-216(x +1),则当0<x <2时,g ′(x )=3(x +6)2-216<0. 因此g (x )在(0,2)内是递减函数.又由g (0)=0,得g (x )<0,所以h ′(x )<0.因此h (x )在(0,2)内是递减函数.又h (0)=0,得h (x )<0.于是当0<x <2时,f (x )<9x x +6. 法二:由(1)知f (x )=ln (x +1)+x +1-1.由均值不等式,当x >0时,2(x +1)·1<x +1+1=x +2, 故x +1<x 2+1.①令k (x )=ln (x +1)-x ,则k (0)=0,k ′(x )=1x +1-1=-x x +1<0, 故k (x )<0,即ln(x +1)<x .②由①②得,当x >0时,f (x )<32x .记h (x )=(x +6)f (x )-9x ,则当0<x <2时, h ′(x )=f (x )+(x +6)f ′(x )-9<32x +(x +6)⎝⎛⎭⎪⎫1x +1+12x +1-9=12(x +1)[3x (x +1)+(x +6)(2+x +1)-18(x +1)] <12(x +1)⎣⎡⎦⎤3x (x +1)+(x +6)⎝⎛⎭⎫3+x 2-18(x +1) =x 4(x +1)(7x -18)<0.因此h (x )在(0,2)内单调递减.又h (0)=0,所以h (x )<0,即f (x )<9x x +6. 五、课后作业 巩固提高1.已知f (x )=x 3-ax 在[1,+∞)上是单调增函数,则a 的最大值是( )A .0B .1C .2D .3解析:选D f ′(x )=3x 2-a ≥0在[1,+∞)上恒成立,即a ≤3x 2在[1,+∞)上恒成立,而(3x 2)min =3×12=3,∴a ≤3,故a max =3.2.设动直线x =m 与函数f (x )=x 3,g (x )=ln x 的图象分别交于点M ,N ,则|MN |的最小值为( )A.13(1+ln 3)B.13ln 3 C .1+ln 3 D .ln 3-1 解析:选A 由题意知|MN |=|x 3-ln x |,设h (x )=x 3-ln x ,h ′(x )=3x 2-1x ,令h ′(x )=0,得x = 313,易知当x = 313时,h (x )取得最小值,h (x )min =13-13ln 13=13⎝⎛⎭⎫1-ln 13>0,故|MN |min =13⎝⎛⎭⎫1-ln 13=13(1+ln 3). 3.若不等式2x ln x ≥-x 2+ax -3对x ∈(0,+∞)恒成立,则实数a 的取值范围是( )A .(-∞,0)B .(-∞,4]C .(0,+∞)D .[4,+∞)解析:选B 2x ln x ≥-x 2+ax -3,则a ≤2ln x +x +3x ,设h (x )=2ln x +x +3x (x >0),则h ′(x )=(x +3)(x -1)x 2.当x ∈(0,1)时,h ′(x )<0,函数h (x )单调递减;当x ∈(1,+∞)时,h ′(x )>0,函数h (x )单调递增,所以h (x )min =h (1)=4.所以a ≤h (x )min =4.4.球的直径为d ,其内接正四棱柱体积V 最大时的高为( )A.22dB.32dC.33dD.23d 解析:选C 设正四棱柱的高为h ,底面边长为x ,如图是其组合体的轴截面图形,则AB =2x ,BD =d ,AD =h ,∵AB 2+AD 2=BD 2,∴2x 2+h 2=d 2.∴x 2=d 2-h 22.又∵V =x 2·h =(d 2-h 2)h 2=12(d 2h -h 3), ∴V ′(h )=12d 2-32h 2. 令V ′(h )=0,得h =33d 或h =-33d (舍去). 5.已知函数f (x )=x 3-3x ,若对于区间[-3,2]上任意的x 1,x 2都有|f (x 1)-f (x 2)|≤t ,则实数t 的最小值是( )A .0B .10C .18D .20解析:选D f ′(x )=3x 2-3,令f ′(x )=0,解得x =±1,所以1,-1为函数f (x )的极值点.因为f (-3)=-18,f (-1)=2,f (1)=-2,f (2)=2,所以在区间[-3,2]上,f (x )max =2,f (x )min =-18,所以对于区间[-3,2]上任意的x 1,x 2,|f (x 1)-f (x 2)|≤20,所以t ≥20,从而t 的最小值为20.6.(2013·宜昌模拟)已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于( )A.14B.13C.12D .1 解析:选D 由题意知,当x ∈(0,2)时,f (x )的最大值为-1.令f ′(x )=1x -a =0,得x =1a, 当0<x <1a 时,f ′(x )>0;当x >1a时,f ′(x )<0.∴f (x )max =f ⎝⎛⎭⎫1a =-ln a -1=-1,解得a =1. 7.设f (x )=x 3+x ,x ∈R ,若当0≤θ≤π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m 的取值范围是________. 解析:因为f (x )=x 3+x ,x ∈R ,故f ′(x )=3x 2+1>0,则f (x )在x ∈R 上为单调增函数,又因为f (-x )=-f (x ).故f (x )也为奇函数,由f (m sin θ)+f (1-m )>0,即f (m sin θ)>-f (1-m )=f (m -1),得m sin θ>m -1,即m (sin θ-1)>-1,因为0≤θ≤π2,故当θ=π2时,0>-1恒成立;当θ∈⎣⎡⎭⎫0,π2时,m <11-sin θ恒成立,即m <⎝ ⎛⎭⎪⎫11-sin θmin =1.故m <1. 答案:(-∞,1)8.某商场从生产厂家以每件20元购进一批商品,若该商品零售价为p 元,销量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则该商品零售价定为________元时利润最大,利润的最大值为________.解析:设商场销售该商品所获利润为y 元,则y =(p -20)Q =(p -20)(8 300-170p -p 2)=-p 3-150p 2+11 700p -166 000(p ≥20),则y ′=-3p 2-300p +11 700.令y ′=0得p 2+100p -3900=0,解得p =30或p =-130(舍去).则p ,y ,y ′变化关系如下表: p(20,30) 30 (30,+∞) y ′+ 0 - y 增 极大值 减故当p =30时,y 又y =-p 3-150p 2+11 700p -166 000在[20,+∞)上只有一个极值,故也是最值.所以该商品零售价定为每件30元,所获利润最大为23 000元. 答案:30 23 0009.若函数f (x )=13x 3-a 2x 满足:对于任意的x 1,x 2∈[0,1]都有|f (x 1)-f (x 2)|≤1恒成立,则a 的取值范围是________.解析:由题意得,在[0,1]内,f (x )max -f (x )min ≤1.f ′(x )=x 2-a 2,函数f (x )=13x 3-a 2x 的极小值点是x =|a |.若|a |>1,则函数f (x )在[0,1]上单调递减,故只要f (0)-f (1)≤1,即只要a 2≤43,即1<|a |≤233;若|a |≤1,此时f (x )min =f (|a |)=13|a |3-a 2|a |=-23a 2|a |,由于f (0)=0,f (1)=13-a 2,故当|a |≤33时,f (x )max =f (1),此时只要13-a 2+23a 2|a |≤1即可,即a 2⎝⎛⎭⎫23|a |-1≤23,由于|a |≤33,故23|a |-1≤23×33-1<0,故此式成立;当33<|a |≤1时,此时f (x )max =f (0),故只要23a 2|a |≤1即可,此不等式显然成立.综上,a 的取值范围是⎣⎡⎦⎤-233,233. 答案:⎣⎡⎦⎤-233,233 10.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上不是单调函数,求m 的取值范围. 解:(1)根据题意知,f ′(x )=a (1-x )x(x >0), 当a >0时,f (x )的单调递增区间为(0,1],单调递减区间为(1,+∞);当a <0时,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1];当a =0时,f (x )不是单调函数,(2)∵f ′(2)=-a 2=1,∴a =-2.∴f (x )=-2ln x +2x -3.∴g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x , ∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t,3)上不是单调函数,且g ′(0)=-2.∴⎩⎨⎧ g ′(t )<0,g ′(3)>0.由题意知:对于任意的t ∈[1,2],g ′(t )<0恒成立,∴⎩⎪⎨⎪⎧ g ′(1)<0,g ′(2)<0,g ′(3)>0,∴-373<m <-9. 11.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然常数,a ∈R . (1)讨论当a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,说明理由.解:(1)∵f (x )=x -ln x ,f ′(x )=1-1x =x -1x,∴当0<x <1时,f ′(x )<0,此时f (x )单调递减; 当1<x <e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明:∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴f (x )min =1.又∵g ′(x )=1-ln x x 2,∴0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增. ∴g (x )max =g (e)=1e <12.∴f (x )min -g (x )max >12.∴在(1)的条件下,f (x )>g (x )+12. (3)假设存在实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当a ≤0时,f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )的最小值不是3;②当0<1a<e 时,f (x )在⎝⎛⎭⎫0,1a 上单调递减,在⎝⎛⎦⎤1a ,e 上单调递增, f (x )min =f ⎝⎛⎭⎫1a =1+ln a =3,a =e 2,满足条件;③当1a ≥e 时,f (x )在(0,e]上单调递减,f (x )min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )的最小值不是3.综上,存在实数a =e 2,使得当x ∈(0,e]时,f (x )有最小值3.12.设函数f (x )=x -1x-a ln x . (1)若曲线y =f (x )在点(1,f (1))处的切线被圆x 2+y 2=1截得的弦长为2,求a 的值;(2)若函数f (x )在其定义域上为增函数,求实数a 的取值范围;(3)当a ≤2时,设函数g (x )=x -ln x -1e,若在[1,e]上存在x 1,x 2使f (x 1)≥g (x 2)成立,求实数a 的取值范围.解:(1)由题意知,函数f (x )的定义域为(0,+∞).(1)求导得,f ′(x )=1+1x 2-a x =x 2-ax +1x 2, 故f ′(1)=2-a ,而f (1)=0,故曲线y =f (x )在点(1,f (1))处的切线方程为y -0=(2-a )·(x -1),即y =(2-a )(x -1).故圆心到直线的距离d =|2-a |(2-a )2+(-1)2= 12-⎝⎛⎭⎫222,即|2-a |(2-a )2+1=22,解得a =1或a =3. (2)因为函数f (x )在其定义域上为增函数,即f ′(x )≥0在(0,+∞)上恒成立,所以1+1x 2-a x ≥0恒成立,即a ≤x +1x. 又x +1x ≥2 x ×1x=2(当且仅当x =1时取等号),故a 的取值范围为(-∞,2]. (3)由在[1,e]上存在x 1,x 2使f (x 1)≥g (x 2)成立,可知当x ∈[1,e]时,f (x )max ≥g (x )min .又因g ′(x )=1-1x,所以当x ∈[1,e]时,g ′(x )≥0,即函数g (x )在区间[1,e]上是单调递增的函数,最小值为g (1)=1-ln 1-1e =1-1e .由(1)知f ′(x )=x 2-ax +1x2,因为x 2>0,又函数 y =x 2-ax +1的判别式Δ=(-a )2-4×1×1=a 2-4,(ⅰ)当a ∈[-2,2]时,Δ≤0,则f ′(x )≥0恒成立,即函数f (x )在区间[1,e]上是单调递增的函数,故函数f (x )在区间[1,e]上的最大值为f (e)=e -1e -a ,故有f (e)≥g (1),即e -1e -a ≥1-1e,解得a ≤e -1. 又a ∈[-2,2],所以a ∈[-2,e -1];(ⅱ)当a <-2时,Δ>0,f ′(x )=0的两根为x 1=a -a 2-42,x 2=a +a 2-42, 此时x 1<0,x 2<0.故函数f (x )在区间[1,e]上是单调递增的函数.由(ⅰ)知,a ≤e -1,又a <-2,故a <-2.综上所述,a 的取值范围为(-∞,e -1].。

