2017-2018学年河北省石家庄市新华区八年级(下)期中数学试卷_0
2017-2018学年度第二学期冀教版八年级期中考试数学试卷
○…………………○…学校………内…………○……装…………○绝密★启用前 2017-2018学年度第二学期 冀教版八年级期中考试数学试卷 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.本卷25题,答卷时间100分,满分120分 是( ) A. 扇形统计图 B. 条形统计图 C. 直方图 D. 折线统计图 2.(本题3分)下列调查适合普查的是 ( ) A. 调查全市初三所有学生每天的作业量 B. 了解全省每个家庭月使用垃圾袋的数量 C. 了解某厂2016年生产的所有插座使用寿命 D. 对“天舟一号”的重要零部件进行检查56 4.(本题3分)将△ABC 的三个顶点的横坐标乘以﹣1,纵坐标不变,则所得图形( ) A. 与原图形关于y 轴对称 B. 与原图形关于x 轴对称 C. 与原图形关于原点对称 D. 向x 轴的负方向平移了一个单位 5.(本题3分)如图,坐标平面上有P ,Q 两点,其坐标分别为(5,a),(b ,7),根据图中P ,Q 两点的位置,则点(6-b ,a -10)在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 6.(本题3分)如图,在边长为1的正方形网格中,将△ABC 向右平移2个单位长度得到△A ′B ′C ′,则与点B ′关于x 轴对称的点的坐标是( )………装…………………○…………请※※不※※要※※在※※装※※※题※※……………○7.(本题3分)平面直角坐标系内的点A(-1,2)与点B(-1,-2)的位置关系是( )A. 关于y轴对称B. 关于x轴对称C. 关于原点对称D. 无法确定8.(本题3分)如果点P在第三象限内,点P到x轴的距离是5,到y轴的距离是2,那么点P的坐标为()A. (﹣5,2)B. (﹣5,﹣2)C. (﹣2,5)D. (﹣2,﹣5)9.(本题3分)如图,是汽车行驶速度(km/时)和时间(分)的关系图,下列说法中正确的个数为()(1)汽车行驶时间为40分钟(2)AB表示汽车匀速行驶(3)在第30分钟时,汽车的速度是90千米/时(4)从C到D汽车行驶了1200kmA. 1个B. 2个C. 3个D. 4个10.(本题3分)一水池有甲、乙、丙三个水管,其中甲、丙两管为进水管,乙管为出水管.单位时间内,甲管水流量最大,丙管水流量最小.先开甲、乙两管,一段时间后,关闭乙管开丙管,又经过一段时间,关闭甲管开乙管.则能正确反映水池蓄水量y(立方米)随时间t(小时)变化的图象是()A. B.C. D.二、填空题(计32分)144°,则这个扇形所表示的占总体的百分比为______.12.(本题4分)某中学开展“阳光体育活动”,七年级一班全体同学分别参加了巴山舞、乒乓球、篮球三个项目的活动,陈老师统计了该班参加这三项活动的人数,并绘制了如图所示的条形统计图①和扇形统计图②.根据这两个统计图,可以知道该班参加乒乓球活动的有________人.…外…………………装……○…………………○…………………○……校:___________姓名___班级:__________________ ……○…………装…○…………订……………线…………○…………○…………内…○…………装…………○… 13.(本题4分)已知样本容量为100,在频数分布直方图中(如图),各小长方形的高之比为AE ∶BF ∶CG =2∶4∶3,且第四小组的频数为10,则第三小组的百分比为________,第三小组的频数为________. 14.(本题4分)如图,在某海滨区域,位于点A 处的一艘游船出了事故,位于点O 处的一架小型救生艇以每小时60千米的速度迅速前往营救,2分钟后到达点A.根据图示可知,发生事故时,游船位于救生艇________________处. 15.(本题4分)如图,在平面直角坐标系中,点A 的坐标为(﹣2, ,以原点O 为中心,将点A 顺时针旋转165°得到点A ′,则点A ′的坐标为___________. 16.(本题4分)如图,将边长为2的等边三角形沿x 轴正方向连续翻折2016次,依次得到点P 1,P 2,P 3,…,P 2016,则点P 1的坐标是________,点P 2016的坐标是________. 17.(本题4分)若点A (﹣5,y 1)、B (﹣2,y 2)都在函数12y x =-图像上,则y 1+y 2=_____. 18.(本题4分)小李驾驶汽车以50千米/时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y(千米)与○…………装………………○…※※请※※不※※要※※在………………________千米/时.三、解答题(计58分)19.(本题8分)如果点P 的坐标为(a,b),且有()2210a ++= ,试求P 关于x 轴的对称点1P 的坐标.20.(本题8分)写出如图中△ABC 各顶点的坐标且求出此三角形的面积.………外………线…………○……内…………○…………装………○…………装…………○…21.(本题8分)4月23日是“世界读书日”,学校开展“让书香溢满校园”读书活动,以提升青少年的阅读兴趣,九年级(1)班数学活动小组对本年级600名学生每天阅读时间进行了统计, 根据所得数据绘制了如图所示的两幅不完整的统计图(每组包括最小值不包括最大值).九年级(1)班每天阅读时间在0.5 h 以内的学生占全班人数的8%,根据统计图解答下列问题: (1)九年级(1)班有________名学生. (2)补全频数分布直方图. (3)除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h 的学生有165人,请你补全扇形统计图. (4)求该年级每天阅读时间不少于1 h 的学生有多少人. 22.(本题8分)在平面直角坐标系中(如图每格一个单位),描出下列各点A (﹣2,﹣1),B (2,﹣1),C (2,2),D (3,2),E (0,3),F (﹣3,2),G (﹣2,2),A (﹣2,﹣1)并依次将各点连接起来,观察所描出的图形,它像什么?根据图形回答下列问题: (1)图形中哪些点在坐标轴上,它们的坐标有什么特点? (2)线段FD 和x 轴有什么位置关系?点F 和点D 的坐标有什么特点?…………※※答※※题※※……23.(本题8分)已知△ABC 是等腰直角三角形,AB ABC 沿直线BC 向右平移得到△DEF.如果E 是BC 的中点,AC 与DE 交于P 点,以直线BC为x 轴,点E 为原点建立直角坐标系. (1)求△ABC 与△DEF 的顶点坐标;(2)判断△PEC 的形状;(3)求△PEC 的面积.24.(本题9分)在平面直角坐标系中,已知点P 的坐标为(2a +6,a -3).(1)当点P 的坐标为(4,-4)时,求a 的值;(2)若点P 在第四象限,求a 的取值范围.…○…………线…____ ○…………内…………○…25.(本题9分)某生物兴趣小组在四天的实验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成下图.请根据图像回答问题: (1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多少时间? (2)第三天12时这头骆驼的体温约是多少?参考答案1.D【解析】试题解析:根据统计图的特点,知要反映无锡市某天的气温的变化情况,最适合使用的统计图是折线统计图.故选D.2.D【解析】A. 调查全市初三所有学生每天的作业量,适合采用抽样调查,故本选项错误;B. 了解全省每个家庭月使用垃圾袋的数量,适合采用抽样调查,故本选项错误;C. 了解某厂2016年生产的所有插座使用寿命,适合采用抽样调查,故本选项错误;D. 对“天舟一号”的重要零部件进行检查,为保证成功发射,应对其零部件进行全面检查,故此选项正确,故选D.3.C【解析】最大值与最小值的差为187-140=47,即最多有47个不同数据,分组为47÷6=75,因此取整可知可分成8组.6故选:C.4.A【解析】根据轴对称的性质,知将△ABC的三个顶点的横坐标乘以﹣1,就是把横坐标变成相反数,纵坐标不变,因而是把三角形的三个顶点以y轴为对称轴进行轴对称变换.所得图形与原图形关于y轴对称.故选A.点睛:本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.5.D【解析】∵(5,a)、(b,7),∴a<7,b<5,∴6-b>0,a-10<0,∴点(6-b,a-10)在第四象限.故选:D.6.D【解析】根据题意得B′(1,2),则B′(1,2)关于x轴对称的点的坐标是(1,-2),故选D.7.B【解析】点A(-1,2)与点B(-1,-2)的横坐标相等,纵坐标互为相反数,所以它们关于x轴对称,故答案为B.8.D【解析】如图,根据题意作出点P,显然点P坐标为(-2,-5),故选D.点睛:数形结合,作出点P,就能得出正确答案,否则易错选B.9.B【解析】试题解析:读图可得,在x=40时,速度为0,故(1)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;CD段,y的值相等,故速度不变,时间为15分钟,故行驶路程为80×15=1200km,故(4)正确.故选B.10.D【解析】试题解析:先开甲、乙两管,则蓄水量增加,函数图象倾斜向上;一段时间后,关闭乙管开丙管,则蓄水量增加的速度变大,因而函数图象倾斜角变大;关闭甲管开乙管则蓄水量减小,函数图象随x的增大而减小,故选D.11.40%×100%=40%,所以个扇形所表示的占总体的百分比为40%,故【解析】因为144360答案为40%.12.15【解析】先由参加巴山舞活动的有25人,占总人数的50%,求出参加三项活动的总人数为:25÷50%=50(人),然后用总人数减去参加巴山舞以及篮球两个项目活动的人数,即可得出参加乒乓球活动的人数是:50-25-10=15.故答案为:15.点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.13. 30% 30【解析】根据题意,可知前三组的频数100-10=90,由各小长方形的高之比为=30,所以可得第三小AE∶BF∶CG=2∶4∶3,可得第三组的频数为90×3++243组的百分比为30÷100×100%=30%.故答案为:30%;30.14.北偏东60°,距救生艇2千米【解析】试题分析:根据救生艇的速度和时间可得:OA=2千米,则游船位于救生艇北偏东60°,距救生艇2千米处.15.(【解析】作AB ⊥x 轴于点B ,∴AB=OB=2,则tan ∠AOB=2A BB O ==∴∠AOB=60°,∴∠AOy=30°,∴将点A 顺时针旋转165°得到点A ′后,∠A ′OC=165°-30°-90°=45°,OA ′=OA=2OB=4,∴A ′C=OC=即A ′(−,故答案为:(.16. (1,,【解析】由图可知,P 1(1,;P 2(3,;P 3(5,;…;P 2016(2016×2-1,,即P 2016(4031,,故答案为(1).(1,;(2).(4031,17.72【解析】因为y 1=()152-⨯-=52,y 2=()122-⨯-=1,所以y 1+y 2=52+1=72,故答案为72. 18.58【解析】由图象可得:接电话后小李的路程为137−50=87(千米),接电话后小李的时间为3−1.5=1.5(小时),所以可得:接电话后小李的行驶速度为:87÷1.5=58(千米/小时),故答案为:58. :19.(12-,1)【解析】整体分析:根据非负数的性质求出a ,b 的值,得到点P 的坐标,再由关于x 轴对称的点的坐标特征求解.解:根据题意得,2a+1=0,b+1=0,所以a=12-,b=-1,所以P(12-,-1),则P 关于x 轴的对称点1P 的坐标为(12-,1).20.A (2,2)、B (﹣2,﹣1)、C (3,﹣2),9.5.【解析】试题分析:首先根据坐标的定义正确写出三个顶点的坐标,再用长方形的面积减去三个直角三角形的面积进行计算即可得.试题解析:根据图形得:A (2,2)、B (﹣2,﹣1)、C (3,﹣2),三角形的面积:5×4-12×4×3-12×5×1-12×4×1=20﹣6﹣2.5﹣2=9.5.【点睛】本题考查了坐标与图形性质,三角形的面积等,解题的关键是要注意:求不规则图形的面积时,能够转化为规则图形的面积进行计算.21.(1)50(2)见解析(3)见解析(4)246【解析】试题分析:(1)根据统计图可知0~0.5小时的人数和百分比,用除法可求解;(2)根据总人数和已知各时间段的人数,求出九年级(1)班学生每天阅读时间在0.5~1 h 的人数,画图即可;(3)根据除九年级(1)班外,九年级其他班级每天阅读时间为1~1.5 h 的学生有165人,除以总人数得到百分比,即可画扇形图;(4)根据扇形统计图求出其它班符合条件的人数,再加上九年级(1)班符合条件的人数即可.试题解析:(1)4÷8%=50(2)九年级(1)班学生每天阅读时间在0.5~1 h 的有50-4-18-8=20(人),补全频数分布直方图如图所示.(3)因为除九年级(1)班外,九年级其他班级每天阅读时间在1~1.5 h 的学生有165人,所以1~1.5 h 在扇形统计图中所占的百分比为165÷(600-50)×100%=30%, 故0.5~1 h 在扇形统计图中所占的百分比为1-30%-10%-12%=48%, 补全扇形统计图如图所示.(4)该年级每天阅读时间不少于1 h 的学生有(600-50)×(30%+10%)+18+8=246(人).22.(1)见解析;(2)见解析【解析】试题分析:(1)在平面直角坐标系描出各点的坐标,观察即可得答案;(2)点F 和点D 的纵坐标相同,线段FD 平行于x 轴.试题解析:(1)如图所示,图形像一个房子的图案,由图可知点E (0,3)在y 轴上,横坐标等于0;(2)线段FD 平行于x 轴,点F 和点D 的纵坐标相同,横坐标互为相反数.23.(1) A (0,1),B (-1,0),C (1,0),D (1,1),E (0,0),F (2,0);(2)△PEC 是等腰直角三角形;(3)S △PEC =14.【解析】整体分析:(1)根据勾股定理和平移的性质求出△ABC 与△DEF 的顶点到点E 的距离或到点A 的距离;(2)根据平移的性质得DE ∥AB ,即可判断△PEC 的形状;(3)△PEC 的面积等于两条直角边乘积的一半.解:(1)连接AE ,CD .∵△ABC 是等腰直角三角形,E 是BC 的中点,∴AE ⊥BC ,∴AE 2+CE 2=2CE 2=AC 2,∴CE 2AC . ∵△DEF 是由△ABC 平移得到的,∴CE =AE =BE =CF =CD =2AC =21,EF =2CE =2.∴A (0,1),B (-1,0),C (1,0),D (1,1),E (0,0),F (2,0).(2)根据平移的性质,可知DE ∥AB ,∴∠PEC =∠B =45°,∠EPC =∠A =90°,∴△PEC 是等腰直角三角形.(3)S △PEC =12PC ·PE =12PC 2=12×12CE 2=14. 所以S △PEC =14.24.(1) a =-1;(2)-3<a <3.【解析】整体分析:(1)由点P 的坐标为(4,-4),列方程求解;(2)根据第四象限内的点的横坐标为正,纵坐标为负列不等式组求a 的范围.解:(1)∵点P 的坐标为(4,-4),∴2a +6=4解得a =-1.(2)∵点P (2a +6,a -3)在第四象限,∴260{ 30a a +-><解得-3<a <3.25.(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2)第三天12时这头骆驼的体温约是38.5℃.【解析】试题分析:(1)根据函数图象找出0~24小时图象随时间增大而增大的部分即可,然后求出从体温开始上升到上升结束的时间差即可;(2)根据函数图象找出12时对应的体温值即可.试题解析:(1)由图 可知:第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2)第三天12时这头骆驼的体温约是38.5℃.。
2017-2018学年河北省石家庄市八年级(下)期中数学试卷_0
2017-2018学年河北省石家庄市八年级(下)期中数学试卷一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.(3分)根式中x的取值范围是()A.x≥2B.x≤2C.x<2D.x>22.(3分)二次根式、、、、、中,最简二次根式有()个.A.1个B.2个C.3个D.4个3.(3分)下列计算正确的是()A.B.C.D.4.(3分)如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()A.1B.C.D.25.(3分)已知一个三角形的三边长分别是12,16,20,则这个三角形的面积为()A.120B.96C.160D.2006.(3分)若2<a<3,则等于()A.5﹣2a B.1﹣2a C.2a﹣1D.2a﹣57.(3分)若正方形的对角线长为2cm,则这个正方形的面积为()A.4cm2B.2cm2C.cm2D.2cm2 8.(3分)如图,一只蚂蚁从长宽都是3,高是8的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是()A.3+8B.10C.14D.无法确定9.(3分)如图,在矩形ABCD中,对角线AC,BD相交于点O,如果∠AOD=120°,AB=2,那么BC的长为()A.4B.C.2D.210.(3分)在一个四边形ABCD中,依次连接各边的中点得到的四边形是菱形,则对角线AC与BD需要满足条件是()A.垂直B.相等C.垂直且相等D.不再需要条件11.(2分)从菱形的钝角顶点,向对角的两边条垂线,垂足恰好在该边的中点,则菱形的内角中钝角的度数是()A.150°B.135°C.120°D.100°12.(2分)在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是()A.AC=BD,AB∥CD,AB=CD B.AD∥BC,∠A=∠CC.AO=BO=CO=DO,AC⊥BD D.AO=CO,BO=DO,AB=BC13.(2分)如果三角形三边长为5,m,n,且(m+n)(m﹣n)=25,那么此三角形形状为()A.锐角三角形B.钝角三角形C.等腰直角三角形D.直角三角形14.(2分)有一个边长为1的正方形,经过一次“生长”后在它的上侧生长出两个小正方形(如图1),且三个正方形所围成的三角形是直角三角形;再经过一次“生长”后变成了图2,如此继续“生长”下去,则“生长”第k次后所有正方形的面积和为()A.k B.k+1C.k2D.(k+1)2 15.(2分)给出下列命题:①在直角三角形ABC中,已知两边长为3和4,则第三边长为5;②三角形的三边a、b、c满足a2+c2=b2,则∠C=90°;③△ABC中,若∠A:∠B:∠C=1:5:6,则△ABC是直角三角形;④△ABC中,若a:b:c=1:2:,则这个三角形是直角三角形.其中,假命题的个数为()A.1个B.2个C.3个D.4个16.(2分)如图,将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为()A.156B.245C.216D.210二、填空题(共4小题,每题3分,共12分)17.(3分)计算:()﹣1=.18.(3分)定义运算“@”的运算法则为:x@y=,则(2@6)@8=.19.(3分)已知a、b、c是△ABC的三边长,且满足关系式+|a﹣b|=0,则△ABC的形状为.20.(3分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是.三、简答题(共66分)21.(16分)计算:(1)÷×(2)﹣(4﹣)(3)(7+4)(7﹣4)﹣(3﹣1)2(4)|﹣|+|﹣2|+22.(10分)先化简,再求值:÷•,其中a=﹣2.23.(6分)正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点,以格点为顶点,(1)在图①中,画一个面积为10的正方形;(2)在图②、图③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.24.(10分)学完勾股定理之后,同学们想利用升旗的绳子、卷尺,测算出学校旗杆的高度.爱动脑筋的小明这样设计了一个方案:将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,然后将绳子拉到离旗杆底端5米处,发现此时绳子底端距离打结处约1米.请你设法帮小明算出旗杆的高度.25.(12分)如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2,求证:(1)BE=DF;(2)AF∥CE.26.(12分)如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE ⊥AB于E,PF⊥AC于F,M为EF中点,求AM的最小值.2017-2018学年河北省石家庄市八年级(下)期中数学试卷参考答案一、选择题(共16小题,1-10小题,每题3分,11-16小题,每题2分,共42分)1.B;2.C;3.C;4.D;5.B;6.D;7.B;8.B;9.C;10.B;11.C;12.C;13.D;14.B;15.B;16.D;二、填空题(共4小题,每题3分,共12分)17.;18.6;19.等腰直角三角形;20.;三、简答题(共66分)21.;22.;23.;24.;25.;26.;。
八年级(下)数学期中考试试题(答案)
八年级(下)数学期中考试试题(答案)一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥33.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,36.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.17.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣28.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8 9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.311.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.1212.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A .k ≤2B .C .D .二、填空题(每题4分,共32分)13.(4分)函数y =中自变量x 的取值范围是 .14.(4分)一次函数y =kx +b 与y =2x +1平行,且经过点(﹣3,4),则表达式为: . 15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm ,则对角线长为 cm .16.(4分)计算:= .17.(4分)已知P 1(﹣3,y 1)、P 2(2,y 2)是一次函数y =﹣2x +1图象上的两个点,则y 1 y 2.18.(4分)如果将直线y =﹣2x 向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为 .19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为 .20.(4分)如图,Rt △ABC 中,AC =5,BC =12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为 .三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷× 22.(10分)我校要对如图所示的一块地进行绿化,已知AD =4米,CD =3米,AD ⊥DC ,AB =13米,BC =12米,求这块地的面积.23.(9分)如图所示为某汽车行驶的路程S (km )与时间t (min )的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是,证明你的结论;(2)当四边形ABCD的对角线满足条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为.2018-2019学年山东省滨州市邹平县八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)下列二次根式中,属于最简二次根式的是()A.B.C.D.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数含分母,故A错误;B、被开方数含分母,故B错误;C、被开方数含能开得尽方的因数,故C错误;D、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故D正确;故选:D.【点评】本题考查最简二次根式的定义,被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.(3分)二次根式有意义的条件是()A.x>3B.x>﹣3C.x≥﹣3D.x≥3【分析】根据二次根式有意义的条件求出x+3≥0,求出即可.【解答】解:∵要使有意义,必须x+3≥0,∴x≥﹣3,故选:C.【点评】本题考查了二次根式有意义的条件的应用,注意:要使有意义,必须a≥0.3.(3分)已知一次函数y=kx﹣3且y随x的增大而增大,那么它的图象经过()A.第二、三、四象限B.第一、二、三象限C.第一、三、四象限D.第一、二、四象限【分析】根据“一次函数y=kx﹣3且y随x的增大而增大”得到k<0,再由k的符号确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx﹣3且y随x的增大而增大,∴k<0,该直线与y轴交于y轴负半轴,∴该直线经过第一、三、四象限.故选:C.【点评】本题考查了一次函数图象与系数的关系.函数值y随x的增大而减小⇔k<0;函数值y随x的增大而增大⇔k>0;一次函数y=kx+b图象与y轴的正半轴相交⇔b>0,一次函数y=kx+b图象与y轴的负半轴相交⇔b<0,一次函数y=kx+b图象过原点⇔b=0.4.(3分)如图,广场中心菱形花坛ABCD的周长是32米,∠A=60°,则A、C两点之间的距离为()A.4米B.4米C.8米D.8米【分析】由菱形花坛ABCD的周长是40米,∠BAD=60°,可求得边长AD的长,AC ⊥BD,且∠CAD=30°,则可求得OA的长,继而求得答案.【解答】解:如图,连接AC、BD,AC与BD交于点O,∵菱形花坛ABCD的周长是32米,∠BAD=60°,∴AC⊥BD,AC=2OA,∠CAD=∠BAD=30°,AD=8米,∴OA=AD•cos30°=8×=54(米),∴AC=2OA=8米.故选:D.【点评】此题考查了菱形的性质以及三角函数的性质.注意根据菱形的对角线互相垂直且平分求解是解此题的关键.5.(3分)下列四组线段中,可以构成直角三角形的是()A.4,5,6B.1.5,2,2.5C.2,3,4D.1,,3【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52=41≠62,不可以构成直角三角形,故A选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故B选项正确;C、22+32=13≠42,不可以构成直角三角形,故C选项错误;D、12+()2=3≠32,不可以构成直角三角形,故D选项错误.