教案新人教版七上1.5.1-乘方(1)

合集下载

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》

七年级(人教版)集体备课教学设计:1.5.1《乘方(1)》一. 教材分析《乘方(1)》这一节的内容,主要让学生理解乘方的概念,掌握有理数的乘方运算法则。

通过学习乘方,学生能更好地理解数学中的指数运算,为以后学习更高级的数学知识打下基础。

教材通过丰富的例子,引导学生探究乘方的规律,让学生在实践中掌握乘方运算。

二. 学情分析七年级的学生已经掌握了有理数的乘法运算,但对乘方的概念和运算法则可能还比较陌生。

因此,在教学过程中,教师需要善于启发学生利用已有的知识经验来理解乘方,同时要注重培养学生的观察、思考、动手能力。

三. 教学目标1.让学生理解乘方的概念,掌握有理数的乘方运算法则。

2.培养学生观察、思考、动手的能力,提高学生解决实际问题的能力。

3.培养学生合作学习、积极探究的精神。

四. 教学重难点1.乘方的概念。

2.有理数的乘方运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.启发式教学:通过提问、讨论等方式,引导学生主动探究乘方的规律。

2.实践性教学:让学生通过动手操作,加深对乘方概念和运算法则的理解。

3.案例教学:选取生活中的实际问题,让学生运用乘方知识解决。

六. 教学准备1.教案、PPT等教学资料。

2.练习题、黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)教师通过一个简单的例子,如“2的三次方等于多少?”引发学生对乘方的兴趣,然后简要介绍乘方的概念。

2.呈现(10分钟)教师利用PPT展示乘方的定义、运算法则等知识点,同时引导学生回顾有理数的乘法运算,从而自然地过渡到乘方运算。

3.操练(10分钟)教师设计一些练习题,让学生分组讨论、解答。

教师在这个过程中要注意引导学生运用已有的知识经验来理解乘方,并及时给予反馈、指导。

4.巩固(10分钟)教师继续设计一些练习题,让学生独立完成。

完成后,教师选取部分学生的答案进行讲解,巩固学生对乘方的理解和运用。

5.拓展(10分钟)教师引导学生思考:乘方在实际生活中有哪些应用?让学生举例说明,从而提高学生解决实际问题的能力。

人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1

人教版数学七年级上册1.5.1《乘方》教案1一. 教材分析《乘方》是人教版数学七年级上册第一章第五节的第一课时,本节课主要让学生掌握乘方的概念,理解乘方的意义,学会进行乘方的运算。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过例题和练习,使学生掌握乘方的运算方法。

二. 学情分析学生在学习本节课之前,已经学习了有理数的乘法,对乘法运算有一定的理解。

但是,乘方作为乘法的推广,学生可能难以理解其本质。

因此,在教学过程中,需要通过具体例题和实际操作,让学生深入理解乘方的意义。

三. 教学目标1.理解乘方的概念,掌握乘方的运算方法。

2.能够运用乘方解决实际问题。

3.培养学生的逻辑思维能力。

四. 教学重难点1.乘方的概念。

2.乘方的运算方法。

五. 教学方法采用讲授法、例题解析法、小组讨论法、练习法等教学方法,通过生动有趣的例题和实际操作,引导学生理解乘方的概念,掌握乘方的运算方法。

六. 教学准备1.PPT课件。

2.练习题。

七. 教学过程1.导入(5分钟)通过复习有理数的乘法,引导学生思考:乘法可以表示为几个相同因数的乘积,那么,几个相同因数的乘积可以表示为什么呢?从而引入乘方的概念。

2.呈现(15分钟)PPT呈现乘方的定义和乘方的运算方法,让学生直观地了解乘方的意义。

通过例题解析,让学生学会进行乘方的运算。

例题1:计算2^3。

解析:2^3表示2乘以自己3次,即2×2×2=8。

例题2:计算3^4。

解析:3^4表示3乘以自己4次,即3×3×3×3=81。

3.操练(10分钟)让学生在课堂上进行乘方的运算练习,教师巡回指导,及时纠正学生的错误。

4.巩固(10分钟)让学生完成一些乘方的练习题,巩固所学知识。

5.拓展(10分钟)引导学生思考:乘方可以表示几个相同因数的乘积,那么,几个相同因数的除法可以表示为什么呢?让学生自己探索并得出答案。

6.小结(5分钟)对本节课的知识进行小结,强调乘方的概念和运算方法。

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
二、学情分析
七年级学生在学习有理数乘方这一章节之前,已经掌握了有理数的加减乘除运算,具备了一定的数学基础。但在乘方概念的理解和运用上,学生可能存在一定的困难。因此,在教学过程中,需要关注以下几点:
1.学生对乘方概念的理解程度,部分学生可能难以从本质上理解乘方的含义,需要通过具体实例和形象比喻来帮、叠加的过程,让学生直观地感受乘方的意义。同时,引导学生思考:“乘方与之前学过的乘法有什么关系?它们之间的区别是什么?”
(二)讲授新知
1.乘方的定义:讲解乘方的定义,即一个数自乘若干次,可以表示为a^n(a为底数,n为指数)。强调乘方的意义,以及正整数、负整数和零的乘方的表示方法。
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)教学设计
一、教学目标
(一)知识与技能
1.理解有理数乘方的概念,掌握有理数乘方的表示方法和运算规则。
2.能够正确计算正整数、负整数和零的乘方,并熟练运用乘方解决实际问题。
3.学会运用乘方的性质,简化有理数的运算过程,提高运算效率。
4.开放性探究题目:
-布置一道开放性探究题目,如:“探究乘方的分配律和结合律在生活中的应用”,鼓励学生主动探索、发现数学规律。
5.课后小结:
-要求学生撰写课后小结,总结本节课所学乘方知识,以及自己在学习过程中的收获和困惑。
6.阅读拓展:
-推荐阅读与乘方相关的数学故事或数学家传记,激发学生学习数学的兴趣,培养学生的数学素养。
2.学生在乘方运算过程中可能出现的错误,如符号处理不当、计算顺序混乱等,教师需引导学生总结错误原因,提高运算准确性。
3.学生在解决实际问题时,可能不知道如何运用乘方知识,需要教师设计贴近生活的例题,引导学生将乘方知识应用于实际问题中。

1.5.1乘方有理数的混合运算(教案)