导数的综合应用

导数的综合应用

3.3 导数的综合应用1.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f (x );(2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值; (4)回归实际问题作答. 2.不等式问题(1)证明不等式时,可构造函数,将问题转化为函数的极值或最值问题.(2)求解不等式恒成立问题时,可以考虑将参数分离出来,将参数范围问题转化为研究新函数的值域问题. 3.方程解的个数问题构造函数,利用导数研究函数的单调性,极值和特殊点的函数值,根据函数性质结合草图推断方程解的个数. 【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)连续函数在闭区间上必有最值.( √ )(2)函数f (x )=x 2-3x +2的极小值也是最小值.( √ )(3)函数f (x )=x +x -1和g (x )=x -x -1都是在x =0时取得最小值-1.( × )(4)函数f (x )=x 2ln x 没有最值.( × ) (5)已知x ∈(0,π2),则sin x >x .( × )(6)若a >2,则方程13x 3-ax 2+1=0在(0,2)上没有实数根.( × )1.(2014·湖南)若0<x 1<x 2<1,则( ) A .2121e e ln ln xxx x >-- B .1221e eln ln xx x x <--C .1221e e x xx x > D .1221e e xxx x < 答案 C解析 设f (x )=e x -ln x (0<x <1), 则f ′(x )=e x-1x =x e x-1x.令f ′(x )=0,得x e x -1=0.根据函数y =e x 与y =1x 的图象可知两函数图象交点x 0∈(0,1),因此函数f (x )在(0,1)上不是单调函数,故A ,B 选项不正确.设g (x )=e xx (0<x <1),则g ′(x )=e x(x -1)x 2.又0<x <1,∴g ′(x )<0.∴函数g (x )在(0,1)上是减函数. 又0<x 1<x 2<1,∴g (x 1)>g (x 2), ∴1221e e xxx x >.2.(2013·福建)设函数f (x )的定义域为R ,x 0(x 0≠0)是f (x )的极大值点,以下结论一定正确的是( )A .∀x ∈R ,f (x )≤f (x 0)B .-x 0是f (-x )的极小值点C .-x 0是-f (x )的极小值点D .-x 0是-f (-x )的极小值点 答案 D解析 A 错,因为极大值未必是最大值.B 错,因为函数y =f (x )与函数y =f (-x )的图象关于y 轴对称,-x 0应是f (-x )的极大值点.C 错,函数y =f (x )与函数y =-f (x )的图象关于x 轴对称,x 0应为-f (x )的极小值点.D 对,函数y =f (x )与y =-f (-x )的图象关于原点对称,-x 0应为y =-f (-x )的极小值点.3.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |达到最小时t 的值为( )A .1 B.12 C.52 D.22答案 D解析 |MN |的最小值,即函数h (x )=x 2-ln x (x >0)的最小值,h ′(x )=2x -1x =2x 2-1x,显然x =22是函数h (x )在其定义域内唯一的极小值点, 也是最小值点,故t =22. 4.若商品的年利润y (万元)与年产量x (百万件)的函数关系式:y =-x 3+27x +123(x >0),则获得最大利润时的年产量为( ) A .1百万件 B .2百万件 C .3百万件 D .4百万件答案 C解析 y ′=-3x 2+27=-3(x +3)(x -3), 当0<x <3时,y ′>0; 当x >3时,y ′<0.故当x =3时,该商品的年利润最大.题型一 利用导数证明不等式例1 已知定义在正实数集上的函数f (x )=12x 2+2ax ,g (x )=3a 2ln x +b ,其中a >0.设两曲线y=f (x ),y =g (x )有公共点,且在该点处的切线相同. (1)用a 表示b ,并求b 的最大值; (2)求证:f (x )≥g (x )(x >0).(1)解 设两曲线的公共点为(x 0,y 0), f ′(x )=x +2a ,g ′(x )=3a 2x,由题意知f (x0)=g (x 0),f ′(x 0)=g ′(x 0),即⎩⎨⎧12x 20+2ax 0=3a 2ln x 0+b ,x 0+2a =3a2x.由x 0+2a =3a 2x 0,得x 0=a 或x 0=-3a (舍去).即有b =12a 2+2a 2-3a 2ln a =52a 2-3a 2ln a .令h (t )=52t 2-3t 2ln t (t >0),则h ′(t )=2t (1-3ln t ).于是当t (1-3ln t )>0,即0<t <13e 时,h ′(t )>0;当t (1-3ln t )<0,即t >13e 时,h ′(t )<0.故h (t )在(0,13e )上为增函数,在(13e ,+∞)上为减函数,于是h (t )在(0,+∞)上的最大值为h (13e )=233e 2,即b 的最大值为233e 2.(2)证明 设F (x )=f (x )-g (x )=12x 2+2ax -3a 2ln x -b (x >0),则F ′(x )=x +2a -3a 2x =(x -a )(x +3a )x(x >0).故F (x )在(0,a )上为减函数,在(a ,+∞)上为增函数. 于是F (x )在(0,+∞)上的最小值是F (a )=F (x 0)=f (x 0)-g (x 0)=0. 故当x >0时,有f (x )-g (x )≥0, 即当x >0时,f (x )≥g (x ).思维升华 利用导数证明不等式的步骤 (1)构造新函数,并求其单调区间; (2)判断区间端点函数值与0的关系;(3)判断定义域内函数值与0的大小关系,证不等式.证明:当x ∈[0,1]时,22x ≤sin x ≤x . 证明 记F (x )=sin x -22x , 则F ′(x )=cos x -22. 当x ∈(0,π4)时,F ′(x )>0,F (x )在[0,π4]上是增函数;当x ∈(π4,1)时,F ′(x )<0,F (x )在[π4,1]上是减函数.又F (0)=0,F (1)>0,所以当x ∈[0,1]时,F (x )≥0, 即sin x ≥22x . 记H (x )=sin x -x ,则当x ∈(0,1)时,H ′(x )=cos x -1<0, 所以H (x )在[0,1]上是减函数, 则H (x )≤H (0)=0,即sin x ≤x .综上,22x≤sin x≤x,x∈[0,1].题型二利用导数研究函数零点问题例2(2013·北京)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解(1)由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).∵y=f(x)在点(a,f(a))处与直线y=b相切.∴f′(a)=a(2+cos a)=0且b=f(a),则a=0,b=f(0)=1.(2)令f′(x)=0,得x=0.∴当x>0时,f′(x)>0,f(x)在(0,+∞)上递增.当x<0时,f′(x)<0,f(x)在(-∞,0)上递减.∴f(x)的最小值为f(0)=1.∵函数f(x)在区间(-∞,0)和(0,+∞)上均单调,∴当b>1时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,b的取值范围是(1,+∞).思维升华函数零点或函数图象交点问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图象有三个不同的交点,求m的取值范围.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a =1.∴f (x )=x 3-3x -1, f ′(x )=3x 2-3,由f ′(x )=0,解得x 1=-1,x 2=1.由(1)中f (x )的单调性可知,f (x )在x =-1处取得极大值f (-1)=1,在x =1处取得极小值f (1)=-3.∵直线y =m 与函数y =f (x )的图象有三个不同的交点,结合如图所示f (x )的图象可知:实数m 的取值范围是(-3,1). 题型三 生活中的优化问题例3 某商场销售某种商品的经验表明,该商品每日的销售量y (单位:千克)与销售价格x (单位:元/千克)满足关系式y =ax -3+10(x -6)2,其中3<x <6,a 为常数.已知销售价格为5元/千克时,每日可售出该商品11千克. (1)求a 的值;(2)若该商品的成本为3元/千克,试确定销售价格x 的值,使商场每日销售该商品所获得的利润最大.思维点拨 (1)由x =5时y =11求a ;(2)建立商场每日销售该商品所获利润和售价x 的函数关系,利用导数求最值. 解 (1)因为x =5时,y =11,所以a2+10=11,a =2.(2)由(1)可知,该商品每日的销售量为 y =2x -3+10(x -6)2. 所以商场每日销售该商品所获得的利润为f (x )=(x -3)[2x -3+10(x -6)2]=2+10(x -3)(x -6)2,3<x <6.从而,f ′(x )=10[(x -6)2+2(x -3)(x -6)] =30(x -4)(x -6).于是,当x 变化时,f ′(x ),f (x )的变化情况如下表:由上表可得,x =4所以,当x =4时,函数f (x )取得最大值,且最大值等于42.答 当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.思维升华 在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.请你设计一个包装盒,如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒,E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点,设AE =FB =x (cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解 设包装盒的高为h cm ,底面边长为a cm. 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ).由V ′=0,得x =0(舍)或x =20.当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12.即包装盒的高与底面边长的比值为12.一审条件挖隐含典例:(12分)设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M .(2)如果对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,求实数a 的取值范围.审题路线图(1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M(正确理解“存在”的含义) [g (x 1)-g (x 2)]max ≥M挖掘[g (x 1)-g (x 2)]max 的隐含实质 g (x )max -g (x )min ≥MM 的最大整数值(2)对任意s ,t ∈[12,2]都有f (s )≥g (t )(理解“任意”的含义) f (x )min ≥g (x )max求得g (x )max =1 ax+x ln x ≥1恒成立 分离常数 a ≥x -x 2ln x 恒成立求h (x )=x -x 2ln x 的最大值 a ≥h (x )max =h (1)=1 a ≥1 规范解答解 (1)存在x 1,x 2∈[0,2]使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .[2分]由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x (x -23).令g ′(x )>0得x <0,或x >23,又x ∈[0,2],所以g (x )在区间[0,23]上单调递减,在区间[23,2]上单调递增,所以g (x )min =g (23)=-8527,g (x )max =g (2)=1.故[g (x 1)-g (x 2)]max =g (x )max -g (x )min =11227≥M , 则满足条件的最大整数M =4.[5分](2)对于任意的s ,t ∈[12,2],都有f (s )≥g (t )成立,等价于在区间[12,2]上,函数f (x )min ≥g (x )max .[7分]由(1)可知在区间[12,2]上,g (x )的最大值为g (2)=1.在区间[12,2]上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,h ′(x )=1-2x ln x -x ,可知h ′(x )在区间[12,2]上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.[10分]即函数h (x )=x -x 2ln x 在区间(12,1)上单调递增,在区间(1,2)上单调递减,所以h (x )max =h (1)=1,所以a ≥1,即实数a 的取值范围是[1,+∞).[12分]温馨提醒 (1)“恒成立”、“存在性”问题一定要正确理解问题实质,深刻挖掘条件内含,进行等价转化.(2)构造函数是求范围问题中的一种常用方法,解题过程中尽量采用分离常数的方法,转化为求函数的值域问题.方法与技巧1.利用导数解决含有参数的单调性问题是将问题转化为不等式恒成立问题,要注意分类讨论和数形结合思想的应用.2.在讨论方程的根的个数、研究函数图象与x 轴(或某直线)的交点个数、不等式恒成立等问题时,常常需要求出其中参数的取值范围,这类问题的实质就是函数的单调性与函数的极(最)值的应用.3.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较. 失误与防范1.函数f (x )在某个区间内单调递增,则f ′(x )≥0而不是f ′(x )>0,(f ′(x )=0在有限个点处取到).2.利用导数解决实际生活中的优化问题,要注意问题的实际意义.A 组 专项基础训练(时间:45分钟)1.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 由函数f (x )在x =-2处取得极小值,可得f ′(-2)=0,且当x ∈(a ,-2)(a <-2)时,f (x )单调递减,即f ′(x )<0;当x ∈(-2,b )(b >-2)时,f (x )单调递增,即f ′(x )>0.所以函数y =xf ′(x )在区间(a ,-2)(a <-2)内的函数值为正,在区间(-2,b )(-2<b <0)内的函数值为负,由此可排除选项A ,B ,D.2.(2014·课标全国Ⅱ)若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)答案 D解析 由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 答案 B解析 ∵f ′(x )=3x 2+2ax +(a +6),由已知可得f ′(x )=0有两个不相等的实根. ∴Δ=4a 2-4×3(a +6)>0,即a 2-3a -18>0. ∴a >6或a <-3.4.若函数f (x )=x x 2+a (a >0)在[1,+∞)上的最大值为33,则a 的值为( )A.33B. 3C.3+1D.3-1 答案 D解析 f ′(x )=x 2+a -2x 2(x 2+a )2=a -x 2(x 2+a )2,若a >1,当x >a 时,f ′(x )<0,f (x )单调递减,当1<x <a 时,f ′(x )>0,f (x )单调递增,当x =a 时,令f (x )=a 2a =33,a =32<1,不合题意. 若0<a ≤1,则f ′(x )≤0,f (x )在[1,+∞)上单调递减,∴f (x )max =f (1)=11+a =33,a =3-1,故选D. 5.设函数h t (x )=3tx -322t ,若有且仅有一个正实数x 0,使得h 7(x 0)≥h t (x 0)对任意的正数t 都成立,则x 0等于( )A .5B. 5 C .3D.7答案 D解析 ∵h 7(x 0)≥h t (x 0)对任意的正数t 都成立,∴h 7(x 0)≥h t (x 0)max .记g (t )=h t (x 0)=3tx 0-322t ,则g ′(t )=3x 0-123t ,令g ′(t )=0,得t =x 20,易得h t (x 0)max =g (x 20)=x 30,∴21x 0-147≥x 30,将选项代入检验可知选D. 6.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a =________.答案 1解析 ∵f (x )是奇函数,且当x ∈(-2,0)时,f (x )的最小值为1,∴f (x )在(0,2)上的最大值为-1.当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a ,又a >12,∴0<1a <2.当x <1a时,f ′(x )>0,f (x )在(0,1a )上单调递增;当x >1a 时,f ′(x )<0,f (x )在(1a ,2)上单调递减,∴f (x )max =f (1a )=ln 1a -a ·1a =-1,解得a =1.7.已知函数y =x 3-3x +c 的图象与x 轴恰有两个公共点,则c =________.答案 -2或2解析 设f (x )=x 3-3x +c ,对f (x )求导可得,f ′(x )=3x 2-3,令f ′(x )=0,可得x =±1,易知f (x )在(-∞,-1),(1,+∞)上单调递增,在(-1,1)上单调递减.由题意知,f (1)=0或f (-1)=0,若f (1)=1-3+c =0,可得c =2;若f (-1)=-1+3+c =0,可得c =-2.8.设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.答案 4解析 若x =0,则不论k 取何值,f (x )≥0都成立;当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3. 设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4, 所以g (x )在区间(0,12]上单调递增, 在区间[12,1]上单调递减, 因此g (x )max =g (12)=4,从而k ≥4; 当x <0即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而k ≤4,综上k =4.9.设a 为实数,函数f (x )=e x -2x +2a ,x ∈R .(1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.(1)解 由f (x )=e x -2x +2a ,x ∈R知f ′(x )=e x -2,x ∈R .令f ′(x )=0,得x =ln 2.于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )单调递增区间是(ln 2,+∞),f (x )在x =ln 2处取得极小值,极小值为f (ln 2)=e ln 2-2ln 2+2a =2-2ln 2+2a .(2)证明 设g (x )=e x -x 2+2ax -1,x ∈R ,于是g ′(x )=e x -2x +2a ,x ∈R .由(1)知当a >ln 2-1时,g ′(x )取最小值为g ′(ln 2)=2(1-ln 2+a )>0.于是对任意x ∈R ,都有g ′(x )>0,所以g (x )在R 内单调递增.于是当a >ln 2-1时,对任意x ∈(0,+∞),都有g (x )>g (0).而g (0)=0,从而对任意x ∈(0,+∞),都有g (x )>0.即e x -x 2+2ax -1>0,故e x >x 2-2ax +1.10.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为y =1128 000x 3-380x +8(0<x ≤120).已知甲、乙两地相距100千米. (1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当x =40时,汽车从甲地到乙地行驶了10040小时,共耗油10040×(1128 000×403-380×40+8)=17.5(升).因此,当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油17.5升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了100x小时, 设耗油量为h (x )升,依题意得h (x )=(1128 000x 3-380x +8)·100x=11 280x 2+800x -154(0<x ≤120), h ′(x )=x 640-800x 2=x 3-803640x 2(0<x ≤120).令h ′(x )=0,得x =80.当x ∈(0,80)时,h ′(x )<0,h (x )是减函数;当x ∈(80,120)时,h ′(x )>0,h (x )是增函数,所以当x =80时,h (x )取得极小值h (80)=11.25.易知h (80)是h (x )在(0,120]上的最小值.故当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,为11.25升.B 组 专项能力提升(时间:30分钟)11.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )A .[-5,-3]B .[-6,-98]C .[-6,-2]D .[-4,-3]答案 C 解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R .当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max .设φ(x )=x 2-4x -3x 3, φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6,∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3, ∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值.而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2.综上知-6≤a ≤-2.12.设函数f (x )=ln x -ax ,g (x )=e x -ax ,其中a 为常数.若f (x )在(1,+∞)上是减函数,且g (x )在(1,+∞)上有最小值,则a 的取值范围是( )A .(e ,+∞)B .[e ,+∞)C .(1,+∞)D .[1,+∞)答案 A解析 f ′(x )=1x-a ,g ′(x )=e x -a ,由题意得,当x ∈(1,+∞)时f ′(x )≤0恒成立,即x ∈(1,+∞)时a ≥1x 恒成立,则a ≥1.因为g ′(x )=e x -a 在(1,+∞)上单调递增,所以g ′(x )>g ′(1)=e -a .又g (x )在(1,+∞)上有最小值,则必有e -a <0,即a >e.综上,a 的取值范围是(e ,+∞).13.已知f (x )=x e x ,g (x )=-(x +1)2+a ,若∃x 1,x 2∈R ,使得f (x 2)≤g (x 1)成立,则实数a 的取值范围是____________.答案 [-1e,+∞) 解析 f ′(x )=e x +x e x =e x (1+x )当x >-1时,f ′(x )>0,函数f (x )单调递增;当x <-1时,f ′(x )<0,函数f (x )单调递减.所以函数f (x )的最小值为f (-1)=-1e. 而函数g (x )的最大值为a ,则由题意,可得-1e ≤a 即a ≥-1e. 14.设函数f (x )=a 2ln x -x 2+ax ,a >0.(1)求f (x )的单调区间;(2)求所有的实数a ,使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.解 (1)因为f (x )=a 2ln x -x 2+ax ,其中x >0,所以f ′(x )=a 2x -2x +a =-(x -a )(2x +a )x. 由于a >0,所以f (x )的增区间为(0,a ),减区间为(a ,+∞).(2)由题意得f (1)=a -1≥e -1,即a ≥e.由(1)知f (x )在[1,e]内单调递增,要使e -1≤f (x )≤e 2对x ∈[1,e]恒成立.只要⎩⎪⎨⎪⎧f (1)=a -1≥e -1,f (e )=a 2-e 2+a e ≤e 2, 解得a =e.15.已知f (x )=ax -ln x ,x ∈(0,e],g (x )=ln x x,其中e 是自然对数的底数,a ∈R . (1)讨论a =1时,函数f (x )的单调性和极值;(2)求证:在(1)的条件下,f (x )>g (x )+12; (3)是否存在正实数a ,使f (x )的最小值是3?若存在,求出a 的值;若不存在,请说明理由.(1)解 ∵a =1,∴f (x )=x -ln x ,f ′(x )=1-1x=x -1x, ∴当0<x <1时,f ′(x )<0,此时f (x )单调递减;当1<x ≤e 时,f ′(x )>0,此时f (x )单调递增.∴f (x )的极小值为f (1)=1.(2)证明 ∵f (x )的极小值为1,即f (x )在(0,e]上的最小值为1,∴[f (x )]min =1.又g ′(x )=1-ln x x 2, ∴当0<x <e 时,g ′(x )>0,g (x )在(0,e]上单调递增.∴[g (x )]max =g (e)=1e <12, ∴[f (x )]min -[g (x )]max >12, ∴在(1)的条件下,f (x )>g (x )+12. (3)解 假设存在正实数a ,使f (x )=ax -ln x (x ∈(0,e])有最小值3,则f ′(x )=a -1x =ax -1x. ①当0<1a <e 时,f (x )在(0,1a)上单调递减, 在(1a,e]上单调递增, [f (x )]min =f (1a)=1+ln a =3,a =e 2,满足条件; ②当1a≥e 时,f (x )在(0,e]上单调递减, [f (x )]min =f (e)=a e -1=3,a =4e(舍去),所以,此时f (x )无最小值. 综上,存在实数a =e 2,使得当x ∈(0,e]时f (x )有最小值3.。

教案~导数的综合应用

教案~导数的综合应用

导数综合应用(1)教学目标:1:知识目标:(1)理解导数在研究函数的单调性和极值中的作用;(2)理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有着广泛的应用。

2:能力目标:(1)通过导数的单调性在上述具体问题中的应用,培养学生分析问题,解决问题的能力。

(2)进一步加强学生的分类讨论能力,以及变换与转化的数学能力。

教学重点:通过构造函数,利用导数解决不等式,方程的根,曲线交点个数问题。

教学难点:;利用导数解决实际问题教学过程一.知识回顾1.在平面直角坐标系xOy 中,点P 在曲线C :y =x 3-10x +3上,且在第二象限内,已知曲线C 在点P 处的切线斜率为2,则点P 的坐标为________.2.若()f x =x 3+3ax 2+3(a +2)x +1有极大值和极小值,则a 的取值范围为____________.3.若函数()f x =x +a sin x 在R 上递增,则实数a 的取值范围为________.4.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则( )A .a >-3B .a <-3C .a >-13D .a <-13二.例题讲解题型一 利用导数的几何意义解题例1 设函数()f x =ax 3+bx 2+cx +d (a 、b 、c 、d ∈R)的图象关于原点对称,且当x =1时f (x )有极小值-23.(1)求a 、b 、c 、d 的值; (2)当x ∈[-1,1]时,问图象上是否存在两点使过此两点处的切线互相垂直?试证明你的结论.解 (1)∵f (x )的图象关于原点对称,∴f (-x )=-f (x ),∴-ax 3+bx 2-cx +d =-ax 3-bx 2-cx -d ,∴bx 2+d =0恒成立,∴b =0,d =0.∴f (x )=ax 3+cx ,∴f ′(x )=3ax 2+c .∵当x =1时,f (x )有极小值为-23,∴⎩⎪⎨⎪⎧ 3a +c =0,a +c =-23,解得⎩⎪⎨⎪⎧a =13,c =-1.∴a =13,b =0,c =-1,d =0. (2)假设存在两点A (x 1,y 1)、B (x 2,y 2),过此两点的切线互相垂直.由)('x f =x 2-1得k 1=x 21-1,k 2=x 22-1,∴(x 21-1)(x 22-1)=-1. ∵-1≤x 1≤1,-1≤x 2≤1,∴x 21-1≤0,x 22-1≤0, ∴(x 21-1)(x 22-1)≥0,这与(x 21-1)(x 22-1)=-1矛盾.∴不存在这样的两点使结论成立.变式训练:已知函数f (x )=-x 3+ax 2+bx +c 图象上的点P (1,f (1))处的切线方程为y =-3x +1,函数g (x )=f (x )-ax 2+3是奇函数.(1)求函数f (x )的表达式; (2)求函数f (x )的极值.解 (1)()f x '=-3x 2+2ax +b ,∵函数f (x )在x =1处的切线斜率为-3,∴f ′(1)=-3+2a +b =-3,即2a +b =0,又f (1)=-1+a +b +c =-2,得a +b +c =-1,又函数g (x )=-x 3+bx +c +3是奇函数,g (0)=0,∴c =-3.∴a =-2,b =4,c =-3,∴f (x )=-x 3-2x 2+4x -3.(2) )('x f =-3x 2-4x +4=-(3x -2)(x +2),令f ′(x )=0,得x =23或x =-2, 列表可得:∴f (x )极小值=f (-2)=-11,f (x )极大值=f ⎝⎛⎭⎫23=-4127. 题型二 用导数研究函数的性质例2:已知a 是实数,函数f (x )=x (x -a ).(1)求函数f (x )的单调区间;(2)设g (a )为f (x )在区间[0,2]上的最小值.(i)写出g (a )的表达式;(ii)求a 的取值范围,使得-6≤g (a )≤-2.题型三 恒成立及求参数范围问题例3:已知函数f (x )=ln x -a x. (1)若a >0,试判断f (x )在定义域内的单调性;(2)若f (x )在[1,e]上的最小值为32,求a 的值; 解 (1)由题意f (x )的定义域为(0,+∞),且f ′(x )=1x +a x 2=x +a x 2.∵a >0,∴()f x '>0,故f (x )在(0,+∞)上是单调递增函数.(2)由(1)可知,()f x '=x +a x 2. ①若a ≥-1,则x +a ≥0,即()f x '≥0在[1,e]上恒成立,此时 在[1,e]上为增函数, ∴f (x )min =f (1)=-a =32,∴a =-32(舍去). ②若a ≤-e ,则x +a ≤0,即()f x '≤0在[1,e]上恒成立,此时f (x )在[1,e]上为减函数, ∴f (x )min =f (e)=1-a e =32,∴a =-2e (舍去). ③若-e<a <-1,令()f x '=0得x =-a ,当1<x <-a 时,()f x '<0,∴f (x )在(1,-a )上为减函数;当-a <x <e 时,()f x '>0,∴f (x )在(-a ,e)上为增函数,∴f (x )min =f (-a )=ln(-a )+1=32,∴a =- e. 综上所述,a =- e.课堂小结1. 导数的几何意义2. 利用导数解决函数的单调性,极值3. 数学思想:数形结合,转化与化归,分类讨论作业:《小练习》。

不等式与导数综合应用

不等式与导数综合应用

不等式与导数综合应用在数学中,不等式和导数是两个重要的概念。

它们在实际生活中有着广泛的应用。

本文将探讨如何将不等式与导数综合运用,解决一些常见的实际问题。

一、不等式的综合应用1. 购物折扣假设一家服装店举办了一次打折促销活动,对于购物金额大于100元的顾客,可以享受总金额的85%的折扣。

现假设小明在该店购物花费了x元,如何确定小明是否满足享受折扣的条件?我们可以建立以下不等式来解决这个问题:x > 100如果小明的购物金额大于100元,那么他就满足享受折扣的条件。

2. 温度变化假设某地的温度每小时变化的速率为2°C/h,已知温度T在某个时间点为20°C,如何确定在未来某个时间点温度会超过30°C?我们可以通过以下不等式来计算:T + 2t > 30其中,t表示时间的小时数。

如果上述不等式的解为正数,那么在未来某个时间点温度会超过30°C。

二、导数的综合应用1. 最大值和最小值假设一个长方形的周长为10m,我们需要确定它的最大面积。

如何找到这个最大值?设长方形的长为x,宽为y,则周长满足 C = 2x + 2y = 10。

我们需要求解面积 S = xy 的最大值。

通过导数的概念,我们可以得到以下关系式:2y = 10 - 2xy = 5 - x将上述表达式代入面积公式 S = xy 中,得到:S = x(5 - x) = 5x - x^2为了找到最大面积,我们需要求解 S 对 x 的导数为0的点。

