细胞凋亡信号通路详细
细胞凋亡的原理

细胞凋亡的原理
细胞凋亡是一种正常的细胞死亡过程,它在维持机体组织稳态和功能的平衡中起到重要作用。
细胞凋亡的原理涉及一系列复杂的信号传导机制。
细胞凋亡可以通过两种途径进行,即外源性或内源性途径。
在外源性途径中,细胞接受到外界环境的特定信号,如细胞因子、药物或细胞凋亡诱导信号,从而激活细胞凋亡途径。
而内源性途径则是由细胞内部的不适应因素或基因异常导致。
无论通过哪种途径,细胞凋亡一般包括两个主要的信号通路,即凋亡启动信号通路和凋亡执行信号通路。
在凋亡启动信号通路中,一些关键调节因子如凋亡诱导信号、受体激活和受体聚集等,会导致关键蛋白酶半活化,从而进一步激活凋亡执行信号通路。
凋亡执行信号通路是细胞凋亡的关键过程。
在这个通路中,蛋白酶家族主要包括半活化的半胱天冬酶样蛋白酶(caspase)
在内的一些酶类分子被激活,最终导致细胞核DNA和细胞膜
破坏,细胞发生明显的核浸润、胞质凝固和细胞外囊泡形成,最终细胞被分解为小颗粒,并很快被巨噬细胞摄取,防止了炎症反应的引发。
细胞凋亡的调控是一个复杂的过程,受到众多因素的影响。
一些调节因子如Bcl-2家族蛋白、p53蛋白和中性凋亡特异性酶-
1(ICE-1等)等,对细胞凋亡的调控起到至关重要的作用。
通过细胞凋亡的精确调控,机体可以保持组织的相对平衡,能
够清除老化、受损或异常细胞,同时也能够对病原体和恶性细胞做出反应。
细胞凋亡的信号通路

山东农业大学学报(自然科学版),2015,46(4):514-518VOL.46N0.42015 Journal of Shandong Agricultural University(Natural Science Edition)doi:10.3969/j.issn.1000-2324.2015.04.007细胞凋亡的信号通路谢昆,李兴权红河学院生命科学与技术学院,云南蒙自661199摘要:细胞凋亡是细胞程序性死亡的一种方式,与自噬和坏死有明显的区别。
细胞凋亡的信号途径比较复杂,在凋亡诱导因子的刺激下经历不同的信号途径。
本文就细胞凋亡的三条信号通路——线粒体途径、内质网途径和死亡受体途径做一综述,以便为人们进一步了解细胞凋亡发生的机制,从而对癌症及其他一些相关疾病的治疗奠定基础。
关键词:细胞凋亡;信号通路;线粒体途径;内质网途径;死亡受体途径中图法分类号:R329.2+8文献标识码:A文章编号:1000-2324(2015)04-0514-05The Signal Pathway of ApoptosisXIE Kun,LI Xing-quanDepartment of Life Science and Technology/Honghe University,Mengzi661199,ChinaAbstract:Apoptosis is a process of programmed cell death which distinguishes from autophagy and necrosis.The signal pathways of apoptosis are complex and different under apoptosis induced factor stimulating.Three kinds of signal pathways of apoptosis including Mitochondrial pathway,Endoplasmic Reticulum pathway and Death Receptor pathway were summarized in this review in order to make people further comprehend the mechanism of apoptosis,so that it should make a basis for us all to treat cancer and other related diseases.Keywords:Apoptosis;signal pathway;Mitochondrial pathway;Endoplasmic Reticulum pathway;Death Receptor pathway细胞凋亡是细胞程序性死亡(Program cell death,PCD)中特有的一种细胞死亡方式,是细胞在一系列内源性基因调控下发生的自然或生理性死亡过程。
erk信号通路