1.5.1乘方有理数的混合运算(教案)
在实践活动和小组讨论环节,我鼓励学生们积极参与,提出自己的观点和疑问。我发现这种互动式的学习方式能够激发学生的思考,帮助他们更好地消化和吸收知识。同时,我也注意到有些学生在讨论中不够主动,可能是由于对知识点的不熟悉或者性格原因。在未来的教学中,我需要更加关注这部分学生,鼓励他们大胆发言,增强他们的自信心。
五、教学反思
今天在教授“乘方有理数的混合运算”这一章节时,我发现学生们在理解乘方的概念和运算规则方面存在一些困难。尤其是零指数幂和负整数指数幂的部分,学生们觉得比较抽象,难以掌握。在教学中,我尽量通过生动的例子和生活情境来帮助学生理解这些概念。
在讲授新课的过程中,我尝试用简单明了的语言解释乘方的定义,并通过实际案例让学生看到乘方运算在实际问题中的应用。我发现,当学生能够将新知识与现实生活联系起来时,他们对知识的理解和兴趣都会有所提高。
2.提高学生的逻辑推理能力:使学生掌握有理数混合运算的运算法则,并能运用逻辑推理进行正确计算,解决相关问题。
3.增强学生的数学建模能力:培养学生将实际问题转化为数学模型,利用乘方和有理数的混合运算进行求解,从而解决实际问题的能力。
4.发展学生的数学运算能力:通过课堂练习和课后作业,让学生熟练掌握乘方和有理数混合运算的计算方法,提高运算速度和准确性。
2.学会有理数的混合运算,能够熟练运用运算法则进行计算。
-有理数乘方的运算方法。
-乘方与乘除、加减的混合运算。
-混合运算中的运算顺序和运算法则。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的数学抽象能力:通过学习乘方运算,使学生能够从具体实例中抽象出数学规律,理解乘方的概念及其运算规则。
(2)有理数的混合运算:熟练掌握有理数乘方与乘除、加减的混合运算,以及运算顺序和运算法则。

人教版七年级数学上册1.5.1乘方(第一课时)教学设计

人教版七年级数学上册1.5.1乘方(第一课时)教学设计
-例如:计算以下乘方运算结果:2^5,3^3,4^2。
-应用题:一个正方体的边长为3厘米,求它的表面积和体积。
2.提高题:设计一些需要运用乘方性质和运算法则的题目,提高学生的逻辑思维能力和解题技巧。
-例如:已知a^2=9,求a^4的值。
-已知2^m × 2^n = 2^8,求m+n的值。
3.拓展题:结合实际生活,设计一些综合性的题目,让学生运用乘方知识解决实际问题,提高他们的学以致用能力。
-讨论乘方在实际生活中的应用,举例说明并解释其原理。
作业布置要求:
1.学生在完成作业时,要认真思考,规范书写,确保作业质量。
2.家长要关注学生的学习情况,督促孩子按时完成作业,并及时与教师沟通孩子的学习状况。
3.教师在批改作业时,要关注学生的解题过程,及时发现并纠正错误,给予针对性的指导。
4.鼓励学生在完成作业后进行互评,相互学习,共同提高。
2.学生回答后,教师总结:“这些场景都涉及到相同因数的连乘,也就是今天我们要学习的乘方。”接着,提出问题:“你们知道什么是乘方吗?”
3.学生尝试回答,教师给予肯定和鼓励,进而引出本节课的主题——乘方。
(二)讲授新知
1.首先,教师向学生介绍乘方的概念,即相同因数相乘的简便表示方法,如a×a×a可以写作a^3。
3.教师对本节课的知识点进行梳理,强调重难点,并对学生的表现进行评价。
4.最后,教师布置课后作业,要求学生巩固所学知识,为下一节课的学习打下基础。
五、作业布置
为了巩固学生对乘方知识的掌握,培养他们运用乘方解决实际问题的能力,特布置以下作业:
1.基础题:完成课本1.5.1乘方部分的相关练习题,包括计算题和应用题,旨在巩固乘方的概念和运算方法。
三、教学重难点和教学设想

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案

人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。

教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。

本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。

二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。

但乘方作为一个新的概念,需要学生从新的角度去理解。

学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。

三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。

2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。

3.激发学生对数学的兴趣,培养学生的自主学习能力。

四. 教学重难点1.乘方的意义和运算规则。

2.乘方在实际问题中的应用。

五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。

通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。

六. 教学准备1.教学PPT。

2.实例和练习题。

3.小组合作学习的相关材料。

七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。

2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。

例如,2的3次方表示2乘以自己3次,即2×2×2=8。

3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。

可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。

4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。

例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计

人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。

教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。

二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。

但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。

三. 教学目标1.了解乘方的概念,理解乘方的意义。

2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.乘方的概念。

2.有理数的乘方规则。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。

六. 教学准备1.PPT课件。

2.教学案例和习题。

3.小组合作学习的小组划分和任务分配。

七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。

2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。

3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。

教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。

4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。

5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。

教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。

6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)

人教版数学七年级上册第1章有理数1.5.1有理数的乘方(教案)
举例:计算一个正方体的体积,边长为a,则体积为a^3。
2.教学难点
(1)零指数幂的理解:理解零指数幂的意义,掌握a^0 = 1(a ≠ 0)的规律。
难点解析:学生可能会对零指数幂的意义产生疑问,需要通过实例和图示等方法解释零指数幂的含义。
(2)负整数指数幂的计算:掌握负整数指数幂的计算方法,理解其与正整数指数幂的关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、运算法则及其在实际中的应用。通过实践活动和小组讨论,我们加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在本次教学过程中,我深刻体会到有理数乘方这一知识点的教学既要注重概念的理解,又要关注运算技能的培养。以下是我对这次教学的几点反思:
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与有理数乘方相关的实际问题,如计算不同形状的体积和面积。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,通过实际测量和计算来演示有理数乘方的实际应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
1.关于概念教学:在讲解有理数乘方的概念时,我尽量使用简洁明了的语言,并通过生活实例帮助学生理解。从学生的反馈来看,大部分同学能够较好地掌握乘方的定义,但仍有部分同学对零指数幂和负整数指数幂的概念理解不够透彻。在今后的教学中,我需要更加关注这部分学生的理解情况,通过设计更具针对性的问题,引导他们深入思考。
4.提高学生方法,提高运算速度和准确性,培养良好的数学运算习惯。
5.培养学生的数学应用意识:通过实例分析,使学生认识到数学知识在生活中的广泛应用,激发他们学习数学的兴趣,增强数学应用意识。

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案

人教版七年级数学上册:1.5.1《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册的一个重要内容,主要介绍了乘方的概念、性质和运算法则。