故选:B.【点评】本题考查勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.6.(3分)若x≤0,则化简|1﹣x|﹣的结果是()A.1﹣2x B.2x﹣1C.﹣1D.1【分析】利用二次根式的意义以及绝对值的意义化简.【解答】解:∵x≤0,∴1﹣x>0,|1﹣x|=1﹣x,=﹣x,∴|1﹣x|﹣=1﹣x﹣(﹣x)=1.故选:D.【点评】此题考查了绝对值的代数定义:①正数的绝对值是它本身;②负数的绝对值是它的相反数;③零的绝对值是零.7.(3分)如图,已知:函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是()A.x>﹣5B.x>﹣2C.x>﹣3D.x<﹣2【分析】根据一次函数的图象和两函数的交点坐标即可得出答案.【解答】解:∵函数y=3x+b和y=ax﹣3的图象交于点P(﹣2,﹣5),则根据图象可得不等式3x+b>ax﹣3的解集是x>﹣2,故选:B.【点评】本题考查了议程函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.8.(3分)把直线y=﹣2x向上平移后得到直线AB,若直线AB经过点(m,n),且2m+n =8,则直线AB的表达式为()A.y=﹣2x+4B.y=﹣2x+8C.y=﹣2x﹣4D.y=﹣2x﹣8【分析】由题意知,直线AB的斜率,又已知直线AB上的一点(m,n),所以用直线的点斜式方程y﹣y0=k(x﹣x0)求得解析式即可.【解答】解:∵直线AB是直线y=﹣2x平移后得到的,∴直线AB的k是﹣2(直线平移后,其斜率不变)∴设直线AB的方程为y﹣y0=﹣2(x﹣x0)①把点(m,n)代入①并整理,得y=﹣2x+(2m+n)②∵2m+n=8 ③把③代入②,解得y=﹣2x+8,即直线AB的解析式为y=﹣2x+8.故选:B.【点评】本题是关于一次函数的图象与它平移后图象的转变的题目,在解题时,紧紧抓住直线平移后,斜率不变这一性质,再根据题意中的已知条件,来确定用哪种方程(点斜式、斜截式、两点式等)来解答.9.(3分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【解答】解:设∠BAE=x°,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=45°+x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(45°+x°)=45°.答:∠BEF的度数是45°.【点评】本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.10.(3分)如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB =2,则矩形的面积为()A.2B.4C.D.3【分析】由矩形的性质得出∠ABC=90°,OA=OB,再证明△AOB是等边三角形,得出OA=AB,求出AC,然后根据勾股定理即可求出BC,进而得出矩形面积即可.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,OA=AC,OB=BD,AC=BD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=2,∴AC=2OA=4,∴BC=,∴矩形的面积=AB•BC=4;故选:B.【点评】本题考查了矩形的性质、等边三角形的判定与性质以及勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.11.(3分)如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为()A.6B.8C.10D.12【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,于是得到AF=AB﹣BF,即可得到结果.【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S=•AF•BC=10.△AFC故选:C.【点评】本题考查了翻折变换﹣折叠问题,勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.12.(3分)将2×2的正方形网格如图放置在平面直角坐标系中,每个小正方形的顶点称为格点,每个小正方形的边长都是1,正方形ABCD的顶点都在格点上.若直线y=kx(k ≠0)与正方形ABCD有公共点,则k的取值范围是()A.k≤2B.C.D.【分析】分别确定点A和点C的坐标,代入正比例函数的解析式即可求得k的取值范围.【解答】解:由题意得:点A的坐标为(1,2),点C的坐标为(2,1),∵当正比例函数经过点A时,k=2,当经过点C时,k=,∴直线y=kx(k≠0)与正方形ABCD有公共点,k的取值范围是,故选:C.【点评】本题考查了正比例函数的性质,解题的关键是求得点A和点C的坐标,难度不大.二、填空题(每题4分,共32分)13.(4分)函数y=中自变量x的取值范围是x≥﹣2且x≠1.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x+2≥0且x﹣1≠0,解得x≥﹣2且x≠1.故答案为:x≥﹣2且x≠1.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.(4分)一次函数y=kx+b与y=2x+1平行,且经过点(﹣3,4),则表达式为:y =2x+10.【分析】根据一次函数与y=2x+1平行,可求得k的值,再把点(﹣3,4)代入即可求得一次函数的解析式.【解答】解:∵一次函数y=kx+b与y=2x+1平行,∴k=2,又∵函数经过点(﹣3,4)∴4=﹣6+b,解得:b=10∴函数的表达式为y=2x+10.【点评】本题考查了待定系数法求一次函数的解析式,比较简单,同学们要熟练掌握.15.(4分)矩形的两条对角线的夹角为60°,较短的边长为12cm,则对角线长为24cm.【分析】根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.【解答】解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=BD=AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为:24.【点评】矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.16.(4分)计算:=.【分析】根据二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.【解答】解:原式=2×5﹣3×3+=(10﹣9+1)=2;故答案是:2.【点评】本题主要考查了二次根式的加减法.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并;合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.17.(4分)已知P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,则y1>y2.【分析】根据题目中的函数解析式,可以得到函数图象的变化趋势,从而可以解答本题.【解答】解:∵一次函数y=﹣2x+1,∴y随x的增大而减小,∵P1(﹣3,y1)、P2(2,y2)是一次函数y=﹣2x+1图象上的两个点,﹣3<2,∴y1>y2,故答案为:>.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.18.(4分)如果将直线y=﹣2x向上平移4个单位,那么平移后的直线与坐标轴围成的三角形面积为4.【分析】根据函数图象向上平移加,可得函数解析式,根据三角形的面积公式,可得答案.【解答】解:直线y=﹣2x向上平移4个单位得直线的解析式为y=﹣2x+4,则与坐标轴的交点为(2,0)和(0,4),所以平移后的直线与坐标轴围成的三角形面积为:×2×4=4.故答案为:4.【点评】本题考查了一次函数图象与几何变换,平移的规律“左加右减,上加下减”.19.(4分)一个平行四边形的一边长是9,两条对角线的长分别是12和6,则此平行四边形的面积为36.【分析】由题意画出相应的图形,得到平行四边形的边BC=9,对角线AC和BD分别为12和6,根据平行四边形的对角线互相平分,求出OB及OC的长,计算发现OC2+OB2=BC2,利用勾股定理的逆定理得到∠BOC为直角,根据垂直定义得到AC与BD垂直,根据对角线互相垂直的平行四边形为菱形得到四边形ABCD为菱形,根据菱形的面积等于对角线乘积的一半,由两对角线的长即可求出菱形ABCD的面积.【解答】解:根据题意画出相应的图形,如图所示:则有平行四边形ABCD中,BC=9,AC=12,BD=6,∴OC=AC=6,OB=BD=3,∵OC2+OB2=36+45=81,BC2=81,∴OC2+OB2=BC2,∴∠BOC=90°,即AC⊥BD,∴四边形ABCD为菱形,则菱形ABCD的面积S=BD•OC+BD•OA=BD(OC+OA)=AC•BD=×12×6=36.故答案为:36.【点评】此题考查了勾股定理的逆定理,菱形的判定与性质,以及菱形面积的求法,若四边形的对角线互相垂直,可得到其面积等于对角线乘积的一半,而菱形的对角线互相垂直,故菱形的面积也可以用对角线乘积的一半来求.20.(4分)如图,Rt△ABC中,AC=5,BC=12,分别以它的三边为直径向上作三个半圆,则阴影部分面积为30.【分析】根据勾股定理求出AB的长,即可用减法求出阴影部分的面积.【解答】解:由勾股定理AB==13,=π()2+π()2﹣[π()2﹣×5×12]=30.根据题意得:S阴影【点评】观察图形的特点,用各面积相加减,可得出阴影部分的面积.三、解答题(共8小题,满分77分)21.(8分)计算(1)2﹣(﹣)(2)÷×【分析】(1)先将化为最简二次根式,再去括号、合并同类二次根式即可;(2)先按从左往右的顺序计算乘除,再化简即可.【解答】解:(1)2﹣(﹣)=2﹣(3﹣)=2﹣3+=﹣+;(2)÷×===.【点评】本题考查了二次根式的混合运算,掌握运算法则是解题的关键.22.(10分)我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:连接AC.由勾股定理可知AC===5,又∵AC2+BC2=52+122=132=AB2,∴△ABC是直角三角形,故所求面积=△ABC的面积﹣△ACD的面积=24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用,关键是作出辅助线得到直角三角形.23.(9分)如图所示为某汽车行驶的路程S(km)与时间t(min)的函数关系图,观察图中所提供的信息解答下列问题:(1)汽车在前9分钟内的平均速度是多少?(2)汽车中途停了多长时间?(3)当16≤t≤30时,求S与t的函数关系式?【分析】(1)根据速度=路程÷时间,列式计算即可得解;(2)根据停车时路程没有变化列式计算即可;(3)利用待定系数法求一次函数解析式解答即可.【解答】解:(1)平均速度==km/min;(2)从9分到16分,路程没有变化,停车时间t=16﹣9=7min.(3)设函数关系式为S=kt+b,将(16,12),C(30,40)代入得,,解得.所以,当16≤t≤30时,求S与t的函数关系式为S=2t﹣20.【点评】本题考查了一次函数的应用,待定系数法求函数解析式,比较简单,准确识图并获取信息是解题的关键.24.(10分)已知y与x+2成正比例,且当x=2时,y=4.(1)y与x之间的函数关系式.(2)当x=4时,求y的值.(3)当y=7时,求x的值.【分析】(1)根据题意设y与x之间的函数关系式y=k(x+2)(k≠0).然后把x、y 的值代入,求得k的值;(2)把x=4代入(1)中的函数解析式,求得相应的y的值;(3)把y=7代入(1)中的函数解析式,求得相应的x的值.【解答】解:(1)设y=k(x+2)(k≠0).把x=2,y=4代入,得4=k(2+2)解得k=1则y与x之间的函数关系式y=x+2;(2)把x=4代入y=x+2,得y=6;(3)把y=7代入y=x+2,得7=x+2解得x=5.【点评】本题考查了待定系数法求一次函数的解析式.解题时,注意是y与(x+2)成正比例关系,不是y与x成正比例关系.25.(10分)已知:如图,四边形ABCD四条边上的中点分别为E、F、G、H,顺次连接EF、FG、GH、HE,得到四边形EFGH(即四边形ABCD的中点四边形).(1)四边形EFGH的形状是平行四边形,证明你的结论;(2)当四边形ABCD的对角线满足互相垂直条件时,四边形EFGH是矩形;(3)你学过的哪种特殊四边形的中点四边形是矩形?菱形.【分析】(1)连接BD,根据三角形的中位线定理得到EH∥BD,EH=BD,FG∥BD,FG═BD,推出,EH∥FG,EH=FG,根据一组对边平行且相等的四边形是平行四边形得出四边形EFGH是平行四边形;(2)根据有一个角是直角的平行四边形是矩形,可知当四边形ABCD的对角线满足AC ⊥BD的条件时,四边形EFGH是矩形;(3)菱形的中点四边形是矩形.根据三角形的中位线平行于第三边并且等于第三边的一半可得EH∥BD,EF∥AC,再根据矩形的每一个角都是直角可得∠1=90°,然后根据平行线的性质求出∠3=90°,再根据垂直定义解答.【解答】解:(1)四边形EFGH的形状是平行四边形.理由如下:如图,连结BD.∵E、H分别是AB、AD中点,∴EH∥BD,EH=BD,同理FG∥BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形;(2)当四边形ABCD的对角线满足互相垂直的条件时,四边形EFGH是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,∵AC⊥BD,∴EH⊥HG,又∵四边形EFGH是平行四边形,∴平行四边形EFGH是矩形;(3)菱形的中点四边形是矩形.理由如下:如图,连结AC、BD.∵E、F、G、H分别为四边形ABCD四条边上的中点,∴EH∥BD,HG∥AC,FG∥BD,EH=BD,FG=BD,∴EH∥FG,EH=FG,∴四边形EFGH是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD,∵EH∥BD,HG∥AC,∴EH⊥HG,∴平行四边形EFGH是矩形.故答案为:平行四边形;互相垂直;菱形.【点评】本题主要考查对三角形的中位线定理,平行四边形的判定,矩形的判定,菱形的性质等知识点的理解和掌握,熟练掌握各定理是解决此题的关键.26.(10分)如图,一次函数y=ax+b的图象与正比例函数y=kx的图象交于点M.(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x的取值范围;(3)求△MOP的面积.【分析】(1)将(2,2)代入y=kx解出正比例函数的解析式,将(2,2)(1,0)代入一次函数解析式解答即可;(2)根据图象得出不等式的解集即可;(3)利用三角形的面积公式计算即可.【解答】解:(1)将(2,2)代入y=kx,解得:k=1,所以正比例函数解析式为:y=x,将(2,2)(1,0)代入一次函数解析式,可得:,解得:.故一次函数的解析式为:y=2x﹣2;(2)因为正比例函数的值大于一次函数的值,可得:x<2;(3)△MOP的面积为:=1.【点评】此题考查两条直线平行问题,关键是根据待定系数法解出解析式.27.(10分)如图,在四边形ABCD中,AD∥BC,AB=3,BC=5,连接BD,∠BAD的平分线分别交BD、BC于点E、F,且AE∥CD(1)求AD的长;(2)若∠C=30°,求CD的长.【分析】(1)根据角平分线和平行线的性质:∠BAF=∠AFB,所以AB=BF=3,再证明四边形AFCD是平行四边形,可得结论;(2)作高线BG,根据特殊的三角函数或勾股定理可得FG的长,所以得AF的长,由(1)知:四边形AFCD是平行四边形,得结论.【解答】解:(1)∵AD∥BC,∴∠DAF=∠AFB,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠BAF=∠AFB,∴AB=BF=3,∵BC=5,∴CF=5﹣3=2,∵AD∥BC,AE∥CD,∴四边形AFCD是平行四边形,∴AD=CF=2;(2)过B作AF的垂线BG,垂足为G.∵AF∥DC,∴∠AFB=∠C=30°,在Rt△BGF中,GF=BF•cos30°=3×=,∵AB=BF,BG⊥AF,∴AF=2FG=3,由(1)知:四边形AFCD是平行四边形,∴DC=AF=3.【点评】本题考查了平行四边形的判定,三角函数的应用(或勾股定理)、等腰三角形的判定、平行线的性质,正确作出辅助线是关键.28.(10分)如图,在△ABC中,∠ACB=90°,D,E分别为AB,AC的中点,延长DE 到F,使得EF=DE,连接AF,CF.(1)求证:四边形ADCF是菱形;(2)请给△ABC添加一个条件,使得四边形ADCF是正方形,则添加的条件为CA=CB或∠B=45°.【分析】(1)利用菱形和平行四边形的判定得出即可;(2)根据当菱形内角是90°则是正方形,进而得出答案.【解答】(1)证明:∵E为线段AC的中点,∴AE=EC.∵EF=DE∴四边形ADCF是平行四边形.又∵D为线段AB的中点,∴DE∥BC,∵∠AED=∠ACB=90°,∴AC⊥FD.∴平行四边形ADCF是菱形.(2)CA=CB或∠B=45°,∵CA=CB,AD=DB,∴CD⊥AB,∴∠CDA=90°,∵ADCF是菱形,∴ADCF是正方形.故答案为:CA=CB或∠B=45°【点评】此题主要考查了平行四边形、菱形、正方形的判定,正确区分它们是解题关键.八年级下学期期中考试数学试题(含答案)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤33.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.5.(3分)平行四边形具有的特征是()A.四个角都是直角B.对角线相等C.对角线互相平分D.四边相等6.(3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD,BC于点E,F,连接AF,若△ABF的周长为6,则▱ABCD的周长为()A.6B.12C.18D.247.(3分)已知a=2﹣2,b=(π﹣2)0,c=(﹣1)3,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>a>b D.b>c>a8.(3分)在同一坐标系中(水平方向是x轴),函数y=和y=kx+3的图象大致是()A.B.C.D.9.(3分)如图,已知双曲线y=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(﹣8,4),则△AOC的面积为()A.6B.12C.18D.2410.(3分)观察下列等式:a1=n,a2=1﹣,a3=1﹣,…;根据其蕴含的规律可得()A.a2013=n B.a2013=C.a2013=D.a2013=二、填空题(共6小题,每小题3分,满分18分)11.(3分)甲型H1N1流感病毒的直径大约是0.000 000 081米,用科学记数法可表示为.12.(3分)在平行四边形ABCD中,已知∠A﹣∠B=60°,则∠C=.13.(3分)如图,已知▱ABCD中,∠B=50°,依据尺规作图的痕迹,则∠DAE=.14.(3分)将直线y=2x﹣3平移,使之经过点(1,4),则平移后的直线解析式是.15.(3分)若关于x的方程=6+有增根,则m=.16.(3分)如图,平面直角坐标系中,已知直线y=x上一点P(1,1),C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q,则点Q的坐标为.三、解答题(共9小题,满分0分)17.计算:|﹣5|+(π﹣3.1)0﹣()﹣1+.18.先化简,再求值.,其中a=2.19.解方程=+2.20.为了迎接市中学生田径运动会,计划由某校八年级(1)班的3个小组制作240面彩旗,后因一个小组另有任务,改由另外两个小组完成制作彩旗的任务.这样,这两个小组的每个同学就要比原计划多做4面彩旗.如果这3个小组的人数相等,那么每个小组有多少名学生?21.如图,点A、B、C、D在同一条直线上,点E、F分别在直线AD的两侧,且AE=DF,∠A=∠D,AB=DC.(1)求证:△ACE≌△DBF;(2)求证:四边形BFCE是平行四边形.22.阅读下列解题过程,然后解题:题目:已知(a、b、c互不相等),求x+y+z的值.解:设,则x=k(a﹣b),y=k(b﹣c),z=k(c﹣a),∴x+y+z=k(a﹣b+b﹣c+c﹣a)=k•0=0,∴x+y+z=0.依照上述方法解答下列问题:已知:,其中x+y+z≠0,求的值.23.如图,一次函数y=k1x+b(k1≠0)与反比例函数y=(k2≠0)的图象交于点A(﹣1,2),B(m,﹣1)(1)求一次函数与反比例函数的解析式;(2)在x轴上是否存在点P(n,0),使△ABP为等腰三角形,请你直接写出P点的坐标.24.某公司开发处一款新的节能产品,该产品的成本价为6元/件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试销售,售价为10元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘制成图象,图中的折线ABC表示日销售量y(件)与销售时间x(天)之间的函数关系.(1)求y与x之间的函数表达式,并写出x的取值范围;(2)若该节能产品的日销售利润为w(元),求w与x之间的函数表达式,并求出日销售利润不超过1040元的天数共有多少天?(3)若5≤x≤17,直接写出第几天的日销售利润最大,最大日销售利润是多少元(不用说理)25.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)求k的值;(2)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.2017-2018学年福建省泉州五中八年级(下)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列各式不是分式的是()A.B.C.D.【分析】根据分式的定义即可求出答案.【解答】解:一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子就叫做分式,故选:C.【点评】本题考查分式的定义,解题的关键是正确理解分式的定义,本题属于基础题型.2.(3分)函数y=自变量的取值范围是()A.x≥﹣3B.x<3C.x≤﹣3D.x≤3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由y=,得3﹣x<0,解得x<3,故选:B.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.3.(3分)在平面直角坐标系中,点(a2+1,﹣1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据平方数非负数的性质判断出点的横坐标是正数,再根据各象限内点的坐标特征解答.【解答】解:∵a2≥0,。
河北省XX市2017-2018学年八年级下册期中考试试卷含答案
八年级下学期期中考试数学试卷一、 选择题(每题3分,共16题,共48分) 1、下列函数中,y 是x 的正比例函数的是( )A. 12-=x yB. 3x y =C. 22x y =D. xy 3= 2、下面哪个点在函数121-=x y 的图象上( ) A.(2,1) B.(-2,1) C.(2,0) D.(-2,0) 3、下列函数中,自变量x 的取值范围是x ≥2的是( )A. 21-=x y B. 21-=x y C. 2-=x y D. 2-=x y 4、下列哪组条件能够判别四边形ABCD 是平行四边形( )A. AB ∥CD ,AD =BCB. AB =CD ,AD =BCC. ∠A =∠B ,∠C =∠DD. AB =AD ,CB =CD 5、在平面直角坐标系中,点(-3,4)到原点的距离是( )A. 5B. -5C. 3D. 46、正方形具有而菱形不具有的性质是( )A. 对角线互相平分B. 对角线互相垂直C. 对角线相等D. 对角线平分一组对角7、李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校,在课堂上,李老师请学生画出他行进的路程y (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( ) A 、 B 、 C 、 D 、8、已知一次函数的图象与直线y =x +1平行,且过点(8,2),此函数的解析式为( ) A. y =-x -2 B. y =-x -6 C. y =-x +10 D. y =-x -1 9、如图,菱形ABCD 的周长为8cm ,高AE 长为3cm ,则对角线AC 长和BD 长之比为( )A. 1:2B. 1:3C. 1:2D. 1:3 10、一次函数y =mx +n 与y =mnx (mn <0)在同一坐标系中的图象可能是( )11、一天,小军和爸爸去登山,已知山脚到山顶的路程为300米,小军先走了一段路程,爸爸才开始出发,图中两条线段分别表示小军和爸爸离开山脚登山的路程S (米)与登山所用的时间t (分)的关系(从爸爸开始登山时计时).根据图象,下列说法错误的是( ) A .爸爸登山时,小军已走了50米B .爸爸走了5分钟,小军仍在爸爸的前面C .小军比爸爸晚到山顶D .爸爸前10分钟登山的速度比小军慢,10分钟后登山的速度比小军快 12、已知一次函数y =kx +b 的图象如图所示,当y <0时,x 的取值范围是( )A . x >1 B. x <1 C. x <0 D. x >-2 13、如图,直线l 是四边形ABCD 的对称轴,若AB=CD ,有下面的结论:①AB ∥CD ;②AC ⊥BD ;③AO=OC ;④AB ⊥BC ,其中正确的结论有( )个 A. 1 B. 2 C. 3 D. 414、一次函数y =ax +1与y =bx -2的图象交于x 轴上一点,那么a :b 等于( )A.21 B. -21 C. 23D. 以上答案都不对 15、如图,在直角坐标系中,将矩形OABC 沿OB 对折,使点A 落在A 1处,已知OA=3,AB=1,则点A 1的坐标是( )16、某公司市场营销人员的个人收入与其每月的销售量成一次函数关系,其图象的一部分如图所示,由图中给出的信息可知,营销人员销量为0时的收入是( )元 A.310 B.300 C.290 D.280 二、 填空题(每题3分,共12分)17、直角三角形的两条直角边长分别为a 和2a ,则其斜边上的中线长为____。
石家庄市八年级下学期期中数学试卷