对 S 进行求导,得到:dS/dx = 5 - 2x令 dS/dx = 0,解得 x = 2.5。

将 x 带入原方程式 y = 5 - x,得到 y = 2.5。

因此,当长方形的长为2.5m,宽为2.5m时,它的面积达到最大值。

2. 集装箱装载问题某货运公司需要装载一个体积为 V 立方米的长方体集装箱。

为了减少运输成本,公司希望尽可能减小集装箱的表面积。

导数的综合应用

导数的综合应用

导数的综合应用一、导数在不等式中的应用考点一 构造函数证明不等式【例1】 已知函数f (x )=1-x -1e x ,g (x )=x -ln x . (1)证明:g (x )≥1;(2)证明:(x -ln x )f (x )>1-1e 2. 证明 (1)由题意得g ′(x )=x -1x(x >0), 当0<x <1时,g ′(x )<0;当x >1时,g ′(x )>0,即g (x )在(0,1)上是减函数,在(1,+∞)上是增函数.所以g (x )≥g (1)=1,得证.(2)由f (x )=1-x -1e x ,得f ′(x )=x -2e x , 所以当0<x <2时,f ′(x )<0,当x >2时,f ′(x )>0,即f (x )在(0,2)上是减函数,在(2,+∞)上是增函数,所以f (x )≥f (2)=1-1e 2(当且仅当x =2时取等号).① 又由(1)知x -ln x ≥1(当且仅当x =1时取等号),②且①②等号不同时取得,所以(x -ln x )f (x )>1-1e 2. 规律方法 1.证明不等式的基本方法:(1)利用单调性:若f (x )在[a ,b ]上是增函数,则①∀x ∈[a ,b ],有f (a )≤f (x )≤f (b ),②∀x 1,x 2∈[a ,b ],且x 1<x 2,有f (x 1)<f (x 2).对于减函数有类似结论.(2)利用最值:若f (x )在某个范围D 内有最大值M (或最小值m ),则∀x ∈D ,有f (x )≤M (或f (x )≥m ).2.证明f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),证明F (x )<0.先通过化简、变形,再移项构造不等式就减少运算量,使得问题顺利解决.考点二 利用“若f (x )min >g (x )max ,则f (x )>g (x )”证明不等式【例2】 已知函数f (x )=x ln x -ax .(1)当a =-1时,求函数f (x )在(0,+∞)上的最值;(2)证明:对一切x ∈(0,+∞),都有ln x +1>1ex +1-2e 2x 成立. (1)解 函数f (x )=x ln x -ax 的定义域为(0,+∞).当a =-1时,f (x )=x ln x +x ,f ′(x )=ln x +2.由f ′(x )=0,得x =1e 2. 当x ∈⎝⎛⎭⎫0,1e 2时,f ′(x )<0;当x >1e 2时,f ′(x )>0. 所以f (x )在⎝⎛⎭⎫0,1e 2上单调递减,在⎝⎛⎭⎫1e 2,+∞上单调递增. 因此f (x )在x =1e 2处取得最小值,即f (x )min =f ⎝⎛⎭⎫1e 2=-1e 2,但f (x )在(0,+∞)上无最大值. (2)证明 当x >0时,ln x +1>1e x +1-2e 2x 等价于x (ln x +1)>x ex +1-2e 2. 由(1)知a =-1时,f (x )=x ln x +x 的最小值是-1e 2,当且仅当x =1e 2时取等号. 设G (x )=x ex +1-2e 2,x ∈(0,+∞), 则G ′(x )=1-x ex +1,易知G (x )max =G (1)=-1e 2, 当且仅当x =1时取到,从而可知对一切x ∈(0,+∞),都有f (x )>G (x ),即ln x +1>1ex +1-2e 2x .规律方法 1.在证明不等式中,若无法转化为一个函数的最值问题,则可考虑转化为两个函数的最值问题.2.在证明过程中,等价转化是关键,此处f (x )min >g (x )max 恒成立.从而f (x )>g (x ),但此处f (x )与g (x )取到最值的条件不是同一个“x 的值”.考点三 不等式恒成立或有解问题角度1 不等式恒成立求参数【例3-1】 已知函数f (x )=sin x x(x ≠0). (1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值. 解 (1)f ′(x )=x cos x -sin x x 2, 令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 显然,当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. 从而g (x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零, 所以函数f (x )在区间⎝⎛⎭⎫0,π2上单调递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2, 则φ′(x )=cos x -a ,且φ(0)=0.当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0,从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.规律方法 1.破解此类题需“一形一分类”,“一形”是指会结合函数的图象,对函数进行求导,然后判断其极值,从而得到含有参数的方程组,解方程组,即可求出参数的值;“一分类”是指对不等式恒成立问题,常需对参数进行分类讨论,求出参数的取值范围.2.利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围.角度2 不等式能成立求参数的取值范围【例3-2】 已知函数f (x )=x 2-(2a +1)x +a ln x (a ∈R ).(1)若f (x )在区间[1,2]上是单调函数,求实数a 的取值范围;(2)函数g (x )=(1-a )x ,若∃x 0∈[1,e]使得f (x 0)≥g (x 0)成立,求实数a 的取值范围.解 (1)f ′(x )=(2x -1)(x -a )x,当导函数f ′(x )的零点x =a 落在区间(1,2)内时,函数f (x )在区间[1,2]上就不是单调函数,即a ∉(1,2),所以实数a 的取值范围是(-∞,1]∪[2,+∞).(2)由题意知,不等式f (x )≥g (x )在区间[1,e]上有解,即x 2-2x +a (ln x -x )≥0在区间[1,e]上有解.因为当x ∈[1,e]时,ln x ≤1≤x (不同时取等号),x -ln x >0,所以a ≤x 2-2x x -ln x 在区间[1,e]上有解. 令h (x )=x 2-2x x -ln x ,则h ′(x )=(x -1)(x +2-2ln x )(x -ln x )2. 因为x ∈[1,e],所以x +2>2≥2ln x ,所以h ′(x )≥0,h (x )在[1,e]上单调递增,所以x ∈[1,e]时,h (x )max =h (e)=e(e -2)e -1, 所以a ≤e(e -2)e -1, 所以实数a 的取值范围是⎝⎛⎦⎥⎤-∞,e(e -2)e -1. 规律方法 1.含参数的能成立(存在型)问题的解题方法a ≥f (x )在x ∈D 上能成立,则a ≥f (x )min ;a ≤f (x )在x ∈D 上能成立,则a ≤f (x )max .2.含全称、存在量词不等式能成立问题(1)存在x 1∈A ,任意x 2∈B 使f (x 1)≥g (x 2)成立,则f (x )max ≥g (x )max ;(2)任意x 1∈A ,存在x 2∈B ,使f (x 1)≥g (x 2)成立,则f (x )min ≥g (x )min .[方法技巧]1.证明不等式的关键是构造函数,将问题转化为研究函数的单调性、最值问题.2.恒(能)成立问题的转化策略.若f (x )在区间D 上有最值,则(1)恒成立:∀x ∈D ,f (x )>0⇔f (x )min >0;∀x ∈D ,f (x )<0⇔f (x )max <0.(2)能成立:∃x ∈D ,f (x )>0⇔f (x )max >0;∃x ∈D ,f (x )<0⇔f (x )min <0.3.证明不等式,特别是含两个变量的不等式时,要注意合理的构造函数.4.恒成立与能成立问题,要注意理解“任意”与“存在”的不同含义,要注意区分转化成的最值问题的异同.二、导数在函数零点中的应用考点一 判断零点的个数【例1】已知二次函数f (x )的最小值为-4,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R }.(1)求函数f (x )的解析式;(2)求函数g (x )=f (x )x-4ln x 的零点个数. 解 (1)∵f (x )是二次函数,且关于x 的不等式f (x )≤0的解集为{x |-1≤x ≤3,x ∈R },∴设f (x )=a (x +1)(x -3)=ax 2-2ax -3a ,且a >0.∴f (x )min =f (1)=-4a =-4,a =1.故函数f (x )的解析式为f (x )=x 2-2x -3.(2)由(1)知g (x )=x 2-2x -3x -4ln x =x -3x-4ln x -2, ∴g (x )的定义域为(0,+∞),g ′(x )=1+3x 2-4x =(x -1)(x -3)x 2,令g ′(x )=0,得x 1=1,x 2=3. 当x 变化时,g ′(X (0,1) 1 (1,3) 3 (3,+∞)g ′(x ) + 0 - 0 +g (x )极大值 极小值当0<x ≤3时,g 当x >3时,g (e 5)=e 5-3e5-20-2>25-1-22=9>0. 又因为g (x )在(3,+∞)上单调递增,因而g (x )在(3,+∞)上只有1个零点,故g (x )仅有1个零点.规律方法 利用导数确定函数零点或方程根个数的常用方法(1)构建函数g (x )(要求g ′(x )易求,g ′(x )=0可解),转化确定g (x )的零点个数问题求解,利用导数研究该函数的单调性、极值,并确定定义区间端点值的符号(或变化趋势)等,画出g (x )的图象草图,数形结合求解函数零点的个数.(2)利用零点存在性定理:先用该定理判断函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值符号,进而判断函数在该区间上零点的个数.考点二 已知函数零点个数求参数的取值范围【例2】 函数f (x )=ax +x ln x 在x =1处取得极值.(1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围.解 (1)函数f (x )=ax +x ln x 的定义域为(0,+∞).f ′(x )=a +ln x +1,因为f ′(1)=a +1=0,解得a =-1,当a =-1时,f (x )=-x +x ln x ,即f ′(x )=ln x ,令f ′(x )>0,解得x >1;令f ′(x )<0,解得0<x <1.所以f (x )在x =1处取得极小值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y =f (x )-m -1在(0,+∞)内有两个不同的零点,可转化为y =f (x )与y =m +1图象有两个不同的交点. 由(1)知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,f (x )min =f (1)=-1,由题意得,m +1>-1,即m >-2,①当0<x <e 时,f (x )=x (-1+ln x )<0;当x >e 时,f (x )>0.当x >0且x →0时,f (x )→0;当x →+∞时,显然f (x )→+∞.由图象可知,m +1<0,即m <-1,②由①②可得-2<m <-1.所以m 的取值范围是(-2,-1).规律方法 与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.考点三 函数零点的综合问题【例3】 设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a . (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x(x >0). 当a ≤0时,f ′(x )>0,f ′(x )没有零点;当a >0时,因为y =e 2x 单调递增,y =-a x单调递增, 所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,假设存在b 满足0<b <a 4时,且b <14,f ′(b )<0, 故当a >0时,f ′(x )存在唯一零点.(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0).由于2e 2x 0-a x 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a. 规律方法 1.在(1)中,当a >0时,f ′(x )在(0,+∞)上单调递增,从而f ′(x )在(0,+∞)上至多有一个零点,问题的关键是找到b ,使f ′(b )<0.2.由(1)知,函数f′(x)存在唯一零点x0,则f(x0)为函数的最小值,从而把问题转化为证明f(x0)≥2a+a ln 2 a.[方法技巧]1.解决函数y=f(x)的零点问题,可通过求导判断函数图象的位置、形状和发展趋势,观察图象与x轴的位置关系,利用数形结合的思想方法判断函数的零点是否存在及零点的个数等.2.通过等价变形,可将“函数F(x)=f(x)-g(x)的零点”与“方程f(x)=g(x)的解”问题相互转化.3.函数y=f(x)在某一区间(a,b)上存在零点,必要时要由函数零点存在定理作为保证.。