通过学习乘方,学生能够理解和掌握乘方的基本概念,了解乘方的意义和作用,以及运用乘方解决实际问题。

二. 学情分析学生在学习乘方之前,已经掌握了有理数的乘法、除法和加减法等基础知识,具备了一定的数学思维能力。

但部分学生可能对乘方的概念和性质理解不够深入,需要通过实例和练习来进一步巩固。

三. 教学目标1.理解乘方的概念,掌握乘方的性质和运算法则。

2.能够运用乘方解决实际问题,提高解决问题的能力。

3.培养学生的数学思维能力和逻辑推理能力。

四. 教学重难点1.乘方的概念和性质。

2.乘方的运算法则。

3.运用乘方解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究乘方的概念和性质。

2.运用实例和练习,让学生通过实际操作来理解和掌握乘方的运算法则。

3.采用小组合作学习,培养学生的团队协作能力和沟通能力。

六. 教学准备1.教学PPT或黑板。

2.教学素材和练习题。

3.学生分组名单。

七. 教学过程1.导入(5分钟)利用PPT或黑板,展示一些生活中的实际问题,如温度、速度等,让学生感受到乘方的意义和作用。

引导学生思考:这些问题能否用乘法来解决?如何用乘法来解决?2.呈现(10分钟)介绍乘方的概念,讲解乘方的意义和作用。

通过实例和练习,让学生理解和掌握乘方的运算法则。

如:2^3 = 2 × 2 × 2 = 83.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。

可以设置一些难度不同的练习题,让学生根据自己的实际情况选择适合自己的题目。

4.巩固(10分钟)通过小组合作学习,让学生运用乘方解决实际问题。

可以设置一些开放性问题,让学生分组讨论和解答。

5.拓展(10分钟)引导学生思考:乘方在实际生活中有哪些应用?如何运用乘方解决更复杂的问题?可以让学生举例说明,并进行讲解。

人教版数学七年级上册1.5.1.1:有理数的乘方(教案)

人教版数学七年级上册1.5.1.1:有理数的乘方(教案)
在教学过程中,教师需重点关注这些核心知识和难点内容,通过讲解、举例和练习,帮助学生理解并)导入新课(用时5分钟)
同学们,今天我们将要学习的是《有理数的乘方》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算多次相同数相乘的情况?”(例如:计算一张纸对折10次后的厚度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索有理数乘方的奥秘。
(3)乘方性质的运用:学生在运用乘方性质简化计算时容易出错,如错误地将a^m × a^n简化为a^(m×n)。
(4)实际问题中的应用:学生难以将乘方运算应用于实际问题,需要通过典型例题引导学生分析问题,建立数学模型。
举例说明:
1.教学重点举例
(1)乘方的概念:2^3表示3个2相乘,即2 × 2 × 2。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
课堂上的小组讨论和实验操作环节,同学们参与度很高,但我也注意到,有些小组在讨论时可能会偏离主题。在今后的教学中,我需要更加明确讨论的主题和目标,同时在讨论过程中加强对学生的引导,确保讨论的效率和质量。
此外,我发现有些同学在乘方运算过程中容易出错,特别是在处理负整数指数幂时。这说明我在讲解难点时,还需要进一步简化语言,用更直观的方式解释,让他们能够更容易理解和记忆。
(2)正整数指数幂性质:2^3 × 2^2 = 2^(3+2) = 2^5。

新人教版七年级数学上册1.5.1《乘方》教学设计1

新人教版七年级数学上册1.5.1《乘方》教学设计1

新人教版七年级数学上册1.5.1《乘方》教学设计1一. 教材分析新人教版七年级数学上册1.5.1《乘方》是学生在掌握了有理数的乘法运算之后,进一步引导学生探索有理数乘方的运算方法。

通过学习乘方,学生能够理解乘方的概念,掌握乘方的运算规则,并能够运用乘方解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,掌握了有理数的乘法运算。

但是,对于乘方的概念和运算规则,学生可能较为抽象,需要通过具体的例子和实际操作来理解和掌握。

三. 教学目标1.理解乘方的概念,掌握乘方的运算规则。

2.能够运用乘方解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.乘方的概念的理解。

2.乘方运算规则的掌握。

五. 教学方法1.讲授法:通过讲解乘方的概念和运算规则,引导学生理解和掌握。

2.案例分析法:通过具体的例子,让学生动手操作,加深对乘方运算的理解。

3.问题解决法:设计一些实际问题,让学生运用乘方进行解决,培养学生的应用能力。

六. 教学准备1.PPT课件:制作相关的PPT课件,展示乘方的概念和运算规则。

2.练习题:准备一些相关的练习题,用于巩固学生的学习效果。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用乘法来解决。

例如,计算100的平方根,学生可能会想到10的平方等于100,从而引出乘方的概念。

2.呈现(15分钟)讲解乘方的概念,乘方表示的是一个数自乘的次数。

例如,2的3次方表示2自乘3次,即2×2×2=8。

同时,展示乘方的运算规则,例如,a的m次方乘以a的n次方等于a的m+n次方。

3.操练(15分钟)让学生动手计算一些乘方的例子,例如,计算2的3次方、3的4次方等。

同时,让学生观察和总结乘方的运算规则。

4.巩固(10分钟)让学生做一些练习题,巩固对乘方的理解和掌握。

可以设置一些选择题和填空题,让学生判断和填充。

5.拓展(10分钟)讲解乘方在实际问题中的应用,例如,科学计算中的幂次方运算,物理中的能量公式等。

七年级(人教版)集体备课教案:1.5.1乘方(1)

七年级(人教版)集体备课教案:1.5.1乘方(1)

1.5.1乘方(一)教学目标:1、知道乘方运算与乘法运算的关系,会进行有理数的乘方运算;2、知道底数、指数和幂的概念,会求有理数的正整数指数幂。

重点:正确理解乘方的意义,能利用乘方的运算法则进行有理数的乘方运算。

重点:会进行有理数的乘方运算,弄清(-a )n 与-a n 的区别教学过程:一、创设情境,讲授新课问题1:如果正方形的边长为a ,那么正方形的面积是多少?问题2:如果正方体的棱长为a ,那么正方体的体积是多少?问题3:假设一张纸的厚度为0.09mm ,如果它的连续对折始终是可以的,对折多少次后得到的厚度将超过你的身高?你能算吗?学生回答:正方形的面积为a ×a ,正方体的体积为a ×a ×a ,1次对折后,厚度为0.09×2mm ,2次对折后,厚度为0.09×2×2mm ,14次对折后,厚度为0.09×2×2×2×2×…×2mm ≈1.47(m )为了表示简便,我们把2×2×2×2×…×2记为214教师归纳:(1)a ×a 可记为a2(2)a ×a ×a 可记为a3 (3)2×2×2×2×2×2可记为25 (4)a ×a ×a ×a ×…×a (n 个a )可记为an乘方的概念(1)乘方的意义求n 个相同的因数a 的乘积的运算叫做乘方,乘方的结果叫做幂,a 叫做底数,n 叫做指数。

(2)乘方的读法把an 读作a 的n 次方或者a 的n 次幂其中一个数可以看作这个数本身的一次方。

讲解课本例1教师:请同学们计算下列各题:(12 )5,(35 )5,(-23 )4,(355 )指数 a n 底数 幂一个学生区别(35 )5和(355 )有什么不同。