石家庄市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020八下·鄂城期中) 下列各式中,最简二次根式是()A .B .C .D .2. (2分)如图,P是等边三角形ABC内的一点,且PA=3,PB=3,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论错误的是()A . △BPQ是等边三角形B . △PCQ是直角三角形C . ∠APB=150°D . ∠APC=135°3. (2分) (2017八下·罗山期末) 如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=()A .B .C .4. (2分)如图所示,在平面直角坐标系内,原点O恰好是▱ABCD对角线的交点.若A点坐标为(2,3),则C 点坐标为()A . (-3,-2)B . (-2,3)C . (-2,-3)D . (2,-3)5. (2分)一段导线,在0℃时的电阻为2欧,温度每增加1℃,电阻增加0.008欧,那么电阻R(欧)表示为温度t(℃)的函数关系式为()A . R=0.008tB . R=0.008t+2C . R=2.008tD . R=2t+0.008 26. (2分)若a、b分别是6- 的整数部分和小数部分,那么2a-b的值是()A . 3-B . 4-C .D . 4+7. (2分)点A(﹣3,﹣4)到原点的距离为()A . 3B . 4C . 5D . 78. (2分)在Rt△ABC中,∠B=30°,若斜边AB=5cm,则直角边AC的长为()A . 4cmB . 3cmC . 2cm9. (2分)不能判定一个四边形是平行四边形的条件是()A . 两组对边分别平行B . 一组对边平行且相等C . 一组对边平行,另一组对边相等D . 两组对边分别相等10. (2分) (2019八下·简阳期中) 如图,将边为的正方形ABCD绕点A沿逆时针方向旋转30°后得到正方形AEFH,则图中阴影部分的面积为()A . -B . 3-C . 2-D . 2-二、填空题 (共6题;共6分)11. (1分)(2018·柳北模拟) 已知反比例函数的图象经过点,则当时,自变量x的取值范围________.12. (1分) (2019八下·大连月考) 如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为________m.13. (1分) (2020·顺德模拟) 如图,在菱形ABCD中,AC、BD交于点O,AC=4,菱形ABCD的面积为4 ,E为AD的中点,则OE的长为________.14. (1分)(2011九上·黄冈竞赛) 已知实数x,y满足,则3x2-2y2+3x-3y-2012=________15. (1分)(2016·贵阳模拟) 如图,在正方形ABCD中,点E,F分别在边BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面积等于________.16. (1分)14.如图正方形ABCD中,∠DAF=25°,AF交对角线BD于点E,连接EC,则∠BCE=________。
石家庄市八年级下学期期中数学试卷
石家庄市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)分解因式b2(x﹣3)+b(x﹣3)的正确结果是()A . (x﹣3)(b2+b)B . b(x﹣3)(b+1)C . (x﹣3)(b2﹣b)D . b(x﹣3)(b﹣1)2. (2分) (2019七下·宜兴期中) 下列叙述中,正确的有()①如果,那么;②满足条件的n不存在;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC中,若∠A+∠B=2∠C,∠A-∠C=40°,则这个△ABC为钝角三角形.A . 0个B . 1个C . 2个D . 3个3. (2分) (2015八下·绍兴期中) 在一次献爱心的捐赠活动中,某班45名同学捐款金额统计如下:金额(元)20303550100学生数(人)51051510在这次活动中,该班同学捐款金额的众数和中位数分别是()A . 30,35B . 50,35C . 50,50D . 15,504. (2分) (2015八下·绍兴期中) 若,则化简的结果是()A . 2a﹣3B . ﹣1C . ﹣aD . 15. (2分) (2015八下·绍兴期中) 如图,P是▱ABCD上一点.已知S△ABP=3,S△PDC=2,那么平行四边形ABCD的面积是()A . 6B . 8C . 10D . 无法确定6. (2分)用反证法证明“在同一平面内,若a⊥b,a⊥c,则b∥c时,第一步应假设()A . b不平行cB . a不垂直cC . a不垂直bD . b∥c7. (2分) (2015八下·绍兴期中) 商场在促销活动中,将标价为200元的商品,在打a折的基础上再打a 折销售,现该商品的售价为128元,则a的值是()A . 0.64B . 0.8C . 8D . 6.48. (2分) (2015八下·绍兴期中) 已知关于x的方程 x2﹣(m﹣3)x+m2=0有两个不相等的实数根,那么m的最大整数值是()A . 2B . 1C . 0D . ﹣19. (2分) (2015八下·绍兴期中) 如图,在平行四边形ABCD中,AB=6,AD=8,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=4 ,则四边形AECD的周长为()A . 20B . 21C . 22D . 2310. (2分) (2015八下·绍兴期中) 如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为()A . 6B . 12C . 20D . 24二、填空题 (共8题;共9分)11. (1分)(2018·淄博) 将从1开始的自然数按以下规律排列,例如位于第3行、第4列的数是12,则位于第45行、第8列的数是________.12. (1分)(2018·射阳模拟) 从﹣,,0,π,这5个数中随机抽取一个数,抽到有理数的概率是________.13. (1分) (2019七下·呼和浩特期末) 以下四个命题:① 的立方根是②要调查一批灯泡的使用寿命适宜用抽样调查③两条直线被第三条直线所截同旁内角互补④已知与其内部一点 ,过点作 ,作 ,则 .其中假命题的序号为________.14. (1分)(2019·鄂尔多斯模拟) 下列说法正确的是________.(填写正确说法的序号)①在角的内部,到角的两边距离相等的点在角的平分线上;②一元二次方程x2﹣3x=5无实数根;③ 的平方根为±4;④了解北京市居民”一带一路”期间的出行方式,采用抽样调查方式;⑤圆心角为90°的扇形面积是π,则扇形半径为2.15. (1分) (2015八下·绍兴期中) 已知m= × ,若a,b是两个两个连续整数,且a<m<b,则a+b=________.16. (1分) (2015八下·绍兴期中) 已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是________.17. (1分) (2015八下·绍兴期中) 如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD的长等于________.18. (2分) (2015八下·绍兴期中) 如图,矩形ABCD的边AB在x轴上,AB的中点与原点重合,AB=2,AD=1,过定点Q(0,2)和动点P(a,0)的直线与矩形ABCD的边有公共点,则:(1) a的取值范围是________;(2)若设直线PQ为:y=kx+2(k≠0),则此时k的取值范围是________.三、解答题 (共6题;共80分)19. (10分) (2016九上·临海期末) 解方程:(1) 4x2﹣20=0;(2) x2+3x﹣1=0.20. (15分)有有三张正面分别写有数字-2,-1,1的卡片,它们的背面完全相同,将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为x的值,放回卡片洗匀,再从三张卡片中随机抽取一张,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)求使分式+有意义的(x,y)出现的概率;(3)化简分式+,并求使分式的值为整数的(x,y)出现的概率.21. (15分)(2012·杭州) 有一组互不全等的三角形,它们的边长均为整数,每个三角形有两条边的长分别为5和7.(1)请写出其中一个三角形的第三边的长;(2)设组中最多有n个三角形,求n的值;(3)当这组三角形个数最多时,从中任取一个,求该三角形周长为偶数的概率.22. (10分) (2015八下·绍兴期中) 山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?23. (15分) (2015八下·绍兴期中) 已知关于x的一元二次方程x2﹣(k+2)x+2k=0.(1)若x=1是这个方程的一个根,求k的值和它的另一根;(2)求证:无论k取任何实数,方程总有实数根.(3)若等腰三角形的一边长为5,另两边长恰好是这个方程的两个根,求这个等腰三角形的周长.24. (15分) (2015八下·绍兴期中) 在四边形ABCD中,AB∥CD,∠BCD=90°,AB=AD=10cm,BC=8cm,点P 从点A出发,沿折线ABCD方向以3cm/s的速度匀速运动;点Q从点D出发,沿线段DC方向以2cm/s的速度匀速运动.已知两点同时出发,当一个点到达终点时,另一点也停止运动,设运动时间为t(s).(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、18-2、三、解答题 (共6题;共80分)19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、第11 页共11 页。
2017-2018学年度第二学期八年级数学期中考试试卷
2017-2018学年度第二学期期中考试试卷八年级数学 2018.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:1.答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2.答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3.考生答题必须在答题卷上,答在试卷和草稿纸上一律无效一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.)1.若分式1xx +有意义,则x 的取值范围是A. 1x ≠B. 1x ≠-C. 0x ≠D. 1x >-2.下列调查中,适宜采用普查方式的是A.了解一批灯泡的寿命B.了解全国八年级学生的睡眠时间C.考察人们保护环境的意识D.检查一枚用于发射卫星的运载火箭的各零部件3.如图,将右图的正方形图案绕中心O 旋转180︒后,得到的图案是4.反比例函数,6y x =的图像在A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限 5.下列性质中,矩形具有而平行四边形不一定具有的是 A.对角线互相平分 B.两组对角相等C.对角线相等D.两组对边平行且相等6.如图,四边形ABCD 是菱形,8,6,AC DB DH AB ==⊥于H , 则DH 等于A. 245B. 125 C. 5 D. 47.某工厂进行技术创新,现在每天比原来多生产50台机器,且现在生产600台机器所需时间与原计划生产450台机器所需时间相同.设现在每天生产x 台机器,根据题意得方程为A. 6004505x x =+ B. 6004505x x =- C. 60045050x x =+ D. 60045050x x =- 8.已知1122(,),(,)A x y B x y 是反比例函数(0)ky k x =≠图象上的两个点,当120x x <<时,12y y >,那么一次函数y kx k =-的图象不经过A.第一象限B.第二象限C.第三象限D.第四象限 9.如图,把正方形纸片ABCD 沿对边中点所在的直线对折后展开,折 痕为MN ,再过点B 折叠纸片,使点A 落在MN 上的点F 处,折 痕为BE .若AB 的长为2,则FM 的长为 A. 2 B.3 C. 2 D. 110.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA分别在x 轴、y 轴的正半轴上,反比例函数(0)ky x x =>与AB 相交于点D ,与BC 相交于点E ,若3BD AD =,且ODE ∆的面积是9, 则k 的值是A. 92B. 74C. 245 D. 12二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卷相对应的位置上)11.己知反比例函数(0)ky k x =≠的图像经过点(2,3)P -,k 的值为 .12.分式211a a -+的值为0,则a = .13.一个不透明的盒子中放着编号为1到10的10张卡片(编号均为正整数),这些卡片除了编号以外没有任何其他区别.搅匀后从中随机地抽出1张卡片,则“该卡片上的数字大于163”的概率是 .14.如图,延长矩形ABCD 的边BC 至点E ,使CE BD =,如果30ADB ∠=︒,则E ∠=度.15.若解关于x 的方程2111x m x x ++=--产生增根,则m 的值为 . 16.已知反比例函数10y x =,当12x <<时,y 的取值范围是.17.如图,在正方形ABCD 中,对角线AC 与BD 相交于点,O E 为BC 上一点,5,CE F =为DE 的中点.若CEF ∆的周长为18,则OF 的长为 .18.如图,己知直线1y k x b =+与x 轴、y 轴相交于P 、Q 两点,与2k y x =的图像相交于是(2,)A m -、(1,)B n 两点,连接OA 、OB .给出下列结论:①120k k <;②12m n +=;③AOP BOQS S ∆∆=;④不等式21k k x b x +>的解集是2x <-或01x <<,其中正确的结论的序号是 .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卷相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明).19.(本题满分5分)解方程: 32111x x x -=--20.(本题满分5分)已知222111x x xA x x ++=---,在1,0,1-选一个合适的数,求A 的值.21.(本题满分6分)己知1,6y x xy =-=,求111x y ++的值.22.(本题满分6分)为了解某市市民晚饭后1小时内的生活方式,调查小组设计了“阅读”、“锻炼”、“看电视”和“其它”四个选项,用随机抽样的方法调查了该市部分市民,并根据调结果绘制成如下统计图.根据统计图所提供的信息,解答下列问题: (1)本次共调查了 名市民; (2)补全条形统计图;(3)该市共有480万市民,估计该市市民 晚饭后1小时内锻炼的人数.23.(本题满分6分)一纸箱中放有大小均匀的x 只白球和y 只黄球,从中随机地取出一只白球的概率是25.(1)试写出y 与x 的函数关系式;(2)当x =10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P .24.(本题满分8分)如图,将平行四边形ABCD 的边AB 延长至 点E ,使AB BE =,连接,,DE EC DE 交BC 于点O . (1)求证: ABD BEC ∆≅∆;(2)连接BD ,若2BOD A ∠=∠,求证:四边形是矩形.25.(本题满分10分)如图,在ABC ∆中,点,,D E F 分别是,,AB BC CA 的中点,AH 是边BC 上的高. (1)求证:四边形ADEF 是平行四边形; (2)求证: DHF DEF ∠=∠.26.(本题满分10分)某中学组织学生到商场参加社会实践活动,他们参与了某种品牌运动鞋的销售工作,已知该运动鞋每双的进价为120元,为寻求合适的销售价格进行了4天的试销,试销情况如表所示:21教育网(1)观察表中数据,,x y 满足什么函数关系?请求出这个函数关系式;(2)若商场计划每天的销售利润为3000元,则其单价应定为多少元?27.(本题满分10分)己知四边形ABCD 是菱形,4,60,AB ABC EAF =∠=︒∠的两边分别与射线,CB DC 相交于点,E F ,且60EAF ∠=︒.(1)如图1,当点E 是线段CB 上任意一点时(点E 不与,B C 重合),求证: BE CF =; (2)如图2,当点E 在线段CB 的延长线上,且15EAB ∠=︒时,求CF 的长.28.(本题满分10分)如图,在平面直角坐标系xOy 中,四边形OABC 是正方形,点,A C 的坐标分别为(2, 0), (0, 2), D 是x 轴正半轴上的一点,且1AD = (点D 在点A 的右边),以BD 为边向外作正方形BDEF (,E F 两点在第一象限),连接FC 交AB 的延长线于点G .(1)侧点B 的坐标为 ,点E 的坐标为 . (2)求点F 的坐标;(3)是否存在反比例函ky x =的图像同时经过点E 、G 两点?若存在,求k 值;若不存在,请说明理由.。
2017—2018学年度第二学期八年级数学期中试卷(含答案)
2017—2018学年度第二学期期中教学质量评估测试八年级数学试卷题号一 二 三 总分 得分注意事项:全卷共120分,考试时间120分钟.一、选择题:(每小题3分,共30分)1.下列二次根式中,最简二次根式的是( )A .B .C .D . 2.下列计算正确的是( ).A.2(3)9=B .822÷=C .236⨯=D .2(2)2-=-3. 下列各组数中,能构成直角三角形的是( )A. 4,5,6B. 1,1,C. 6,8,11D. 5,12,23 4. 在Rt△ABC 中,△C =90°,△B =45°,c =10,则a 的长为( )A. B. C.5 D.5.在下列给出的条件中,能判定四边形ABCD 为平行四边形的是( ) A. AB=BC,CD=DA B. AB//CD,AD=BC C. AB//CD,C A ∠=∠ D.D C B A ∠=∠∠=∠, 6.正方形面积为36,则对角线的长为( ) A.B .6C .9D. 7.如图,一棵大树在一次强台风中距地面5m 处折断,倒下后树顶端着地点A 距树底端B 的距离为12m ,这棵大树在折断前的高度为( )A. 10mB. 15mC. 18mD. 20m8.如图,在平行四边形ABCD 中,已知AD=5cm ,AB=3cm ,AE 平分△BAD 交BC 边于点E ,则EC 等于( )A .1cmB .2cmC .3cmD .4cm9.如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF=3,则菱形ABCD 的周长是( )A .12B .16C .20D .2410.如图,在矩形ABCD 中,AB=8,BC=4,将矩形沿AC 折叠,点D 落在点D′处,则重叠部分△AFC 的面积为( )A .6B .8C .10D .12二、填空题:(每小题3分,共30分)11. 木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 .(填“合格”或“不合格” ) 12.若式子 在实数范围内有意义,则 的取值范围是 .13.在数轴上表示实数a 的点如图所示,化简()2-a 5-a 2+的结果为______.14.计算()2252-的结果是________.15.一个直角三角形的两边长分别为4与5,则第三边长为________.16.平行四边形ABCD 中一条对角线分△A 为35°和45°,则△B= 度. 17. 如右图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则EF= cm . 18. 在△ABC 中,△C=90°,AC=12,BC=16,则AB 边上的中线CD 为 .19.在平面直角坐标系中,点A (﹣1,0)与点B (0,2)的距离是 . 20.对于任意不相等的两个数a ,b ,定义一种运算△如下:a△b = ,座号得 分 评卷人 题号1 2 3 4 5 6 7 8 9 10 答案得 分 评卷人学校 年级 姓名 学号密封线内不要答题八年级 数学 第1页 (共6页) 八年级 数学 第2页 (共6页)212510252612-+x x x 8.04529a b a b+-如3△2= =5.那么12△4= .三.解答题:(本大题共60分)21. (6分)(共2小题,每小题3分)(1) (2)22.(8分)若最简二次根式31025311x x y x y -+--+和是同类二次根式. (1)求x y 、的值; (5分) (2)求22y x +的值.(3分)23.(7分)有如图所示的一块地,已知AD=4米,CD=3米,090ADC ∠=,AB=13米,BC=12米.(1)试判断以点A 、点B 、点C 为顶点的三角形是什么三角形?并说明理由. ( 4分)(2)求这块地的面积.(3分)24. (8分)如图,四边形ABCD 中,AC ,BD 相交于点O ,O 是AC 的中点,AD △BC ,AC =8,BD =6.(1)求证:四边形ABCD 是平行四边形; (4分) (2)若AC △BD ,求平行四边形ABCD 的面积. (4分)25 . (8分)如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,E 是CD 的中点,连接OE .过点C 作CF △BD 交线段OE 的延长线于点F ,连接DF . 求证:(1)△ODE △△FCE (4分)(2)四边形ODFC 是菱形 (4分)得 分 评卷人DACB八年级 数学 第3页 (共6页) 八年级 数学 第4页 (共6页)3232+-)227(328--+5232232⨯÷26.(8分)已知:如图,四边形ABCD 四条边上的中点分别为E 、F 、G 、H ,顺次连接EF 、FG 、GH 、HE ,得到四边形EFGH (即四边形ABCD 的中点四边形). (1)四边形EFGH 的形状是 ,证明你的结论;(4分)(2)当四边形ABCD 的对角线满足 条件时,四边形EFGH 是矩形(不证明)(2分) (3)你学过的哪种特殊四边形的中点四边形是矩形? (不证明)(2分)27.(6分)某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口 小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?28.(9分)观察下列等式: △ △ + = △……回答下列问题:(1)仿照上列等式,写出第n 个等式: ; (2分) (2)利用你观察到的规律,化简:(3分)(3)计算: + + +……+(4分)八年级 数学 第5页 (共6页) 八年级 数学 第6页 (共6页)23321+211+231+34)34)(34(34341-=-+-=+231+1031+)23)(23(23-+-23-2017—2018学年度第二学期期中教学质量评估测试八年级数学参考答案一、选择题1.D 2.B 3. B 4.A 5.C 6. A 7.C 8.B 9.D 10. C 二、填空题11.合格 12.x ≥﹣2且x ≠1 13. 3 14. 15.3或41 16.100 17 . 2.5 18. 10 19. . 20.1.2三、解答题:(共60分)21(1)解: + 2 ﹣(﹣ ) =2 +2 ﹣3 + ------(2分) =3 ﹣ ------(3分) (2)解: ÷ ×== ------(2分)= -------(3分) 22.(1)x=4,y=3;(5分) (2)5 (3分) 解:(1)由题意得:3x-10=2 , ---------(2分)2x+y-5=x-3y+11 ----------(4分)解得x=4 y=3 --------(5分)(2)当x=4 , y=3时22y x += =5 -----(3分) 23.解(1)以点A 、点B 、点C 为顶点的三角形是直角三角形(4分)(2)这块地的面积24m 2. (3分) 解:(1)连接AC . -------(1分) 由勾股定理可知:AC=---(2分)又∵AC 2+BC 2=52+122=132=AB 2--------(3分) ∴△ABC 是直角三角形 --------(4分) (2)这块地的面积=△ABC 的面积-△ACD 的面积 ----(1分)=×5×12- ×3×4 --- (2分) =24(m 2). ----(3分)24. (1)证明:∵O 是AC 的中点,∴OA =OC. ------(1分) ∵AD ∥BC ,∴∠DAO =∠BCO. -------(2分) 又∵∠AOD =∠COB ,∴△AOD ≌△COB ,(ASA ) -----------------(3分) ∴OD =OB ,∴四边形ABCD 是平行四边形 --------------(4分) (2)∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形 ---------------(2分)∴ ABCD 的面积= AC •BD = ×8×6=24 ---------------(4分)25 .证明:(1)∵CF ∥BD ∴∠ODE=∠FCE----------------(1分)∵E 是CD 中点 ∴CE=DE , -------------------(2分) 在△ODE 和△FCE 中2222435AD CD +=+=12121222410.-1.232322528528332⨯⨯10110102234+32722332235∴△ODE ≌△FCE (ASA ) --------------(4分) (2)∵△ODE ≌△FCE ∴OD=FC , -------------(1分) 又∵CF ∥BD , ∴四边形ODFC 是平行四边形-----(2分)∵矩形ABCD ∴AC=BD OC= AC,OD= BD ∴ OC=OD ----------------(3分)∴四边形ODFC 是菱形. -----------------------(4分) 26(1)平行四边形;(4分)(2)互相垂直(2分)(3)菱形.(2分)(1)证明:连结BD . -------------------- (1分)∵E 、H 分别是AB 、AD 中点,∴EH ∥BD ,EH= BD , ----------------------(2分)同理FG ∥BD ,FG= BD , ---------------------(3分)∴EH ∥FG ,EH=FG ,∴四边形EFGH 是平行四边形 --------------------------(4分) 27. 解:根据题意,得PQ=16×1.5=24(海里) - -----------(1分)PR=12×1.5=18(海里) -----------(2分) QR=30(海里)∵242+182=302, 即PQ 2+PR 2=QR 2∴∠QPR=90°. ----------------(4分) 由“远洋号”沿东北方向航行可知∠QPS=45°,则∠SPR=45°(5分) 即“海天”号沿西北方向航行. -------(6分)28. (1)(2)2311- (3)解:(1)第n 个等式 (2分)(2)原式=1121123111211=-=-+. (3分)原式=2-1+3-2+4-3+……+10-9=10-1 ( 4分)12121212=-+++=++)1)(1(11n n n n n n 101nn -+1=-+++=++)1)(1(11n n n n n n nn -+1n n -+1n n -+1。
2017-2018学年第二学期八年级期中测试数学试题卷、参考答案评分建议
17 S△ABC . 120
1 BM=5﹣2t, 2 17 1 17 由 S△PMD S△ABC ,即 12 t 5 2t , 120 2 2 2 ∴2t ﹣29t+43=0
①若点 M 在线段 CD 上,即 0 t
12.4 15.2
13.-4 16.3.