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用

高考大题专项(一) 导数的综合应用突破1 利用导数研究与不等式有关的问题1.(2020全国1,理21)已知函数f (x )=e x +ax 2-x. (1)当a=1时,讨论f (x )的单调性; (2)当x ≥0时,f (x )≥12x 3+1,求a 的取值范围.2.(2020山东潍坊二模,20)已知函数f (x )=1x +a ln x ,g (x )=e x x .(1)讨论函数f (x )的单调性; (2)证明:当a=1时,f (x )+g (x )-(1+ex 2)ln x>e .3.已知函数f (x )=ln x+a x(a ∈R )的图象在点1e ,f (1e)处的切线斜率为-e,其中e 为自然对数的底数.(1)求实数a 的值,并求f (x )的单调区间; (2)证明:xf (x )>x ex .4.(2020广东湛江一模,文21)已知函数f (x )=ln ax-bx+1,g (x )=ax-ln x ,a>1. (1)求函数f (x )的极值;(2)直线y=2x+1为函数f (x )图象的一条切线,若对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立,求实数a 的取值范围.5.(2020山东济宁5月模拟,21)已知两个函数f(x)=e xx ,g(x)=lnxx+1x-1.(1)当t>0时,求f(x)在区间[t,t+1]上的最大值;(2)求证:对任意x∈(0,+∞),不等式f(x)>g(x)都成立.6.(2020湖北武汉二月调考,理21)已知函数f(x)=(x-1)e x-kx2+2.(1)略;(2)若∀x∈[0,+∞),都有f(x)≥1成立,求实数k的取值范围.7.(2020山东济南一模,22)已知函数f(x)=a(e x-x-1)x2,且曲线y=f(x)在(2,f(2))处的切线斜率为1.(1)求实数a的值;(2)证明:当x>0时,f(x)>1;(3)若数列{x n}满足e x n+1=f(x n),且x1=13,证明:2n|e x n-1|<1.8.(2020湖南长郡中学四模,理21)已知函数f(x)=x ln x.(1)若函数g(x)=f'(x)+ax2-(a+2)x(a>0),试研究函数g(x)的极值情况;(2)记函数F(x)=f(x)-xe x 在区间(1,2)上的零点为x0,记m(x)=min f(x),xe x,若m(x)=n(n∈R)在区间(1,+∞)上有两个不等实数解x1,x2(x1<x2),证明:x1+x2>2x0.突破2 利用导数研究与函数零点有关的问题1.(2020山东烟台一模,21)已知函数f (x )=1+lnxx -a (a ∈R ).(1)若f (x )≤0在(0,+∞)上恒成立,求a 的取值范围,并证明:对任意的n ∈N *,都有1+12+13+ (1)>ln(n+1); (2)设g (x )=(x-1)2e x ,讨论方程f (x )=g (x )的实数根的个数.2.(2020北京通州区一模,19)已知函数f (x )=x e x ,g (x )=a (e x -1),a ∈R . (1)当a=1时,求证:f (x )≥g (x );(2)当a>1时,求关于x 的方程f (x )=g (x )的实数根的个数.3.(2020湖南长郡中学四模,文21)已知函数f(x)=2a e2x+2(a+1)e x.(1)略;(2)当a∈(0,+∞)时,函数f(x)的图象与函数y=4e x+x的图象有唯一的交点,求a的取值集合.4.(2020天津和平区一模,20)已知函数f(x)=ax+be x,a,b∈R,且a>0.x,求函数f(x)的解析式;(1)若函数f(x)在x=-1处取得极值1e(2)在(1)的条件下,求函数f(x)的单调区间;的取值范(3)设g(x)=a(x-1)e x-f(x),g'(x)为g(x)的导函数,若存在x0∈(1,+∞),使g(x0)+g'(x0)=0成立,求ba围.x3+2(1-a)x2-8x+8a+7.5.已知函数f(x)=ln x,g(x)=2a3(1)若曲线y=g(x)在点(2,g(2))处的切线方程是y=ax-1,求函数g(x)在[0,3]上的值域;(2)当x>0时,记函数h(x)={f(x),f(x)<g(x),g(x),f(x)≥g(x),若函数y=h(x)有三个零点,求实数a的取值集合.参考答案高考大题专项(一)导数的综合应用突破1利用导数研究与不等式有关的问题1.解(1)当a=1时,f(x)=e x+x2-x,f'(x)=e x+2x-1.故当x∈(-∞,0)时,f'(x)<0;当x∈(0,+∞)时,f'(x)>0.所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.(2)f(x)≥12x3+1等价于12x3-ax2+x+1e-x≤1.设函数g(x)=(12x3-ax2+x+1)e-x(x≥0),则g'(x)=-12x3-ax2+x+1-32x2+2ax-1e-x=-12x[x2-(2a+3)x+4a+2]e-x=-12x(x-2a-1)(x-2)e-x.①若2a+1≤0,即a≤-12,则当x∈(0,2)时,g'(x)>0.所以g(x)在(0,2)上单调递增,而g(0)=1,故当x∈(0,2)时,g(x)>1,不合题意.②若0<2a+1<2,即-12<a<12,则当x ∈(0,2a+1)∪(2,+∞)时,g'(x )<0;当x ∈(2a+1,2)时,g'(x )>0.所以g (x )在(0,2a+1),(2,+∞)上单调递减,在(2a+1,2)上单调递增.由于g (0)=1,所以g (x )≤1当且仅当g (2)=(7-4a )e -2≤1,即a ≥7-e 24.所以当7-e 24≤a<12时,g (x )≤1.③若2a+1≥2,即a ≥12,则g (x )≤12x 3+x+1e -x .由于0∈7-e 24,12,故由②可得(12x 3+x +1)e -x ≤1.故当a ≥12时,g (x )≤1.综上,a 的取值范围是[7-e 24,+∞).2.(1)解 函数的定义域为(0,+∞),f'(x )=-1x 2+ax =ax -1x 2,当a ≤0时,f'(x )<0,所以f (x )在(0,+∞)上单调递减; 当a>0时,由f'(x )>0,得x>1a ,由f'(x )<0,得0<x<1a , 所以f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增, 综上可知:当a ≤0时,f (x )在(0,+∞)上单调递减;当a>0时,f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增. (2)证明 因为x>0,所以不等式等价于e x -e x+1>elnxx ,设F (x )=e x -e x+1,F'(x )=e x -e,所以当x ∈(1,+∞)时,F'(x )>0,F (x )单调递增;当x ∈(0,1)时,F'(x )<0,F (x )单调递减,所以F (x )min =F (1)=1.设G (x )=elnxx ,G'(x )=e (1-lnx )x 2, 所以当x ∈(0,e)时,G'(x )>0,G (x )单调递增,当x ∈(e,+∞)时,G'(x )<0,G (x )单调递减,所以G (x )max =G (e)=1.虽然F (x )的最小值等于G (x )的最大值,但1≠e,所以F (x )>G (x ),即e x -e x+1>elnxx ,故原不等式成立.3.(1)解因为函数f(x)的定义域为(0,+∞),f'(x)=1x −ax2,所以f'(1e)=e-a e2=-e,所以a=2e,所以f'(x)=1x−2ex2.令f'(x)=0,得x=2e,当x∈(0,2e)时,f'(x)<0,当x∈(2e,+∞)时,f'(x)>0,所以f(x)在(0,2e)上单调递减,在(2e,+∞)上单调递增.(2)证明设h(x)=xf(x)=x ln x+2e ,由h'(x)=ln x+1=0,得x=1e,所以当x∈(0,1e)时,h'(x)<0;当x∈(1e,+∞)时,h'(x)>0,所以h(x)在(0,1e)上单调递减,在(1e,+∞)上单调递增,所以h(x)min=h(1e )=1e.设t(x)=xe x(x>0),则t'(x)=1-xe x,所以当x∈(0,1)时,t'(x)>0,t(x)单调递增,当x∈(1,+∞)时,t'(x)<0,t(x)单调递减,所以t(x)max=t(1)=1e.综上,在(0,+∞)上恒有h(x)>t(x),即xf(x)>x e x .4.解(1)∵a>1,∴函数f(x)的定义域为(0,+∞).∵f(x)=ln ax-bx+1=ln a+ln x-bx+1,∴f'(x)=1x-b=1-bxx.①当b≤0时,f'(x)>0,f(x)在(0,+∞)上为增函数,无极值;②当b>0时,由f'(x)=0,得x=1b.∵当x∈(0,1b)时,f'(x)>0,f(x)单调递增;当x∈(1b,+∞)时,f'(x)<0,f(x)单调递减,∴f(x)在定义域上有极大值,极大值为f(1b )=ln ab.(2)设直线y=2x+1与函数f(x)图像相切的切点为(x0,y0),则y0=2x0+1.∵f'(x)=1x -b,∴f'(x0)=1x0-b=2,∴x0=1b+2,即bx0=1-2x0.又ln ax 0-bx 0+1=2x 0+1,∴ln ax 0=1,∴ax 0=e . ∴x 0=ea .∴ae =b+2.∵对任意的x 1∈(0,1),x 2∈[1,2]都有g (x 1)>f'(x 2)成立, ∴只需g (x 1)min >f'(x 2)max . ∵g'(x )=a-1x =ax -1x, ∴由g'(x )=0,得x=1a . ∵a>1,∴0<1a <1.∴当x ∈(0,1a )时,g'(x )<0,g (x )单调递减; 当x ∈(1a ,1)时,g'(x )>0,g (x )单调递增.∴g (x )≥g (1a )=1+ln a , 即g (x 1)min =1+ln a.∵f'(x 2)=1x 2-b 在x 2∈[1,2]上单调递减,∴f'(x 2)max =f'(1)=1-b=3-ae .∴1+ln a>3-ae .即lna+a e -2>0.设h (a )=ln a+ae -2,易知h (a )在(1,+∞)上单调递增.又h (e)=0,∴实数a 的取值范围为(e,+∞). 5.(1)解 由f (x )=e x x 得,f'(x )=xe x -e xx 2=e x (x -1)x 2,∴当x<1时,f'(x )<0,当x>1时,f'(x )>0,∴f (x )在区间(-∞,1)上单调递减,在区间(1,+∞)上单调递增.①当t ≥1时,f (x )在区间[t ,t+1]上单调递增,f (x )的最大值为f (t+1)=e t+1t+1.②当0<t<1时,t+1>1,f (x )在区间(t ,1)上单调递减,在区间(1,t+1)上单调递增,∴f (x )的最大值为f (x )max =max{f (t ),f (t+1)}.下面比较f (t )与f (t+1)的大小.f (t )-f (t+1)=e tt−e t+1t+1=[(1-e )t+1]e tt (t+1).∵t>0,1-e <0,∴当0<t ≤1e -1时,f (t )-f (t+1)≥0,故f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当1e -1<t<1时,f (t )-f (t+1)<0,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1.综上可知,当0<t ≤1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t )=e t t ,当t>1e -1时,f (x )在区间[t ,t+1]上的最大值为f (t+1)=e t+1t+1. (2)证明 不等式f (x )>g (x )即为e xx>lnx x +1x -1.∵x>0,∴不等式等价于e x >ln x-x+1,令h (x )=e x -(x+1)(x>0),则h'(x )=e x -1>0,∴h (x )在(0,+∞)上为增函数,h (x )>h (0)=0,即e x >x+1,所以,要证e x >ln x-x+1成立,只需证x+1>ln x-x+1成立即可. 即证2x>ln x 在(0,+∞)上成立. 设φ(x )=2x-ln x ,则φ'(x )=2-1x=2x -1x,当0<x<12时,φ'(x )<0,φ(x )单调递减,当x>12时,φ'(x )>0,φ(x )单调递增,∴φ(x )min =φ(12)=1-ln 12=1+ln 2>0,∴φ(x )>0在(0,+∞)上成立,∴对任意x ∈(0,+∞),不等式f (x )>g (x )都成立. 6.解 (1)略(2)f'(x )=x e x -2kx=x (e x -2k ),①当k ≤0时,e x -2k>0,所以,当x<0时,f'(x )<0,当x>0时,f'(x )>0,则f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意; ②当k>0时,令f'(x )=0,得x=0或x=ln 2k ,所以当0<k ≤12时,ln 2k ≤0,在区间(0,+∞)上f'(x )>0,f (x )单调递增, 所以f (x )在区间[0,+∞)上的最小值为f (0),且f (0)=1,符合题意;当k>12时,ln 2k>0,当x ∈(0,ln 2k )时,f'(x )<0,f (x )在区间(0,ln 2k )上单调递减, 所以f (ln 2k )<f (0)=1,不满足对任意的x ∈[0,+∞),f (x )≥1恒成立, 综上,k 的取值范围是(-∞,12].7.(1)解 f'(x )=a [(x -2)e x +x+2)]x 3,因为f'(2)=a2=1,所以a=2.(2)证明 要证f (x )>1,只需证h (x )=e x -12x 2-x-1>0.h'(x )=e x -x-1,令c (x )=e x -x-1,则c'(x )=e x -1.因为当x>0时,c'(x )>0,所以h'(x )=e x -x-1在(0,+∞)上单调递增,所以h'(x)=e x-x-1>h'(0)=0.所以h(x)=e x-12x2-x-1在(0,+∞)上单调递增,所以h(x)=e x-12x2-x-1>h(0)=0成立.所以当x>0时,f(x)>1.(3)证明(方法1)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0,φ'(x)=12x2+x-2e x+x+2,令α(x)=12x2+x-2e x+x+2,则α'(x)=12x2+2x-1e x+1,令β(x)=12x2+2x-1e x+1,则β'(x)=12x2+3x+1e x>0,所以β(x)在区间(0,+∞)上单调递增,故β(x)=12x2+2x-1e x+1>β(0)=0.所以α(x)在区间(0,+∞)上单调递增,故α(x)=12x2+x-2e x+x+2>α(0)=0.所以φ(x)在区间(0,+∞)上单调递增,所以φ(x)=12x2-2e x+12x2+2x+2>φ(0)=0,所以原不等式成立.(方法2)由(2)知当x>0时,f(x)>1.因为e x n+1=f(x n),所以x n+1=ln f(x n).设g(x n)=ln f(x n),则x n+1=g(x n),所以x n=g(x n-1)=g(g(x n-2))=…=g((…(g(x1))…))>0.要证2n|e x n-1|<1,只需证|e x n-1|<12n.因为x1=13,所以|e x1-1|=e13-1.因为e-323=e-278<0,所以e 13<32,所以|e x1-1|=e 13-1<12.故只需证|e x n+1-1|<12|e x n-1|.因为x n∈(0,+∞),故只需证e x n+1-1<12e x n−12,即证f(x n)-1<12e x n−12.只需证当x∈(0,+∞)时,φ(x)=12x2-2e x+12x2+2x+2>0.因为φ(x)=12(x2-4)e x+12(x2+4x+4)=12(x+2)[(x-2)e x+(x+2)],设u(x)=(x-2)e x+(x+2),故只需证u(x)>0.u'(x)=(x-1)e x+1,令v(x)=(x-1)e x+1,则v'(x)=x e x>0,所以v(x)在区间(0,+∞)上单调递增,故v(x)=(x-1)e x+1>v(0)=0,所以u(x)在区间(0,+∞)上单调递增,故u(x)=(x-2)e x+(x+2)>u(0)=0,所以原不等式成立.8.(1)解由题意,得f'(x)=ln x+1,故g(x)=ax2-(a+2)x+ln x+1,故g'(x)=2ax-(a+2)+1x=(2x-1)(ax-1)x,x>0,a>0.令g'(x)=0,得x1=12,x2=1a.①当0<a<2时,1a >12,由g'(x)>0,得0<x<12或x>1a;由g'(x)<0,得12<x<1a.所以g(x)在x=12处取极大值g12=-a4-ln 2,在x=1a处取极小值g1a=-1a-ln a.②当a=2时,1a =12,g'(x)≥0恒成立,所以不存在极值.③当a>2时,1a <12,由g'(x)>0,得0<x<1a或x>12;由g'(x)<0,得1a<x<12.所以g(x)在x=1a处取极大值g1a=-1a-ln a,在x=12处取极小值g12=-a4-ln 2.综上,当0<a<2时,g(x)在x=12处取极大值-a4-ln 2,在x=1a处取极小值-1a-ln a;当a=2时,不存在极值;当a>2时,g(x)在x=1a处取极大值-1a-ln a,在x=12处取极小值-a4-ln 2.(2)证明F(x)=x ln x-xe x ,定义域为x∈(0,+∞),F'(x)=1+ln x+x-1e x.当x∈(1,2)时,F'(x)>0,即F(x)在区间(1,2)上单调递增.又因为F(1)=-1e<0,F(2)=2ln 2-2e2>0,且F(x)在区间(1,2)上的图像连续不断,故根据函数零点存在定理,F(x)在区间(1,2)上有且仅有一个零点.所以存在x0∈(1,2),使得F(x0)=f(x0)-x0e x0=0.且当1<x<x0时,f(x)<xe x;当x>x0时,f(x)>xe x.所以m(x)=min f(x),xe x={xlnx,1<x<x0,xe x,x>x0.当1<x<x0时,m(x)=x ln x,由m'(x)=1+ln x>0,得m(x)单调递增;当x>x 0时,m (x )=x e x ,由m'(x )=1-xe x <0,得m (x )单调递减. 若m (x )=n 在区间(1,+∞)上有两个不等实数解x 1,x 2(x 1<x 2), 则x 1∈(1,x 0),x 2∈(x 0,+∞).要证x 1+x 2>2x 0,即证x 2>2x 0-x 1.又因为2x 0-x 1>x 0,而m (x )在区间(x 0,+∞)上单调递减, 所以可证m (x 2)<m (2x 0-x 1).由m (x 1)=m (x 2),即证m (x 1)<m (2x 0-x 1),即x 1ln x 1<2x 0-x 1e 2x 0-x 1. 记h (x )=x ln x-2x 0-xe 2x 0-x,1<x<x 0, 其中h (x 0)=0. 记φ(t )=t e t ,则φ'(t )=1-te t . 当t ∈(0,1)时,φ'(t )>0; 当t ∈(1,+∞)时,φ'(t )<0. 故φ(t )max =1e .而φ(t )>0,故0<φ(t )<1e . 因为2x 0-x>1, 所以-1e <-2x 0-xe 2x 0-x<0. 因此h'(x )=1+ln x+1e2x 0-x −2x 0-x e 2x 0-x>1-1e >0,即h (x )单调递增,故当1<x<x 0时,h (x )<h (x 0)=0, 即x 1ln x 1<2x 0-x 1e 2x 0-x 1, 故x 1+x 2>2x 0,得证.突破2 利用导数研究 与函数零点有关的问题1.(1)证明 由f (x )≤0可得,a ≥1+lnxx(x>0),令h (x )=1+lnx x ,则h'(x )=1x ·x -(1+lnx )x 2=-lnxx 2. 当x ∈(0,1)时,h'(x )>0,h (x )单调递增;当x ∈(1,+∞)时,h'(x )<0,h (x )单调递减,故h (x )在x=1处取得最大值,要使a ≥1+lnxx,只需a ≥h (1)=1,故a 的取值范围为[1,+∞). 显然,当a=1时,有1+lnxx≤1,即不等式ln x<x-1在(1,+∞)上成立,令x=n+1n >1(n ∈N *),则有ln n+1n <n+1n -1=1n ,所以ln 21+ln 32+…+ln n+1n <1+12+13+…+1n , 即1+12+13+…+1n >ln(n+1).(2)解 由f (x )=g (x ),可得1+lnxx -a=(x-1)2e x ,即a=1+lnxx -(x-1)2e x ,令t (x )=1+lnxx -(x-1)2e x , 则t'(x )=-lnx x 2-(x 2-1)e x ,当x ∈(0,1)时,t'(x )>0,t (x )单调递增;当x ∈(1,+∞)时,t'(x )<0,t (x )单调递减,故t (x )在x=1处取得最大值t (1)=1,又当x →0时,t (x )→-∞,当x →+∞时,t (x )→-∞,所以,当a=1时,方程f (x )=g (x )有一个实数根;当a<1时,方程f (x )=g (x )有两个不同的实数根; 当a>1时,方程f (x )=g (x )没有实数根. 2.(1)证明 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a=1时,F (x )=x e x -e x +1,所以F'(x )=x e x . 所以当x ∈(-∞,0)时,F'(x )<0; 当x ∈(0,+∞)时,F'(x )>0.所以F (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 所以当x=0时,F (x )取得最小值F (0)=0. 所以F (x )≥0,即f (x )≥g (x ).(2)解 设函数F (x )=f (x )-g (x )=x e x -a e x +a.当a>1时,F'(x )=(x-a+1)e x ,令F'(x )>0,即(x-a+1)e x >0,解得x>a-1; 令F'(x )<0,即(x-a+1)e x <0,解得x<a-1.所以F (x )在(-∞,a-1)上单调递减,在(a-1,+∞)上单调递增.所以当x=a-1时,F (x )取得最小值,即F (a-1)=a-e a-1. 令h (a )=a-e a-1,则h'(a )=1-e a-1.因为a>1,所以h'(a )<0.所以h (a )在(1,+∞)上单调递减. 所以h (a )<h (1)=0,所以F (a-1)<0.又因为F (a )=a>0,所以F (x )在区间(a-1,a )上存在一个零点. 所以在[a-1,+∞)上存在唯一的零点.又因为F (x )在区间(-∞,a-1)上单调递减,且F (0)=0, 所以F (x )在区间(-∞,a-1)上存在唯一的零点0.所以函数F (x )有且仅有两个零点,即方程f (x )=g (x )有两个实数根.3.解 (1)略.(2)设t=e x ,则f (t )=2at 2+2(a+1)t 的图像与y=4t+ln t 的图像只有一个交点,其中t>0,则2at 2+2(a+1)t=4t+ln t 只有一个实数解,即2a=2t+lntt 2+t只有一个实数解. 设g (t )=2t+lnt t 2+t,则g'(t )=-2t 2+t -2tlnt+1-lnt(t 2+t )2,g'(1)=0.令h (t )=-2t 2+t-2t ln t+1-ln t , 则h'(t )=-4t-1φ-2ln t-1.设y=1t +2ln t ,令y'=-1t 2+2t =2t -1t 2=0,解得t=12,则y ,y'随t 的变化如表所示0,1212,+∞y' - 0+则当t=12时,y=1t +2ln t 取最小值为2-2ln 2=2×(1-ln 2)>0. 所以-1t -2ln t<0, 即h'(t )=-4t-1t -2ln t-1<0.所以h (t )在(0,+∞)上单调递减. 因此g'(t )=0只有一个根,即t=1. 当t ∈(0,1)时,g'(t )>0,g (t )单调递增; 当t ∈(1,+∞)时,g'(t )<0,g (t )单调递减. 所以,当t=1时,g (t )有最大值为g (1)=1.由题意知,y=2a 与g (t )图像只有一个交点,而a ∈(0,+∞), 所以2a=1,即a=12,所以a 的取值集合为12.4.解 (1)函数f (x )的定义域为(-∞,0)∪(0,+∞).f'(x )=ax 2+bx -b x 2e x,由题知{f '(-1)=0,f (-1)=1e ,即{(a -2b )e -1=0,(-a+b )-1e -1=1e ,解得{a =2,b =1,所以函数f (x )=2x+1x e x (x ≠0). (2)f'(x )=2x 2+x -1x 2e x =(x+1)(2x -1)x 2e x. 令f'(x )>0得x<-1或x>12, 令f'(x )<0得-1<x<0或0<x<12.所以函数f (x )的单调递增区间是(-∞,-1),12,+∞, 单调递减区间是(-1,0),0,12.(3)根据题意易得g (x )=ax-b x -2a e x (a>0), 所以g'(x )=bx 2+ax-bx -a e x .由g (x )+g'(x )=0,得ax-bx -2a e x +bx 2+ax-bx -a e x =0.整理,得2ax 3-3ax 2-2bx+b=0.存在x 0∈(1,+∞),使g (x 0)+g'(x 0)=0成立,等价于存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立.设u (x )=2ax 3-3ax 2-2bx+b (x>1),则u'(x )=6ax 2-6ax-2b=6ax (x-1)-2b>-2b. 当b ≤0时,u'(x )>0,此时u (x )在(1,+∞)上单调递增, 因此u (x )>u (1)=-a-b.因为存在x 0∈(1,+∞),使2a x 03-3a x 02-2bx 0+b=0成立, 所以只要-a-b<0即可,此时-1<ba ≤0. 当b>0时,令u (x )=b , 解得x 1=3a+√9a 2+16ab4a>3a+√9a 24a=32>1,x 2=3a -√9a 2+16ab 4a(舍去),x 3=0(舍去),得u (x 1)=b>0.又因为u (1)=-a-b<0,于是u (x )在(1,x 1)上必有零点,即存在x 0>1,使2a x 03-3a x 02-2bx 0+b=0成立,此时ba >0.综上,ba 的取值范围为(-1,+∞). 5.解 (1)因为g (x )=2a3x 3+2(1-a )x 2-8x+8a+7,所以g'(x )=2ax 2+4(1-a )x-8,所以g'(2)=0. 所以a=0,即g (x )=2x 2-8x+7. g (0)=7,g (3)=1,g (2)=-1.所以g (x )在[0,3]上的值域为[-1,7].(2)①当a=0时,g (x )=2x 2-8x+7,由g (x )=0,得x=2±√22∈(1,+∞),此时函数y=h (x )有三个零点,符合题意.②当a>0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x=2. 当x ∈(0,2)时,g'(x )<0; 当x ∈(2,+∞)时,g'(x )>0.若函数y=h (x )有三个零点,则需满足g (1)>0且g (2)<0,解得0<a<316.③当a<0时,g'(x )=2ax 2+4(1-a )x-8=2a (x-2)x+2a . 由g'(x )=0,得x 1=2,x 2=-2a .(ⅰ)当-2a <2,即a<-1时,因为g (x )极大值=g (2)=163a-1<0,此时函数y=h (x )至多有一个零点,不符合题意.(ⅱ)当-2a =2,即a=-1时,因为g'(x )≤0,此时函数y=h (x )至多有两个零点,不符合题意. (ⅲ)当-2a >2,即-1<a<0时,若g (1)<0,函数y=h (x )至多有两个零点,不符合题意; 若g (1)=0,得a=-320;因为g -2a =1a 28a 3+7a 2+8a+83,所以g -2a >0,此时函数y=h (x )有三个零点,符合题意;若g (1)>0,得-320<a<0. 由g -2a =1a 28a 3+7a 2+8a+83.记φ(a)=8a3+7a2+8a+83,则φ'(a)>0.所以φ(a)>φ-320>0,此时函数y=h(x)有四个零点,不符合题意.综上所述,满足条件的实数a∈-220∪0,316.。