2017秋人教版数学七年级上册1.5.1《乘方》教案

2017秋人教版数学七年级上册1.5.1《乘方》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与乘方相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同边长正方体的体积,演示乘方的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“乘方在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
此外,在学生小组讨论环节,我发现同学们在分享成果时表达得不够清晰,逻辑性不强。针对这一问题,我计划在接下来的课程中,加强对学生表达能力的训练,提高他们的逻辑思维和表达能力。
在总结回顾环节,同学们对乘方的概念和运算规则有了更加深入的了解。但仍有个别同学表示对乘方的应用还不够熟练。为了巩固这部分内容,我打算在课后布置一些与乘方相关的实际应用题,让学生在练习中进一步掌握乘方知识。
二、核心素养目标
1.培养学生的数感和符号意识:通过乘方概念的学习,使学生理解数的乘方表示的意义,提高对数学符号的认识和使用能力。
2.发展学生的逻辑推理和数学思维能力:通过乘方运算的法则和性质的学习,培养学生逻辑推理能力,提升数学思维能力。
3.培养学生的数学建模和问题解决能力:将乘方知识应用于解决实际问题,激发学生数学建模兴趣,提高问题解决能力。
-乘方的性质:了解乘方的性质,如(a×b)^n = a^n × b^n、(a^n)^m = a^(n×m)。

人教版数学七年级上册1.5.1乘方教学设计

人教版数学七年级上册1.5.1乘方教学设计
2.注重培养学生的数学思维能力,引导学生从具体的实例中抽象出乘方的规律,提高学生的概括能力。
3.加强小组合作学习,鼓励学生相互交流、讨论,培养学生的合作意识和团队精神,提高解决问题的能力。
4.关注学生的个体差异,针对不同学生的特点,给予个性化的指导,使每个学生都能在乘方学习中取得进步。
三、教学重难点和教学设想
要求:学生通过解决提高题,学会将乘方知识应用于实际问题,培养应用能力和实际问题解决能力。
3.拓展题:设计一些综合性的乘方问题,鼓励学有余力的学生挑战。
要求:学生在完成拓展题的过程中,发挥自己的思维能力,尝试不同的解题方法,提高创新意识。
4.小组合作:以小组为单位,探讨乘方在实际生活中的应用,并撰写一篇小论文。
3.通过讲解、示范、练习等形式,让学生掌握乘方的计算方法,提高学生的计算能力。
4.设计具有实际意义的问题,让学生运用乘方知识解决,培养学生的应用能力和实际问题解决能力。
(三)情感态度与价值观
1.培养学生对数学的兴趣,激发学生的学习热情,使其能够主动投入到乘方知识的学习中。
2.培养学生的自信心,让学生在解决乘方相关问题时,能够积极思考、勇于尝试,克服困难,获得成功。
人教版数学七年级上册1.5.1乘方教学设计
一、教学目标
(一)知识与技能
1.了解乘方的定义,知道乘方表示的是几个相同因数的乘积。
2.掌握乘方的运算规则,如:同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘。
3.学会计算简单的乘方运算,如:2的3次方、3的4次方等。
(一)导入新课
1.教学活动:教师通过展示一些生活中的实际例子,如平方厘米、立方米等,引导学生思考这些单位背后的数学意义。

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计

人教版七年级数学上册1.5.1《有理数的乘方》教学设计一. 教材分析《有理数的乘方》是人教版七年级数学上册1.5.1的内容,主要介绍了有理数的乘方概念、乘方法则和乘方运算。

本节内容是在学生掌握了有理数的概念和运算基础上进行学习的,对于学生来说,乘方是一个比较抽象的概念,需要通过实例和练习来理解和掌握。

二. 学情分析七年级的学生已经具备了一定的数学基础,对于有理数的概念和运算规则有一定的了解。

但是,对于乘方这一概念,学生可能比较难以理解,需要通过具体的例子和实际操作来帮助学生理解和掌握。

三. 教学目标1.理解有理数的乘方概念,掌握有理数的乘方法则。

2.能够进行有理数的乘方运算,并解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.有理数的乘方概念的理解。

2.乘方法则的掌握和运用。

3.有理数乘方运算的熟练掌握。

五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握乘方概念和乘方法则。

2.问题解决法:通过解决实际问题,让学生运用乘方知识,巩固所学内容。

3.小组合作学习:学生分组讨论和解决问题,培养学生的合作意识和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,内容包括乘方概念、乘方法则和乘方运算的实例和练习题。

2.练习题:准备一些有关有理数乘方的练习题,用于巩固和拓展学生的知识。

3.教学素材:准备一些与乘方相关的实际问题,用于引导学生运用乘方知识解决实际问题。

七. 教学过程1.导入(5分钟)教师通过引入一个实际问题,如“一个物体每次翻倍,翻倍3次后的数量是多少?”来引导学生思考和引入乘方概念。

2.呈现(15分钟)教师通过PPT呈现乘方概念和乘方法则的定义和规则,并用具体的例子来解释和展示乘方的运算过程。

同时,教师引导学生观察和总结乘方的规律。

3.操练(10分钟)教师给出一些有理数的乘方运算题目,让学生独立完成,并及时给予反馈和解释错误的答案。

4.巩固(10分钟)教师学生进行小组合作学习,让学生分组讨论和解决一些与乘方相关的实际问题。

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1

人教版七年级数学上册:1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一部分内容。

本节内容是在学生已经掌握了有理数的乘法、平方根的概念以及性质的基础上进行的。

通过学习乘方,使学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的乘法和平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则可能还比较陌生,需要通过具体例子和实际操作来逐步理解和掌握。

三. 教学目标1.知识与技能目标:学生能够理解乘方的概念,掌握乘方的运算法则,并能够运用乘方解决实际问题。

2.过程与方法目标:通过具体例子和实际操作,学生能够逐步理解和掌握乘方的概念和运算法则。

3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方的运算法则的应用。

五. 教学方法1.情境教学法:通过具体例子和实际操作,引导学生理解和掌握乘方的概念和运算法则。

2.启发式教学法:通过提问和讨论,激发学生的思维,培养学生的解决问题的能力。

六. 教学准备1.教学PPT:制作教学PPT,包括具体的例子和实际操作的演示。

2.练习题:准备一些练习题,用于巩固学生的理解和掌握。

七. 教学过程通过一个实际问题,引出乘方的概念。

例如,一个正方形的边长为2,求它的面积。

学生可以通过计算得出答案,进而引出乘方的概念。

2.呈现(10分钟)通过PPT展示乘方的定义和运算法则,结合具体的例子进行解释和演示。

让学生直观地理解乘方的概念和运算法则。

3.操练(10分钟)让学生进行一些乘方的运算练习,巩固对乘方概念和运算法则的理解。

可以设置一些不同难度的题目,让学生根据自己的能力选择练习。

4.巩固(5分钟)通过一些实际问题,让学生运用乘方进行解决。

例如,计算一些数的乘方,或者解决一些与乘方相关的实际问题。

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计

人教版七年级数学上册:1.5.1《乘方》教学设计一. 教材分析人教版七年级数学上册1.5.1《乘方》是学生在学习了有理数乘法和算术平方根的基础上,进一步探究乘方的概念及运算法则的一节课。