1 . 8 1 33 1 33 (2) x1 , x2 . 4 4
1 1 y 2 x 2 y x y x 18.(1)原式 2 2 2 2 , 2 y x y xy x
1 1 1 1 (1)已知 x 2 3 , y 2 3 ,求 的值. x y x y
(2)若 5 的整数部分为 a ,小数部分为 b ,写出 a , b 的值并计算
a 1 ab 的值. b
19.(本小题满分 8 分) 某校八年级对某班最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由 低到高分成五组,并绘制成如图的频数分布直方图,请结合直方图提供的信息,回答下 列问题: (1)该班共有 ▲ 名同学参加这次测验; (2)这次测验成绩的中位数落在 ▲ 分数段内; (3)若该校一共有 800 名初三学生参加这次测验, 成绩 80 分以上(不含 80 分)为优秀,估计该校这 次数学测验的优秀人数是多少人?
第 2 页(共 3 页)
23.(1)∵AB=AC=13,AD⊥BC, ∴BD=CD=5cm,且∠ADB=90° , 2 2 2 ∴AD =AC ﹣CD ∴AD=12cm (2)AP=t, ∴PD=12﹣t, 在 Rt△PDC 中, PC 29 ,CD=5,根据勾股定理得,PC2=CD2+PD2, ∴29=52+(12﹣t)2 , ∴t=10 或 t=14(舍) (3)假设存在 t,使得 S△PMD ∵BC=10,AD=12, ∴ S△ABC
河北省石家庄市八年级下学期数学期中考试试卷
河北省石家庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB 于E ,PF⊥AC于F ,则EF的最小值为().A . 4B . 4.8C . 5.2D . 62. (2分)若一个多边形的内角和小于其外角和,则这个多边形的边数是()A . 3B . 4C . 5D . 63. (2分) (2017八下·西安期末) 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=()A .B .C .D .4. (2分) (2017八下·兴隆期末) 己知直线1:y=(m﹣3)x+m+2经过第一、二、四象限,则m的取值范围是()A .B .C .D .5. (2分) (2019八下·南山期中) 如图,已知△ABC是边长为3的等边三角形,点D是边BC上的一点,且BD=1,以AD为边作等边△ADE,过点E作EF∥BC,交AC于点F,连接BF,则下列结论中①△ABD≌△BCF;②四边形BDEF是平行四边形;③S四边形BDEF= ;④S△AEF= .其中正确的有()A . 1个B . 2个C . 3个D . 4个6. (2分)一张圆形纸片,小芳进行了如下连续操作:(1)将圆形纸片左右对折,折痕为AB,如图(2)所示.(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示.(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示.(4)连结AE、AF,如图(5)所示.经过以上操作小芳得到了以下结论:①CD∥EF;②四边形MEBF是菱形;③△AEF为等边三角形;④S△AEF:S圆=3:4π以上结论正确的有()A . 1个B . 2个C . 3个D . 4个7. (2分)(2018·河东模拟) 如图,在边长为2的正方形ABCD中,M为边AD的中点,延长MD至点E,使ME=MC,以DE为边作正方形DEFG,点G在边CD上,则DG的长为()A .B .C .D .8. (2分) (2013八下·茂名竞赛) 如图,正方形中,,点在边上,且将沿对折至,延长交边于点连结下列结论:①② ③ ④ 其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共9题;共10分)9. (1分)(2018·龙东) 在函数y= 中,自变量x的取值范围是________.10. (1分) (2017八上·高邑期末) 计算的结果是________.11. (1分)点A(-1,y1),B(3,y2)是直线y=kx+b(k<0)上的两点,y1-y2________0(填“>”或“<”).12. (1分) (2013八下·茂名竞赛) 如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E 为AD中点,点P在轴上移动.小明同学写出了两个使△P OE为等腰三角形的P点坐标(,)和(,).请你写出其余所有符合这个条件的P点坐标________.13. (1分)(2017·武汉模拟) 如图,已知直线l1:y=k1x+4与直线l2:y=k2x﹣5交于点A,它们与y轴的交点分别为点B,C,点E,F分别为线段AB、AC的中点,则线段EF的长度为________.14. (2分)(2017八上·西湖期中) 有一组平行线,过点作于,作,且,过点作交直线于点,在直线上取点使,则为________三角形,若直线与间的距离为,与间的距离为,则 ________.15. (1分) (2019八上·合肥期中) 小敏从地出发向地行走,同时小聪从地出发向地行走,如图,相交于点的两条线段分别表示小敏、小聪离地的距离与已用时间之间的关系,则 ________时,小敏、小聪两人相距.16. (1分) (2020八下·横县期末) 如图,矩形ABCD中DF平分∠ADC交BC于点F,EF⊥AD交AD于点E,若EF=4,AF=5,则AD等于________.17. (1分)如图,在长和宽分别是8和7矩形内,放置了如图中5个大小相同的正方形,则正方形的边长是________.三、解答题 (共9题;共90分)18. (5分) (2020七下·京口月考) 根据题意结合图形填空:已知:如图,AD⊥BC于D,EG⊥BC与G,∠E=∠3,试问:AD是∠BAC的平分线吗?若是,请说明理由.答:是,理由如下:∵AD⊥BC,EG⊥BC(▲_)∴∠4=∠5=90°(_▲)∴AD∥EG(▲_)∴∠1=∠E(▲)∠2=∠3(▲_)∵∠E=∠3(▲)∴▲(等量代换)∴AD是∠BAC的平分线(▲)19. (5分)计算:(a≥0,b≥0).20. (10分) (2019八下·博白期末) 某商场同时购进甲、乙两种商品共100件,其进价和售价如表:商品名称甲乙进价(元/件)4090售价(元/件)60120设其中甲种商品购进x件,商场售完这批商品的总利润为y元.(1)写出y关于x的函数关系式:(2)该商品计划最多投入8000元用于购买这两种商品,则至少要购进多少件甲商品?若销售完这些商品,则商场可获得的最大利润是多少元?21. (15分)(2019·青白江模拟) 如图①,在矩形ABCD中,AB= ,AD=3,点E是边AD靠近A的三等分点,点P是BC延长线上一点,且EP⊥EB,点G是BE上任意一点,过G作GH∥BP,交EP于点H.将△EGH绕点E 逆时针旋转α(0<α<90°),得到△EMN(M、N分别是G、H的对应点).(1)求BP的长;(2)求的值;(3)如图②当α=60°时,点M恰好落在GH上,延长BM交NP于点Q,取EP的中点K,连接QK.若点G在线段EB上运动,问QK是否有最小值?若有最小值,请求出点G运动到EB的什么位置时,QK有最小值及最小值是多少,若没有最小值,请说明理由.22. (10分) (2017八下·常熟期中) 如图,在一正方形ABCD中.E为对角线AC上一点,连接EB、ED,(1)求证:△BEC≌△DEC:(2)延长BE交AD于点F,若∠DEB=140°.求∠AFE的度数.23. (10分) (2018八下·江海期末) 如图,BD是矩形ABCD的一条对角线.(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O(用尺规作图,保留作图痕迹,不要求写作法);(2)求证:AF=CE.24. (10分)(2020·晋中模拟) 如图,在四边形ABCD中,对角线AC、BD交于点O ,AB∥DC , AB=BC ,BD平分∠ABC ,过点C作CE⊥AB交AB的延长线于点E ,连接OE .(1)求证:四边形ABCD是菱形;(2)若AB=2 ,BD=4,求OE的长.25. (10分)已知:在平面直角坐标系中,点A、B分别在x轴正半轴上,且线段OA、OB(OA<OB)的长分别等于方程的两个根,点C在轴正半轴上,且OB=2OC.(1)求A、B、C三点坐标;(2)将△OBC绕点C顺时针旋转90°后得到,求直线的表达式.26. (15分)(2018·深圳模拟) 已知矩形纸片ABCD中,AB=2,BC=3.操作:将矩形纸片沿EF折叠,使点B落在边CD上.探究:(1)如图1,若点B与点D重合,你认为△EDA1和△FDC全等吗?如果全等,请给出证明,如果不全等,请说明理由;(2)如图2,若点B与CD的中点重合,请你判断△FCB1、△B1DG和△EA1G之间的关系,如果全等,只需写出结果,如果相似,请写出结果和相应的相似比;(3)如图2,请你探索,当点B落在CD边上何处,即B1C的长度为多少时,△FCB1与△B1DG全等.参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共9题;共10分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、17-1、三、解答题 (共9题;共90分)18-1、19-1、答案:略20-1、20-2、21-1、答案:略21-2、答案:略21-3、答案:略22-1、答案:略22-2、23-1、23-2、答案:略24-1、24-2、答案:略25-1、答案:略25-2、答案:略26-1、26-2、答案:略26-3、答案:略第11 页共11 页。
河北省石家庄市八年级下学期数学期中考试试卷
河北省石家庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若分式的值为0,则x的值为()A . 3或﹣2B . 3C . ﹣2D . ﹣3或22. (2分) (2015七下·杭州期中) 已知某种植物花粉的直径为0.000035米,那么用科学记数法可表示为()A . 3.5×104米B . 3.5×10﹣4米C . 3.5×10﹣5米D . 3.5×105米3. (2分) (2020七下·淮滨期末) 如图,的坐标为若将线段平移至,则a-b 的值为()A . -1B . 0C . 1D . 24. (2分) (2020八下·福绵期末) 一次函数y=2x+1的图象不经过()A . 第四象限B . 第三象限C . 第二象限D . 第一象限5. (2分)(2019·名山模拟) 已知甲车行驶30千米与乙车行驶40千米所用时间相同,并且乙车每小时比甲车多行驶15千米若设甲车的速度为x千米时,依题意列方程正确的是A .B .C .D .6. (2分) (2017八下·钦北期末) 如图,在△ABC中,∠ACB=90°,分别以点A和点B为圆心,以相同的长(大于 AB)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交BC于点E.若AC=3,AB=5,则DE等于()A . 2B .C .D .7. (2分)(2017·南开模拟) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,若BD,AC的和,为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A . 6cmB . 9cmC . 3cmD . 12cm8. (2分)一次函数y=ax+b,ab<0,且y随x的增大而减小,则其图象可能是()A .B .C .D .9. (2分) (2019九上·珠海开学考) 一次函数y=-3x+1的图象一定经过点()A .B .C .D .10. (2分) (2017九上·合肥开学考) 如果反比例函数y= 的图象经过点(﹣1,﹣2),则k的值是()A . 4B . 0C . ﹣3D . ﹣4二、填空题 (共6题;共6分)11. (1分)(2020·新乡模拟) 计算 ________.12. (1分)两直线y=x﹣1与y=﹣x+3的交点坐标________.13. (1分) (2017九上·东莞月考) 如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y= 图象上,则图中过点A的双曲线解析式是________.14. (1分) (2017七下·丰台期中) 已知,则 ________.15. (1分)矩形纸片ABCD,AB=9,BC=6,在矩形边上有一点P,且DP=3.将矩形纸片折叠,使点B与点P 重合,折痕所在直线交矩形两边于点E,F,则EF长为________.16. (1分) (2019八下·包河期中) 如图,在Rt△ABC中,∠B=90°,AB=30,BC=40,将△ABC折叠,使点B恰好落在边AC上,与点B重合,AE为折痕,则EB’=________.三、解答题 (共9题;共88分)17. (5分)(2017·大庆) 解方程: + =1.18. (5分) (2018七上·襄州期末) 化简求值:(x﹣y+ )(x+y﹣),其中x=97,y=3.19. (15分)(2019·唐县模拟) 如图,已知反比例函数y= (x>0)的图象与直线l:y=kx+b都经过点P (2,m),Q(n,4),且直线l交x轴于点A,交y轴于点B,连接OP,OQ.(1)直接写出m,n的值及直线l的函数表达式;(2)△OAP与△OBQ的面积相等吗?写出你的判断,并说明理由;(3)若点M是y轴上一点,当MP+MQ的值最小时,求点M的坐标.20. (10分) (2019八下·泰兴期中) 我校图书馆添置图书,用240元购进一种科普书,同时用200元购进一种文学书.由于科普书单价是文学书单价的1.5倍,因此学校所购买的文学书比科普书多4本.(1)求文学书的单价是多少?(2)学校买了文学书和科普书一共多少本?21. (10分)(2019·成都) 如图,在平面直角坐标系中,一次函数和的图象相交于点,反比例函数的图象经过点 .(1)求反比例函数的表达式;(2)设一次函数的图象与反比例函数的图象的另一个交点为,连接,求的面积.22. (10分) (2017八下·濮阳期中) 如图,在▱ABCD中,已知E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF.(1)求证:AB=CF;(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形,并说明理由.23. (10分)(2018·广州模拟) 某商品的进价为每件40元,售价不低于50元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,设每件商品的售价为x元,每月的销售量为y件.(1)求y与x的函数关系式并写出自变量x的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?24. (10分) (2019八下·东台月考) 如图1,已知点A(a,0),B(0,b),且a、b满足 ,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;25. (13分)(2020·仙桃) 小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段表示小华和商店的距离(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:(1)填空:妈妈骑车的速度是________米/分钟,妈妈在家装载货物所用时间是________分钟,点M的坐标是________;(2)直接写出妈妈和商店的距离(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;(3)求t为何值时,两人相距360米.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共6分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共88分)答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、答案:19-2、答案:19-3、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、答案:21-2、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、答案:25-3、考点:解析:第21 页共21 页。
河北省石家庄市八年级下学期期中数学试卷
河北省石家庄市八年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2018八下·东台期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A . 正方形B . 矩形C . 菱形D . 平行四边形2. (2分) (2019八下·北海期末) 如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是()A . 6B . 7C . 8D . 93. (2分) (2018八下·合肥期中) 如图,将△ABC放在正方形网格图中(图中每个小正方形的边长均为1),点A,B,C恰好在网格图中的格点上,那么△ABC中BC边上的高是()A .B .C .D .4. (2分)(2016·泰州) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .5. (2分) (2016七下·青山期中) 如图,把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°,则下列结论正确的有()1)∠C′EF=32° (2)∠AEC=116° (3)∠BGE=64°(4)∠BFD=116°.A . 1个B . 2个C . 3个D . 4个6. (2分) (2017八下·秀屿期末) 下列说法错误的是()A . 顺次连接矩形各边的中点所成的四边形是菱形B . 四个角都相等的四边形是矩形C . 对角线互相垂直且相等的四边形是正方形D . 一组对边平行且相等的四边形是平行四边形7. (2分) (2019八下·鄂城期末) 如图,在△ABC中,∠C=90°,E是CA延长线上一点,F是CB上一点,AE=12,BF=8,点P,Q,D分别是AF,BE,AB的中点,则PQ的长为()A . 2B . 4C . 6D . 38. (2分) (2017九上·文安期末) 如图,把直角△ABC的斜边AC放在定直线l上,按顺时针的方向在直线l上转动两次,使它转到△A2B1C2的位置,设AB= ,BC=1,则顶点A运动到点A2的位置时,点A所经过的路线为()A . ( + )πB . ( + )πC . 2πD . π9. (2分)(2020·河池) 如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE 的长是()A . 5B . 6C . 4D . 510. (2分)下列命题错误的是()A . 平行四边形的对角线互相平分B . 矩形的对角线相等C . 对角线互相垂直平分的四边形是菱形D . 对角线相等的四边形是矩形11. (2分)下列命题是真命题的是()A . 对角线相等的四边形是矩形B . 一组邻边相等的四边形是菱形C . 四个角是直角的四边形是正方形D . 对角线相等的梯形是等腰梯形12. (2分)如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP重合,已知AP=3,则PP′的长度是()A . 3B .C .D . 4二、填空题 (共6题;共7分)13. (2分) (2019八下·盐田期末) 如图,菱形的边长为1,;作于点,以为一边,作第二个菱形,使;作于点,以为一边,作第三个菱形,使;…依此类推,这样作出第个菱形.则________. ________.14. (1分) (2017七下·肇源期末) 已知任意三角形的内角和为180°,试利用多边形中过某一点的对角线条数,寻求多边形内角和的公式.根据上图所示,一个四边形可以分成2个三角形;于是四边形的内角和为360度;一个五边形可以分成3个三角形,于是五边形的内角和为540度,…,按此规律n边形的内角和为________度.15. (1分) (2019八上·凌源月考) 如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,若△ABC的面积为15,DE=3,AB=6,则AC的长是 ________16. (1分)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为________.17. (1分)如图,在Rt△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.若EF=8,则CD的长为________.18. (1分)将一些相同的“○”按如图所示的规律依次摆放,观察每个“龟图”中的“○”的个数,若第n 个“龟图”中有245个“○”,则n=________.三、解答题 (共8题;共51分)19. (5分)一种千斤顶利用了四边形的不稳定性. 如图,其基本形状是一个菱形,中间通过螺杆连接,转动手柄可改变的大小(菱形的边长不变),从而改变千斤顶的高度(即A、C之间的距离).若AB=40cm ,当从变为时,千斤顶升高了多少?(,结果保留整数)20. (5分) (2018八上·河口期中) 在一棵树的10m高处有两只猴子,其中一只猴子爬下树走到离树20m的池塘A处,另一只爬到树顶后直接跃向池塘的A处,如果两只猴子所经过的路程相等,试问这棵树有多高?21. (5分)如图,点P是∠AOB外的一点,点Q与P关于OA对称,点R与P关于OB对称,直线QR分别交OA,OB于点M,N,若PM=PN=3,MN=4,求线段QR的长.22. (5分)如图,过∠AOB平分线上一点C作CD∥OB交OA于点D,E是线段OC的中点,请过点E画直线分别交射线CD、OB于点M、N,探究线段OD、ON、DM之间的数量关系,并证明你的结论.23. (5分)如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.24. (10分) (2017八上·罗山期末) 如图,在四边形ABCD中,∠B=90°,DE∥AB,DE交BC于E,交AC于F,DE=BC,∠CDE=∠ACB=30°.(1)若AB=4,求CD的长.(2)判断△FCD的形状,并说明理由.25. (10分) (2016八上·柘城期中) 回答下列问题(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE,求∠AEB的度数.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE中DE边上的高,连接BE.请求∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.26. (6分) (2020八上·张店期末) 某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:①在河流的一条岸边B点,选对岸正对的一棵树A;②沿河岸直走20m有一棵树C,继续前行20m到达D处;③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;④测得DE的长为5米.(1)河的宽度是________米.(2)请你说明他们做法的符合题意性.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共51分)19-1、答案:略20-1、21-1、22-1、答案:略23-1、24-1、答案:略24-2、25-1、答案:略25-2、答案:略26-1、26-2、答案:略。