导数应用的综合

导数应用的综合

导数在研究函数中的应用一、自主梳理1.导数和函数单调性的关系:(1)若f ′(x )>0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )>0的解集与定义域的交集的对应区间为______区间;(2)若f ′(x )<0在(a ,b )上恒成立,则f (x )在(a ,b )上是______函数,f ′(x )<0的解集与定义域的交集的对应区间为______区间;(3)若在(a ,b )上,f ′(x )≥0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数,若在(a ,b )上,f ′(x )≤0,且f ′(x )在(a ,b )的任何子区间内都不恒等于零⇔f (x )在(a ,b )上为______函数. 2.函数的极值(1)判断f (x 0)是极值的方法一般地,当函数f (x )在点x 0处连续时,①如果在x 0附近的左侧________,右侧________,那么f (x 0)是极大值; ②如果在x 0附近的左侧________,右侧________,那么f (x 0)是极小值. (2)求可导函数极值的步骤 ①求f ′(x );②求方程________的根;③检查f ′(x )在方程________的根左右值的符号.如果左正右负,那么f (x )在这个根处取得________;如果左负右正,那么f (x )在这个根处取得________.3. 自我检测1.已知f (x )的定义域为R ,f (x )的导函数f ′(x )的图象如图所示,则( ) A .f (x )在x =1处取得极小值 B .f (x )在x =1处取得极大值C .f (x )是R 上的增函数D .f (x )是(-∞,1)上的减函数,(1,+∞)上的增函数 2.函数f (x )=(x -3)e x 的单调递增区间是 ( )A .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞)3.已知函数y =f (x ),其导函数y =f ′(x )的图象如图所示,则y =f (x ) ( ) A .在(-∞,0)上为减函数 B .在x =0处取极小值 C .在(4,+∞)上为减函数 D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件5.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.二、考点分析探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式; (2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点.(1)试确定常数a 和b 的值; (2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值例3 已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值; (2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数. (1)求f (x )的表达式; (2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.三、知识扩展分类讨论求函数的单调区间例 已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性; (2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不 等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准; (2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题.四、课堂小结1.求可导函数单调区间的一般步骤和方法: (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性. 2.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. 3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值. 4.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.五、课堂练习一、选择题1.设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( ) A .f (x )g (b )>f (b )g (x ) B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( ) A .1个B .2个C .3个D .4个3.若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( ) A .a >0 B .-1<a <0 C .a >1D .0<a <14.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax +3x ,x ∈R 有大于零的极值点,则 ( )A .a >-3B .a <-3C .a >-13D .a <-13二、填空题6.若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________. 三、解答题9.求函数f (x )=2x +1x 2+2的极值.10.已知a 为实数,且函数f (x )=(x 2-4)(x -a ).(1)求导函数f ′(x ); (2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.11.已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称. (1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.导数的综合应用一、自主梳理1.函数的最值(1)函数f (x )在[a ,b ]上必有最值的条件如果函数y =f (x )的图象在区间[a ,b ]上________,那么它必有最大值和最小值. (2)求函数y =f (x )在[a ,b ]上的最大值与最小值的步骤: ①求函数y =f (x )在(a ,b )内的________;②将函数y =f (x )的各极值与________比较,其中最大的一个是最大值,最小的一个是最小值.2.实际应用问题:首先要充分理解题意,列出适当的函数关系式,再利用导数求出该函数的最大值或最小值,最后回到实际问题中,得出最优解. 3. 自我检测1.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围为 ( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <122.设f ′(x )是函数f (x )的导函数,将y =f (x )和y =f ′(x )的图象画在同一个直角坐标系中,不可能正确的是3.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有 ( ) A .f (0)+f (2)<2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)4.函数f (x )=12e x (sin x +cos x )在区间⎣⎡⎦⎤0,π2上的值域为______________. 5.f (x )=x (x -c )2在x =2处有极大值,则常数c 的值为________.二、考点分析探究点一 求含参数的函数的最值 例1 已知函数f (x )=x 2e -ax(a >0),求函数在[1,2]上的最大值.变式迁移1 设a >0,函数f (x )=a ln xx.(1)讨论f (x )的单调性; (2)求f (x )在区间[a,2a ]上的最小值.探究点二 用导数证明不等式 例2 已知f (x )=12x 2-a ln x (a ∈R ),(1)求函数f (x )的单调区间; (2)求证:当x >1时,12x 2+ln x <23x 3.变式迁移2 设a 为实数,函数f (x )=e x -2x +2a ,x ∈R . (1)求f (x )的单调区间与极值;(2)求证:当a >ln 2-1且x >0时,e x >x 2-2ax +1.探究点三 实际生活中的优化问题例3 某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交a 元(3≤a ≤5)的管理费,预计当每件产品的售价为x 元(9≤x ≤11)时,一年的销售量为(12-x )2万件. (1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (a ).变式迁移3 甲方是一农场,乙方是一工厂.由于乙方生产需占用甲方的资源,因此甲方有权向乙方索赔以弥补经济损失并获得一定净收入,在乙方不赔付甲方的情况下,乙方的年利润x (元)与年产量t (吨)满足函数关系x =2 000t .若乙方每生产一吨产品必须赔付甲方S 元(以下称S 为赔付价格). (1)将乙方的年利润ω(元)表示为年产量t (吨)的函数,并求出乙方获得最大利润的年产量;(2)甲方每年受乙方生产影响的经济损失金额y =0.002t 2(元),在乙方按照获得最大利润的产量进行生产的前提下,甲方要在索赔中获得最大净收入,应向乙方要求的赔付价格S是多少?三、知识扩展转化与化归思想的应用例已知函数f(x)=(x+1)ln x-x+1.(1)若xf′(x)≤x2+ax+1,求a的取值范围;(2)证明:(x-1)f(x)≥0.【突破思维障碍】本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查了考生综合运用数学知识解决问题的能力以及计算能力,同时也考查了函数与方程思想、化归与转化思想.通过转化,本题实质还是利用单调性求最值问题.四、课堂小结1.求极值、最值时,要求步骤规范,含参数时,要分类讨论参数的范围.若已知函数单调性求参数范围时,隐含恒成立思想.2.利用导数解决生活中的优化问题的一般步骤:(1)分析实际问题中各变量之间的关系,列出实际问题的数学模型,写出相应的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数的区间端点对应的函数值和极值,确定最值;(4)回到实际问题,作出解答.五、课堂练习一、选择题1.已知曲线C:y=2x2-x3,点P(0,-4),直线l过点P且与曲线C相切于点Q,则点Q的横坐标为() A.-1 B.1 C.-2 D.22.已知函数y=f(x),y=g(x)的导函数的图象如图所示,那么y=f(x),y=g(x)的图象可能是()3.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能是( )4.函数f (x )=-x 3+x 2+tx +t 在(-1,1)上是增函数,则t 的取值范围是 ( ) A .t >5 B .t <5 C .t ≥5D .t ≤55.若函数f (x )=sin x x ,且0<x 1<x 2<1,设a =sin x 1x 1,b =sin x 2x 2,则a ,b 的大小关系是 ( )A .a >bB .a <bC .a =bD .a 、b 的大小不能确定二、填空题6.在直径为d 的圆木中,截取一个具有最大抗弯强度的长方体梁,则矩形面的长为________.(强度与bh 2成正比,其中h 为矩形的长,b 为矩形的宽)7.要建造一个长方体形状的仓库,其内部的高为3 m ,长和宽的和为20 m ,则仓库容积的最大值为________m 3. 8.若函数f (x )=4xx 2+1在区间(m,2m +1)上是单调递增函数,则实数m 的取值范围为________. 三、解答题9.已知函数f (x )=12(1+x )2-ln(1+x ).(1)求f (x )的单调区间;(2)若x ∈[1e -1,e -1]时,f (x )<m 恒成立,求m 的取值范围.10.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:C (x )=k3x +5 (0≤x ≤10),若不建隔热层,每年能源消耗费用为8万元,设f (x )为隔热层建造费用与20年的能源消耗费用之和.(1)求k 的值及f (x )的表达式; (2)隔热层修建多厚时,总费用f (x )达到最小,并求最小值.11.设函数f (x )=ln x ,g (x )=ax +bx ,函数f (x )的图象与x 轴的交点也在函数g (x )的图象上,且在此点有公共切线.(1)求a 、b 的值;(2)对任意x >0,试比较f (x )与g (x )的大小.定积分及其简单的应用一、自主梳理1.定积分的几何意义:如果在区间[a ,b ]上函数f (x )连续且恒有f (x )≥0,那么函数f (x )在区间[a ,b ]上的定积分的几何意义是直线________________________所围成的曲边梯形的________. 2.定积分的性质 (1) ()ba kf x dx ⎰=__________________ (k 为常数);(2) ()()12ba f x f x dx ±⎡⎤⎣⎦⎰=_____________________________________;(3)()baf x dx ⎰=_______________________________________.3.微积分基本定理一般地,如果f (x )是区间[a ,b ]上的连续函数,并且F ′(x )=f (x ),那么()()()baf x dx F a F b =-⎰,这个结论叫做________________________,为了方便,我们常把()()F a F b -记成___________________________,即()()()()bb a af x dx F x F a F b ==-⎰.4.定积分在几何中的应用(1)当x ∈[a ,b ]且f (x )>0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________. (2)当x ∈[a ,b ]且f (x )<0时,由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积S =__________. (3)当x ∈[a ,b ]且f (x )>g (x )>0时,由直线x =a ,x =b (a ≠b )和曲线y =f (x ),y =g (x )围成的平面图形的面积S =______________________.(4)若f (x )是偶函数,则()()02aa a f x dx f x dx -=⎰⎰;若f (x )是奇函数,则()0aa f x dx -=⎰. 5.定积分在物理中的应用(1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s ,等于其速度函数v =v (t )[v (t )≥0]在时间区间[a ,b ]上的定积分,即_____.(2)变力做功公式一物体在变力F (x )(单位:N)的作用下做直线运动,如果物体沿着与F 相同的方向从x =a 移动到x =b (a <b )(单位:m),则力F 所做的功W =__________________________.6.自我检测1.计算定积分503xdx ⎰的值为 ( )A.752 B .75 C.252 D .252.定积分()12011x x dx ⎡⎤---⎢⎥⎣⎦⎰等于( )A.π-24 B.π2-1 C.π-14 D.π-123.如右图所示,阴影部分的面积是( )A .2 3B .2- 3 C.323 D.3534.4210dx x =⎰等于 ( )A .-2ln 2B .2ln 2C .-ln 2D .ln 25.若由曲线y =x 2+k 2与直线y =2kx 及y 轴所围成的平面图形的面积S =9,则k =________. 二、考点分析探究点一 求定积分的值例1 计算下列定积分:(1)2111()e x dx x x ++⎰; (2)20sin 2cos )x x dx π-⎰(;(3) ()02sin 32x x e dx π-+⎰; (4) 2201x dx -⎰;变式迁移1计算下列定积分:(1) 20sin xdx π⎰; (2) 20sin xdx π⎰.探究点二 求曲线围成的面积例2 计算由抛物线y =12x 2和y =3-(x -1)2所围成的平面图形的面积S .变式迁移2 计算曲线y =x 2-2x +3与直线y =x +3所围图形的面积.探究点三 定积分在物理中的应用例3 一辆汽车的速度-时间曲线如图所示,求此汽车在这1 min 内所行驶的路程.变式迁移3A、B两站相距7.2 km,一辆电车从A站开往B站,电车开出t s后到达途中C点,这一段速度为1.2t m/s,到C点时速度达24 m/s,从C点到B点前的D点以匀速行驶,从D点开始刹车,经t s后,速度为(24-1.2t)m/s,在B点恰好停车,试求:(1)A、C间的距离;(2)B、D间的距离;(3)电车从A站到B站所需的时间.四、知识扩展函数思想的应用例在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.【突破思维障碍】本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.四、课堂小结1.定积分()ba f x dx ⎰的几何意义就是表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如2204x dx π-=⎰ (半径为2的14个圆的面积),22242x dx π--=⎰。

导数函数综合应用(含答案)

导数函数综合应用(含答案)

