中断管理函数

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中断管理函数

CM3内核支持256个中断,其中包含了16个内核中断和240个外部中断,并且具有256级的可编程中断设置。但STM32并没有使用CM3内核的全部东西,而是只用了它的一部分。STM32有76个中断,包括16个内核中断和60个可屏蔽中断,具有16级可编程的中断优先级。而我们常用的就是这60个可屏蔽中断,所以我们就只针对这60个可屏蔽中断进行介绍。

在MDK内,与NVIC相关的寄存器,MDK为其定义了如下的结构体:

typedef struct

{

vu32 ISER[2];

u32 RESERVED0[30];

vu32 ICER[2];

u32 RSERVED1[30];

vu32 ISPR[2];

u32 RESERVED2[30];

vu32 ICPR[2];

u32 RESERVED3[30];

vu32 IABR[2];

u32 RESERVED4[62];

vu32 IPR[15];

} NVIC_TypeDef;

STM32的中断在这些寄存器的控制下有序的执行的。了解这些中断寄存器,你才能方便的使用STM32的中断。下面重点介绍这几个寄存器:

ISER[2]:ISER全称是:Interrupt Set-Enable Registers,这是一个中断使能寄存器组。上面说了STM32的可屏蔽中断只有60个,这里用了2个32位的寄存器,总共可以表示64个中断。而STM32只用了其中的前60位。ISER[0]的

bit0~bit31分别对应中断0~31。ISER[1]的bit0~27对应中断32~59;这样总共60个中断就分别对应上了。你要使能某个中断,必须设置相应的ISER位为1,使该中断被使能(这里仅仅是使能,还要配合中断分组、屏蔽、IO口映射等设置才算是一个完整的中断设置)。具体每一位对应哪个中断,请参考

stm32f10x_nvic..h里面的第36行处。

ICER[2]:全称是:Interrupt Clear-Enable Registers,是一个中断除能寄存器组。该寄存器组与ISER的作用恰好相反,是用来清除某个中断的使能的。其对应位的功能,也和ICER一样。这里要专门设置一个ICER来清除中断位,而不是向ISER写0来清除,是因为NVIC的这些寄存器都是写1有效的,写0是无效的。具体为什么这么设计,请看《CM3权威指南》第125页,NVIC概览一章。

ISPR[2]:全称是:Interrupt Set-Pending Registers,是一个中断挂起控制寄存器组。每个位对应的中断和ISER是一样的。通过置1,可以将正在进行的中断挂起,而执行同级或更高级别的中断。写0是无效的。

ICPR[2]:全称是:Interrupt Clear-Pending Registers,是一个中断解挂控制寄存器组。其作用与ISPR相反,对应位也和ISER是一样的。通过设置1,可以将挂起的中断接挂。写0无效。

IABR[2]:全称是:Active Bit Registers,是一个中断激活标志位寄存器组。对应位所代表的中断和ISER一样,如果为1,则表示该位所对应的中断正在被执行。这是一个只读寄存器,通过它可以知道当前在执行的中断是哪一个。在中断执行完了由硬件自动清零。

IPR[15]:全称是:Interrupt Priority Registers,是一个中断优先级控制的寄存器组。这个寄存器组相当重要!STM32的中断分组与这个寄存器组密切相关。IPR寄存器组由15个32bit的寄存器组成,每个可屏蔽中断占用8bit,这样总共可以表示15*4=60个可屏蔽中断。刚好和STM32的可屏蔽中断数相等。IPR[0]的[31~24],[23~16],[15~8],[7~0]分别对应中中断3~0,依次类推,总共对应60个外部中断。而每个可屏蔽中断占用的8bit并没有全部使用,而是只用了高4位。这4位,又分为抢占优先级和子优先级。抢占优先级在前,子优先级在后。而这两个优先级各占几个位又要根据SCB->AIRCR中中断分组的设置来决定。

这里简单介绍一下STM32的中断分组:STM32将中断分为5个组,组0~4。该分组的设置是由SCB->AIRCR寄存器的bit10~8来定义的。具体的分配关系如下表所示:

表2.7.2.1 AIRCR中断分组设置表

通过这个表,我们就可以清楚的看到组0~4对应的配置关系,例如组设置为3,那么此时所有的60个中断,每个中断的中断优先寄存器的高四位中的最高3位是抢占优先级,低1位是响应优先级。每个中断,你可以设置抢占优先级为

0~7,响应优先级为1或0。抢占优先级的级别高于响应优先级。而数值越小所代表的优先级就越高。

结合实例说明一下:假定设置中断优先级组为2,然后设置中断3(RTC中断)的抢占优先级为3,响应优先级为1。中断6(外部中断0)的抢占优先级为4,响应优先级为0。中断7(外部中断1)的抢占优先级为3,响应优先级为0。那么这3个中断的优先级顺序为:中断7>3>中断6。

这里需要注意2点:

如果两个中断的响应优先级和响应优先级都是一样的话,则看哪个中断先发生就先执行。

高优先级的抢占优先级是可以打断正在进行的低抢占优先级中断的。而抢占优先级相同的中断,上面例子中的中断3和中断7都可以打断中断6的中断。而中断7和中断3却不可以相互打断!

通过以上介绍,我们熟悉了STM32中断设置的大致过程。接下来我们介绍如何使用函数实现以上中断设置,使得我们以后的中断设置简单化。

第一个介绍的是NVIC的分组函数MY_NVIC_PriorityGroupConfig,该函数的参数NVIC_Group0~4,总共5组。如果参数非法,将可能导致不可预料的结果。MY_NVIC_PriorityGroupConfig函数代码如下:

//设置NVIC分组

//NVIC_Group:NVIC分组 0~4 总共5组

void MY_NVIC_PriorityGroupConfig(u8 NVIC_Group)

{

相关文档
最新文档