2017-2018学年八年级第二学期数学期中考试
1、 A. .9 B. C. D.2、 3、 下列几组数中, A . 2, 3, 4 在平行四边形 A. 1 : 2: 3:能作为直角三角形三边长度的是( • 1,的值B . 3, 4, 5 ABCD 中,/ A:Z B: 4 B. 1 : 2: 2:ZD C. 14、 二次根式,x 3有意义的条件是5、 A • x>3 B. x>-3 C. x 等边三角形的边长为 2,则该三角形的面积为A . 4 36、 菱形和矩形一定都具有的性质是(A .对角线相等C.对角线互相平分且相等 7、 F 列各式计算正确的是(2, •2,)D. x•对角线互相垂直 •对角线互相平分:1: 2: 22017-2018学年度第二学期期中考试八年级 数学科试题说明:1、全卷共上—页,满分为120分,考试时间为100分钟。
2 、答题前,丐生务必将自己的姓名、班级、座号填在答题卷相应位置上。
一、选择题:(本大题共10小题,每小题3分,共30分•在每小题所给的 4个选项中, 只有一项是符合题目要求的,请将正确答案的代号填在表格上)9、 直角三角形中,两直角边分别是 A. 13 B. 10 C. 8.5正方形面积为 B. 10 36,则对角线的长为12 和 5, D. 6.5「(则斜边上的中线长是( 10、如图,菱形 则菱形ABCD 的周长是ABCD 中, E 、F 分别是 AB --匕旦/ ) AC 的中点,若EF = 3,A . 2 3+3 2 = 5 5.5.3- 3= 4 ,(3)2= -312345678910F 列式子中,属于最简二次根式的是(DA. 12、填空题:B . 16C . 20D . 24(本大题共8小题,每小题4分,共32分.把答案填在题中横线上)11、如果最简二次根式<1 a与$4*^是同类二次根式,那么a= ______________12、如图,已知一根长 8m的竹杆在离地3m处断裂,竹杆顶部抵着地面,此时,顶部距底部有___________________ m。
2017-2018学年八年级(下)期中数学试卷(有答案和解析) (2)
2017-2018学年八年级(下)期中数学试卷一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=23.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣45.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.106.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠07.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=15008.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥29.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=2410.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是.12.代数式中x的取值范围是.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)216.解方程:x2﹣4x+1=0.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?2017-2018学年八年级(下)期中数学试卷参考答案与试题解析一.选择题(共10小题,满分40分,每小题4分)1.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.2.下列计算正确的是()A.+=B.3﹣=3C.÷2=D.=2【分析】利用二次根式的加减法对A、B进行判断;利用二次根式的除法法则对C进行判断;利用二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=2,所以B选项错误;C、原式=,所以C选项错误;D、原式==2,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.3.若方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,则()A.n≠1B.n≥0C.n≥0且n≠1D.n为任意实数【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0),把方程化为一般形式,根据二次项系数不等于0,即可求得n的取值范围.【解答】解:∵方程(n﹣1)x2+x﹣1=0是关于x的一元二次方程,∴n≥0且n﹣1≠0,即n≥0且n≠1.故选:C.【点评】本题考查了一元二次方程的定义.一元二次方程的一般形式是:ax2+bx+c=0(a,b,c 是常数且a≠0),特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.4.方程x2=4x的根是()A.x=4B.x=0C.x1=0,x2=4D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.5.一个三角形的三边分别是3、4、5,则它的面积是()A.6B.12C.7.5D.10【分析】由于32+42=52,易证此三角形是直角三角形,从而易求此三角形的面积.【解答】解:∵32+42=52,∴此三角形是直角三角形,=×3×4=6.∴S△故选:A.【点评】本题考查了勾股定理的逆定理.解题的关键是先证明此三角形是直角三角形.6.若关于x的一元二次方程mx2﹣x=有实数根,则实数m的取值范围是()A.m≥﹣1B.m≥﹣1且m≠0C.m>﹣1且m≠0D.m≠0【分析】将原方程变形为一般式,根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.【解答】解:原方程可变形为mx2﹣x﹣=0.∵关于x的一元二次方程mx2﹣x=有实数根,∴,解得:m≥﹣1且m≠0.故选:B.【点评】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,列出关于m的一元一次不等式是解题的关键.7.中国“一带一路”战略给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年年收入300美元,预计2018年年收入将达到1500美元,设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为()A.300(1+x)2=1500B.300(1+2x)=1500C.300(1+x2)=1500D.300+2x=1500【分析】2018年年收入=2016年年收入×(1+年平均增长率)2,把相关数值代入即可.【解答】解:设2016年到2018年该地区居民年人均收入平均增长率为x,可列方程为:300(1+x)2=1500.故选:A.【点评】此题主要考查了根据实际问题列一元二次方程;得到2018年收入的等量关系是解决本题的关键.8.能使等式成立的x的取值范围是()A.x≠2B.x≥0C.x>2D.x≥2【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故选:C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.9.用配方法解方程x2﹣10x﹣1=0,正确的变形是()A.(x﹣5)2=1B.(x+5)2=26C.(x﹣5)2=26D.(x﹣5)2=24【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:x2﹣10x﹣1=0,移项,得x2﹣10x=1,方程两边同时加上25,得x2﹣10x+25=26,∴(x﹣5)2=26.故选:C.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.10.如图,在△ABC中,∠ACB=90°,AC=8,AB=10,CD⊥AB于D,则CD的长是()A.6B.C.D.【分析】根据勾股定理求出BC,根据三角形的面积公式计算.【解答】解:∵∠ACB=90°,AC=8,AB=10,∴BC==6,△ABC的面积=×AB×CD=×AC×BC,即×10×CD=×8×6,解得,CD=,故选:C.【点评】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.二.填空题(共4小题,满分20分,每小题5分)11.不超过(﹣1.7)2的最大整数是2.【分析】先根据有理数的平方求出(﹣1.7)2的值,再找出符合条件的最大整数即可.【解答】解:∵(﹣1.7)2=2.89,∴不超过2.89的最大整数为2.故答案为:2.【点评】本题考查的是有理数的乘方及有理数的大小比较,比较简单.12.代数式中x的取值范围是x>1.【分析】根据二次根式和分式有意义的条件解答.【解答】解:依题意得:x﹣1>0,解得x>1.故答案是:x>1.【点评】此题主要考查了二次根式和分式有意义的条件,关键是掌握二次根式中的被开方数是非负数,分式分母不能为零.13.若关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0的一个根为0,则m值是﹣2.【分析】根据一元二次方程解的定义,将x=0代入关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,然后解关于m的一元二次方程即可.【解答】解:根据题意,得x=0满足关于x的一元二次方程(m﹣2)x2+x+m2﹣4=0,∴m2﹣4=0,解得,m=±2;又∵二次项系数m﹣2≠0,即m≠2,∴m=﹣2;故答案为:﹣2.【点评】本题考查了一元二次方程的解的定义.解答该题时,注意一元二次方程的定义中的“一元二次方程的二次项系数不为0”这一条件.14.如图,点D、E分别在等边△ABC的边AB、BC上,将△BDE沿直线DE翻折,使点B落在B1处,DB1、EB1分别交边AC于点F、G.若∠ADF=80°,则∠CEG=40°.【分析】由对顶角相等可得∠CGE=∠FGB1,由两角对应相等可得△ADF∽△B1GF,那么∠CGE 等于∠ADF的度数,进而利用三角形内角和得出答案.【解答】解:由翻折可得∠B1=∠B=60°,∴∠A=∠B1=60°,∵∠AFD=∠GFB1,∴△ADF∽△B1GF,∴∠ADF=∠B1GF,∵∠CGE=∠FGB1,∴∠CGE=∠ADF=80°.∴∠CEG=180°﹣80°﹣60°=40°,故答案为:40°【点评】本题考查了翻折变换问题;得到∠CGE等于∠ADF的度数的关系是解决本题的关键.三.解答题(共2小题,满分16分,每小题8分)15.计算:(1)﹣+(2)(﹣)(+)+(﹣1)2【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)先利用平方差公式和完全平方公式计算,再计算加减可得.【解答】解:(1)原式=4﹣3+=;(2)原式=5﹣2+4﹣2=7﹣2.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.16.解方程:x2﹣4x+1=0.【分析】根据配方法可以解答此方程.【解答】解:x2﹣4x+1=0x2﹣4x+4=3(x﹣2)2=3x﹣2=∴x1=2+,x2=2﹣;【点评】本题考查解一元二次方程﹣配方法,解答本题的关键是会用配方法解方程的方法.四.解答题(共2小题,满分16分,每小题8分)17.已知关于x的二次方程x2+mx+n2+1=0.(1)若n=1,且此方程有一个根为﹣1,求m的值;(2)若m=2,判断此方程根的情况.【分析】(1)将x=﹣1,n=1代入原方程,可求出m的值;(2)代入m=2,根据方程的系数结合根的判别式,可得出△=﹣4n2,分n=0及n≠0两种情况找出此方程根的情况.【解答】解:(1)将x=﹣1,n=1代入原方程,得:(﹣1)2﹣m+12+1=0,解得:m=3.(2)当m=2时,原方程为x2+2x+n2+1=0,∴△=22﹣4×1×(n2+1)=﹣4n2.当n=0时,△=﹣4n2=0,此时原方程有两个相等的实数根;当n≠0时,△=﹣4n2<0,此时原方程无解.【点评】本题考查了根的判别式以及一元二次方程的解,解题的关键是:(1)代入x,n的值求出m的值;(2)分n=0及n≠0两种情况找出方程解的情况.18.若直角三角形的两直角边长为a、b,且满足+|b﹣4|=0,求该直角三角形的斜边长.【分析】先根据已知条件、算术平方根的性质和绝对值的性质求出a、b,再由勾股定理即可得出结果.【解答】解:∵+|b﹣4|=0,∴+|b﹣4|=0,∴|a﹣3|+|b﹣4|=0,∴a﹣3=0,b﹣4=0,∴a=3,b=4,∴直角三角形的斜边长===5.【点评】本题考查了勾股定理、绝对值的性质以及算术平方根的性质;熟练掌握勾股定理的运用,根据题意求出a、b是解决问题的关键.五.解答题(共2小题,满分20分,每小题10分)19.小明准备用一段长30米的篱笆围成一个三角形形状的小圈,用于饲养家兔.已知第一条边长为a米,由于受地势限制,第二条边长只能是第一条边长的2倍多2米.(1)请用a表示第三条边长.(2)问第一条边长可以为7米吗?为什么?请说明理由.(3)求出a的取值范围.(4)能否使得围成的小圈是直角三角形形状,且各边长均为整数?若能,说出你的围法;若不能,请说明理由.【分析】(1)本题需先表示出第二条边长,即可得出第三条边长;(2)本题需先根据a=7,求出三边的长,根据三角形三边关系进行判断;(3)根据三角形的三边关系列出不等式组,即可求出a的取值范围;(3)本题需先求出a的值,然后即可得出三角形的三边长.【解答】解:(1)∵第二条边长为(2a+2)米,∴第三条边长为30﹣a﹣(2a+2)=28﹣3a(米);(2)不能.当a=7时,三边长分别为7,16,7,由于7+7<16,所以不能构成三角形,即第一条边长不能为7m;(3)根据题意得:,解得:<a<,即a的取值范围是<a<.(4)能围成.在(3)的条件下,a为整数时,a只能取5或6.当a=5时,三角形的三边长分别为5,12,13.由52+122=132知,恰好能构成直角三角形.当a=6时,三角形的三边长分别为6,14,10.由62+102≠142知,此时不能构成直角三角形.综上所述,能围成满足条件的小圈,它们的三边长分别为5m,12m,13m.【点评】本题主要考查了勾股定理、三角形三边关系以及一元一次不等式组的应用,在解题时根据三角形的三边关系,列出不等式组是本题的关键.20.“饺子“又名“交子”或者“娇耳”,是新旧交替之意,它是重庆人民的年夜饭必吃的一道美食.今年除夕,小侨跟着妈妈一起包饺子准备年夜饭,体验浓浓的团圆气氛.已知小侨家共10人,平均每人吃10个饺子,计划用10分钟将饺子包完.(1)若妈妈每分钟包饺子的速度是小侨速度的2倍少2个,那么小侨每分钟至少要包多少个饺子?(2)小侨以(1)问中的最低速度,和妈妈同时开始包饺子,妈妈包饺子的速度在(1)问的最低速度基础上提升了a%,在包饺子的过程中小侨外出耽误了分钟,返家后,小侨与妈妈一起包完剩下的饺子,所用时间比原计划少了a%,求a的值.【分析】题目明确给出了工作总量为10×10个饺子,工作时间10分钟,再设一个工作速度即能列得等量关系.(1)题干中明确给出妈妈和小侨包饺子的速度关系,设一个未知数即可表示两人的速度.问题出现“至少”说明应列不等式解题,即若小侨速度加快的话,包的饺子总量有可能大于100个.(2)明确了小侨的速度,妈妈速度提升的是一个百分数,所用是原来速度再乘以(1+a%),所用时间减少的也是一个百分数,应是10×(1﹣a%).小侨速度×时间+妈妈速度×时间=100个.计算时先把含a%的式子化简,能帮助准确计算.【解答】解:(1)设小侨每分钟包x个饺子,则妈妈每分钟包(2x﹣2)个饺子,得:10x+10(2x﹣2)≥10×10解得:x≥4(2)依题意得:小侨每分钟包4个饺子,妈妈每分钟包饺子数量为6×(1+a%)=6+a,包饺子总时间为10×(1﹣a%)=10﹣a,列得方程:(6+a)(10﹣a)+4(10﹣a﹣a)=100解得:a1=0(舍去),a2=40答:(1)小侨每分钟包至少包4个饺子;(2)a的值为40.【点评】本题考查了一元一次不等式的应用和一元二次方程的应用,解题关键是(1)找准是等量关系还是不等量关系;(2)提升或减少的是一个百分数,带a%式子的准确计算.六.解答题(共1小题,满分12分,每小题12分)21.如图,将矩形ABCD(纸片)折叠,使点B与AD边上的点K重合,EG为折痕;点C与AD边上的点K重合,FH为折痕.已知∠1=67.5°,∠2=75°,EF=+1,求BC的长.【分析】由题意知∠3=180°﹣2∠1=45°、∠4=180°﹣2∠2=30°、BE=KE、KF=FC,作KM⊥BC,设KM=x,知EM=x、MF=x,根据EF的长求得x=1,再进一步求解可得.【解答】解:由题意,得:∠3=180°﹣2∠1=45°,∠4=180°﹣2∠2=30°,BE=KE、KF =FC,如图,过点K作KM⊥BC于点M,设KM=x,则EM=x、MF=x,∴x+x=+1,解得:x=1,∴EK=、KF=2,∴BC=BE+EF+FC=EK+EF+KF=3++,∴BC的长为3++.【点评】本题主要考查翻折变换,解题的关键是掌握翻折变换的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.七.解答题(共1小题,满分12分,每小题12分)22.一架长2.5米的梯子AB如图所示斜靠在一面墙上,这时梯足B离墙底C(∠C=90°)的距离BC为0.7米.(1)求此时梯顶A距地面的高度AC;(2)如果梯顶A下滑0.9米,那么梯足B在水平方向,向右滑动了多少米?【分析】(1)根据勾股定理可以求得这个梯子的顶端距地面的距离;(2)利用勾股定理可求出B′C的长,进而得到BB′=CB′﹣CB的值.【解答】解:(1)由题意可得,AC===2.4(米),即此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC﹣A′A=2.4﹣0.9=1.5(m),在Rt△A′CB′中,由勾股定理得A′C2+B′C2=A′B′2,即1.52+B′C2=2.52所以B′C=2(m)BB′=CB′﹣BC=2﹣0.7=1.3(m),即梯子的底端在水平方向滑动了1.3m.【点评】本题考查了勾股定理在实际生活中的应用,本题中根据梯子长不会变的等量关系求解是解题的关键.八.解答题(共1小题,满分14分,每小题14分)23.(14分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;(2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?【分析】(1)设每次降价的百分率为x,(1﹣x)2为两次降价的百分率,40降至32.4就是方程的平衡条件,列出方程求解即可;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由销售问题的数量关系建立方程求出其解即可.【解答】解:(1)设每次降价的百分率为x.40×(1﹣x)2=32.4x=10%或190%(190%不符合题意,舍去)答:该商品连续两次下调相同的百分率后售价降至每件32.4元,两次下降的百分率啊10%;(2)设每天要想获得510元的利润,且更有利于减少库存,则每件商品应降价y元,由题意,得(40﹣30﹣y)(4×+48)=510,解得:y1=1.5,y2=2.5,∵有利于减少库存,∴y=2.5.答:要使商场每月销售这种商品的利润达到510元,且更有利于减少库存,则每件商品应降价2.5元.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.。
石家庄八年级下数学期中试卷 必考 经典试题
S 与 x 之间的函数关系式为( )
A. S 80﹣5x
B. S 5x
C. S 10x
D. S 5x 80
11.(2 分)(2014•呼和浩特)已知线段 CD 是由线段 AB 平移得到的,点 A(﹣1,4)的对应
点为 C(4,7),则点 B(﹣4,﹣1)的对应点 D 的坐标为( )
A.(1,2)
A.金额
B.数量
C.单价
D.金额和数量
4.(2 分)(2017 春•长安区期中)下列平面直角坐标系中的图象,不能表示 y 是 x 的函数
的是( )
A.
B.
C.
D.
5.(2 分)(2016•成都)平面直角坐标系中,点 P(﹣2,3)关于 x 轴对称的点的坐标为( )
A.(﹣2,﹣3) B.(2,﹣3) C.(﹣3,﹣2) D.(3,﹣2)
7.(2 分)(2017 春•长安区期中)娟娟同学上午从家里出发,骑车去一家超市购物,然后
从这家超市返回家中.娟娟同学离家的路程 (y m)和所经过的时间 x(min)之间的函数图
象如图所示,则下列说法不正确的是( )
A.娟娟同学与超市相距 3000 m
B.娟娟同学去超市途中的速度是 300 m / min
图①表示的是其中每个月销售总额的情况,图②表示的是商场服装部各月销售额占商场当
月销售总额的百分比情况,观察图①、图②,下列说法不正确的是( )
18.(3 分)(2017 春•长安区期中)如图,线段 OB、OC、OA的长度分别是 1、2、3,且
OC 平分 AOB.若将 A 点表示为(3,30), B 点表示为(1, 120),则 C 点可表示
.