本节课的内容在数学知识的体系中起着承前启后的作用,既是对前面所学内容的延伸,又是后面学习指数运算、对数等知识的基础。

教材通过丰富的实例,引导学生探究乘方的规律,让学生在自主学习的过程中体会数学的归纳与演绎思想。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和数学基础,对于乘法和算术平方根的概念有一定的了解。

但是,对于乘方的概念和运算法则,学生可能还比较陌生。

因此,在教学过程中,需要结合学生的实际情况,用生动形象的实例引导学生理解乘方的本质,逐步掌握乘方的运算法则。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算法则,能正确进行乘方运算。

2.过程与方法:通过观察、分析、归纳等方法,引导学生探究乘方的规律,培养学生的逻辑思维能力和归纳演绎能力。

3.情感态度与价值观:让学生在自主学习的过程中,体验数学的乐趣,培养对数学的兴趣,增强自信心。

四. 教学重难点1.教学重点:乘方的概念,乘方的运算法则。

2.教学难点:乘方运算的规律,乘方在实际问题中的应用。

五. 教学方法采用情境教学法、问题教学法和小组合作学习法。

情境教学法可以帮助学生形象地理解乘方的概念;问题教学法可以激发学生的思考,引导学生自主探究乘方的规律;小组合作学习法可以培养学生的团队合作精神,提高学生的交流表达能力。

六. 教学准备1.教师准备:教材、PPT、黑板、粉笔等教学工具。

2.学生准备:预习教材,了解乘方的基本概念。

七. 教学过程1.导入(5分钟)利用PPT展示一个实际问题:计算3的4次方。

让学生尝试解答,引导学生思考乘方是什么。

2.呈现(10分钟)讲解乘方的概念,用PPT展示乘方的定义和运算法则。

让学生跟随教师一起,用归纳法探究乘方的规律。

人教版数学七年级上册1.5.1《乘方》教学设计1

人教版数学七年级上册1.5.1《乘方》教学设计1

人教版数学七年级上册1.5.1《乘方》教学设计1一. 教材分析《乘方》是人教版数学七年级上册的教学内容,本节课主要让学生掌握乘方的概念,理解乘方的运算规律,并能够运用乘方解决实际问题。

通过本节课的学习,为学生后续学习幂的运算、指数函数等知识打下基础。

二. 学情分析七年级的学生已经掌握了有理数的运算,对数学概念有一定的理解能力,但乘方概念较为抽象,学生可能存在一定的理解难度。

因此,在教学过程中,需要通过具体实例、生活中的实际问题引导学生理解和掌握乘方。

三. 教学目标1.知识与技能:使学生理解乘方的概念,掌握乘方的运算规律,能够正确进行乘方运算。

2.过程与方法:通过观察、思考、交流、归纳等方法,培养学生主动探索、合作学习的习惯。

3.情感态度与价值观:激发学生学习乘方的兴趣,感受数学在生活中的运用,提高学生对数学的热爱。

四. 教学重难点1.重点:乘方的概念,乘方的运算规律。

2.难点:乘方在实际问题中的应用。

五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生理解和掌握乘方。

2.合作学习法:分组讨论,让学生在合作中思考,提高学生解决问题的能力。

3.归纳教学法:引导学生观察、思考、归纳乘方的运算规律。

六. 教学准备1.教学课件:制作乘方的概念、运算规律的课件。

2.实例材料:准备一些生活中的实际问题,用于引导学生运用乘方解决实际问题。

3.练习题:准备一些有关乘方的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)利用生活中的实际问题,如“计算一瓶饮料中有多少粒葡萄”,引导学生思考如何用数学方法表示这个问题。