ERK信号通路简介ERK(Extracellular signal-Regulated Kinase)信号通路是细胞内的一条重要信号传导通路,它参与了多种细胞的生物学过程,包括细胞增殖、分化、存活和凋亡等。
ERK信号通路的激活通过磷酸化级联反应来实现,从外界的信号转导到细胞核内,进而调控基因表达。
本文将详细介绍ERK信号通路的组成、激活机制以及参与的功能。
组成ERK信号通路主要由以下几个组分组成:1.细胞外信号分子:包括细胞外信号分子生长因子(EGF)等,这些分子能够结合细胞表面的受体激活信号通路。
2.受体激活:细胞外信号分子结合细胞表面的受体,激活受体的酪氨酸激酶活性,从而引发信号传导过程。
3.Ras蛋白:受体激活后,Ras蛋白(一种小的GTP酶)被激活,变为Ras-GTP形式,进而激活下游的激酶级联反应。
4.Raf激酶:Ras-GTP能够激活Raf激酶,使其活化,从而引发下游信号传导。
5.MEK激酶:Raf激酶通过磷酸化活化MEK激酶,进一步传递信号。
6.ERK激酶:MEK激酶通过磷酸化活化ERK激酶,ERK激酶被激活后进入细胞核,调控基因表达。
激活机制ERK信号通路的激活是通过一系列磷酸化级联反应来实现的。
下面是ERK信号通路的激活机制:1.信号分子结合受体:细胞外的信号分子(如EGF)能够结合细胞表面的受体,激活受体的酪氨酸激酶活性。
2.Ras的活化:受体激活后,Ras蛋白被激活,变为Ras-GTP形式,并释放关联的GDP,从而激活下游信号传导。
3.Raf的激活:Ras-GTP能够激活Raf激酶,使其活化。
4.MEK的激活:Raf激酶通过磷酸化活化MEK激酶,传递信号。
5.ERK的激活:MEK激酶通过磷酸化活化ERK激酶,进一步传递信号。
6.ERK进入细胞核:激活的ERK激酶可以进入细胞核,调控基因表达,进而影响细胞的生物学过程。
功能ERK信号通路的激活与多种细胞的生物学过程密切相关。
以下是ERK信号通路参与的一些功能:1.细胞增殖:ERK信号通路的激活能够促进细胞的增殖过程。
细胞凋亡,细胞焦亡与细胞坏死的区别

细胞凋亡,细胞焦亡与细胞坏死的区别细胞凋亡,细胞焦亡与细胞坏死是三种常见的细胞死亡方式,它们的区别如下:
1. 细胞凋亡 (Apoptosis)
细胞凋亡是一种有序的细胞死亡方式,通常是在细胞内信号通路的调控下进行的。
细胞凋亡的发生通常是为了清除受损或异常的细胞,或者是在细胞代谢过程中维持细胞体积和表面积的平衡。
细胞凋亡通常具有以下特征:
- 细胞质浓缩,细胞器减少
- 染色体致密聚集,DNA 断裂
- 细胞膜通透性增加,细胞器排出
- 细胞凋亡信号通路激活,AP-1,NF-κB 等信号通路参与
2. 细胞焦亡 (Pyroptosis)
细胞焦亡是一种非有序的细胞死亡方式,通常是在高温、化学物质或病毒攻击等因素下发生的。
细胞焦亡的发生会导致细胞内部的炎症反应,从而激发周围的细胞进行炎症反应。
细胞焦亡通常具有以下特征:
- 细胞质肿胀,细胞器溶解
- 染色体断裂,DNA 降解
- 细胞膜通透性增加,细胞器排出
- 细胞内炎症因子释放,NF-κB 等信号通路参与
3. 细胞坏死 (necrosis)
细胞坏死是一种无序的细胞死亡方式,通常是由于细胞内部炎症反应或外部因素 (如高温、强酸等) 引起的。
细胞坏死的发生会导致细胞膜和细胞器的
破裂,细胞内容物流出,从而刺激周围的细胞和组织发生炎症反应。
细胞坏死通常具有以下特征:
- 细胞质破裂,细胞器溶解
- 染色体松散,DNA 降解
- 细胞膜通透性增加,细胞器排出
- 细胞坏死信号通路激活,NF-κB 等信号通路参与
总的来说,细胞凋亡和细胞焦亡通常是在细胞代谢和细胞保护等方面进行调节的,而细胞坏死通常是由于细胞内部炎症反应引起的。
介导细胞凋亡信号通路