20.(3 分)(2017 春•长安区期中)如图所示的图象反映的过程是:甲乙两人同时从 A 地
2017-2018学年八年级下期中数学试卷含答案
2017-2018学年八年级下期中数学试卷含答案一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC3.下列各式从左到右的变形正确的是()A.=x+y B.=C.﹣=D.=4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=度.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为米.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=,BC=.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k,则x=4k,y=3k,z=2k,将它们分别代入中并化简,可得分式的值为.【拓展应用】已知=﹣=,求分式的值.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为;当x满足:时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.21.如图,在▱ABCD中,DE平分∠ADC交AB于点G,交CB延长线于E,BF平分∠ABC交AD的延长线于F.(1)若AD=5,AB=8,求GB的长.(2)求证:∠E=∠F.22.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y(米)与他们出发的时间x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计)(1)直接写出点A坐标,并求出线段OC的解析式;(2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?23.我县万德隆商场有A、B两种商品的进价和售价如表:已知:用2400元购进A种商品的数量与用3000元购进B种商品的数量相同.(1)求m的值;(2)该商场计划同时购进的A、B两种商品共200件,其中购进A种商品x件,实际进货时,生产厂家对A 种商品的出厂价下调a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这200件商品的总利润为y元.①求y关于x的函数关系式;②若限定A种商品最多购进120件最少购进100件,请你根据以上信息,设计出使该商场获得最大利润的进货方案.参考答案与试题解析一、选择题1.把函数y=﹣2x的图象向下平移1个单位,所得图象的函数解析式为()A.y=﹣2x+1 B.y=﹣2x﹣1 C.y=﹣2(x﹣1)D.y=﹣2(x+1)【考点】一次函数图象与几何变换.【分析】根据“上加下减”的平移原理,结合原函数解析式即可得出结论.【解答】解:根据“上加下减”的原理可得:函数y=﹣2x的图象向下平移1个单位后得出的图象的函数解析式为y=﹣2x﹣1.故选B.【点评】本题考查了一次函数图象与几何变换,解题的关键是根据平移原理找出平移后的函数解析式.本题属于基础题,难度不大,解决该题型题目时,依据“上加下减”的平移原理找出函数图象平移后的函数解析式是关键.2.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AO=CO,BO=DO D.AB∥DC,AD=BC【考点】平行四边形的判定.【分析】根据平行四边形判定定理进行判断.【解答】解:A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意;故选D.【点评】本题考查了平行四边形的判定.(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.3.下列各式从左到右的变形正确的是()A.=x+y B.=C .﹣=D.=【考点】分式的基本性质.【分析】根据分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.【解答】解:A、分子与分母除的数不是同一个数,故A错误;B、分子分母的一部分乘以10,故B错误;C、分子、分母、分式改变其中两个的符号,分式的值不变,故C错误;D、分子分母都乘以2,故D正确;故选:D.【点评】本题考查了分式的基本性质,分式的分子分母都乘以或除以同一个不为零的数或者同一个整式,分式的值不变.4.已知点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,则关于x的分式方程=2的解是()A.5 B.1 C.3 D.不能确定【考点】解分式方程;关于原点对称的点的坐标.【专题】计算题.【分析】根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.【解答】解:∵点P(1﹣2a,a﹣2)关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,则方程的解为3.故选:C【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.5.在平面直角坐标系中,有A(0,1),B(﹣1,0),C(1,0)三点,若点D与A,B,C三点构成平行四边形,则点D的坐标不可能是()A.(0,﹣1)B.(﹣2,1)C.(﹣2,﹣1)D.(2,1)【考点】平行四边形的判定;坐标与图形性质.【分析】根据两组对边分别平行的四边形是平行四边形可得到D点坐标的三种情况:①当AB∥CD,AD∥BC 时;②当AB∥CD,AC∥BD时;③当AD∥BC,AC∥BD时;分别求出D的坐标即可.【解答】解:如图所示∵两组对边分别平行的四边形是平行四边形∴可以分以下三种情况分别求出D点的坐标:如图所示:①当AB∥CD,AD∥BC时,D点的坐标为(2,1);②当AB∥CD,AC∥BD时,D点的坐标为(0,﹣1);③当AD∥BC,AC∥BD时,D点的坐标为(﹣2,1).故选:C.【点评】本题主要考查了平行四边形的判定,要求学生掌握平行四边形的判定并会灵活运用,注意分类讨论.6.甲、乙两人赛跑,所跑路程与时间的关系如图(实线为甲的路程与时间的关系图象,虚线为乙的路程与时间的关系图象),小王根据图象得到如下四条信息,其中错误的是()A.这是一次1500m赛跑B.甲、乙同时起跑C.甲、乙两人中先到达终点的是乙D.甲在这次赛跑中的速度为5m/s【考点】函数的图象.【专题】数形结合.【分析】根据函数图象对各选项分析判断后利用排除法求解.【解答】解:A、路程为1500m后不在增加,所以,这是一次1500m赛跑,正确,故本选项错误;B、加起跑后一段时间乙开始起跑,错误,故本选项正确;C、乙计时283秒到达终点,甲计时300秒到达终点,正确,故本选项错误;D、甲在这次赛跑中的速度为=5m/s,正确,故本选项错误.故选B.【点评】本题考查了函数图象,读函数的图象时首先要理解横、纵坐标表示的含义.7.如图,双曲线y=﹣的一个分支为()A.① B.② C.③ D.④【考点】反比例函数的图象.【分析】根据函数图象上图象经过的点的,利用待定系数法即可求得函数的解析式,即k的值,从而判断.【解答】解:A、反比例函数进过点(﹣3,4),代入函数解析式得k=﹣12,故选项正确;B、反比例函数进过点(﹣3,2),代入函数解析式得k=﹣6,故选项错误;C、反比例函数进过点(1,4),代入函数解析式得k=4,故选项错误;D、反比例函数进过点(2,4),代入函数解析式得k=8,故选项错误.故选A.【点评】本题考查了待定系数求函数的解析式,是一个基础题.8.函数y=﹣ax+a与(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【考点】反比例函数的图象;一次函数的图象.【专题】压轴题.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,(a≠0)在二、四象限,只有A符合;a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,(a≠0)在一、三象限,无选项符合.故选A.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,关键是由a的取值确定函数所在的象限.二、填空题9.﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+=2+1.【考点】立方根;零指数幂;负整数指数幂.【专题】计算题.【分析】首先将二次根式、幂运算、绝对值、立方根进行化简求值,然后根据实数的运算法则进行运算即可.【解答】解:﹣(﹣1)2016﹣(﹣)0+(﹣)﹣2﹣|﹣3|+,=2﹣1﹣1+4﹣3+2,=2+1.故答案为:2+1.【点评】题目考查了二次根式化简、幂运算、绝对值的运算、立方根的运算等知识点,考察知识较多,对学生要求较高,解决本题的关键是掌握各种运算法则,题目难易程度整体适中,适合课后训练.10.如图,在▱ABCD中,AE⊥BC,AF⊥CD,E,F为垂足,若∠EAF=59°,则∠B=59度.【考点】平行四边形的性质.【分析】直接利用垂直的定义结合平行四边形的性质得出∠BAE的度数,进而得出答案.【解答】解:∵在▱ABCD中,AE⊥BC,AF⊥CD,∴∠AEB=∠AFC=90°,AB∥DC,∴∠BAF=90°,∵∠EAF=59°,∴∠BAE=31°,∴∠B=59°.故答案为:59.【点评】此题主要考查了平行四边形的性质,根据题意得出∠BAE的度数是解题关键.11.纳米是一种长度单位,1纳米等于10亿分之一米,1根头发丝直径是62000纳米,则一根头发丝的直径用科学记数法表示为 6.2×10﹣6米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:62000纳米=62000×10﹣10m=6.2×10﹣6m,故答案为:6.2×10﹣6.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.在函数y=(k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),(,y3),在函数值y1,y2,y3中最大的为y2.【考点】反比例函数图象上点的坐标特征.【分析】首先可判定函数y=(k为常数)的系数﹣k2﹣2<0,即可知此函数在二、四象限,然后画出图象,确定各点的位置,即可求得答案.【解答】解:∵函数y=(k为常数)的系数﹣k2﹣2<0,∴此函数在二、四象限,如图∴函数值y1,y2,y3中最大的为y2.故答案为:y2.【点评】此题考查了反比例函数图象上点的坐标特征.注意结合图象求解比较简单.13.如图,点A是反比例函数的图象上的一点,过点A作▱ABCD,使点B、C在x轴上,点D在y轴上,则▱ABCD的面积为6.【考点】反比例函数系数k的几何意义;平行四边形的性质.【专题】计算题.【分析】连结OA、CA,根据反比例函数y=(k≠0)中比例系数k的几何意义得到S△OAD=|k|=×6=3,再利用平行四边形的性质得BC∥AD,所以S△CAD=S△OAD=3,然后根据▱ABCD的面积=2S△CAD进行计算.【解答】解:连结OA、CA,如图,则S△OAD=|k|=×6=3,∵四边形ABCD为平行四边形,∴BC∥AD,∴S△CAD=S△OAD=3,∴▱ABCD的面积=2S△CAD=6.故答案为6.【点评】本题考查了反比例函数y=(k≠0)中比例系数k的几何意义:过反比例函数图象上任意一点分别作x轴、y轴的垂线,则垂线与坐标轴所围成的矩形的面积为|k|.也考查了平行四边形的性质.14.如图,已知直线y=﹣2x+b与直线y=ax﹣1相交于点(2,﹣2),由图象可得不等式﹣2x+b>ax﹣1的解集是x<2.【考点】一次函数与一元一次不等式.【分析】以交点(2,﹣2)为分界,交点的坐标,y=﹣2x+b的图象在直线y=ax﹣1的上边,故不等式的解集为x<2.【解答】解:根据图象可得不等式﹣2x+b>ax﹣1的解集是x<2,故答案为:x<2.【点评】此题主要考查了一次函数与一元一次不等式的关系,关键是正确从图象中得到信息.15.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,则AB=19cm,BC=11cm.【考点】平行四边形的性质.【分析】根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△AOB的周长比△BOC的周长多8cm,则AB比BC大8cm,继而可求出AB、BC的长度.【解答】解:∵▱ABCD的周长为60cm,∴BC+AB=30cm,①又∵△AOB的周长比△BOC的周长大8cm,∴AB﹣BC=8cm,②由①②得:AB=19cm,BC=11cm.故答案为:19cm,11cm.【点评】此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.三、解答题16.(1)先化简,再求值:÷(﹣)+,其中x=2﹣1﹣20160(2)阅读理解【提出问题】已知===k,求分式的值.【分析问题】本题已知条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.【解决问题】设===k ,则x=4k ,y=3k ,z=2k ,将它们分别代入中并化简,可得分式的值为 .【拓展应用】已知=﹣=,求分式的值.【考点】分式的化简求值;分式的值;零指数幂;负整数指数幂.【分析】(1)先根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可; (2)【解决问题】把x=4k ,y=3k ,z=2k 代入进行计算即可;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,再代入分式进行计算即可.【解答】解:(1)原式=÷+=÷+=÷+=•+=+= =,当x=2﹣1﹣20160=﹣1=﹣时,原式===.(2)【解决问题】把x=4k ,y=3k ,z=2k 代入得,原式===.故答案为:;【拓展应用】令=﹣==k ,则x=3k ,y=﹣2k ,z=4k ,原式====.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意,当条件是连等式,因此可用设参数法,即设出参数k,得出x,y,z与k的关系,然后再代入待求的分式化简即可.17.如图,在正方形ABCD中,E是BC延长线上一点,且AC=EC,求∠DAE的度数.【考点】正方形的性质.【分析】根据正方形的对角线平分一组对角可得∠DAC=∠ACB=45°,再根据等边对等角可得∠E=∠EAC,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EAC,再根据∠DAE=∠DAC﹣∠EAC代入数据进行计算即可得解.【解答】解:∵四边形ABCD为正方形,∴∠DAC=∠ACB=45°,∵AC=CE,∴∠E=∠EAC,∵2∠EAC=∠E+∠EAC=∠ACB=45°,∴∠EAC=22.5°,∴∠DAE=∠DAC﹣∠EAC=45°﹣22.5°=22.5°.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等边对等角的性质,三角形的外角性质,是基础题,熟记各性质是解题的关键.18.已知直线y=2x+6,解答下列问题:(1)在直角坐标系中,画出该直线;(2)求直线与坐标轴所围成的三角形的面积;(3)根据图象直接写出,当x取什么值时,函数值y>0?【考点】一次函数的图象;一次函数图象上点的坐标特征.【分析】(1)首先求出图象与坐标轴交点,进而画出图象;(2)直接利用(1)中所求,结合直角三角形面积求法得出答案;(3)利用函数图象得出不等式的解.【解答】解:(1)当x=0,则y=6;当y=0,则x=﹣3,如图所示:(2)直线与坐标轴所围成的三角形的面积为:×3×6=9;(3)如图所示:当x>﹣3时,函数值y>0.【点评】此题主要考查了一次函数图象以及三角形面积求法,正确求出一次函数与坐标轴交点是解题关键.19.某校准备在甲、乙两家公司为毕业班制作一批VCD光盘作为毕业留念.甲公司提出:每个光盘收材料费5元,另收设计和制作费1500元;乙公司提出:每个光盘收材料费8元,不收设计费.(1)请写出制作VCD光盘的个数x与甲公司的收费y1(元)的函数关系式;(2)请写出制作VCD光盘的个数x与乙公司的收费y2(元)的函数关系式;(3)如果学校派你去甲、乙两家公司订做纪念光盘,你会选择哪家公司.【考点】一次函数的应用.【专题】应用题.【分析】根据题意,y1与x是一次函数关系,y2与x成正比例,可直接写出它们的关系式y1=5x+1500,y2=8x;若要选择公司订做光盘,则要看学校订做纪念光盘的数量,当甲、乙两家公司的收费相等时,即y1=y2时可计算出订做的光盘数,再与学校订做的光盘数相比较,就可做出选择.【解答】解:(1)y1=5x+1500,(2)y2=8x;(3)当y1=y2时,即5x+1500=8x,解得x=500,当光盘为500个是同样合算,当光盘少于500个时选乙公司合算,当光盘多于500个时选甲公司合算.【点评】此题不难,关键要仔细审题,懂得计算两家公司收费相等时的光盘数,再与学校需订的数量相比较.20.如图1,已知双曲线y=(k>0)与直线y=k′x交于A、B两点,点A在第一象限,试解答下列问题:(1)若点A的坐标为(3,1),则点B的坐标为(﹣3,﹣1);当x满足:﹣3<x<0或x>3时,≤k′x;(2)过原点O作另一条直线l,交双曲线y=(k>0)于P,Q两点,点P在第一象限,如图2所示.①四边形APBQ一定是平行四边形;②若点A的坐标为(3,1),点P的横坐标为1,求四边形APBQ的面积.【考点】反比例函数综合题.【分析】(1)根据双曲线关于原点对称求出点B的坐标,结合图象得到≤k′x时,x的取值范围;(2)①根据对角线互相平分的四边形是平行四边形证明即可;②过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,根据正方形的面积公式和三角形的面积公式计算即可.【解答】解:(1)∵双曲线y=关于原点对称,点A的坐标为(3,1),∴点B的坐标为(﹣3,﹣1),由图象可知,当﹣3<x<0或x>3时,≤k′x,故答案为:(﹣3,﹣1);﹣3<x<0或x>3;(2)①∵双曲线y=关于原点对称,∴OA=OB,OP=OQ,∴四边形APBQ一定是平行四边形,故答案为:平行四边形;②∵点A的坐标为(3,1),∴k=3×1=3,∴反比例函数的解析式为y=,∵点P的横坐标为1,∴点P的纵坐标为3,∴点P的坐标为(1,3),由双曲线关于原点对称可知,点Q的坐标为(﹣1,﹣3),点B的坐标为(﹣3,﹣1),如图2,过点A、B分别作y轴的平行线,过点P、Q分别作x轴的平行线,分别交于C、D、E、F,则四边形CDEF是矩形,CD=6,DE=6,DB=DP=4,CP=CA=2,则四边形APBQ的面积=矩形CDEF的面积﹣△ACP的面积﹣△PDB的面积﹣△BEQ的面积﹣△AFQ的面积=36﹣2﹣8﹣2﹣8=16.【点评】本题考查的是反比例函数的图形和性质、反比例函数图象上点的坐标特征、中心对称图形的概念和性 质以及平行四边形的判定,掌握双曲线是关于原点的中心对称图形、平行四边形的判定定理是解题的关键.21.如图,在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,交 CB 延长线于 E,BF 平分∠ABC 交 AD 的延长线 于 F. (1)若 AD=5,AB=8,求 GB 的长. (2)求证:∠E=∠F.【考点】平行四边形的性质. 【分析】(1)直接利用平行四边形的性质结合角平分线的性质得出∠2=∠AGD,进而得出 AD=AG,得出答 案即可; (2)首先证明∠CDE=∠ABF,再证明 ED∥FB,然后再根据平行四边形的性质可得 AF∥CE,根据两组对边 分别平行的四边形是平行四边形可得四边形 BFDE 是平行四边形,进而得出答案. 【解答】(1)解:∵在▱ ABCD 中,DE 平分∠ADC 交 AB 于点 G,BF 平分∠ABC 交 AD 的延长线于 F, ∴∠1=∠2,∠3=∠4,AB∥DC, ∴∠2=∠AGD, ∴∠1=∠AGD, ∴AD=AG=5, ∵AB=8, ∴BG=8﹣5=3;(2)证明:∵四边形 ABCD 是平行四边形, ∴∠ADC=∠ABC,DC∥AB,AD∥BC, ∵DE 平分∠ADC, ∴∠CDE= ∠ADC, ∵BF 平分∠ABC, ∴∠ABF= ∠ABC, ∴∠CDE=∠ABF, ∵DC∥AB, ∴∠AGD=∠CDE, ∴∠AGD=∠FBA, ∴ED∥FB, ∵AF∥CE, ∴四边形 BFDE 是平行四边形, ∴∠E=∠F.【点评】此题主要考查了平行四边形的性质和判定,关键是掌握平行四边形两组对边分别平行,两组对边分别 平行的四边形是平行四边形.22.甲、乙两人在某标准游泳池相邻泳道进行 100 米自由泳训练,如图是他们各自离出发点的距离 y(米)与 他们出发的时间 x(秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长 50 米,100 米自由 泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计) (1)直接写出点 A 坐标,并求出线段 OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远? (3)若甲、乙两人在各自游完 50 米后,返回时的速度相等;则快者到达终点时领先慢者多少米?【考点】一次函数的应用. 【专题】综合题. 【分析】(1)由图得点 A(30,50),C(40,50),用待定系数法,即可求出解析式;(2) 用待定系数法可求出, 线段 AB 的解析式为 y2=﹣ x+100, (30≤x≤60) , 然后, 联立方程组,解出即可; (3)甲乙两人在各自游完 50 米后,在返程中的距离保持不变,把 x=30 与 40 分别代入 y1 和 y2,解出即可解 答; 【解答】解:(1)由图得点 A(30,50),C(40,50), 设线段 OC 的解析式为:y1=k1x, 把点 C(40,50)代入得,k1= , ∴线段 OC 的解析式为:y1= x(0≤x≤40);(2)设线段 AB 的解析式为 y2=k2x+b, 把点 A(30,50)、点 B(60,0)代入可知: ,解得,,∴线段 AB 的解析式为 y2=﹣ x+100,(30≤x≤60);解方程组,解得,,∴线段 OC 与线段 AB 的交点为(,),即出发秒后相遇,相遇时距离出发点米;(3)∵甲乙两人在各自游完 50 米后,在返程中的距离保持不变, 把 x=30 代入 y1= x,得 y1= 米, 米, = 米.把 x=40 代入 y2=﹣ x+100,得 y2= ∴快者到达终点时,领先慢者 50﹣【点评】本题主要考查了一次函数的应用,考查了学生获取信息的能力,读懂图是解答的关键.23.我县万德隆商场有 A、B 两种商品的进价和售价如表: 商品 A 价格 进价(元/件) 售价(元/件) m 160 m+20 240 B已知:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同. (1)求 m 的值;(2)该商场计划同时购进的 A、B 两种商品共 200 件,其中购进 A 种商品 x 件,实际进货时,生产厂家对 A 种商品的出厂价下调 a(50<a<70)元出售,若商场保持同种商品的售价不变,商场售完这 200 件商品的总 利润为 y 元. ①求 y 关于 x 的函数关系式; ②若限定 A 种商品最多购进 120 件最少购进 100 件,请你根据以上信息,设计出使该商场获得最大利润的进 货方案. 【考点】一次函数的应用. 【分析】(1)根据等量关系:用 2400 元购进 A 种商品的数量与用 3000 元购进 B 种商品的数量相同,列出方 程即可解决问题. (2)①根据总利润=A 商品利润+B 商品利用计算即可解决问题. ②分 50<a<60,60<a<70,a=60 三种情形,根据一次函数的性质讨论即可解决问题. 【解答】解:(1)由题意 解得:m=88. ∴m=80. (2)①y=[160﹣(80﹣a)]x+(240﹣100)(200﹣x)=(a﹣60)x+28000.(0<x<200) ②∵y=(a﹣60)x+28000,100≤x≤120, ∴当 50<a<60 时,a﹣60<0,y 随 x 增大而减小, ∴x=100 时,y 有最大值, 此时进货方案是购买 100 件 A 种商品,100 件 B 种商品利润最大. 当 60<a<70 时,y 随 x 增大而增大, ∴x=120 时,y 有最大值, 此时进货方案是购买 120 件 A 种商品,80 件 B 种商品利润最大. 当 a=60 时, 利润是定值为 28000 元, 此时进货方案是购买 m 件 A 种商品, (200﹣m) 件 B 种商品 (100≤m≤120) . 【点评】本题考查一次函数的应用,一元一次不等式等知识,解题的关键是连接题意,学会利用不等式解决实 际问题,学会利用一次函数的性质解决实际问题中最值问题,属于中考常考题型. =。
人教版初中数学八年级下册期中试题(河北省