导数函数综合应用一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有()A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是()A.[1,2)B.C.D.3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有()A.B.C.D.4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是()A.[)B.[]C.[﹣)D.[﹣]5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是()A.2B.C.D.46.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是()A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣1014.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.21.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.导数函数综合应用参考答案与试题解析一.选择题(共6小题)1.定义在R上的函数y=f(x),满足f(4﹣x)=f(x),(x﹣2)f′(x)<0,若x1<x2,且x1+x2>4,则有(B)A.f(x1)<f(x2)B.f(x1)>f(x2)C.f(x1)=f(x2)D.不确定【解答】解:由题意f(4﹣x)=f(x),可得出函数关于x=2对称,又(x﹣2)f′(x)<0,得x>2时,导数为负,x<2时导数为正,即函数在(﹣∞,2)上是增函数,在(2,+∞)上是减函数又x1<x2,且x1+x2>4,下进行讨论若2<x1<x2,显然有f(x1)>f(x2)若x1<2<x2,有x1+x2>4可得x1>4﹣x2,故有f(x1)>f(4﹣x2)=f(x2)综上讨论知,在所给的题设条件下总有f(x1)>f(x2)2.定义在(1,+∞)上的函数f(x)满足下列两个条件:(1)对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立;(2)当x∈(1,2]时,f(x)=2﹣x;记函数g(x)=f(x)﹣k(x﹣1),若函数g(x)恰有两个零点,则实数k的取值范围是(C)A.[1,2)B.C.D.【解答】解:因为对任意的x∈(1,+∞)恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2﹣x 所以f(x)=﹣x+2b,x∈(b,2b].由题意得f(x)=k(x﹣1)的函数图象是过定点(1,0)的直线,如图所示红色的直线与线段AB相交即可(可以与B点重合但不能与A点重合)所以可得k的范围为3.设函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,且f(x+2)=﹣f(x),则有(A)A.B.C.D.【解答】解:根据题意,函数f(x)满足f(x+2)=﹣f(x),当x=﹣时,有f()=﹣f(﹣)=f(),函数f(x)是定义在实数集上的奇函数,在区间[﹣1,0)上是增函数,则f(x)在区间(0,1]上是增函数,则有f()<f()<f(1),则有f()<f()<f(1),4.已知函数f(x)=,若函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,则实数k的取值范围是(A)A.[)B.[]C.[﹣)D.[﹣]【解答】解:函数y=f(x)+|x﹣1|﹣kx在定义域内有且只有三个零点,即为方程f(x)+|x﹣1|=kx在[﹣3,+∞)内有3个不等实根,可令g(x)=f(x)+|x﹣1|=,作出g(x)的图象(如右),直线y=kx,当k=0时,y=g(x)和y=0显然有3个交点,符合题意;当直线y=kx与y=x2+3x+1相切,可得x2+(3﹣k)x+1=0,△=(3﹣k)2﹣4=0,解得k=1(k=5舍去),由k=1时,y=g(x)和y=x有两个交点,可得0≤k<1时,符合题意;当k<0时,且直线y=kx经过点(﹣3,1)时,直线y=kx与y=g(x)有3个交点,此时k=﹣,由y=kx绕着原点旋转,可得﹣≤k<0,综上可得,k的范围是[﹣,1).5.设函数f(x)=,若对任意给定的y∈(2,+∞),都存在唯一的x∈R,满足f(f(x))=2a2y2+ay,则正实数a的最小值是(C)A.2B.C.D.4【解答】解:函数f(x)=的值域为R.∵f(x)=2x,(x≤0)的值域为(0,1];f(x)=log2x,(x>0)的值域为R.∴f(x)的值域为(0,1]上有两个解,要想f(f(x))=2a2y2+ay在y∈(2,+∞)上只有唯一的x∈R满足,必有f(f(x))>1 (2a2y2+ay>0).∴f(x)>2,即log2x>2,解得:x>4.当x>4时,x与f(f(x))存在一一对应的关系.∴问题转化为2a2y2+ay>1,y∈(2,+∞),且a>0.∴(2ay﹣1)(ay+1)>0,解得:y>或者y<﹣(舍去).∴≤2,得a.6.已知函数f(x)=2mx2﹣2(4﹣m)x+1,g(x)=mx,若对于任一实数x,f(x)与g(x)至少有一个为正数,则实数m的取值范围是(B)A.(0,2)B.(0,8)C.(2,8)D.(﹣∞,0)【解答】解:当m≤0时,当x接近+∞时,函数f(x)=2mx2﹣2(4﹣m)x+1与g(x)=mx均为负值,显然不成立当x=0时,因f(0)=1>0当m>0时,若,即0<m≤4时结论显然成立;若,时只要△=4(4﹣m)2﹣8m=4(m﹣8)(m﹣2)<0即可,即4<m<8则0<m<8二.填空题(共1小题)7.已知函数f(x)=,若关于x的方程f(x)=3恰有两个互异的实数解,则实数a的取值范围是(﹣∞,6).【解答】解:函数f(x)=,当x≥1时,方程f(x)=3,可得lnx+1=3,解得x=e2,函数有一个零点;x<1时,函数只有一个零点,即x2﹣4x+a=3,在x<1时只有一个解,因为y=x2﹣4x+a ﹣3开口向上,对称轴为x=2,x<1时,函数是减函数,所以f(1)<3,可得﹣3+a<3,解得a<6.三.解答题(共19小题)8.已知函数f(x)=﹣alnx(a∈R).(1)讨论f(x)的单调性;(2)若存在实数x0=[1,e],使得f(x0)<0,求正实数a的取值范围.【解答】解:(1)由f(x)=﹣alnx(a∈R),得f′(x)=x﹣=(x>0).当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增;当a>0时,由f′(x)>0,得x>,由f′(x)<0,得0<x<.∴f(x)在(0,)上单调递减,在(,+∞)上单调递增;(2)由(1)知,当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增.①当,即0<a≤1时,f(x)在[1,e]上单调递增,>0,不合题意;②当1<<e,即1<a<e2时,f(x)在[1,]上单调递减,在[,e]上单调递增,由<0,解得e<a<e2;③当≥e,即a≥e2时,f(x)在[1,e]上单调递减,由<0,解得a≥e2.综上所述,a的取值范围为(e,+∞).9.已知函数f(x)=x2﹣(a+)x+lnx,其中a>0.(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的方程;(Ⅱ)当a≠1时,求函数f(x)的单调区间;(Ⅲ)若a∈(0,),证明对任意x1,x2∈[,1](x1≠x2),<恒成立.【解答】(Ⅰ)解:当a=2时,f(x)=,f′(x)=,∴f′(1)=,∵f(1)=.∴切线方程为:y+2=(x﹣1),整理得:x+2y+3=0;(Ⅱ)f′(x)x﹣=(x>0),令f′(x)=0,解得:x=a或x=.①若0<a<1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,a)和()内是增函数,在(a,)内是减函数;②若a>1,,当x变化时,f′(x),f(x)的变化情况如表:∴f(x)在区间(0,)和(a,+∞)内是增函数,在(,+∞)内是减函数;(Ⅲ)∵0<a<,∴f(x)在[,1]内是减函数,又x1≠x2,不妨设0<x1<x2,则f(x1)>f(x2),.于是等价于,即.令(x>0),∵g′(x)=在[,1]内是减函数,故g′(x)≤g′()=2﹣(a+).从而g(x)在[,1]内是减函数,∴对任意,有g(x1)>g(x2),即,∴当,对任意,恒成立.10.已知函数f(x)=lnx﹣ax2+(2﹣a)x.(1)若f′(1)=﹣6,求函数f(x)在(1,f(1))处的切线;(2)设a>0,证明:当0<x<时,f(+x)>f(﹣x);(3)若函数f(x)的图象与x轴交于A,B两点,线段AB中点的横坐标为x0,证明:f′(x0)<0.【解答】解:(1)函数f(x)的定义域为(0,+∞),∵f(x)=lnx﹣ax2+(2﹣a)x,∴f'(x)=﹣2ax+2﹣a==﹣.f′(﹣1)=a+1=﹣6,解得a=﹣7,则函数f(x)在(1,f(1))处的切线斜率为k=﹣6,切点为(1,16),则所求切线的方程为y﹣16=﹣6(x ﹣1),即为6x+y﹣22=0;(2)证明:设函数g(x)=f(+x)﹣f(﹣x),则g(x)=ln(1+ax)﹣ln(1﹣ax)﹣2ax,g′(x)=+﹣2a=,当x∈(0,)时,g′(x)>0,g(x)递增,而g(0)=0,即有g(x)>0,故当0<x<时,f(+x)>f(﹣x).(3)证明:当a≤0时,f′(x)>0恒成立,因此f(x)在(0,+∞)单调递增,即有函数y=f(x)的图象与x轴至多有一个交点,故a>0,从而f(x)的最大值为f(),且f()>0,不妨设A(x1,0),B(x2,0),0<x1<x2,则0<x1<<x2,由(2)得,f(﹣x1)=f(+﹣x1)>f(x1)=f(x2)=0,又f(x)在(,+∞)单调递减,∴﹣x1<x2,于是x0=,当x∈(,+∞)(a>0)时,f′(x)<0,则f′(x0)<0成立.11.已知a≠0,函数f(x)=|e x﹣e|+e x+ax(1)讨论f(x)的单调性(2)若对∀x∈(﹣,+∞),不等式f(x)≥恒成立,求a的取值范围(3)已知当a<﹣e时,函数f(x)有两个零点x1,x2(x1<x2),求证:f(x1x2)>a+e【解答】解:(1)函数f(x)=|e x﹣e|+e x+ax=,∴f′(x)=,当a>0时,f(x)在R上是增函数;当a<0时,x≥1时,令f′(x)>0,⇒e x>﹣⇒x>ln(﹣),①ln(﹣)≤1,即﹣2e≤a<0,f(x)在(﹣∞,1)是减函数;在(1,+∞)是增函数;②ln(﹣)>1,即a<﹣2e,f(x)在(﹣∞,ln(﹣))是减函数;在(ln(﹣),+∞)是增函数;(2)函数f(x)=|e x﹣e|+e x+ax=,若x∈(﹣,1),ax+e.∴可得﹣,当x∈[1,+∞)时,,即2a,设g(x)=,g′(x)=,所以g(x)在[1,+∞)上是减函数,所以g(x)max=g(1)=﹣e,所以a.综上.(3)证明:∵f(1)=a+e,∴不等式f(x1x2)>a+e转化为f(x1x2)>f(1),∵a<﹣e,∴f(1)=a+e<0,∴f(x)的两个零点x1<1<x2,∴,∴,∴x1x2=,令h(x)=,h′(x)=,令t(x)=e x﹣xe x﹣e,t′(x)=(1﹣x)e x<0,∴t(x)在(1,+∞)上是减函数,t(x)<t(1)=0,即h′(x)<0,h(x)在(1,+∞)是减函数,h(x)<h(1)=1,即x1x2<1,∵a<﹣e时,f(x)在(﹣∞,1)是减函数,∴f(x1x2)>a+e.12.已知函数f(x)=a(x﹣1)e x(a>0),g(x)=﹣cos x.(1)求函数f(x)的单调区间;(2)若对于任意的实数x1,x2∈[0,],(其中x1≠x2),都有|f(x1)﹣f(x2)|>|g(x1)﹣g(x2)|恒成立求实数a的取值范围.【解答】解:(1)函数f(x)的定义域为(﹣∞,+∞),f′(x)=a[e x+(x﹣1)e x]=ax•e x.当x=0时,f′(x)=0;当x<0时,f′(x)<0;当x>0时,f′(x)>0,所以函数f(x)的单调减区间为(﹣∞,0),单调增区间为(0,+∞).(2)不妨设x1<x2,因为g(x)在[0,]上是增函数,所以g(x1)<g(x2),即g(x1)﹣g(x2)<0,由(1)得f(x)在[0,]上是增函数,所以f(x1)<f(x2),即f(x1)﹣f(x2)<0.由题意,得f(x2)﹣f(x1)>g(x2)﹣g(x1),即f(x2)﹣g(x2)>f(x1)﹣g(x1).令h(x)=f(x)﹣g(x)=a(x﹣1)e x+cos x在[0,]上是增函数,则h′(x)=axe x﹣sin x≥0对任意的x恒成立.设F(x)=(0),则F(x)≤0恒成立,.令,则,从而G(x)在[0,]上是减函数,所以,即.当a≥1时,F(x)≤0′,当且仅当a=1,x=0时取等号,所以F(x)在上是减函数,所以当x时,F(x)≤F(0)=0,故a≥1满足题意.当0<a<1时,F′(0)=1﹣a>0,F.由零点存在定理,存在,使得F′(x0)=0.因为G(x)在(0,)上是减函数,所以F′(x)=G(x)﹣a在(0,)上是减函数,所以0<x<x0时,F′(x)>F′(x0)=0,所以F(x)在(0,x0)上是增函数,所以当x∈(0,x0)(这里(0,x0)⊊)时,F(x)>F(0)=0.所以0<a<1不满足题意,综上,实数a的取值范围是[1,+∞).13.已知函数f(x)=a+2lnx﹣ax(a>0),(1)求f(x)的最大值φ(a);(2)若f(x)≤0恒成立,求a的值;(3)在(2)的条件下,设g(x)=在(a,+∞)上的最小值为m,求证:﹣11<f(m)<﹣10【解答】解:(1)∵f(x)=a+2lnx﹣ax(a>0),∴f′(x)=(a>0),由f′(x)>0得0<x<;f′(x)<0得x>;所以f(x)在(0,)上单调递增,在(,+∞)上单调递减.故f(x)max=f()=a﹣2﹣2lna+2ln2即φ(a)=a﹣2﹣2lna+2ln2(a>0)(2)要使f(x)≤0 成立必须φ(a)=a﹣2﹣2lna+2ln2≤0.因为φ′(a)=,所以当0<a<2 时,φ′(a)<0;当a>2 时,φ′(a)>0.所以φ(a)在(0,2)上单调递减,在(2,+∞)上单调递增.∴φ(a)min=φ(2)=0,所以满足条件的a只有2,即a=2.(3)由(2)知g(x)=,∴g′(x)=令u(x)=x-2lnx﹣4,则u′(x)=>0,u(x)是(2,+∞)上的增函数;又u(8)<0,u(9)>0,所以存在x0∈(8,9)满足u(x0)=0,即2lnx0=x0﹣4,且当x∈(2,x0)时,u(x)<0,g′(x)<0;当x∈(x0,+∞)时,u(x)>0,g′(x)>0;所以g(x)在(2,x0)上单调递减;在(x0,+∞)上单调递增.所以g(x)min=g(x0)===x0,即m=x0.所以f(m)=f(x0)=2+2lnx0﹣2x0=x0﹣2∈(﹣11,﹣10),即﹣11<f(m)<﹣10.14.已知函数f(x)=(x2﹣mx)e x(e为自然对数的底数).(Ⅰ)求函数f(x)的单调区间;(Ⅱ)若m=2,2n+1≥0,证明:关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.【解答】解:(Ⅰ)依题意x∈R,f′(x)=(x2﹣mx+2x﹣m)e x=[x2+(2﹣m)x﹣m]e x令y=x2+(2﹣m)x﹣m,则△=(2﹣m)2+4m=4+m2>0令f′(x)=0,则x2+(2﹣m)x﹣m=0解得x=结合二次函数图象可知:∴f(x)的单调递增区间为(﹣∞,)和(,+∞)单调递减区间为(,)(Ⅱ)令g(x)=nf(x)+1﹣e x=n(x2﹣2x)e x﹣e x+1当x∈(﹣∞,0]时,x2﹣2x≥0而2n+1≥0⇔n≥﹣故n(x2﹣2x)e x≥﹣(x2﹣2x)e x∴g(x)≥﹣(x2﹣2x)e x﹣e x+1令h(x)=﹣(x2﹣2x)e x﹣e x+1,x∈(﹣∞,0]∴h′(x)=﹣x2e x≤0故函数h(x)在(﹣∞,0]上单调递减,则h(x)≥h(0)=0则任意的x∈(﹣∞,0],g(x)≥h(x)≥0∴关于x的不等式nf(x)+1≥e x在(﹣∞,0]上恒成立.15.已知函数f(x)=(其中e是自然对数的底数),g(x)=1﹣ax2(a∈R).(Ⅰ)求函数f(x)的极值;(Ⅱ)设h(x)=f(x)﹣g(x),若a满足0<a<且ln2a+1>0,试判断方程h(x)=0的实数根个数,并说明理由.【解答】解:(Ⅰ)易知,当x<0时,f′(x)>0,此时f(x)单调递增;当x>0时,f′(x)<0,此时f(x)单调递减,所以f(x)极大值=f(0)=1,但无极小值.(Ⅱ)因为,所以.导数因为,所以,于是,令h′(x)=0,此时,当x<0时,f′(x)<0,此时f(x)单调递减;当时,f′(x)>0,此时f(x)单调递增;所以.因为,所以,,又函数h(x)在R上连续,故h(x)有一个零点0,且在上也有一个零点;综上,方程h(x)=0有2个实数根.16.已知函数f(x)=ax2﹣lnx.(1)求函数f(x)的单调区间;(2)若函数f(x)有两个零点x1,x2,求a的取值范围,并证明:x1•x2>1.【解答】解:(1)∵函数f(x)=ax2﹣lnx.定义域为(0,+∞)∴f′(x)=2ax﹣=①当a≤0时,f′(x)=<0恒成立,∴f(x)在(0,+∞)上为减函数.②当a>0时,令f′(x)=<0,解得0<x<令f′(x)=>0,解得x>∴f(x)=ax2﹣lnx在(0,)上为减函数,在(,+∞)上为增函数综上a≤0时f(x)的单调减区间为(0,+∞)a>0时f(x)的单调减区间为(0,),增区间是(,+∞).(2)∵函数f(x)有两个零点x1,x2,由(1)知x=是f(x)的最小值点,∴f(x)在(0,+∞)上的最小值f()=a•()2﹣ln<0时,f(x)有两个零点x1,x2∴解得0<a<要证x1•x2>1⇔要证lnx1•x2>ln1⇔要证lnx1+lnx2>0∵函数f(x)有两个零点x1,x2,不防设0<x1<<x2则f(x1)=ax12﹣lnx1=0 ①f(x2)=ax22﹣lnx2=0 ②①+②得:lnx1+lnx2=a(x12+x22),而a(x12+x22)>0,∴lnx1+lnx2>0即x1•x2>1得证.17.己知p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2(1)分别求出条件p,q中的实数m的取值范围;(2)甲同学认为“p是q的充分条件”,乙同学认为“p是q的必要条件”,请判断两位同学的说法是否正确,并说明理由.【解答】解:(1)p:实数m使得函数f(x)=lnx(m﹣2)x2﹣x在定义域内为增函数:则有在R上恒成立.∴m﹣2=()2﹣∴m.q:实数m使得函数g(x)=mx2+(m+1)x﹣5在R上存在两个零点x1,x2,且x1<1<x2则有m•f(1)<0⇒m(m﹣2)<0⇒0<m<2.(2)由(1)可得p:∴m.,q:0<m<2.∵{m|m}⊈{|0<m<2}{m|m}⊉{|0<m<2}∴p是q的既不充分也不必要条件.故两位同学都错.18.已知函数f(x)=In+cos x﹣|x|.(Ⅰ)求证:函数f(x)在[0,+∞)上单调递减;(Ⅱ)若f(2x﹣3)+π+1+ln(2+3π2)<0,求x的取值范围.【解答】(1)证明:∵函数f(x)=In+cos x﹣|x|.∴x∈[0,+∞)时f(x)=﹣ln(2+3x2)+cos x﹣x ∴f′(x)=﹣sin x﹣1,∴x∈[0,+∞)时f′(x)=﹣sin x﹣1<0,∴函数f(x)在[0,+∞)上单调递减;(2)∵函数f(x)=In+cos x﹣|x|.定义域为R∴f(﹣x)=)=﹣ln(2+3x2)+cos(﹣x)﹣|﹣x|=﹣ln(2+3x2)+cos x﹣x=f(x)∴f(x)是偶函数.由(1)知f(x)在[0,+∞)上单调递减;∴f(x)在(﹣∞,0]上单调递增;又f(2x﹣3)+π+1+ln(2+3π2)<0⇔f(2x﹣3)<f(π)∴|2x﹣3|>π⇔2x﹣3>π或2x﹣3<﹣π解得x>或x<∴x的取值范围为:(﹣∞,)∪(,+∞)19.已知函数f(x)=lnx﹣sin(x﹣1),f′(x)为f(x)的导函数.证明:(1)f′(x)在区间(0,2)存在唯一极小值点;(2)f(x)有且仅有2个零点.【解答】解:(1)令g(x)=f′(x)=,,当x∈(0,1)时,g′(x)<0恒成立,当x∈(1,2)时,>0.∴g′(x)在(1,2)递增,.故存在a∈(1,2)使得,x∈(1,a)时g′(x)<0,x∈(a,2)时,g′(x)>0.综上,f′(x)在区间(0,2)存在唯一极小值点x=a.(2)由(1)可得x∈(0,a)时,g′(x)<0,g(x)单调递减,x∈(a,2)时,g′(x)<0,g(x)单调递增.且g(1)=0,g(2)=.故g(x)的大致图象如下:当x∈(2,3)时,sin(x﹣1)∈(sin1,sin2),sin(x﹣1)>sin30°∴此时g′(x)>0,g(x)单调递增,而g(3)=﹣cos2>0.故存在∈(2,3),使得g(m)=0故在x∈(0,3)上,g(x)的图象如下:综上,x∈(0,1)时,g(x)<0,x∈(1,m)时,g(x)<0,x∈(m,3)时,g(x)>0.∴f(x)在(0,1)递增,在(1,m)递减,在(m,3)递增,而f(1)=0,f(3)=ln3﹣sin2>0,又当x>3时,lnx>1,f(x)>0恒成立.故在(0,+∞)上f(x)的图象如下:∴f(x)有且仅有2个零点.20.已知函数f(x)=te2x+(t+2)e x﹣1,t∈R.(Ⅰ)当t=﹣1时,求f(x)的单调区间与极值;(Ⅱ)当t>0时,若函数g(x)=f(x)﹣4e x﹣x+1在R上有唯一零点,求t的值.【解答】解:(Ⅰ)当t=﹣1时,f(x)=﹣e2x+e x﹣1,则f′(x)=﹣2e2x+e x=e x(1﹣2e x)令f′(x)=0,解得x=﹣ln2∴f(x)的单调递增区间是(﹣∞,﹣ln2),单调递减区间是(﹣ln2,+∞)∴f(x)的极大值是f(﹣ln2)=﹣,无极小值.(Ⅱ)当t>0时,g(x)=f(x)﹣4e x﹣x+1=te2x+(t﹣2)e x﹣x∴g′(x)=2te2x+(t﹣2)e x﹣1=(te x﹣1)(2e x+1)=0,解得x=﹣lnt∴g(x)的单调递减区间是(﹣∞,﹣lnt),单调递增区间是(﹣lnt,+∞)∴g(x)的极小值是g(﹣lnt)∴g(﹣lnt)=0,即lnt﹣+1=0时,能满足题意.令F(t)=lnt﹣+1,则F′(t)=+>0∴F(t)=lnt﹣+1在(0,+∞)上单调递增,唯有t=1时,F(1)=0∴t=121.已知函数f(x)=e x﹣x2﹣ax+b(e为自然对数的底数).(Ⅰ)若a≥1,判断f(x)极值点个数;(Ⅱ)若f(x)≥f′(x)在x∈[﹣1,1]上恒成立,求a+b的取值范围.【解答】解:(Ⅰ)∵f′(x)=e x﹣x﹣a,x∈R,f″(x)=e x﹣1可得函数f′(x)在(﹣∞,0)上单调递减;在(0,+∞)单调递增,f′(x)min=f′(0)=1﹣a当a>1时,1﹣a<0,且f′(﹣a)=e﹣a>0,取b>0,使得b>ln(b+a),∴f′(b)=e b﹣(b+a)>b+a﹣(b+a)=0即函数f′(x)的图象与x轴有两个交点,此时f(x)极值点个数为2,;当a=1时,f′(x)≥0,此时f(x)极值点个数为0;(Ⅱ)f(x)≥f′(x)在x∈[﹣1,1]上恒成立⇔e x﹣x2﹣ax+b≥e x﹣x﹣a在x∈[﹣1,1]上恒成立⇔a+b≥在x∈[﹣1,1]上恒成立.令h(x)=①当1﹣a≥0时,h(x).∴a+b②当1﹣a<0时,h(x)max=h(1)=a﹣综上得,a+b22.设函数f(x)=lnx﹣a2x+2a(a∈R)(1)若函数f(x)在上递增,在上递减,求实数a的值.(2)讨论f(x)在(1,+∞)上的单调性;(3)若方程x﹣lnx﹣m=0有两个不等实数根x1,x2,求实数m的取值范围,并证明x1x2<1.【解答】解:(1)由于函数函数f(x)在上递增,在上递减,由单调性知,是函数的极大值点,无极小值点.所以∵故,经验证成立.(2)∵f(x)=lnx﹣a2x+2a,∴,①当a=0时,在(1,+∞)上单调递增.②当a2≥1,即a≤﹣1或a≥1时,f'(x)<0,∴f(x)在(1,+∞)上单调递减.③当﹣1<a<1且a≠0时,由f'(x)=0得.令f'(x)>0得;令f'(x)<0得.∴f(x)在上单调递增,在上单调递减.综上,当a=0时,f(x)在(1,+∞)上递增;当a≤﹣1或a≥1时,f(x)在(1,+∞)上递减;当﹣1<a<1且a≠0时,f(x)在上递增,在上递减.(3)令h(x)=x﹣lnx(x>0),g(x)=m,当x∈(0,1)时,,h(x)=x﹣lnx(x>0)单调递减;当x∈(1,+∞)时,,h(x)=x﹣lnx(x>0)单调递增;故h(x)在x=1处取得最小值,h(1)=1又当x→0,h(x)→+∞;x→+∞,h(x)→1,∴m∈(1,+∞)不妨设x1<x2,则有0<x1<1<x2,,要证x1x2<1⇔即证⇔即证h(x1)>h()∵h(x1)=h(x2)=m,∴=令,∴p(x)在(1,+∞)上单调递增,故p(x)>p(1)=0即>0,∴∴x1x2<1 得证23.已知函数f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1.(Ⅰ)设﹣1≤a≤1,曲线y=f(x)在点(1,f(1))处的切线在y轴上的截距为b,求b的最小值;(Ⅱ)若f(x)只有一个零点x0,且x0<0,求a的取值范围.【解答】解:(Ⅰ)f(x)=2x3﹣3(a﹣1)x2﹣6ax+a2+1的导数为f′(x)=6x2﹣6(a﹣1)x﹣6a,f(x)在点(1,f(1))处的切线斜率为6﹣6(a﹣1)﹣6a=12﹣12a,切点为(1,6﹣9a+a2),可得切线方程为y﹣(6﹣9a+a2)=(12﹣12a)(x﹣1),由x=0,可得b=a2+3a﹣6=(a+)2﹣,由﹣1≤a≤1,可得b在[﹣1,1]上递增,可得b的最小值为﹣8;(Ⅱ)若f(x)只有一个零点x0,且x0<0,可得f(0)>0,f′(x)=6x2﹣6(a﹣1)x﹣6a,由f′(x)=0,可得x=﹣1或x=a,由f(﹣1)<0,且f(a)<0,即为a2+3a+2<0,且a3+2a2﹣1>0,解得<a<﹣1.24.设函数f(x)=x﹣﹣alnx(a∈R,a>0).(Ⅰ)讨论f(x)的单调性;(Ⅱ)若f(x)有两个极值点x1和x2,记过A(x1,f(x1)),B(x2,f(x2))的直线的斜率为k.问:是否存在a,使k=2﹣a?若存在,求出a的值;若不存在,请说明理由.【解答】解:(1)显然定义域为(0,+∞),∴f′(x)=1+﹣=,(a∈R,a>0).令g(x)=x2﹣ax+2,其判别式△=a2﹣8,①当0<a时,△≤0,f′(x)≥0,f(x)在(0,+∞)上单调递增,②当a时,△>0,令f′(x)=0,得x1=,x2=,∵在(0,x1)上f′(x)>0,在(x1,x2)上f′(x)<0,在(x2,+∞)上f′(x)>0,∴f(x)在(0,x1),(x2,+∞)上为增函数,在(x1,x2)上为减函数.(2)由(1)知,a,∴f(x1)﹣f(x2)=(x1﹣x2)+﹣a(lnx1﹣lnx2),∴k==1+﹣a,∵x1x2=2,∴k=2﹣a,假设存在a,使k=2﹣a,则2﹣a=2﹣a,∴=1,∴lnx1﹣lnx2=x1﹣x2,即x2﹣﹣2lnx2=0(•),其中x2>1,令h(t)=t﹣﹣2lnt,∴h′(t)=1+﹣==>0,∴h(t)在(1,+∞)上是增函数,∴h(t)>h(1)=0,与(•)矛盾.故不存在a使k=2﹣a成立.25.已知.(1)讨论函数f(x)的单调区间;(2)若f(x)存在极值且f(x)≥0,求实数a的取值范围;(3)求证:当x>1时,.【解答】解:(1)显然定义域为(0,+∞),∵f′(x)=x﹣=,①当a≤0时,f′(x)>0,函数f(x)在(0,+∞)上是单调递增函数,②当a>0时,令f′(x)=0,得x=,∵在(0,)上f′(x)<0,∴f(x)是单调递减函数;∵在(,+∞)上f′(x)>0,∴f(x)是单调递增函数.(2)∵f(x)存在极值且f(x)≥0,∴a>0,∴只需f(x)min≥0,由上知f(x)min=f()=a﹣alna=a(1﹣lna)≥0,∴a∈(0,e](3)设F(x)=,∴F′(x)=2x2﹣x﹣=,∵x>1,∴F′(x)>0,即F(x)在(1,+∞)上为增函数,∴F(x)>F(1)=>0,∴F(x)>0在(1,+∞)上恒成立,故当x>1时,.26.已知函数f(x)=(ax+1)e x,a∈R(1)当a=1时,求函数f(x)的最小值.(2)当a=时,对于两个不相等的实数x1,x2,有f(x1)=f(x2),求证:x1+x2<2.【解答】解:(1)当a=1,f(x)=(x+1)e x,∴f′(x)=(x+2)e x,∴f(x)在(﹣∞,﹣2)上单调递减,在(﹣2,+∞)上单调递增,∴f(x)min=f(﹣2)=﹣.(2)当a=时,f(x)=(﹣x+1)e x,对于两个不相等的实数x1,x2,有f(x1)=f(x2),∵f′(x)=(1﹣x)e x,∴f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,不妨设x1<1<x2,令g(x)=f(x)﹣f(2﹣x),(x<1)∴g′(x)=(1﹣x)(e x﹣e2﹣x),当x<1时,1﹣x>0,x<2﹣x,e x﹣e2﹣x<0,∴g′(x)<0,∴g(x)在(﹣∞,1)单调递减,∴g(x)>g(1)=f(1)﹣f(1)=0,即f(x)﹣f(2﹣x)>0,不妨设x1<1<x2,则2﹣x1>1,由以上可知f(x1)>f(2﹣x1),∵f(x)在(﹣∞,1)上单调递增,在(1,+∞)上单调递减,∵f(x1)=f(x2),∴f(x2)>f(2﹣x1),∵x2>1,2﹣x1>1,∵f(x)在(1,+∞)上单调递减,∴x2<2﹣x1,∴x1+x2<2。