2、在细胞存活状态下,Bax 以BH3 结构域 与Bcl-2 及Bcl2xl 的BH3 结构域形成异质 二聚体。当细胞内Bax 类型的BH3 结构域 增多时, 或注入单纯的Bax BH3 结构域,或 Bid、Bak、Bad 等表达增多,都能使Bax 从异二聚体中解离出来,从胞浆转位至线粒 体外膜上,引起促凋亡因子( cyto c )释放。
介导细胞凋亡信号通路
细胞凋亡的生化改变
• DNA的片段 化断裂
• 蛋白质的降解
典型凋亡细胞D介N导A细琼胞凋脂亡信糖号通凝路 胶电泳(呈现梯状条带)
三、细胞凋亡的过程及机制
• 接受凋亡信号
• 凋亡调控分子间的相互作用
• 蛋白水解酶(caspases)的活化
• 凋亡的级联反应
介导细胞凋亡信号通路
重点:介导细胞凋亡的信号通路机制
2、 Bax、Bak 能加速VDAC 开放, cyt c释放。介导细胞凋亡信号通路
线粒体外膜 通透性增高
胞质中出现Cyt C 与细胞浆中成分作用
激活caspases
诱导细胞凋亡的发生 如染色质浓缩和核碎裂
介导细胞凋亡信号通路
细胞凋亡的两条通介导路细胞:凋亡膜信号受通路体通路、线粒体通路
3. P53与细胞凋亡(肿瘤抑制基因)
状态细胞骨架蛋白受压→凋亡
介导细胞凋亡信号通路
介导细胞凋亡信号通路
一、死亡受体的信号途径
• 参与死亡受体信号转导的接头蛋白: (死亡结构 域蛋白death domain protein)
• TRADD:TNF受体相关死亡结构域蛋白 • TNF+TNFRI(死亡结构域)+ TRADD—细胞凋
亡
• FADD:Fas相关死亡结构域蛋白 • FasL+Fas (死亡结构域) +FADD —细胞凋亡 • RIP:受体相互作用蛋白 • CRADD:含有死亡结构域的caspase和RIP接头
细胞凋亡信号通路详细资料与总结

凋亡抑制剂
凋亡促进剂,与 BCL-2 和 BCL-XL 结合 线虫中的凋亡抑制剂,BCL-2 同源物 腺病毒凋亡抑制剂,与 Bax 和 Bak 结合
Bcl-2家族 引自Katja C. Zimmermann等2001
◆当 Caspase8 活化后,它一方面作用 Procaspase3,另一方面使Bid 裂解成 2 个片 段,其中含 BH3 结构域的 C-端片段被运送 到线粒体,与 Bcl-2/Bax 的 BH3 结构域形成 复合物,导致Cyt c释放。Cyt c 与胞质中 Ced4 同源物 Apaf-1(凋亡蛋白酶活化因子 apoptosis protease activating factor)结合并活 Apaf-1,活化的 Apaf-1 再活化Procaspase9, 最后引起细胞凋亡。
解 DNA。 –CAD 为caspase-activated Dnase(脱氧核苷酸酶),存在于胞质中。
细胞色素释 放引起的凋 亡(线粒体 凋亡通路)
死亡受体凋亡通路
fas 又称作 APO-1, TNFR( 肿瘤坏死因子受体)和 NGF 受体家族。 1993 年人白细胞分型国际会议统一命名为 CD95。 Fas 蛋白(受体)与 Fas 配体组成 Fas 系统,二者的 结合导致靶细胞走向凋亡。
信号转导研究方法
• 免疫共沉淀 • 荧光共振能量转移(FRET) • 荧光漂白恢复 • 荧光相关光谱 • 免疫荧光显微技术 • 电镜显微技术
◆ bcl-2 蛋白,是膜的整合蛋白,主要存在于线粒体外膜、核膜及部分内质 网中。
◆ Bcl-2家族成员都含有1-4个Bcl-2同源结构域(BH1-4),并且通常羧基末 端有一穿膜的结构域 (transmembrane region,TM)。其中BH4是抗凋亡蛋 白所特有的结构域,BH3是与促进凋亡有关的结构域。
凋亡相关通路及抑制剂