2017-2018学年河北省八年级(下)期中数学试卷一、选择题(本大题共12个小题,1~6小题,每小题2分,7~12小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填入题前对应表格内)1.(2分)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.42.(2分)下列的式子一定是二次根式的是()A.B.C.D.3.(2分)下列二次根式中属于最简二次根式的是()A.B.C.D.4.(2分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形5.(2分)在△ABC中,AB=15,BC=12,AC=9,则△ABC的面积为()A.180B.90C.54D.1086.(2分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.117.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12B.13C.14D.158.(3分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是()A.1<x<9B.2<x<18C.8<x<10D.4<x<59.(3分)如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,那么这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形10.(3分)若x+y=3+2,x﹣y=3﹣2,则的值为()A.4B.1C.6D.3﹣211.(3分)直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A.ab=h2B.a2+b2=2h2C.+=D.+=12.(3分)将1,,三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2018,2018)表示的两个数的积是()A.3B.C.D.二、填空题(共18分,每小题3分)13.(3分)=.14.(3分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为cm.15.(3分)如图所示:数轴上点A所表示的数为a,则a的值是.16.(3分)如图菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为.17.(3分)某同还用竹杆扎了一个长80cm、宽60cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需cm.18.(3分)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)化简:(1)=;(2)=;(3)=;(4)=;(5)=;(6)=;(7)=;(8)=.20.(8分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,,BD=2.(1)求证:△BCD是直角三角形.(2)求△ABC的面积.21.(8分)如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.22.(8分)若实数a,b,c满足|a﹣|+=(1)求a,b,c;(2)若满足上式的a,b为等腰三角形的两边,求这个等腰三角形的周长.23.(8分)工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是形,根据数学道理是:;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:.24.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E 在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.25.(11分)如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接P A,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若P A:PB:PC=3:4:5,连接PQ,求证:∠PQC=90°.26.(11分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.2017-2018学年河北省八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共12个小题,1~6小题,每小题2分,7~12小题,每小题2分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确选项填入题前对应表格内)1.(2分)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.4【分析】根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.【解答】解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选:C.【点评】本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.2.(2分)下列的式子一定是二次根式的是()A.B.C.D.【分析】根据二次根式的被开方数是非负数对每个选项做判断即可.【解答】解:A、当x=0时,﹣x﹣2<0,无意义,故本选项错误;B、当x=﹣1时,无意义;故本选项错误;C、∵x2+2≥2,∴符合二次根式的定义;故本选项正确;D、当x=±1时,x2﹣2=﹣1<0,无意义;故本选项错误;故选:C.【点评】本题考查了二次根式的定义.一般形如(a≥0)的代数式叫做二次根式.当a≥0时,表示a的算术平方根;当a小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).3.(2分)下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.(2分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形【分析】根据平行四边形的判定、矩形的判定,菱形的判定以及正方形的判定对各选项分析判断即可得解.【解答】解:A、两组对边分别相等的四边形是平行四边形,正确,故本选项错误;B、四个内角都相等的四边形是矩形,正确,故本选项错误;C、四条边都相等的四边形是菱形,正确,故本选项错误;D、两条对角线垂直且平分的四边形是正方形,错误,应该是菱形,故本选项正确.故选:D.【点评】本题考查了正方形的判定,平行四边形、矩形和菱形的判定,熟练掌握各四边形的判定方法是解题的关键.5.(2分)在△ABC中,AB=15,BC=12,AC=9,则△ABC的面积为()A.180B.90C.54D.108【分析】根据勾股定理的逆定理判定直角三角形,再根据直角三角形的面积公式求解即可.【解答】解:∵92+122=152,∴根据勾股定理的逆定理,三角形是直角三角形,两直角边为9和12,所以面积=×9×12=54.故选:C.【点评】本题考查了勾股定理的逆定理,关键是熟悉勾股定理的逆定理和三角形的面积公式.6.(2分)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(3分)如图,在△ABC中,D,E分别是AB,AC的中点,AC=12,F是DE上一点,连接AF,CF,DF=1.若∠AFC=90°,则BC的长度为()A.12B.13C.14D.15【分析】如图,首先证明EF=6,继而得到DE=7;证明DE为△ABC的中位线,即可解决问题.【解答】解:如图,∵∠AFC=90°,AE=CE,∴EF==6,DE=1+6=7;∵D,E分别是AB,AC的中点,∴DE为△ABC的中位线,∴BC=2DE=14,故选:C.【点评】该题主要考查了三角形的中位线定理、直角三角形的性质等几何知识点及其应用问题;牢固掌握三角形的中位线定理、直角三角形的性质等几何知识点是解题的基础和关键.8.(3分)在平行四边形ABCD中,对角线AC、BD相交于点O,如果AC=10,BD=8,AB=x,则x的取值范围是()A.1<x<9B.2<x<18C.8<x<10D.4<x<5【分析】根据平行四边形的性质求出OA、OB,根据三角形的三边关系定理得到OA﹣OB <x<OA+OB,代入求出即可.【解答】解:∵四边形ABCD是平行四边形,AC=10,BD=8,∴OA=OC=5,OD=OB=4,在△OAB中,OA﹣OB<x<OA+OB,∴5﹣4<x<4+5,∴1<x<9.故选:A.【点评】本题考查了对平行四边形的性质,三角形的三边关系定理等知识点的理解和掌握,求出OA、OB后得出OA﹣OB<x<OA+OB是解此题的关键.9.(3分)如果一个三角形的三边长a,b,c满足a2+b2+c2+338=10a+24b+26c,那么这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形【分析】先把a2+b2+c2+338=10a+24b+26c化为完全平方公式的形式,再根据非负数的性质求出a、b、c的长,再根据勾股定理的逆定理进行判断即可.【解答】解:∵a2+b2+c2+338=10a+24b+26c∴a2+b2+c2+338﹣10a﹣24b﹣26c=0可化为(a﹣5)2+(b﹣12)2+(c﹣13)2=0,∴a﹣5=0,b﹣12=0,c﹣13=0,∴a=5,b=12,c=13.∵52+122=132,∴△ABC是直角三角形.故选:B.【点评】此题考查的知识点是因式分解的应用,先把a2+b2+c2+338=10a+24b+26c化为完全平方的形式是解答此题的关键.10.(3分)若x+y=3+2,x﹣y=3﹣2,则的值为()A.4B.1C.6D.3﹣2【分析】根据二次根式的性质解答.【解答】解:∵x+y=3+2,x﹣y=3﹣2∴原式====1.故选:B.【点评】解答此题,要充分运用平方差公式,使运算简便.11.(3分)直角三角形两直角边长为a,b,斜边上高为h,则下列各式总能成立的是()A.ab=h2B.a2+b2=2h2C.+=D.+=【分析】根据直角三角形的面积的计算方法,以及勾股定理就可解得.【解答】解:根据直角三角形的面积可以导出:斜边c=.再结合勾股定理:a2+b2=c2.进行等量代换,得a2+b2=.两边同除以a2b2,得+=.故选:D.【点评】本题主要考查了勾股定理,熟练运用勾股定理、直角三角形的面积公式以及等式的性质进行变形.12.(3分)将1,,三个数按图中方式排列,若规定(a,b)表示第a排第b列的数,则(8,2)与(2018,2018)表示的两个数的积是()A.3B.C.D.【分析】根据题意和图形中的数据,可以发现数字的变化规律,从而可以得到(8,2)与(2018,2018)表示的两个数,进而(8,2)与(2018,2018)表示的两个数的积,本题得以解决.【解答】解:∵1+2+3+…+7=28,28÷3=7…1,(8,2)表示的数是,∵1+2+3+…+2017+2018=2037153,207153÷3=679051,∴(2018,2018)表示的数是,∵×=3,∴(8,2)与(2018,2018)表示的两个数的积是3,故选:A.【点评】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出相应的两个数的乘积.二、填空题(共18分,每小题3分)13.(3分)=﹣2.【分析】根据简=|a|得到原式=|2﹣|,然后根据绝对值的意义去绝对值即可.【解答】解:原式=|2﹣|=﹣(2﹣)=﹣2.故答案为﹣2.【点评】本题考查了二次根式的性质与化简:=|a|.也考查了绝对值的意义.14.(3分)平行四边形的周长为24cm,相邻两边长的比为3:1,那么这个平行四边形较短的边长为3cm.【分析】根据平行四边形中对边相等和已知条件即可求得较短边的长.【解答】解:如图∵平行四边形的周长为24cm∴AB+BC=24÷2=12∵BC:AB=3:1∴AB=3cm故答案为3.【点评】本题利用了平行四边形的对边相等的性质,设适当的参数建立方程求解.15.(3分)如图所示:数轴上点A所表示的数为a,则a的值是.【分析】根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示﹣1的点和A之间的线段的长,进而可推出A的坐标.【解答】解:图中直角三角形的两直角边为1,2,∴斜边长为=,那么﹣1和A之间的距离为,那么a的值是:﹣1+.【点评】此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.16.(3分)如图菱形ABCD的一条对角线的中点O到AB的距离为2,那么O点到另一边的距离为2.【分析】首先根据菱形的性质推出两个三角形全等,然后再根据已知条件求出O点到另一边的距离.【解答】解:根据菱形的性质,可得O到菱形一边AB与BO构成的三角形OEB和O到菱形邻边BC与BO构成的三角形全等,已知点O到AB的距离为2,那么O点到另外一边BC的距离为2.故答案为2.【点评】本题考查菱形的性质与全等三角形的判定.17.(3分)某同还用竹杆扎了一个长80cm、宽60cm的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需100cm.【分析】长方形定形后,分成两个直角三角形,根据勾股定理求此斜拉秆的长.【解答】解:由勾股定理,得:此斜拉秆的长为:=100(cm).故答案为:100.【点评】本题考查了勾股定理的应用以及三角形稳定性的实际应用,要熟记勾股定理.18.(3分)观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=84,c=85.【分析】认真观察三个数之间的关系:首先发现每一组的三个数为勾股数,第一个数为从3开始连续的奇数,第二、三个数为连续的自然数;进一步发现第一个数的平方是第二、三个数的和;最后得出第n组数为(2n+1),(),(),由此规律解决问题.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.【点评】认真观察各式的特点,总结规律是解题的关键.三、解答题(本大题共8个小题,共72分.解答应写出文字说明、证明过程或演算步骤)19.(8分)化简:(1)=2;(2)=3;(3)=4x2y;(4)=;(5)=;(6)=;(7)=|x|;(8)=.【分析】根据二次根式的性质和运算法则逐一化简、计算可得.【解答】解:(1)=2;(2)=3;(3)=4x2y;(4)=;(5)==;(6)===;(7)==|x|;(8)===;故答案为:(1)2;(2)3;(3)4x2y;(4);(5);(6);(7)|x|;(8).【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握二次根式的性质和运算法则.20.(8分)如图,△ABC中,AB=AC,D是AC边上的一点,CD=1,,BD=2.(1)求证:△BCD是直角三角形.(2)求△ABC的面积.【分析】(1)根据勾股定理的逆定理直接得出结论;(2)设腰长为x,在直角三角形ADB中,利用勾股定理列出x的方程,求出x的值,进而利用三角形的面积公式求出答案.【解答】解:(1)∵CD=1,,BD=2,∴CD2+BD2=BC2,∴△BDC是直角三角形;(2)设腰长AB=AC=x,在Rt△ADB中,∵AB2=AD2+BD2,∴x2=(x﹣1)2+22,解得x=,即△ABC的面积=AC•BD=××2=.【点评】本题主要考查了勾股定理的逆定理以及等腰三角形的性质,解题的关键是利用勾股定理求出腰长,此题难度不大.21.(8分)如图网格中的△ABC,若小方格边长为1,请你根据所学的知识(1)求△ABC的面积;(2)判断△ABC是什么形状?并说明理由.【分析】(1)运用割补法,正方形的面积减去三个小三角形的面积,即可求出△ABC的面积;(2)根据勾股定理求得△ABC各边的长,再利用勾股定理的逆定理进行判定,从而不难得到其形状.【解答】解:(1)△ABC的面积=4×4﹣1×2÷2﹣4×3÷2﹣2×4÷2=16﹣1﹣6﹣4=5.故△ABC的面积为5;(2)∵小方格边长为1,∴AB2=12+22=5,AC2=22+42=20,BC2=32+42=25,∴AB2+AC2=BC2,∴△ABC为直角三角形.【点评】本题主要考查了勾股定理和勾股定理的逆定理,解答此题要运用勾股定理的逆定理:若三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.22.(8分)若实数a,b,c满足|a﹣|+=(1)求a,b,c;(2)若满足上式的a,b为等腰三角形的两边,求这个等腰三角形的周长.【分析】(1)首先由+得出c=0,再进一步得出a、b的数值即可;(2)分a是腰长与b是底边和b是腰长与a是底边两种情况讨论求解.【解答】解:(1)由题意得c﹣3≥0,3﹣c≥0,则c=3,|a﹣|+,0则a﹣=0,b﹣2=0,所以a=,b=2.(2)当a是腰长与b是底边,则等腰三角形的周长为++2=2+2;当b是腰长与a是底边,则等腰三角形的周长为+2+2=+4.【点评】此题考查二次根式的意义与加减运算,以及等腰三角形的性质.23.(8分)工人师傅做铝合金窗框分下面三个步骤进行:(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;(2)摆放成如图②的四边形,则这时窗框的形状是平行四边形,根据数学道理是:两组对边分别相等的四边形是平行四边形;(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是矩形,根据的数学道理是:有一个角是直角的平行四边形是矩形.【分析】已知两组线段相等了,如图组成的图形依据平行四边形的判定可知是平行四边形,在调整过程中,一个角为直角时,根据矩形的定义可进行判定.【解答】解:(2)平行四边形两组对边分别相等的四边形是平行四边形(3)矩形有一个角是直角的平行四边形是矩形【点评】此题主要考查了平行四边形和矩形的判定,为最基本的知识点,难易程度适中.24.(10分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E 在AO上,且OE=OC.(1)求证:∠1=∠2;(2)连结BE、DE,判断四边形BCDE的形状,并说明理由.【分析】(1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论;(2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.【解答】(1)证明:∵在△ADC和△ABC中,,∴△ADC≌△ABC(SSS),∴∠1=∠2;(2)四边形BCDE是菱形;证明:∵∠1=∠2,CD=BC,∴AC垂直平分BD,∵OE=OC,∴四边形DEBC是平行四边形,∵AC⊥BD,∴四边形DEBC是菱形.【点评】本题考查了菱形的判定及线段的垂直平分线的性质,解题的关键是了解菱形的判定方法,难度不大.25.(11分)如图,已知∠MBN=60°,在BM,BN上分别截取BA=BC,P是∠MBN内的一点,连接P A,PB,PC,以BP为边作∠PBQ=60°,且BQ=BP,连接CQ.(1)观察并猜想AP与CQ之间的大小关系,并证明你的结论;(2)若P A:PB:PC=3:4:5,连接PQ,求证:∠PQC=90°.【分析】(1)易证△ABP≌△CBQ,可得AP=CQ;(2)根据P A=CQ,PB=BQ,即可判定△PQC为直角三角形.【解答】(1)解:AP=CQ;理由如下:连接PQ,如图所示:∵∠PBQ=60°,且BQ=BP,∴△BPQ为等边三角形,∵∠ABP+∠CBP=60°,∠CBQ+∠CBP=60°,∴∠CBQ=∠ABP,在△ABP和△CBQ中,,∴△ABP≌△CBQ(SAS),∴AP=CQ,(2)证明:设P A=3a,PB=4a,PC=5a,在△PBQ中,∵PB=BQ=4a,且∠PBQ=60°,∴△PBQ为等边三角形,∴PQ=4a,在△PQC中,∵PQ2+QC2=16a2+9a2=25a2=PC2,∴△PQC为直角三角形,即∠PQC=90°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了勾股定理逆定理的运用,本题中求证△ABP≌△CBQ是解题的关键.26.(11分)在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长.【分析】(1)证△ABE≌△CDF,推出AE=CF,求出DE=BF,DE∥BF,根据平行四边形判定推出即可.(2)求出∠ABE=30°,根据直角三角形性质求出AE、BE,即可求出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,由折叠的性质可得:∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;解法二:证明:∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,AB∥CD,∴∠ABD=∠CDB,∴∠EBD=∠FDB,∴EB∥DF,∵ED∥BF,∴四边形BFDE为平行四边形.(2)解:∵四边形BFDE为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE ==,BE=2AE=,∴BC=AD=AE+ED=AE+BE =+=2.【点评】本题考查了平行四边形的判定,菱形的性质,矩形的性质,含30度角的直角三角形性质的应用,主要考查学生运用定理进行推理和计算的能力.第21页(共21页)。
石家庄市八年级下学期数学期中考试试卷
石家庄市八年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·昌平期中) 如图,数轴上一动点A向左移动2个单位长度到达点B,再向右移动5个单位度到达点C,若点C表示的数为1,则点A表示的数为()A . 7B . 3C . ﹣2D . 22. (2分) (2017八下·安岳期中) 某种病毒的最大直径为0.00000012米,这一直径用科学记数法表示为()A . 1.2×10﹣7米B . 1.2×10﹣8米C . 1.2×10﹣9米D . 12×10﹣8米3. (2分) (2016八上·青海期中) 将点A(3,2)沿x轴向左平移4个单位长度得到点A′,点A′关于y 轴对称的点的坐标是()A . (﹣3,2)B . (﹣1,2)C . (1,2)D . (1,﹣2)4. (2分) (2017八下·安岳期中) 若点(m,n)在函数y=2x+1的图象上,则2m﹣n的值是()A . 2B . ﹣2C . 1D . ﹣15. (2分) (2017八下·安岳期中) “5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?设原计划每天修米,所列方程正确的是()A .B .C .D .6. (2分) (2017八下·安岳期中) 如图,在▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE 的周长是()A . 7B . 10C . 11D . 127. (2分) (2017八下·安岳期中) 如图,在平行四边形ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A . 4B . 3C .D . 28. (2分) (2017八下·安岳期中) 直线y=kx+b不经过第三象限,则k、b应满足()A . k>0,b<0B . k<0,b>0C . k<0 b<0D . k<0,b≥09. (2分) (2017八下·安岳期中) 函数y1=kx+k,y2= (k≠0)在同一坐标系中的图象大致是()A .B .C .D .10. (2分) (2017八下·安岳期中) 如图,两双曲线y= 与y=﹣分别位于第一、四象限,A是y轴上任意一点,B是y=﹣上的点,C是y= 上的点,线段BC⊥x轴于点 D,且4BD=3CD,则下列说法:①双曲线y= 在每个象限内,y随x的增大而减小;②若点B的横坐标为3,则点C的坐标为(3,﹣);③k=4;④△ABC 的面积为定值7,正确的有()A .B .C .D . ④二、填空题 (共6题;共8分)11. (2分) (2019七上·天台月考) 3的相反数是________;-2的倒数是________.12. (1分) (2017八下·安岳期中) 一次函数y=kx+b的图象经过点(0,2),且与直线y= 平行,则该一次函数的表达式为________.13. (1分) (2017八下·安岳期中) 如图,反比例函数图象上有一点P,PA⊥x轴于点A,点B在y 轴的负半轴上,若△PAB的面积为4,则k=________.14. (1分) (2017八下·安岳期中) 若,则分式的值是________;15. (1分) (2017八下·安岳期中) 如图,在□ABCD中,点E在边AD上,以BE为折痕将△ABE向上翻折,点A正好落在CD的点F处,若△FDE的周长为8,△FCB 的周长为22,则YABCD的周长为________.16. (2分) (2017八下·安岳期中) 如图,在平面直角坐标系xOy中,分别平行x、y轴的两直线a、b相交于点A(3,4).连接OA,线段OA长________;若在直线a上存在点P,使△AOP是以OA为腰的等腰三角形.那么所有满足条件的点P的坐标是________.三、解答题 (共9题;共96分)17. (5分)因式分解:(1)x2﹣xy﹣12y2;(2)a2﹣6a+9﹣b218. (5分) (2017八下·安岳期中) 先化简:,再从-2<a<3的范围内选取一个你最喜欢的整数代入求值.19. (8分) (2017八下·安岳期中) 如图,LA , LB分别表示A步行与B骑车在同一路上行驶的路程S(千米)与时间t(小时)的关系.(1)根据图象,回答下列问题:B出发时与A相距________千米;走了一段路后,自行车发生故障进行修理所用的时间是________小时.B出发后________小时与A相遇.(2)若B的自行车不发生故障,保持出发时的速度前进,求B与A的相遇点离B的出发点相距多少千米.并在图中表示出这个相遇点C.20. (5分) (2017八下·安岳期中) 某校初二年学生乘车到距学校40千米的社会实践基地进行社会实践.一部分学生乘旅游车,另一部分学生乘中巴车,他们同时出发,结果乘中巴车的同学晚到8分钟.已知旅游车速度是中巴车速度的1.2倍,求中巴车和旅游车的速度.21. (15分) (2017八下·安岳期中) 已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;(3)当-3<x<-1时,求y的取值范围.22. (15分) (2017八下·安岳期中) 如图,在直角梯形ABCD中,AD//BC,∠A=∠B=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为t(秒).(1)设△DPQ的面积为S,用含有t的代数式表示S.并写出t的取值范围.(2)当△DPQ的面积为36时,求运动时间t的值.(3)当四边形PCDQ是平行四边形,求t的值.23. (10分) (2017八下·安岳期中) 工厂需要某一规格的纸箱x个.供应这种纸箱有两种方案可供选择:方案一:从纸箱厂定制购买,每个纸箱价格为4元;方案二:由工厂租赁机器加工制作.工厂需要一次性投入机器安装等费用16000元,每加工一个纸箱还需成本费2.4元.(1)请直接写出方案一的费用y1(元)和方案二的费用y2(元)关于x(个)的函数关系式;(2)请你根据纸箱的个数选择哪种方案费用更少?并说明理由.24. (20分) (2017八下·安岳期中) 如图,已知A(﹣4,n),B(2,﹣4)是一次函数和反比例函数的图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出方程的解;(3)求△AOB的面积;(4)观察图象,直接写出不等式的解集.25. (13分) (2017八下·安岳期中) 为发展旅游经济,我市某景区对门票采用灵活的售票方法吸引游客.门票定价为50元/人,非节假日打a折售票,节假日按团队人数分段定价售票,即m人以下(含m人)的团队按原价售票;超过m人的团队,其中m人仍按原价售票,超过m人部分的游客打b折售票.设某旅游团人数为x人,非节假日购票款为(元),节假日购票款为(元). ,与x之间的函数图象如图所示.(1)观察图象可知:a=________;b=________;m=________;(2)直接写出与x之间的函数关系式;(3)某旅行社导游王娜于5月1日带A团,5月20日(非节假日)带B团都到该景区旅游,共付门票款1900元,A , B两个团队合计50人,求A , B两个团队各有多少人?参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共96分)17-1、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、24-4、25-1、25-2、25-3、第11 页共11 页。