通过讨论,让学生发现需要用到乘方来解决这个问题。

2.呈现(15分钟)介绍乘方的概念,讲解乘方的运算规律。

通过示例,让学生了解乘方的意义,掌握乘方的运算方法。

3.操练(15分钟)让学生分组进行乘方运算练习,教师巡回指导。

在此过程中,引导学生发现乘方的运算规律,总结乘方的运算方法。

4.巩固(10分钟)让学生运用乘方解决实际问题,如计算游泳池中水温的变化等。

人教版数学七年级上册1.5《乘方(1)》名师教案

人教版数学七年级上册1.5《乘方(1)》名师教案

1.5.1 第一课时〔李映〕有理数的乘方一、教学目标〔一〕学习目标1.在现实背景中,理解有理数乘方的意义.2.能进展有理数的乘方运算,掌握幂的符号法那么.3.了解用计算器进展乘方运算.〔二〕学习重点正确理解乘方的意义,掌握乘方运算法那么.〔三〕学习难点正确理解乘方、底数、指数的概念,并合理运算,注意区别-a n 与〔-a 〕n 的意义.二、教学设计〔一〕课前设计1.预习任务(1)在a n 中,a 叫底数,n 叫做指数,当a n 看作a 的n 次方的结果时,也可以读作a 的n 次幂.(2)根据例如填空:例如:32=222⨯⨯=823= 33⨯ = 9 , ()32-=()()()222-⨯-⨯-=8-,()33-=()()()333-⨯-⨯-=27-, 252⎪⎭⎫ ⎝⎛=2255⎛⎫⎛⎫⨯ ⎪ ⎪⎝⎭⎝⎭=425,()22-=()()22-⨯-=4, 22-=22-⨯=-4.2.预习自测〔1〕()22-=〔 〕 A .﹣2 B .﹣4 C .2 D .4【答案】D .【解析】解:()22-=()()22-⨯-=4,选D . 【点拨】根据幂的乘方的运算法那么求解.〔2〕〔﹣3〕2的值是〔 〕A .﹣9B .9C .﹣6D .6【答案】B .【解析】解:〔﹣3〕2=9,选B .【点拨】根据乘方的性质即可求解.〔3〕23-=〔 〕A .﹣3B .﹣9C .3D .9【答案】B .【解析】解:﹣32=﹣3×3=-9,选B .【点拨】根据幂的乘方的运算法那么求解.〔4〕234⎪⎭⎫ ⎝⎛--=〔 〕 A .34 B .34- C .916 D .916- 【答案】D . 【解析】解:234⎪⎭⎫ ⎝⎛--=234⎪⎭⎫ ⎝⎛-=3434⨯-=916-,选D . 【点拨】根据幂的乘方的运算法那么求解.〔二〕课堂设计1.知识回忆〔1〕几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为_____;当负因数的个数为偶数时,积为_____.〔2〕正方形的边长为2,那么面积是_____,棱长为2的正方体,那么体积为_____.2.问题探究探究一 在现实背景中,理解有理数乘方的意义▲.●活动① 小组合作,弄清定义师生活动:分小组学习教科书41页,要求能结合教产书中的示意图,用自己的语言表达以下几个概念的意义及相互关系.师问:通过自主学习,谈一谈在一个幂中,什么是底数?什么是指数?什么幂?学生抢答.〔教师引导学生观察,发表自己看法〕总结:底数是一样的因数,可以是任何有理数,指数是一样因数的个数,在现阶段中是正整数,而幂那么是乘方的结果. 【设计意图】通过小组学习,培养学生的阅读能力,通过对实例中发现的乘方运算的定义,让学生更容易掌握乘方运算的定义.●活动② 区别易错点师问:()42-和42-一样吗?为什么? 师生活动:学生独立思考30秒,然后小组交流1分钟.生答:不一样!()42-表示4个-2相乘,42-表示4个2相乘的相反数. 师问:对的,还可以如何从底数上进展区别?生答:()42-的底数是-2,42-的底数是2,“-〞只是它的性质符号. 总结:我们以后把()42-读作“-2的4次方〞,而42-读作“2的4次方的相反数〞读法上有区别,意义也不一样.〔请大家将两种不同的读法记在教科书P41上.〕 【设计意图】通过小组交流,从表示的意义不同,底数的不同,读法的不同进展区别,让学生能够深刻地掌握两者的不同之处,采用记笔记的方式,进一步加深易错点的印象.探究二 能进展有理数的乘方运算,掌握幂的符号法那么.▲★●活动① 举例说明,回归根源例1.计算(1)()34- ; 〔2〕()42- ; 〔3〕332⎪⎭⎫ ⎝⎛-. 【知识点】有理数乘方运算【解答过程】解:〔1〕()34-=()()()444-⨯-⨯-=-64 〔2〕()42-=()()()()2222-⨯-⨯-⨯-=16 〔3〕332⎪⎭⎫ ⎝⎛-=222333⎛⎫⎛⎫⎛⎫-⨯-⨯- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=-278 【点拨】在解决乘方的相关问题时,应将乘方运算回归到它的定义,根据定义列式计算.【答案】〔1〕-64; 〔2〕16; 〔3〕-278. 【设计意图】通过一组例题的讲解,在理解乘方运算的定义后,让学生进一步稳固乘方运算的定义.●活动② 幂的符号法那么师问1:通过例1,你发现负数的幂的正负有什么规律?当指数是_________,负数的幂是______数;当指数是_________,负数的幂是______数;师生活动:学生自行观察1分钟.学生举手抢答:当指数是奇数,负数的幂是负数;当指数是偶数,负数的幂是正数; 总结:负数的奇次幂是负数,负数的偶次幂是正数.师问2:那么正数的幂与指数有关吗?生答:没有.师问3:那0呢?生答:也没有.总结:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.师问4:将幂运算比照前面所学的“几个不为0的有理数相乘〞,有哪些异同?生答:一样之处是:都是乘法运算,不同的是:幂运算是“几个不为0的有理数相乘〞的一种特殊运算,师问5:你认为在进展幂运算是,先做什么,后做什么?学生举手抢答.总结:和“几个不为0的有理数相乘〞一样,先定符号,再定绝对值.练习1.〔1〕()87- 中的指数和底数各是多少?87-呢? (2)()810-中的-10叫做什么数?8叫做什么数?()810-的结果是正数还是负数? 2.计算(1)()101-; 〔2〕()71- ; 〔3〕38 ; 〔4〕()35-; (5)31.0; 〔6〕421⎪⎭⎫⎛-; 〔7〕()410- ; 〔8〕()510-. 【知识点】有理数幂的运算【解析】1.〔1〕()87-的指数和底数分别是8,-7;87-的指数和底数分别是8,7;(2) ()810-中的-10叫做底数,8叫做指数;结果是正数. 2.计算:解:〔1〕()1011-=; 〔2〕()711-=-; 〔3〕38512= ;〔4〕)35125-=-; 〔5〕30.10.001=;〔6〕411216⎛⎫-=⎪⎭ ;〔7〕()41010000-= ;〔8〕()510100000-=-. 【点拨】在解决乘方的相关问题时,和前面“几个不为0的有理数相乘〞一样,首先确定结果的符号问题,再将乘方运算回归到它的定义,根据定义列式计算.【答案】1.〔1〕8,-7;8,7;〔2〕底数,指数,正数.2.〔1〕1;〔2〕-1;〔3〕512 ;〔4〕-125;〔5〕0.001;〔6〕161;〔7〕10000;〔8〕-100000. 【设计意图】通过对负数的奇次幂和偶次幂的探讨,发现幂的符号规律,培养学生观察、归纳、表达的能力,加强学生对幂的进一步认识.通过练习,进一步加强学生对幂的简单运算的认识,提高对幂运算的熟练程度.探究三 了解用计算器进展乘方运算.●活动①例2.用计算器计算〔-8〕5和〔-3〕6.师生活动:学生自学P42,教师多媒体示范 【知识点】用计算器进展幂运算开启计算器后按照以下步骤进展:8 5 显示:〔-8〕^ 5-32768 即〔-8〕5=-327683 6 显示:〔-3〕^ 6729 即〔-3〕6=7298 5 =显示:-327683 6显示:729所以〔-8〕5=-32768 〔-3〕6=729【点拨】弄清计算器的输入顺序是关键.