2023年新高考数学一轮复习4-4 导数的综合应用(知识点讲解)解析版

2023年新高考数学一轮复习4-4 导数的综合应用(知识点讲解)解析版

专题4.4 导数的综合应用(知识点讲解)【知识框架】【核心素养】1. 考查利用导数研究函数的单调性、极值与最值、函数的零点,凸显数学运算、逻辑推理的核心素养.2.考查利用导数不等式的证明、方程等,凸显数学运算、逻辑推理的核心素养.【知识点展示】(一)函数零点 1.方程()0f x =有实根函数()y f x =的图象与x 轴有交点函数()y f x =有零点.2.函数()y f x =的零点就是()0f x =的根,所以可通过解方程得零点,或者通过变形转化为两个熟悉函数图象的交点横坐标.(二)导数解决函数的零点问题1.利用导数研究高次式、分式、指数式、对数式、三角式及绝对值式结构函数零点个数(或方程根的个数)问题的一般思路(1)可转化为用导数研究其函数的图象与x 轴(或直线y =k)在该区间上的交点问题;(2)证明有几个零点时,需要利用导数研究函数的单调性,确定分类讨论的标准,确定函数在每一个区间上的极值(最值)、端点函数值等性质,进而画出函数的大致图象.再利用零点存在性定理,在每个单调区间内取值证明f (a)·f (b)<0.2.证明复杂方程在某区间上有且仅有一解的步骤第一步,利用导数证明该函数在该区间上单调;第二步,证明端点的导数值异号. 3.已知函数有零点求参数范围常用的方法(1)分离参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从f (x)中分离出参数,然后利用求导的方法求出构造的新函数的最值,最后根据题设条件构建关于参数的不等式,确定参数范围;(2)分类讨论法:一般命题情境为没有固定区间,求满足函数零点个数的参数范围,通常解法为结合单调性,先确定参数分类的标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各小范围并在一起,即为所求参数范围. (三)导数证明不等式(1)直接转化为函数的最值问题:把证明f (x )<g (a )转化为f (x )max <g (a ).(2)移项作差构造函数法:把不等式f (x )>g (x )转化为f (x )-g (x )>0,进而构造函数h (x )=f (x )-g (x ). (3)构造双函数法:若直接构造函数求导,难以判断符号,导函数零点不易求得,即函数单调性与极值点都不易获得,可转化不等式为f (x )>g (x )利用其最值求解.(4)换元法,构造函数证明双变量函数不等式:对于f (x 1,x 2)≥A 的不等式,可将函数式变为与x 1x 2或x 1·x 2有关的式子,然后令t =x 1x 2或t =x 1x 2,构造函数g (t )求解.(5)适当放缩构造函数法:一是根据已知条件适当放缩,二是利用常见的放缩结论,如ln x ≤x -1,e x ≥x +1,ln x <x <e x (x >0),xx +1≤ln(x +1)≤x (x >-1).(6)构造“形似”函数:对原不等式同解变形,如移项、通分、取对数等.把不等式左、右两边转化为结构相同的式子,然后根据“相同结构”,构造函数.(7)赋值放缩法:函数中对与正整数有关的不等式,可对已知的函数不等式进行赋值放缩,然后通过多次求和达到证明的目的.(四)利用导数研究不等式恒(能)成立问题 1.分离参数法一般地,若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;若a <f (x )对x ∈D 恒成立,则只需a <f (x )min .若存在x 0∈D ,使a >f (x 0)成立,则只需a >f (x )min ;若存在x 0∈D ,使a <f (x 0)成立,则只需a <f (x 0)max .由此构造不等式,求解参数的取值范围. 2.构造函数分类讨论法有两种常见情况,一种先利用综合法,结合导函数零点之间大小关系的决定条件,确定分类讨论的标准,分类后,判断不同区间函数的单调性,得到最值,构造不等式求解;另一种,直接通过导函数的式子,看出导函数值正负的分类标准,通常导函数为二次函数或者一次函数.【常考题型剖析】题型一:利用导数研究函数的零点或零点个数例1.(2012·天津·高考真题(理))函数在区间(0,1)内的零点个数是( )A .0B .1C .2D .3【答案】B 【解析】 【详解】2()2ln 23,(0,1)()0x f x x f x +''=>在上恒成立,所以单调递增,(0)10,(1)10,f f =-<=>故函数在区间(0,1)内的零点个数1个.例2.(2019·全国高考真题(理))已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点. 【答案】(1)见解析;(2)见解析 【解析】(1)由题意知:()f x 定义域为:()1,-+∞且()1cos 1f x x x '=-+ 令()1cos 1g x x x =-+,1,2x π⎛⎫∈- ⎪⎝⎭ ()()21sin 1g x x x '∴=-++,1,2x π⎛⎫∈- ⎪⎝⎭()211x +在1,2π⎛⎫- ⎪⎝⎭上单调递减,sin x -,在1,2π⎛⎫- ⎪⎝⎭上单调递减 ()g x '∴在1,2π⎛⎫- ⎪⎝⎭上单调递减又()0sin0110g '=-+=>,()()2244sin 102222g ππππ⎛⎫'=-+=-< ⎪⎝⎭++00,2x π⎛⎫∴∃∈ ⎪⎝⎭,使得()00g x '=∴当()01,x x ∈-时,()0g x '>;0,2x x π⎛⎫∈ ⎪⎝⎭时,()0g x '<即()g x 在()01,x -上单调递增;在0,2x π⎛⎫ ⎪⎝⎭上单调递减则0x x =为()g x 唯一的极大值点即:()f x '在区间1,2π⎛⎫- ⎪⎝⎭上存在唯一的极大值点0x .(2)由(1)知:()1cos 1f x x x '=-+,()1,x ∈-+∞ ①当(]1,0x ∈-时,由(1)可知()f x '在(]1,0-上单调递增()()00f x f ''∴≤= ()f x ∴在(]1,0-上单调递减又()00f =0x ∴=为()f x 在(]1,0-上的唯一零点②当0,2x π⎛⎤∈ ⎥⎝⎦时,()f x '在()00,x 上单调递增,在0,2x π⎛⎫⎪⎝⎭上单调递减 又()00f '= ()00f x '∴>()f x ∴在()00,x 上单调递增,此时()()00f x f >=,不存在零点又22cos 02222f ππππ⎛⎫'=-=-<⎪++⎝⎭10,2x x π⎛⎫∴∃∈ ⎪⎝⎭,使得()10f x '=()f x ∴在()01,x x 上单调递增,在1,2x π⎛⎫⎪⎝⎭上单调递减又()()000f x f >=,2sin ln 1lnln102222e f ππππ⎛⎫⎛⎫=-+=>= ⎪ ⎪+⎝⎭⎝⎭()0f x ∴>在0,2x π⎛⎫⎪⎝⎭上恒成立,此时不存在零点③当,2x ππ⎡⎤∈⎢⎥⎣⎦时,sin x 单调递减,()ln 1x -+单调递减()f x ∴在,2ππ⎡⎤⎢⎥⎣⎦上单调递减 又02f π⎛⎫> ⎪⎝⎭,()()()sin ln 1ln 10f ππππ=-+=-+< 即()02ff ππ⎛⎫⋅<⎪⎝⎭,又()f x 在,2ππ⎡⎤⎢⎥⎣⎦上单调递减∴()f x 在,2ππ⎡⎤⎢⎥⎣⎦上存在唯一零点④当(),x π∈+∞时,[]sin 1,1x ∈-,()()ln1ln 1ln 1x e π+>+>=()sin ln 10x x ∴-+<即()f x 在(),π+∞上不存在零点综上所述:()f x 有且仅有2个零点例3.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x <因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x x x x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增即()(1)0g x g >=,所以1ee 0xx x x->令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭ 所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 【总结提升】利用导数研究函数零点或方程根的方法 (1)通过最值(极值)判断零点个数的方法.借助导数研究函数的单调性、极值后,通过极值的正负,函数单调性判断函数图象走势,从而判断零点个数或者通过零点个数求参数范围.(2)数形结合法求解零点.对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性,画出草图数形结合确定其中参数的范围. (3)构造函数法研究函数零点.①根据条件构造某个函数,利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求解.②解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法.题型二:与函数零点有关的参数(范围)问题例4.(2019浙江)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则( ) A .a <–1,b <0 B .a <–1,b >0 C .a >–1,b <0 D .a >–1,b >0【答案】C【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x =b1−a , 则y =f (x )﹣ax ﹣b 最多有一个零点;当x ≥0时,y =f (x )﹣ax ﹣b =13x 3−12(a +1)x 2+ax ﹣ax ﹣b =13x 3−12(a +1)x 2﹣b ,2(1)y x a x =+-',当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意;当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点⇔函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:∴b 1−a<0且{−b >013(a +1)3−12(a +1)(a +1)2−b <0, 解得b <0,1﹣a >0,b >−16(a +1)3,则a >–1,b <0. 故选C .例5.(2015·安徽·高考真题(理))设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是________.(写出所有正确条件的编号)①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】1,3,4,5 【解析】 【详解】令3()f x x ax b =++,求导得2'()3f x x a =+,当0a ≥时,'()0f x ≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以3()f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则2'()333(1)(1)f x x x x =-=+-,易知,()f x 在(,1),(1,)-∞-+∞上单调递增,在[1,1]-上单调递减,所以()=(1)132f x f b b -=-++=+极大,()=(1)132f x f b b =-+=-极小,要使方程仅有一根,则()=(1)1320f x f b b -=-++=+<极大或者()=(1)1320f x f b b =-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实 根的是①③④⑤.例6.(2020·全国高考真题(文))已知函数()(2)xf x e a x =-+. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.【答案】(1)()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)1(,)e+∞. 【解析】(1)当1a =时,()(2)xf x e x =-+,'()1xf x e =-, 令'()0f x <,解得0x <,令'()0f x >,解得0x >, 所以()f x 的减区间为(,0)-∞,增区间为(0,)+∞;(2)若()f x 有两个零点,即(2)0xe a x -+=有两个解,从方程可知,2x =-不成立,即2xe a x =+有两个解,令()(2)2x e h x x x =≠-+,则有'22(2)(1)()(2)(2)x x x e x e e x h x x x +-+==++,令'()0h x >,解得1x >-,令'()0h x <,解得2x <-或21x -<<-, 所以函数()h x 在(,2)-∞-和(2,1)--上单调递减,在(1,)-+∞上单调递增, 且当2x <-时,()0h x <,而2x +→-时,()h x →+∞,当x →+∞时,()h x →+∞,所以当2xe a x =+有两个解时,有1(1)a h e >-=,所以满足条件的a 的取值范围是:1(,)e +∞.【总结提升】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图象,讨论其图象与 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图象的交点问题.题型三:与不等式恒成立、有解、无解等问题有关的参数范围问题例7.(2019·天津高考真题(理))已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩若关于x 的不等式()0f x 在R 上恒成立,则a 的取值范围为( )A .[]0,1B .[]0,2C .[]0,eD .[]1,e【答案】C【解析】∵(0)0f ≥,即0a ≥,(1)当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.例8.(2021·江苏省前黄高级中学高三开学考试)已知函数2()2sin 341x f x x x =+-+,则(2)(2)f f +-=_________;关于x 的不等式2()(23)2f x f x +-≥的解集为____________.【答案】2 3,12⎡⎤-⎢⎥⎣⎦【分析】根据解析式直接求(2)(2)f f +-的值,易知()f x 关于(0,1)对称,可将题设不等式变形为2(23)()f x f x -≥-,再利用导数判断()f x 的单调性,由单调性列不等式求解集. 【详解】232(2)(2)2sin 262sin 2621717f f +-=+-+-+=, 由()()22222sin 32sin 341414141x x x x f x f x x x x x --+-=+-+-+=+=++++2(41)41x x ++2=, ∴()f x 关于(0,1)对称,故()2()f x f x =--,∴22()(23)2()(23)2f x f x f x f x +-=--+-≥,即2(23)()f x f x -≥-, 又124ln 2()2cos 30(41)x xf x x +'=-+-<+,故()f x 单调递减, ∴223x x -≤-,即223(23)(1)0x x x x +-=+-≤,解得312x -≤≤.∴不等式解集为3,12⎡⎤-⎢⎥⎣⎦. 故答案为:2;3,12⎡⎤-⎢⎥⎣⎦. 例9.(2021·全国高三月考)已知函数2()ln f x x mx =+.(1)探究函数()f x 的单调性;(2)若关于x 的不等式()1(12)f x m x ≤++在(]0,e 上恒成立,求实数m 的取值范围.【答案】(1)答案见解析;(2)12e 2⎡⎤-⎢⎥-⎣⎦,. 【分析】(1)求导,对参数m 分类讨论,由导函数的符号可得函数的单调性;(2)将不等式()1(12)f x m x ≤++化为()2ln 1210x mx m x +-+-≤,再构造函数()2()ln 121g x x mx m x =+-+-,利用导数求出函数()g x 的最大值,由max ()0g x ≤可求出结果.【详解】(1)由2()ln f x x mx =+,得2121()2(0)mx f x mx x x x +'=+=>, ①若0m ≥,则()0f x '>,()f x 在()0,∞+上单调递增;②若0m <,则2121()22x x mx f x mx m x x x⎛ +⎝⎭⎝⎭'=+==⋅,当0x <<时,()0f x '>;当x >()0f x '<; 所以()f x在区间0,⎛ ⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. 综上所述:当0m ≥时,()f x 在()0,∞+上单调递增;当0m <时,()f x在区间⎛⎝上单调递增,在⎫+∞⎪⎪⎭上单调递减. (2)不等式()1(12)f x m x ≤++在(]0,e 上恒成立,相当于()2ln 1210x mx m x +-+-≤在(]0,e 上恒成立,令()2()ln 121g x x mx m x =+-+-, 则212(21)1(21)(1)()221mx m x mx x g x mx m x x x-++--'=+--==, ①当0m ≤时,210mx -<,由()0g x '<,得1e x <≤,由()0g x '>,得01x <<,所以()g x 在(0,1)上单调递增,在(1,e]上单调递减,所以max ()(1)2g x g m ==--,所以20m --≤,解得20m -≤≤. ②当102em <≤时,因为022e x <≤,所以021mx <≤,所以210mx -≤, 所以当01x <<时,()0g x '≥,当1e x <≤时,()0g x '≤,所以()g x 在(0,1)上递增,在(1,e]上递减,所以max ()(1)20g x g m ==--≤,解得2m ≥-,又102e m <≤,所以102em <≤; ③当112e 2m <<时,1(1)()2()2x x m g x m x--'=⋅,此时11e 2m <<, 由()0g x '>,得01x <<或1e 2x m <≤,由()0g x '<,得112x m <<, 所以()g x 在(0,1)和1(,e]2m 上递增,在1(1,)2m 上递减,所以11,2x x m==分别是函数()g x 的极大值点和极小值点, 因此有()(1)2011(e)e e 1202e 21122g m g m m m m e⎧⎪=--≤⎪=--≤⇒<<⎨⎪⎪<<⎩; ④当12m =时,()21()0x g x x-'=≥,所以()g x 在(]0,e 上单调递增,所以(e)0g ≤, 即1e 2m ≤-,所以12m =; ⑤当12m >时,1(1)()2()2x x m g x m x--'=⋅,此时1012m <<, 由()0g x '>,得102x m <<或1e x <≤,由()0g x '<,得112x m <<, 所以()g x 在1(0,)2m 和(1,e]上递增,在1(,1)2m 上递减, 所以112x x m==,分别是函数()g x 的极大值点和极小值点,因此有()1()02(e)e e 12012g m g m m m ⎧≤⎪⎪=--≤⇒⎨⎪⎪>⎩1ln 22041e 212m m m m ⎧---≤⎪⎪⎪≤⎨-⎪⎪>⎪⎩112e 2m ⇒<≤-; 综上可知,实数m 的取值范围是12e 2⎡⎤-⎢⎥-⎣⎦,. 【总结提升】1.不等式的恒成立问题和有解问题、无解问题是联系函数、方程、不等式的纽带和桥梁,也是高考的重点和热点问题,往往用到的方法是依据不等式的特点,等价变形,构造函数,借助图象观察,或参变分离,转化为求函数的最值问题来处理.()f x a >:min max max ()()()f x a f x a f x a ⇔>⎧⎪⇔>⎨⎪⇔≤⎩恒成立有解无解2.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数,排除不合题意的参数范围,筛选出符合题意的参数范围.题型四:利用导数证明不等式例10.(2022·北京·高考真题)已知函数.(1)求曲线在点处的切线方程;(2)设,讨论函数在上的单调性;(3)证明:对任意的,有.【答案】(1)(2)在上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,()e ln(1)x f x x =+()y f x =(0,(0))f ()()g x f x '=()g x [0,)+∞,(0,)s t ∈+∞()()()f s t f s f t +>+y x =()g x [0,)+∞()()()m x f x t f x =+-(,0)x t >()(0)m x m >()m x即得证.(1)解:因为,所以,即切点坐标为,又, ∴切线斜率∴切线方程为:(2)解:因为, 所以, 令, 则, ∴在上单调递增,∴∴在上恒成立,∴在上单调递增.(3)解:原不等式等价于,令,,即证,∵,, 由(2)知在上单调递增, ∴,∴∴在上单调递增,又因为, ()e ln(1)x f x x =+()00f =()0,01()e (ln(1))1x f x x x=+++'(0)1k f '==y x =1()()e (ln(1))1x g x f x x x=++'=+221()e (ln(1))1(1)x g x x x x =++-++'221()ln(1)1(1)h x x x x =++-++22331221()01(1)(1)(1)x h x x x x x +=-+=>++++'()h x [0,)+∞()(0)10h x h ≥=>()0g x '>[0,)+∞()g x [0,)+∞()()()(0)f s t f s f t f +->-()()()m x f x t f x =+-(,0)x t >()(0)m x m >()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+e e ()e ln(1)e ln(1)()()11x t xx t x m x x t x g x t g x x t x++=+++-+-=+-++'+1()()e (ln(1))1x g x f x x x =++'=+[)0,∞+()()g x t g x +>()0m x '>()m x ()0,∞+,0x t >∴,所以命题得证.例11.(2021·全国·高考真题(理))设函数,已知是函数的极值点. (1)求a ;(2)设函数.证明:. 【答案】(1);(2)证明见详解【解析】【分析】(1)由题意求出,由极值点处导数为0即可求解出参数;(2)由(1)得,且,分类讨论和,可等价转化为要证,即证在和上恒成立,结合导数和换元法即可求解【详解】(1)由,,又是函数的极值点,所以,解得;(2)[方法一]:转化为有分母的函数由(Ⅰ)知,,其定义域为. 要证,即证,即证. (ⅰ)当时,,,即证.令,因为,所以在区间内为增函数,所以. (ⅱ)当时,,,即证,由(ⅰ)分析知在区间内为减函数,所以.综合(ⅰ)(ⅱ)有.[方法二] 【最优解】:转化为无分母函数由(1)得,,且, ()(0)m x m >()()ln f x a x =-0x =()y xf x =()()()x f x g x xf x +=()1g x <1a ='y a ()()ln 1()ln 1x x g x x x +-=-1x <0x ≠()0,1x ∈(),0x ∈-∞()1g x <()()ln 1ln 1x x x x +->-()0,1x ∈(),0x ∈-∞()()()n 1'l a f x a x f x x ⇒==--()()'ln x y a x x ay xf x ⇒=-=+-0x =()y xf x =()'0ln 0y a ==1a =ln(1)11()ln(1)ln(1)+-==+--x x g x x x x x (,0)(0,1)-∞()1g x <111ln(1)+<-x x 1111ln(1)-<-=-x x x x(0,1)x ∈10ln(1)<-x 10x x-<ln(1)1->-x x x ()ln(1)1=---x F x x x 2211()01(1)(1)--=-=>--'-x F x x x x ()F x (0,1)()(0)0F x F >=(,0)x ∈-∞10ln(1)>-x 10x x ->ln(1)1->-x x x ()F x (,0)-∞()(0)0F x F >=()1g x <()()ln 1f x x =-()()ln 1()()()ln 1x x x f x g x xf x x x +-+==-1x <0x ≠当 时,要证,, ,即证,化简得;同理,当时,要证,, ,即证,化简得;令,再令,则,, 令,,当时,,单减,故;当时,,单增,故;综上所述,在恒成立.[方法三] :利用导数不等式中的常见结论证明令,因为,所以在区间内是增函数,在区间内是减函数,所以,即(当且仅当时取等号).故当且时,且,,即,所以. (ⅰ)当时,,所以,即,所以. (ⅱ)当时,,同理可证得. 综合(ⅰ)(ⅱ)得,当且时,,即. 【整体点评】(2)方法一利用不等式的性质分类转化分式不等式:当时,转化为证明,当时,转化为证明,然后构造函数,利用导数研究单调性,进而证得;方法二利用不等式的性质分类讨论分别转化为整式不等式:当时,成立和当时,成立,然后换元构造,利用导数研究单调性进而证得,通性通法,运算简洁,为最优解;方法三先构造函数,利用导数分析单调性,证得常见常用结论(当且仅当时取等号).然后换元得到,分类讨论,利用不等式的基本性质证得要证得不等式,有一定()0,1x ∈()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x >-<()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->(),0x ∈-∞()()ln 1()1ln 1x x g x x x +-=<-()0,ln 10x x <->()ln 10x x ∴-<()()ln 1ln 1x x x x +->-()()1ln 10x x x +-->()()()1ln 1h x x x x =+--1t x =-()()0,11,t ∈+∞1x t =-()1ln t t t t ϕ=-+()1ln 1ln t t t ϕ'=-++=()0,1t ∈()0t ϕ'<()t ϕ()()10t ϕϕ>=()1,t ∈+∞()0t ϕ'>()t ϕ()()10t ϕϕ>=()()ln 1()1ln 1x x g x x x +-=<-()(),00,1x ∈-∞()ln (1)ϕ=--x x x 11()1x x x x ϕ-'=-=()ϕx (0,1)(1,)+∞()(1)0x ϕϕ≤=ln 1≤-x x 1x =1x <0x ≠101x >-111x≠-11ln 111<---x x ln(1)1--<-x x x ln(1)1->-x x x (0,1)x ∈0ln(1)1>->-x x x 1111ln(1)-<=--x x x x 111ln(1)+<-x x ()1g x <(,0)x ∈-∞ln(1)01->>-x x x ()1g x <1x <0x ≠ln(1)1ln(1)+-<-x x x x ()1g x <(0,1)x ∈ln(1)1->-x x x (,0)x ∈-∞ln(1)1->-x x x ()0,1x ∈()()1ln 10x x x +-->(),0x ∈-∞()()1ln 10x x x +-->()ln (1)ϕ=--x x x ln 1≤-x x 1x =ln(1)1->-x x x的巧合性.例12.(2021·全国高考真题)已知函数.(1)讨论的单调性;(2)设,为两个不相等的正数,且,证明:. 【答案】(1)的递增区间为,递减区间为;(2)证明见解析.【分析】(1)求出函数的导数,判断其符号可得函数的单调区间;(2)设,原不等式等价于,前者可构建新函数,利用极值点偏移可证,后者可设,从而把转化为在上的恒成立问题,利用导数可证明该结论成立.【详解】(1)函数的定义域为,又,当时,,当时,,故的递增区间为,递减区间为.(2)因为,故,即, 故, 设,由(1)可知不妨设. 因为时,,时,,故.先证:,若,必成立.若, 要证:,即证,而,故即证,即证:,其中.()()1ln f x x x =-()f x a b ln ln b a a b a b -=-112e a b<+<()f x ()0,1()1,+∞1211,x x a b==122x x e <+<21x tx =12x x e +<()()1ln 1ln 0t t t t -+-<()1,+∞()0,∞+()1ln 1ln f x x x '=--=-()0,1x ∈()0f x '>()1,+x ∈∞()0f x '<()f x ()0,1()1,+∞ln ln b a a b a b -=-()()ln 1ln +1b a a b +=ln 1ln +1a b a b+=11f f a b ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1211,x x a b ==1201,1x x <<>()0,1x ∈()()1ln 0f x x x =->(),x e ∈+∞()()1ln 0f x x x =-<21x e <<122x x +>22x ≥122x x +>22x <122x x +>122x x >-2021x <-<()()122f x f x >-()()222f x f x >-212x <<设,则,因为,故,故,所以,故在为增函数,所以,故,即成立,所以成立,综上,成立.设,则,结合,可得:, 即:,故,要证:,即证,即证, 即证:,即证:, 令,则, 先证明一个不等式:.设,则, 当时,;当时,,故在上为增函数,在上为减函数,故,故成立由上述不等式可得当时,,故恒成立, 故在上为减函数,故,故成立,即成立.综上所述,. 【总结提升】1.无论不等式的证明还是解不等式,构造函数,运用函数的思想,利用导数研究函数的性质(单调性和最()()()2,12g x f x f x x =--<<()()()()2ln ln 2g x f x f x x x '''=+-=---()ln 2x x =--⎡⎤⎣⎦12x <<()021x x <-<()ln 20x x -->()0g x '>()g x ()1,2()()10g x g >=()()2f x f x >-()()222f x f x >-122x x +>122x x +>21x tx =1t >ln 1ln +1a b a b +=1211,x x a b==()()11221ln 1ln x x x x -=-()111ln 1ln ln x t t x -=--11ln ln 1t t t x t --=-12x x e +<()11t x e +<()1ln 1ln 1t x ++<()1ln ln 111t t t t t --++<-()()1ln 1ln 0t t t t -+-<()()()1ln 1ln ,1S t t t t t t =-+->()()112ln 11ln ln 111t S t t t t t t -⎛⎫'=++--=+- ⎪++⎝⎭()ln 1x x ≤+()()ln 1u x x x =+-()1111x u x x x -'=-=++10x -<<()0u x '>0x >()0u x '<()u x ()1,0-()0,+∞()()max 00u x u ==()ln 1x x ≤+1t >112ln 11t t t ⎛⎫+≤< ⎪+⎝⎭()0S t '<()S t ()1,+∞()()10S t S <=()()1ln 1ln 0t t t t -+-<12x x e +<112e a b<+<值),达到解题的目的,是一成不变的思路,合理构思,善于从不同角度分析问题,是解题的法宝.2.利用导数证明不等式f(x)>g(x)的基本方法(1)若f(x)与g(x)的最值易求出,可直接转化为证明f(x)min>g(x)max;(2)若f(x)与g(x)的最值不易求出,可构造函数h(x)=f(x)-g(x),然后根据函数h(x)的单调性或最值,证明h(x)>0.3.不等式存在性问题的求解策略“恒成立”与“存在性”问题的求解是“互补”关系,即f(x)≥g(a)对于x∈D恒成立,应求f(x)的最小值;若存在x∈D,使得f(x)≥g(a)成立,应求f(x)的最大值.在具体问题中究竟是求最大值还是最小值,可以先联想“恒成立”是求最大值还是最小值,这样也就可以解决相应的“存在性”问题是求最大值还是最小值.特别需要关注等号是否成立,以免细节出错.。