〖新课标〗2018年最新冀教版八年级数学下册期中综合检测题及答案解析<精品试卷>
冀教版2017-2018学年八年级下学期期中检测数学试卷一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)1.下列调查适合做普查的是()A.了解黄宅初中在校学生的视力情况B.了解黄宅镇居民对废电池的处理情况C.日光灯管厂要检测一批灯管的使用寿命D.了解李红同学60道英语选择题的通过率2.学校为了了解500名初三学生的体重情况,从中抽取100名学生进行测量,下列说法中正确的是()A.总体是500B.样本容量是100C.样本是100名学生D.个体是每个学生3.完成下列任务,宜采用抽样调查方式的是()A.调查某班同学的年龄情况B.考察一批炮弹的杀伤半径C.了解你所在学校男、女生人数D.奥运会上对参赛运动员进行的尿样检查4.随机抽查某商场四月份5天的营业额分别如下:(单位:万元)3.4,2.9,3.0,3.1,2.6,试估计这个商场四月份的营业额约是()A.90万元B.450万元C.3万元D.15万元5.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频率为()A.0.04B.0.5C.0.45D.0.46.某校为了了解九年级全体男生的身体发育情况,对20名男生的身高进行了测量(测量结果均为整数,单位:厘米).将所得的数据整理后,列出频率分布表,如下表所示:分组频数频率151.5~156.5 3 0.15156.5~161.5 2 0.10161.5~166.5 6 a166.5~171.5 5 0.25171.5~176.5 4 0.20则下列结论中:(1)这次抽样分析的样本是20名学生的身高;(2)频率分布表中的数据a=0.30;(3)身高167cm(包括167cm)以上的男生有9人,正确的有()A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)7.如图所示的是八年级(2)班同学的一次体检中每分钟心跳次数的频数分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察,指出下列说法中错误的是()A.数据75落在第2小组B.第4小组的频数为6C.心跳为每分钟75次的人数占该班体检人数的112D.八年级(2)班共50人8.如图所示,每个小方格的边长都为1,在直角坐标系中,如果图书馆的横坐标与实验楼的横坐标互为相反数,大门的纵坐标与实验楼的纵坐标互为相反数,则图书馆的位置是()A.(1,5)B.(-2,3)C.(-2,-1)D.(-2,1)9.点P(m+3,-2m)到坐标轴的距离相等,则m的值为()A.-1B.3C.-1或3D.-1或510.如图所示,A为河岸上的码头,B为河中的一只小船,那么这只小船的位置确定方法不能是()A.以A为原点,河岸为x轴,建立直角坐标系来确定B.以A为原点,河岸为y轴,建立直角坐标系来确定C.以AB间的距离和B在A的北偏东若干度来确定D.以B为原点,平行于河岸的直线为x轴,建立直角坐标系来确定11.已知正方形ABCD中,A(-3,1),B(1,1),C(1,-3),则D点的坐标是()A.(-3,-3)B.(-1,1)C.(-3,3)D.(1,3)12.点M(-2,0)关于y轴的对称点N的坐标是()A.(-2,0)B.(2,0)C.(0,2)D.(0,-2)13.如图所示,A,B的坐标分别为(2,0),(0,1),若将线段AB平移至A1B1,则a+b 的值为()A.2B.3C.4D.514.下列变量之间的关系不是函数关系的是()A.长方形的面积一定,其长与宽B.正方形的周长与面积C.长方形的周长与面积D.圆的面积与圆的半径15.函数y=x-35+x中自变量x的取值范围是 ()A.x≥3B.x≥3且x≠-5C.x≥-3且x≠5D.x≥-3且x≠516.根据如图所示的程序计算变量y的对应值,若输入变量x的值为-1,则输出的结果为()A.-2B.2C.-1D.0二、填空题(第17~18小题各3分,第19小题4分,共10分)17.如图(1)所示的是实验室中常用的仪器,向以下容器内均匀注水,最后把容器注满,在注水过程中,容器的水面高度与时间的关系如图(2)所示,图中PQ为一线段,则这个容器是.(1)(2)18.如图所示的是小明从学校到家里行进的路程s(米)与时间t(分)的函数图像.观察图像,从中得到如下信息:①学校离小明家1000米;②小明用了20分钟到家;③小明前10分钟走了路程的一半;④小明后10分钟比前10分钟走得快,其中正确的有(填序号).19.世界杯期间,为了让广大球迷尽情享受足球的乐趣又不影响家人的正常休息,我市某大型酒店提供了“世界杯专用包房”服务.该酒店共有包房100间,每晚每间包房收包房费100元时,所有包房便都可租出;若每间包房的收费每提高50元,所租出的包房就会减少10间,依此类推.设每间包房收费提高x(元),每晚包房费的总收入为y(元),则y与x的关系式为.三、解答题(共68分)20.(9分)一辆汽车油箱内有油48升,从某地出发,每行1km,耗油0.6升,如果设剩余油量为y(升),行驶路程为x(千米).(1)写出y与x的关系式;(2)这辆汽车行驶35km时,剩油多少升?汽车剩油12升时,行驶了多千米?(3)这辆汽车在中途不加油的情况下最远能行驶多少千米?21.(9分)某市自来水公司为了鼓励市民节约用水,采取分段收费标准,居民每月应缴水费y(元)是用水量x(吨)的函数,当0≤x≤5时,y=0.72x;当x>5时,y=0.9x-0.9.(1)画出函数的图像;(2)观察图像,利用函数关系式,说明自来水公司采取的收费标准.22.(9分)未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了市内某校100名学生寒假中花零花钱的数量(钱数取整数,单位:元),以便引导学生树立正确的消费观.根据调查数据制成了频率分布表和直方图(如图所示).(1)补全频率分布表;(2)在频率分布直方图中长方形ABCD的面积是.这次调查的样本容量是;(3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中多少名学生提出这项建议?分组频数频率0.5~50.5 0.150.5~20 0.2100.5~150.5~200.5 30 0.3200.5~250.5 10 0.1250.5~300.5 5 0.05合计10023.(9分)一游泳馆对一年的门票收入进行统计,结果如下表:月份 1 2 3 4 5 6收入/元100120160300420600月份7 8 9 10 11 12收入/元270003000020000900200100请根据上表,回答下列问题:(1)计算一年中各个季度的收入情况,并用适当的统计图表示;(2)计算一年中各个季度的收入在全年收入中所占的百分比,并用适当的统计图表示;(3)一年中各个季度收入的变化情况如何?并用适当的统计图表示;(4)如果你是管理员,你能从以上的统计图表中获得哪些信息?它对你的决策有何影响?24.(10分)如图所示,横、纵相邻格点间的距离均为1个单位长度,有个圆经过A,B,C,D四个点,圆心为点O.(1)若以点O为坐标原点,OC所在直线为x轴,建立平面直角坐标系,写出A,B,C,D四个点的坐标;(2)若以点A为坐标原点,AO所在直线为x轴,建立平面直角坐标系,写出A,B,C,D四个点的坐标;(3)比较(1)(2)中的A,B,C,D四个点的坐标变化,你发现了什么?请写出一条.25.(10分)已知点M(2a-b,5+a),N(2b-1,-a+b).(1)若M,N关于x轴对称,试求a,b的值;(2)若M,N关于y轴对称,试求(b+2a)2017的值.26.(12分)一天,老师拿来一张图(如图所示),对同学们说:我们班级的小王与小李住在同一条大街的两头,相距2000米,在他们两家之间,中间恰好是一家书店,请回答下列问题:(1)小王与小李谁先离开家?(2)小王到哪儿去?他在途中行走了多长时间?小李到哪儿去?他在路途中行走了多长时间?【答案与解析】1.D(解析:A.了解黄宅初中在校学生的视力情况,考查对象太多,不适合普查,宜采用抽样调查,故本选项错误;B.了解黄宅镇居民对废电池的处理情况,不容易做到,不适合普查,宜采用抽样调查,故本选项错误;C.日光灯管厂要检测一批灯管的使用寿命,具有破坏性,不适合普查,宜采用抽样调查,故本选项错误;D.了解李红同学60道英语选择题的通过率,比较容易做到,适合普查,故本选项正确.)2.B(解析:A.总体是500名初三学生的体重情况,故本选项错误;B.样本容量是100,故本选项正确;C.样本是从中抽取的100名学生的体重情况,故本选项错误;D.个体是每个初三学生的体重情况,故本选项错误.)3.B(解析:B调查具有破坏性,因此必须抽样调查,A,C,D都可以做普查.)4.A(解析:四月份5天的营业额总和为(3.4+2.9+3.0+3.1+2.6)=15(万元),四月份共30天;由此可估计这个商场四月份的营业额是15×30=90(万元).)55.D(解析:根据题意,发现数据中在64.5~66.5之间的有8个数据,故=0.4.)64.5~66.5这一小组的频率为8206.A(解析:由频率分布表知,这次抽样分析的样本是20名学生的身高;频率分布表中的数据a=1-0.15-0.10-0.25-0.20=0.30,故(1)和(2)正确;身高167cm(包括167cm)以上的男生人数应落在166.5~171.5和171.5~176.5段内,而该段有9人,故(3)正确.)7.D(解析:根据频数分布直方图易得数据75落在第2小组;第4小组的频数为6;全班共有25+20+9+6=60(人);则心跳为每分钟75次的人数占该班体检人.结合选项易得答案为D.)数的5÷60=1128.D9.C(解析:∵点P(m+3,-2m)到坐标轴的距离相等,∴m+3=-2m或m+3=-(-2m),解得m=-1或m=3.)10.D(解析:A.以A为原点,河岸为x轴,建立直角坐标系,确定B点的坐标,即B 的位置,故A正确;B.以A为原点,河岸为y轴,建立直角坐标系,确定B点的坐标,即B的位置,故B正确;C.以AB间的距离和B在A的北偏东若干度的方向角确定点B的位置,故C正确;D.以B为原点,平行于河岸的直线为x轴,建立直角坐标系,确定点A的位置,故D错误.)11.A(解析:设D点的坐标为(x,y),已知四边形为正方形,四条边相等,且易知|AB|=4,AB∥CD,∴C,D两点的纵坐标相等,∴y=-3,又∵AD∥BC,∴A,D两点的横坐标相等,∴x=-3,∴D点的坐标为(-3,-3).)12.B(解析:根据平面直角坐标系中对称点的规律可知,点M(-2,0)关于y轴的对称点N的坐标是(2,0).)13.A(解析:由B点平移前后的纵坐标分别为1,2,可得B点向上平移了1个单位长度,由A点平移前后的横坐标分别是为2,3,可得A点向右平移了1个单位长度,由此得线段AB的平移过程是:向上平移1个单位长度,再向右平移1个单位长度,所以点A,B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.)14.C(解析:根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应,据此即可确定函数的个数.)15.A(解析:根据题意得:x-3≥0,5+x≠0,解得x≥3.)16.B(解析:当x=-1时,y=x2+1=(-1)2+1=1+1=2.)17.锥形瓶(解析:由图(2)可知图像分两个部分OP段和PQ段,OP段时间较长,高度变化很慢,PQ段时间段,高度变化快,所以量杯和量筒不合题意,由OP段的时间明显远大于PQ段的时间,故容器必是下面的体积远大于上面的,所以容器为锥形瓶.)18.①②④(解析:由图像的坐标可以看出,小明前10分钟走的路程较少,故③错误;故答案为①②④.)19.y=-15x2+80x+10000(解析:∵每间包房的价格是在100元的基础上增加的,∴收费提高x元后,每间包房的收入为(100+x)元,∵每提高50元,包房少租出10间,∴可租出100-x50×10间,故y与x的关系式为y=(100+x)100-x50×10=-15x2+80x+10000.)20.解:(1)y=-0.6x+48. (2)当x=35时,y=48-0.6×35=27(升),∴这辆汽车行驶35千米时,剩油27升.当y=12时,48-0.6x=12,解得x=60.∴汽车剩油12升时,这辆汽车行驶了60千米. (3)令y=0,则0=-0.6x+48,解得x=80(千米).故这辆汽车在中途不加油的情况下最远能行驶80千米.21.解:(1)如图所示. (2)由图像可得出:当0≤x≤5时,每吨0.72元,当x>5时,超出部分每吨0.9元.22.解:(1)填表如下:分组频数频率0.5~50.5 10 0.150.5~100.5 20 0.2100.5~150.5 25 0.25150.5~200.5 30 0.3200.5~250.5 10 0.1250.5~300.5 5 0.05合计100 1(2)长方形ABCD的面积为0.25,样本容量是100. (3)(0.3+0.1+0.05)×1000=0.45×1000=450(人).23.解:(1)一年中各个季度的收入如下:第一季度:1000+1200+1600=3800(元),第二季度:3000+4200+6000=13200(元),第三季度:27000+30000+20000=77000(元),第四季度:9000+2000+1000=12000(元),用条形统计图表示如图(1)所示. (2)一年中各季度在全年收入中的百分比计算如下:全年收入是3800+13200+77000+12000=106000(元).第一季度占:3800÷106000≈3.6%,第二季度占:13200÷106000≈12.5%,第三季度占:77000÷106000≈72.6%,第四季度占:12000÷106000≈11.3%,用扇形统计图表示如图(2)所示.(3)一年中各个季度收入的变化情况如图(3)所示.从图中可知,第一、二季度逐月上升,第三季度收入最高,第四季度则逐月降低. (4)从图上可以看出,第三季度收入最多,第一季度收入最少,在安排工作时要注意季节性安排.24.解:(1)A(-4,0),B(0,-4),C(4,0),D(0,4).(2)A(0,0),B(4,-4),C(8,0),D(4,4). (3)各个点的坐标都向右平移了4个单位长度.25.解:(1)∵M,N关于x轴对称,∴2a-b=2b-1,5+a-a+b=0,解得a=-8,b=-5.(2)∵M,N关于y轴对称,∴2a-b+2b-1=0,5+a=-a+b,解得a=-1,b=3.∴(b+2a)2017=1.26.解:(1)由图像可以看出:小王先离开家,5分钟后小李离开家. (2)小王用时10分钟先到书店,在书店停留5分钟后,离开书店前往小李家用时10分钟;小李用时5分钟到书店,和小王一块在书店停留5分钟后,离开书店回到家,用时10分钟.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017-2018学年河北省石家庄市新华区八年级(下)期中数学试
卷
一、选择题(本大题共12小题,每小题2分,共24分)
1.(2分)下列调查中,最适合采用抽样调查的是()
A.对某地区现有的16名百岁以上老人睡眠时间的调查
B.对“神舟十一号”运载火箭发射前零部件质量情况的调查
C.对某校九年级三班学生视力情况的调查
D.对某市场上某一品牌电脑使用寿命的调查
2.(2分)在平面直角坐标系中,点A,点B关于y轴对称,点A的坐标是(2,﹣8),则点B的坐标是()
A.(﹣2,﹣8)B.(2,8)C.(﹣2,8)D.(8,2)3.(2分)在平面直角坐标系中,边长为2的等边△OAB的位置如图所示,则点B的坐标为()
A.(1,1)B.(1,)C.(,1)D.(,)4.(2分)空气是混合物,为直观介绍空气各成分的百分比,最适合用的统计图是()
A.折线图B.条形图C.直方图D.扇形图5.(2分)如图,甲、乙二人同时从A地出发,甲沿北偏东50°方向行走200m 后到达B地,并立即向正东方向走去,乙沿北偏东70°方向行走,二人恰好在C地相遇,则B、C两地的距离为()
A.100m B.150m C.200m D.无法确定6.(2分)在下列图象中,不能表示y是x的函数是()
A.B.
C.D.
7.(2分)为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,发现只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()
A.1250条B.1750条C.2500条D.5000条8.(2分)小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是()
A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)9.(2分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
A.B.
C.D.
10.(2分)如图,是根据某市2010年至2014年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中信息判断错误的是()
A.2010年至2014年间工业生产总值逐年增加
B.2014年的工业生产总值比前一年增加了40亿元
C.2012年与2013年每一年与前一年比,其增长额相同
D.从2011年至2014年,每一年与前一年比,2014年的增长率最大11.(2分)在一次“寻宝”人找到了如图所示的两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离都是,则“宝藏”点的坐标是()
A.(1,0)B.(5,4)
C.(1,0)或(5,4)D.(0,1)或(4,5)
12.(2分)小苏和小林在如图1所示的跑道上进行4×50米折返跑.在整个过程中,跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前15s跑过的路程大于小林前15s跑过的路程
D.小林在跑最后100m的过程中,与小苏相遇2次
二、填空题(本小题共6小题,每小题3分,共18分)
13.(3分)在平面直角坐标系中,把点A(2,3)向左平移一个单位得到点A′,则点A′的坐标为.
14.(3分)在函数y=中,自变量x的取值范围是
15.(3分)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.
16.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半
径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是.
17.(3分)记录某足球队全年比赛结果(“胜”、“负”、“平”)的条形统计图和扇形统计图(不完整)如下:
根据图中信息,该足球队全年比赛胜了场.
18.(3分)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是.
三、解答题(本题共4个小题,每小题6分,共24分)
19.(6分)如图,在平面直角坐标系中,△ABC位于第二象限,请你按要求在该坐标系中在图中作出:
(1)把△ABC向右平移4个单位长度得到的△A1B1C1;
(2)再作与△A1B1C1关于x轴对称的△A2B2C2.
20.(6分)某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:
体重频数分布表
(1)填空:①m=(直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于度;
(2)如果该校九年级有1000名学生,请估算九年级体重低于60千克的学生大约有多少人?
21.(6分)小明从家到图书馆看报,然后返回,他离家的距离y与离家的时间x 之间的对应关系如图所示,如果小明在图书馆看报30分钟,试求:
(1)小明回家的速度.
(2)小明离家50分钟时离家的距离.
22.(6分)为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.
根据以上信息,回答下列问题:
(1)参与本次问卷调查的市民共有
人,其中选择B类的人数有人;
(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”
方式,请估计该市“绿色出行”方式的人数.
23.(8分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:
请根据图表信息回答下列问题:
(1)频数分布表中的a=,b=;
(2)将频数分布直方图补充完整;
(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?
24.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A (2,2),B(4,0),C(4,﹣4).
(1)将△ABC各顶点的横纵坐标都缩小为原来的得到△A1B1C1,请在图中画出△A1B1C1;
(2)求A1C1的长.
25.(9分)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B
地,乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才出发,在整个过程中,甲、乙两人的距离y(km)与甲出发的时间x(分)之间的关系如图所示.
(1)求甲、乙相遇时,乙所行驶的路程;
(2)当乙到达终点A时,甲还需多少分钟到达终点B?
26.(9分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.
设在同一家复印店一次复印文件的页数为x(x为非负整数).
(1)根据题意,填写下表:
(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;
(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.
2017-2018学年河北省石家庄市新华区八年级(下)期中
数学试卷
参考答案
一、选择题(本大题共12小题,每小题2分,共24分)
1.D;2.A;3.B;4.D;5.C;6.D;7.A;8.B;9.C;10.D;11.C;
12.D;
二、填空题(本小题共6小题,每小题3分,共18分)
13.(1,3);14.x≥2;15.680;16.a+b=0;17.27;18.12;
三、解答题(本题共4个小题,每小题6分,共24分)
19.;20.52;144;21.;22.800;240;23.25;0.10;24.;25.;26.1;3;
1.2;3.3;。