Z-LEHD-FMK Z-YVAD-FMK
Z-WEHD-FMK
3. Bcl-2家族抑制剂:Bcl-2家族属于较大的蛋白家族,所有成员 至少包含4个bcl-2 同源结构域(BH,分别命名为BH1,BH2,BH3, BH4)之一,BH对凋亡功能的发挥意义重大。依据BH结构域组成的 差异,其中有的成员是抗凋亡因子如Bcl-2,Bcl-xl和Mcl 1,而有 的成员是促凋亡因子如Bax,Bak和Bok,后者又可以细分为只含BH3 的促凋亡蛋白(如Bid,Noxa,Puma和Bad)以及同时包含BH1~3的 多结构域蛋白(如Bax和Bak)。绝大多数Bcl-2家族成员含有C端跨 膜结构域,该结构域能促使蛋白与线粒体外膜或其他胞外膜结合从 而发挥各自功能。Bcl-2基因与多种不同肿瘤的发展和治疗抵抗性 密切相关。
• (见图1 细胞凋亡信号通路)
死亡受体通路
• 胞外的死亡信号可通过死亡受体转入胞内。死亡受体为一类跨膜 蛋白, 属肿瘤坏死因子受体(NFR)基因超家族。其胞外部分都含 有一富含半胱氨酸的区域, 胞质区有一由同源氨基酸残基构成的 结构,有蛋白水解功能, 称“死亡区域”( death domain)。“死 亡区域” 使死亡信号得以 进一步传递而启动凋亡。已知的死亡 受体有五种, TNFR-1 (又称 CD120a 或 p55) , Fas( CD95 或 Apo1) , DR3 (死亡受体3,又称 Apo3, WSL-1, TRAMP, LARD) , DR4 和 DR5( Apo2,TRAIL-R2, TRICK2, KILLER)。前三种受体相 应的配体分别为 TNF, FasL(CD95L),Apo3L(DR3L),后两种均为 Apo2L(TRAIL)。
ABT-263
Obatoclax (GX15-070)
细胞凋亡途径中氧化应激信号通路的调控机制探究

细胞凋亡途径中氧化应激信号通路的调控机制探究细胞凋亡是一种自我消亡的细胞死亡方式,通常发生在受到损伤或者发育过程中需要消除的细胞中。
细胞凋亡途径通常包括内源性途径和外源性途径。
其中,氧化应激信号通路在细胞凋亡途径中起着重要的调控作用。
氧化应激是指细胞内外环境中出现的“氧化压力”,这种压力可以引起DNA和蛋白质的氧化性损伤,并且导致细胞凋亡。
氧化应激主要由氧自由基和其他存在反应性物质引起。
氧自由基是指具有单个未配对电子的氧分子,这些氧分子具有极强的氧化性,可以氧化DNA和蛋白质,从而引起细胞死亡。
而其他存在反应性物质比如过氧化氢、一氧化氮等,同样也具有氧化作用。
因此,细胞必须调节氧化应激信号通路,以保持细胞生命。
细胞通过一系列信号途径来调控氧化应激信号通路。
其中,一氧化氮信号通路、氧化还原途径、抗氧化酶信号通路等都在细胞中发挥了关键作用。
例如,一氧化氮信号通路中的NOS酶可以催化一氧化氮的产生,进而引起细胞的调控响应。
而氧化还原途径中的谷胱甘肽还原酶则具有还原氧化性物质的作用。
抗氧化酶信号通路则包括超氧化物歧化酶、过氧化氢酶等,这些酶对抗氧化应激信号具有极强的活性。
细胞调控氧化应激信号通路的机制并不完全清楚,但已有一些研究表明,细胞死亡中的关键蛋白质,比如半胱氨酸蛋白酶、谷胱甘肽硫转移酶等,也可以在细胞中发挥重要作用。
此外,一些细胞凋亡诱导因子,例如TNF-α、FASL等,也可以在细胞中调控氧化应激信号通路。
总的来说,氧化应激在细胞凋亡途径中起着重要的调控作用,并且细胞通过一系列的信号途径来调节氧化应激信号通路。
但是细胞调节氧化应激信号通路的具体机制还需要进一步的研究。
细胞凋亡 流式