【答案】-32768,729.【设计意图】让学生了解用计算器进展幂运算,感受现代科技与数学的结合.3.课堂总结知识梳理(1)幂的定义.(2)幂的符号法那么.(3)()42-和42-的区别.重难点归纳〔1〕幂的运算和和“几个不为0的有理数相乘〞一样,先定符号,再定绝对值.〔2〕()42-和42-从底数,实际意义,读法上的区别.〔三〕课后作业根底型自主突破1.计算﹣42的结果等于〔〕A.﹣8B.﹣16C.16D.8【答案】B.【解析】解:﹣42=﹣16,选B.【点拨】乘方就是求几个一样因数积的运算,﹣42=﹣〔4×4〕=﹣16.2.以下四个数中,是负数的是〔〕A.|﹣3|B.〔﹣3〕2C.﹣〔﹣3〕D.﹣32【答案】D.【解析】解:A.|﹣3|=3,不符合题意;B.原式=9,不符合题意;C.原式=3,不符合题意;D.原式=﹣9,符合题意,选D.【点拨】各项利用绝对值的代数意义,乘方的意义,相反数的性质判断即可.3.5)54(-中,底数是 ,指数是 . 【答案】54-,5. 【解析】解:5)54(-中,底数是54-,指数是5, 【点拨】对于幂a n 中,底数是a ,指数是n ,据此可以解答此题.4.计算:﹣23= ,3)32(-= . 【答案】﹣8;278-. 【解析】解:﹣23=﹣8,3)32(-=278-. 【点拨】原式利用乘方的意义计算即可得到结果.5.计算:31)3()3(2⨯-÷-= . 【答案】﹣1.【解析】解:原式=31)3(9⨯-÷=313⨯-=﹣1. 【点拨】原式先计算乘方运算,再计算乘除运算即可得到结果.6.计算2223)2(3)3(2-⨯--+-.【答案】﹣35.【解析】解:2223)2(3)3(2-⨯--+-=﹣8+9﹣9×4=﹣8+9﹣36=﹣44+9=﹣35.【点拨】根据有理数的乘方的定义进展计算即可得解.能力型 师生共研1.我国古代典籍?庄子•天下篇?中曾说过一句话:“一尺之棰,日取其半,万世不竭〞,现有一根长为1尺的木杆,第1次截取其长度的一半,第2次截取其第1次剩下长度的一半,第3次截取其第2次剩下长度的一半,如此反复,那么第99次截取后,此木杆剩下的长度为〔 〕A .9821尺B .9921尺C .10021尺D .10121尺 【答案】B . 【解析】解:第1次截取其长度的一半,剩下长度为121×1=121尺,第2次截取其第1次剩下长度的一半,剩下的长度为221×1=41尺, 第3次截取其第2次剩下长度的一半,剩下的长度为321×1=81尺, 如此反复,第99次截取后,木杆剩下的长度为9921×1=9921〔尺〕, 那么此木杆剩下的长度为9921尺. 【点拨】根据题意,利用乘方的意义确定出剩下的长度即可.2.假设a 2=4,b 2=9,且ab <0,那么a ﹣b 的值为 .【答案】5或﹣5.【数学思想】分类讨论.【解析】解:∵a 2=4,b 2=9,∴a =±2,b =±3,∵ab <0,∴a =2时,b =﹣3,a ﹣b =2﹣〔﹣3〕=2+3=5,a =﹣2时,b =3,a ﹣b =﹣2﹣3=﹣5,所以,a ﹣b 的值为5或﹣5.【点拨】根据有理数的乘方求出a 、b ,再根据异号得负判断出a 、b 的对应情况,然后代入代数式进展计算即可得解.探究型 多维突破1.假设n 是正整数,那么的值为 .【答案】0或1.【数学思想】分类讨论.【解析】解:当n 为奇数时,原式==0; 当n 为偶数时,原式==1, 所以的值为0或1.【点拨】分类讨论:当n 为奇数或n 为偶数时,再根据乘方的意义计算出n )1( ,然后进展有理数的加减法运算和除法运算.2.观察以下各式:…〔1〕计算:13+23+33+43+…+103的值;〔2〕试猜测13+23+33+43+…+n 3的值.【答案】3025;22)1(41+n n . 【解析】解:〔1〕13+23+33+43+…+103, =,=×100×121,=3025;〔2〕13+23+33+43+…+n 3=22)1(41+n n . 【点拨】观察的几个式子可以得到规律:等号的左边是从1开场的连续整数的立方和的形式,右边是41与两个数的平方的积,第一个是左边的整数中的最大的一个,第二个是比这个数大1的相邻的整数,据此规律即可求解.自助餐1.计算〔﹣1〕2021+〔﹣1〕2021 的结果是〔 〕A .0B .﹣1C .﹣2D .2【答案】A .【解析】解:〔﹣1〕2021+〔﹣1〕2021 =1﹣1=0,选A .【点拨】直接利用有理数的乘方运算法那么化简求出即可.2.mm 的纸,如果将它连续对折20次,它的高度接近于〔 〕A .一本数学课本的厚度B .篮球架的高度C .篮球场地的周长D .400m 跑到长度【答案】C【解析】解:根据题意得:0.1×220mmm ,那么它的高度接近于篮球场地的周长,选C .【点拨】根据题意列出算式,利用乘方的意义计算即可得到结果.3.〔﹣0.125〕2006×82005= .【答案】0.125.【解析】解:82005×〔﹣0.125〕2006=82005×〔﹣0.125〕2005×〔﹣0.125〕=〔﹣8×0.125〕2005×〔﹣0.125〕.【点拨】观察式子的特点,发现两个幂的底数互为倒数,因而可以逆用积的乘方运算性质.4.:2+32=22×32,3+83=32×83,4+154=42×154…,假设14+b a =142×ba 〔a 、b 均为正整数〕,那么a +b = .【答案】209.【解析】解:由得出:14+b a =142×ba ,b =142﹣1,a =14,∴a +b =14+142﹣1=209. 【点拨】根据条件得出数字之间的规律,从而表示出a ,b ,进而求出a +b 的值.5.化简并在数轴上分别画出表示以下各数的点,并把各数用“<〞号连接起来.〔﹣1〕2021,+〔﹣3.5〕,﹣〔﹣1.5〕,﹣|﹣2.5|,﹣22【答案】1;﹣3.5;1.5;﹣2.5;﹣4;﹣22<+〔﹣3.5〕<﹣|﹣2.5|<〔﹣1〕2021<﹣〔﹣1.5〕.【解析】解:〔﹣1〕2021=1;+〔﹣3.5〕=﹣3.5;﹣〔﹣1.5〕=1.5;﹣|﹣2.5|=﹣2.5;﹣22=﹣4.﹣22<+〔﹣3.5〕<﹣|﹣2.5|<〔﹣1〕2021<﹣〔﹣1.5〕.【点拨】根据有理数的乘方、相反数、绝对值化简,即可解答.6.阅读题:根据乘方的意义,可得:22×23=〔2×2〕×〔2×2×2〕=25.请你试一试,完成以下题目:〔1〕53×52=〔 〕×〔 〕=5〔 〕;〔2〕a 3•a 4= 〔 〕•〔 〕 =a 〔 〕〔3〕归纳、概括:a m •a n =〔〕〔〕==a 〔 〕〔4〕如果x m =4,x n =5,运用以上的结论计算x m +n = .【答案】〔1〕5×5×5〕×〔5×5〕,5; 〔2〕〔a •a •a 〕•〔a •a •a •a 〕,7;〔3〕m +n ;〔4〕20.【解析】解:〔1〕53×52=〔5×5×5〕×〔5×5〕=55. ∴填〔5×5×5〕×〔5×5〕,5.〔2〕a 3•a 4=〔a •a •a 〕•〔a •a •a •a 〕=a 7 ∴填〔a •a •a 〕•〔a •a •a •a 〕,7..〔3〕归纳、概括:a m•a n=〔〕〔〕==a m+n.∴填m+n.(4)x m+n=x m•x n=4×5=20.∴填20.【点拨】〔1〕根据乘方的意义,结合例题,即可得出结论;〔2〕根据乘方的意义,结合例题,即可得出结论;〔3〕根据乘方的意义,结合例题,即可得出结论;〔4〕根据乘方的意义,可知x m+n=x m•x n,套入数据,即可得出结论.下载后可自行编辑修改,页脚下载后可删除。