简析导数的概念在高等数学中的综合应用

简析导数的概念在高等数学中的综合应用

简析导数的概念在高等数学中的综合应用1. 引言1.1 导数的定义在高等数学中,导数是一个非常重要的概念。

它是描述函数变化率的数学工具,也是微积分的核心内容之一。

导数的定义是在某一点上函数的变化率,也就是函数在该点的切线的斜率。

具体来说,对于函数f(x),在点x=a处的导数f'(a)定义为:f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}这个定义可以解释为当自变量的变化量h趋近于0时,函数值的变化量f(a+h)-f(a)与自变量的变化量h的比值。

这个比值即为函数在点a 处的导数。

导数的定义让我们能够准确描述函数在某一点的变化情况,进而可以应用到各种求极限、求导函数、求函数的性质以及解决实际问题中。

导数的性质也包括了连续性、可微性等方面,这些性质为我们提供了更多的数学工具来解决问题。

在接下来的内容中,我们将会探讨导数在函数图像、最值问题、凹凸性和拐点的判定、极值和单调性分析以及微分方程中的应用。

通过综合运用导数的相关概念,我们可以更好地理解高等数学中的各种问题,掌握解决方法,并拓展数学在实际生活中的应用。

1.2 导数的性质导数的性质包括导数存在的唯一性、导数的代数运算、导数在函数之间的比较以及导数与函数的性质之间的关系。

导数存在的唯一性是指对于一个函数,在某一点处的导数是唯一确定的,即函数在该点的切线斜率只有一个。

这个性质对于研究函数的极值、单调性等相关问题非常重要。

导数的代数运算是指导数在加减乘除、复合函数、反函数等运算中的性质。

导数的和的导数等于导数的和,导数的积的导数等于导数的积等。

这些性质在求解导数时起到了重要的作用。

导数在函数之间的比较也是一个重要性质,比如如果一个函数在某一区间内的导数始终大于另一个函数,则可以说明这两个函数在该区间内的大小关系。

导数与函数的性质之间的关系也是导数性质中的重要内容,比如导数为正则函数在该区间内是单调递增的,导数为负则函数在该区间内是单调递减的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2014年12月27日导数综合组卷一.选择题(共16小题)1.(2014•郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为().2.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为().C D.3.(2014•西藏一模)已知曲线的一条切线的斜率为,则切点的横坐标为()4.(2014•陕西)定积分(2x+e x)dx的值为()36.(2014•江西)若f(x)=x2+2f(x)dx,则f(x)dx=()D7.(2014•湖北)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,32.D.10.(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af (x)+b=0的不同实根个数是()11.(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)()...D.13.(2009•安徽)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()[][[14.(2009•天津)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成15.(2014•上海二模)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有16.(2013•文昌模拟)设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M、N,则|MN|的最小值为.C D二.填空题(共9小题)17.(2014•江西)若曲线y=e﹣x上点P的切线平行于直线2x+y+1=0,则点P的坐标是_________.18.(2014•江苏模拟)各项均为正数的等比数列{a n}满足a1a7=4,a6=8,若函数f(x)=a1x+a2x2+a3x3+…+a10x10的导数为f′(x),则f′()=_________.19.(2014•萧山区模拟)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=_________.20.(2014•沈阳二模)已知函数f(x)=x(x﹣a)(x﹣b)的导函数为f′(x),且f′(0)=4,则a2+2b2的最小值为_________.21.(2014•孝感二模)如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为(1,),那么曲线y=f (x)任一点处的切线的倾斜角α的取值范围是_________.22.(2014•长葛市三模)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为_________.23.(2015•惠州模拟)函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为_________.24.(2014•江苏模拟)已知函数f(x)满足f(x)=2f(),当x∈[1,3],f(x)=lnx,若在区间[,3]内,函数g (x)=f(x)﹣ax有三个不同零点,则实数a的取值范围是_________.25.(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是_________.三.解答题(共5小题)26.(2014•遵义二模)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.27.(2014•浙江)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.28.(2014•河西区三模)已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.29.(2014•四川模拟)已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.30.(2014•天津三模)已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a的取值范围.参考答案与试题解析一.选择题(共16小题)1.(2014•郑州一模)已知曲线的一条切线的斜率为,则切点的横坐标为().曲线的一条切线的斜率为,﹣,解得2.(2014•郑州模拟)曲线在点处的切线与坐标轴围成的三角形面积为().C D.x在点处的切线方程是坐标轴的交点是(,﹣,围成的三角形面积为,故选3.(2014•西藏一模)已知曲线的一条切线的斜率为,则切点的横坐标为()的一条切线的斜率为,∵4.(2014•陕西)定积分(2x+e x)dx的值为()()3x6.(2014•江西)若f(x)=x2+2f(x)dx,则f(x)dx=()Df((=x,显然,,∴=x(﹣(=x,显然,=x())()+7.(2014•湖北)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区间[﹣1,1]上的一组正交函数,给出三组函数:①f(x)=sin x,g(x)=cos x;②f(x)=x+1,g(x)=x﹣1;③f(x)=x,g(x)=x2,:x cos x dx=sinx cosx:(dx=())32.D.﹣|.10.(2013•安徽)若函数f(x)=x3+ax2+bx+c有极值点x1,x2,且f(x1)=x1,则关于x的方程3(f(x))2+2af11.(2013•辽宁)设函数f(x)满足x2f′(x)+2xf(x)=,f(2)=,则x>0时,f(x)())满足∴时,dx∴∴,∴∴...D.解:∵,x)单调递增;x=是函数)的极大值点,则,即,即∵=﹣(13.(2009•安徽)设函数f(x)=x3+x2+tanθ,其中θ∈[0,],则导数f′(1)的取值范围是()[][[coscos+,∈[,])[,)[,14.(2009•天津)设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成15.(2014•上海二模)已知f(x)=alnx+x2(a>0),若对任意两个不等的正实数x1,x2,都有>,都有>+x16.(2013•文昌模拟)设动直线x=m与函数f(x)=x3,g(x)=lnx的图象分别交于点M、N,则|MN|的最小值为.C D.<x==ln3=(二.填空题(共9小题)17.(2014•江西)若曲线y=e﹣x上点P的切线平行于直线2x+y+1=0,则点P的坐标是(﹣ln2,2).18.(2014•江苏模拟)各项均为正数的等比数列{a n}满足a1a7=4,a6=8,若函数f(x)=a1x+a2x2+a3x3+…+a10x10的导数为f′(x),则f′()=.,于是,解得,∴∵=∴=故答案为19.(2014•萧山区模拟)设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)﹣log2x]=6,若x0是方程f(x)﹣f′(x)=4的一个解,且x0∈(a,a+1)(a∈N*),则实数a=1.有零点,易得,﹣<﹣﹣20.(2014•沈阳二模)已知函数f(x)=x(x﹣a)(x﹣b)的导函数为f′(x),且f′(0)=4,则a2+2b2的最小值为8.a=21.(2014•孝感二模)如果f′(x)是二次函数,且f′(x)的图象开口向上,顶点坐标为(1,),那么曲线y=f (x)任一点处的切线的倾斜角α的取值范围是[,).),因为倾斜角只能在[,)[,)22.(2014•长葛市三模)设函数f(x)是定义在(﹣∞,0)上的可导函数,其导函数为f′(x),且2f(x)+xf′(x)>x2,则不等式(x+2014)2f(x+2014)﹣4f(﹣2)>0的解集为(﹣∞,﹣2016).23.(2015•惠州模拟)函数f(x)的定义域为R,f(﹣1)=2,对任意x∈R,f′(x)>2,则f(x)>2x+4的解集为(﹣1,+∞).24.(2014•江苏模拟)已知函数f(x)满足f(x)=2f(),当x∈[1,3],f(x)=lnx,若在区间[,3]内,函数g(x)=f(x)﹣ax有三个不同零点,则实数a的取值范围是≤a<.)[[,[=a=,,∴,解得,<<<),此时﹣<,[≤;[≤<故答案为:.25.(2012•江苏)已知正数a,b,c满足:5c﹣3a≤b≤4c﹣a,clnb≥a+clnc,则的取值范围是[e,7].≤×﹣≤×于是可得≤cln从而≥的最小值,于是问题解决.∴>∴≤,特别当=7cln,≥(,当=e=e=e的取值范围是≥,通过构造函数求三.解答题(共5小题)26.(2014•遵义二模)设函数f(x)=x2+aln(1+x)有两个极值点x1、x2,且x1<x2,(Ⅰ)求a的取值范围,并讨论f(x)的单调性;(Ⅱ)证明:f(x2)>.,其对称轴为,得,∴)当)在减.∴27.(2014•浙江)已知函数f(x)=x3+3|x﹣a|(a∈R).(Ⅰ)若f(x)在[﹣1,1]上的最大值和最小值分别记为M(a),m(a),求M(a)﹣m(a);(Ⅱ)设b∈R,若[f(x)+b]2≤4对x∈[﹣1,1]恒成立,求3a+b的取值范围.=,时,=时,最小值)上是增函数,∴③﹣28.(2014•河西区三模)已知函数f(x)=+cx+d(a,c,d∈R)满足f(0)=0,f′(1)=0,且f′(x)≥0在R上恒成立.(1)求a,c,d的值;(2)若,解不等式f′(x)+h(x)<0;(3)是否存在实数m,使函数g(x)=f′(x)﹣mx在区间[m,m+2]上有最小值﹣5?若存在,请求出实数m的值;若不存在,请说明理由.∴x+c,有上恒成立,即=a,于是由二次函数的性质可得,解得:,)∵.∴时,解集为(时,解集为()时,解集为)∵,∴=∴使函数,即.∵,∴或,均应舍去.1+2.其中时,函数29.(2014•四川模拟)已知函数f(x)=lnx+x2.(Ⅰ)若函数g(x)=f(x)﹣ax在其定义域内为增函数,求实数a的取值范围;(Ⅱ)在(Ⅰ)的条件下,若a>1,h(x)=e3x﹣3ae x x∈[0,ln2],求h(x)的极小值;(Ⅲ)设F(x)=2f(x)﹣3x2﹣kx(k∈R),若函数F(x)存在两个零点m,n(0<m<n),且2x0=m+n.问:函数F(x)在点(x0,F(x0))处的切线能否平行于x轴?若能,求出该切线方程;若不能,请说明理由.结合题意,列出方程组,证得函数,,当且仅当∴,可得,令,,得∵,∴)单调递减;若当)取得极小值,极小值为,由④式变为所以函数,即,也就是30.(2014•天津三模)已知函数f(x)=(2﹣a)(x﹣1)﹣2lnx,g(x)=xe1﹣x.(a∈R,e为自然对数的底数)(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若函数f(x)在上无零点,求a的最小值;(Ⅲ)若对任意给定的x0∈(0,e],在(0,e]上总存在两个不同的x i(i=1,2),使得f(x i)=g(x0)成立,求a 的取值范围.)上无零点,只需要对,,在区间故要使函数恒成立,即对,则,)在)在上为增函数,所以恒成立,只要)在时,上不单调,故,即)对任意式解得:可知,当。

相关文档
最新文档