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)优秀教学案例

七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)优秀教学案例
七年级数学上册(人教版)1.5.1乘方(第1课时有理数乘方的意义及运算)优秀教学案例
一、案例背景
本节内容是七年级数学上册(人教版)1.5.1乘方,主要讲述有理数乘方的意义及运算。在教学过程中,我以生活实例引入,让学生感受乘方在实际生活中的应用,从而激发学生的学习兴趣。
在教学设计上,我遵循由浅入深、循序渐进的原则,首先通过简单的数学例子让学生理解乘方的概念,接着引导学生掌握有理数乘方的法则,最后通过典型题目练习,使学生能够灵活运用乘方知识解决实际问题。
1.采用启发式教学,引导学生通过自主学习、合作探讨的方式,发现乘方的规律。
2.利用生活实例和典型题目,让学生在实践中掌握乘方运算,提高解决问题的能力。
3.设计富有挑战性的数学题目,激发学生思维,培养他们的创新精神和探究能力。
4.注重个体差异,给予每个学生个性化的指导,使他们在课堂上都能得到充分发展。
4.针对作业中出现的问题,进行有针对性的讲解和辅导,确保学生能够牢固掌握乘方知识。
五、案例亮点
1.生活实例引入:通过讲解温度下降摄氏度和利息计算等生活实例,让学生感受乘方在实际生活中的应用,从而激发学生的学习兴趣,提高他们的学习积极性。这种生活化的教学方式,使学生能够更好地理解乘方概念,并认识到数学的实际意义。
(五)作业小结
1.布置具有针对性的作业,巩固学生对乘方知识的掌握。如设计不同难度的题目,让每个学生在课堂上都有机会展示自己的才华。
2.要求学生认真完成作业,并进行自我检查。如在作业中,让学生运用乘方知识解决实际问题,提高他们的应用能力。
3.及时批改作业,给予学生反馈,指出他们的错误和不足。如在批改作业时,注意学生的解题方法、思路等方面,给予个性化的评语和建议。
4.多元化的评价方式:我采用多元化的评价方式,不仅关注学生的学习成绩,还关注他们在学习过程中的态度、合作意识以及创新精神。通过设置不同难度的题目,让每个学生在课堂上都有机会展示自己的才华,从而提高他们的自信心和自主学习能力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.5.1 乘方(一)
[教学目标]
1.有理数乘方的相关概念;
2.乘方的意义
3.乘方的有关运算
4.乘方的有关性质;
[教学重点与难点]
1.教学重点:正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算;2.教学难点:准确建立底数、指数和幂三个概念,并能求幂的运算;
3.学生的疑点:乘方和幂的区别以及(-a)n与-a n的区别.
[教学过程设计]
一、知识测评
1、(-2)×(-2)×(-2)= ;
2、(-1)×(-2)×(-3)×(-4)×5= ;
3、(-1)×(-1)×(-1)×(-1)×(-1)= 。

二、新课
(一)新课导入
提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a的正方体的体积)4个a相乘呢?5个a相乘呢?100个a相乘呢?为了书写简便,引进了乘方
(二)乘方的意义
一般地,n个相同的因数a相乘,即a·a·…·a,记作a n,读作a的n次方.
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.说明:(1)举例94说明概念及读法;
(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;
(3)因为a n 就是n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;
(4)乘方是一种运算,幂是乘方运算的结果.
对应练习
一、把下列乘法式子写成乘方的形式:
1、1×1×1×1×1×1×1= ;
2、3×3×3×3×3= ;
3、(-3)×(-3)×(-3)×(-3)= ;
4、 = ;
二、把下列乘方写成乘法的形式:
1、 = ;
2、 = ;
3、 = (三).乘方的有关运算
例题讲解
例1 (1)(-4)3; (2)(-2)4; (3)-24.
强调:(1)计算时仍然是要先确定符号,再确定绝对值;
(2)注意(-2)4与-24的区别.
根据有理数的乘法法则得出有理数乘方的符号规律:
乘方的有关性质
负数的奇次幂是负数,负数的偶次幂是正数;
正数的任何次幂都是正数,0的任何次幂都是0.
例2 计算:
(1)(32)3; (2)(-32)3; (3)(-3
2)4; (4)-3
24
; (5)-22×(-3)2; (6)-22+(-3)2. 例3 教材P50例2.
(四)课堂练习
1.教材P51练习1,2;
65656565⨯⨯⨯()3
9.0-479⎪⎭⎫ ⎝⎛()2b a -
2.补充练习
(1)在(-2)6中,指数为 ,底数为 .
(2)在-26中,指数为 ,底数为 .
(3)若a 2=16,则a= .
(4)平方等于本身的数为 ,立方等于本身的数为 .
(5)计算(-151)×46
1= . (6)在(-2)5,(-3)5,(-21)5,(-3
1)5中,最大的数是 . (7)下列说法正确的是( )
A .平方得9的数是3
B .平方得-9的数是-3
C .一个数的平方只能是正数
D .一个数的平方不能是负数
(8)下列运算正确的是( )
A .-24=16
B .-(-2)2=-4
C .(-31)2=-91
D .(-21)2=-4
1 (9)下列各组数中,不相等的是( )
A .(-3)2与-32
B .(-3)2与32
C .(-2)3与-23
D .33
22--与
(10)下列各式计算不正确的是( )
A .(-1)2003=-1
B .-12002=1
C .(-1)2n =1(n 为正整数)
D .(-1)2n+1=-1(n 为正整数)
(11)计算(-2)2002+(-2)2003所得的结果为( )
A .-2
B .-22002
C .22002
D .-22003
(12)下列各数表示正数的是( )
A .1+a
B .(a -1)2
C .-(-a )
D .
a 1 (五)小结
(1)引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数、和幂三个基本概念.
(2)教师扩展:首先,有理数的乘方就是几个相同因数积的运算,可以运用有
理数乘方法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n
与-a n 及(a b )n 与a b n
的区别和联系. (六)课后作业
1.教材P56中1,2.
2.补充
(1)试一试从1开始你能迅速连续说出多少正整数的平方?
(2)计算: ①(25)×(-25)×(-25)2,-(-2
5)2,-252; ②(-1)2003,3×22,-42×(-4)2,-23÷(-2)3;
③(-1)n -1; ④31×24,423
1)( ; ⑤(-103)÷25,(-10÷25)3;
⑥(-12÷4)2,(-12)÷42;
⑦-32×(-31)2,[-3×(-3
1)2] . (3)填空:
①如果a <0,那么a 7 0;②如果a 5>0,那么a 0;
③如果a <0,那么a 6 0;④如果a 4>0,且-a >0,那么a 5 0. (。

相关文档
最新文档