细胞凋亡流式导言细胞凋亡(Apoptosis)是细胞程序性死亡的一种形式,被认为是生命发展中非常重要的一环。
细胞凋亡通过一系列精确的信号传导和分子机制来调控,以保持细胞内外环境的平衡。
流式细胞术(Flow cytometry)是一种高效的技术手段,可以用于检测和分析细胞凋亡。
细胞凋亡的定义与特征细胞凋亡是一种高度保守的细胞死亡方式,与其他形式的细胞死亡如坏死和自噬有明显的区别。
细胞凋亡的特征包括细胞体积减小、细胞核形态变化、染色体DNA切割以及胞外囊泡的形成等。
细胞体积减小细胞凋亡过程中,细胞体积逐渐减小是一个显著特征。
通常细胞凋亡前期,细胞体积较正常时期减小约20%至30%。
细胞核形态变化在细胞凋亡过程中,细胞核也经历一系列形态上的变化。
最早期细胞凋亡的特征之一是染色质浓缩沉积,出现核固缩现象,此时核仁消失。
后期细胞凋亡的特点是细胞核膨胀,染色质进一步凝缩,核质交界明显。
DNA切割和胞外囊泡的形成细胞凋亡进程中,细胞核DNA会出现明显的切割现象,形成特定的DNA片段。
这一片段长度通常为200bp的倍数,紧接着凋亡细胞进行DNA的固缩和包裹形成胞外囊泡。
细胞凋亡的信号传导机制细胞凋亡的调控包括许多信号传导分子和途径的参与,其中最关键是细胞凋亡信号通路的激活和效应基因的表达调控。
以下是细胞凋亡信号传导机制的一些重要组分。
细胞凋亡信号通路细胞凋亡信号通路主要包括内源性和外源性两类通路。
内源性通路通过一系列激活因子(如细胞因子、激素)调控细胞凋亡。
外源性通路主要是通过细胞外因素(如放射线、化学药物)诱导细胞凋亡。
Bcl-2家族蛋白Bcl-2家族蛋白是细胞凋亡过程中的一类重要调控因子。
Bcl-2家族蛋白包括抑制性成员和促进性成员,通过调节线粒体膜电位和细胞色素c释放等机制参与细胞凋亡。
单独凋亡信号通路除了Bcl-2家族蛋白,细胞凋亡信号通路中还有许多其他独立的分子机制参与调控。
例如,肿瘤坏死因子受体(TNFR)信号通路和热休克蛋白(HSP)信号通路等。
细胞凋亡的相关信号通路解析

细胞凋亡的相关信号通路解析细胞凋亡是机体内部细胞自我调节的一种重要机制,它参与了多种生理、病理过程的调节。
细胞凋亡现象的产生,往往与一系列的信号通路密切相关。
下面,我们将对与细胞凋亡相关的信号通路进行深入的解析。
1.肿瘤坏死因子(TNF)信号通路TNF是一种对于多种细胞类型具有强调节作用的细胞因子。
它通过结合细胞膜上的TNF受体,使得肌动蛋白的聚合及伸长促使其内部的死亡域与FADD(死亡受体结构域)结合,进而形成死亡信号复合物I,引发细胞的凋亡。
2.过氧化物酶体增生物(Peroxidase proliferator-activated receptor)信号通路PPARs是一种滋养素受体类似的受体、核黄素质激活因子,是一类与脂肪代谢密切相关的核转录因子。
研究表明,在细胞凋亡过程中,PPARs通路被激活,通过调控多种细胞信号通路,如抑制ABCA1和S1P的表达等,从而促使细胞发生凋亡。
3.磷脂酸信号转导通路磷脂酸信号转导通路包括红细胞Xe-63磷酸酰肌醇3激酶(PI3K)、蛋白激酶B(AKT)等信号分子,能够介导细胞的增殖、存活、分化及凋亡。
在细胞凋亡过程中,PI3K/AKT通路可能会被抑制或者受损,从而加速细胞的凋亡。
4.线粒体途径线粒体途径是细胞凋亡的常见途径。
在细胞凋亡过程中,半胱氨酸蛋氨酸酰化酶(Caspase)能够调控线粒体的膜电位和导致损伤,从而导致线粒体的释放,释放出的线粒体产生信号分子,如细胞色素c、APOPT1等,进而启动细胞凋亡的程序。
5.特异性脂肪肝X受体(FXR)信号通路FXR是一种与肝脏疾病相关的核受体,研究表明,FXR信号通路与细胞凋亡密切相关。
FXR同样可以促进细胞凋亡,同时也可以在细胞死亡后通过TGFB信号通路来调控细胞的再生。
在总结上述的信号通路之后,我们可以发现,这些信号通路都是通过调控多种细胞分子,如结构蛋白、酶和膜蛋白的功能来达到调控细胞凋亡的目的的。
同时,这些不同的信号通路之间也有很多相互作用,相互影响的关系。
细胞凋亡及信号通路详解(收藏)

内质网主导的细胞凋亡1.细胞凋亡的概念2.细胞凋亡的分类2.1细胞凋亡的内部线粒体途径2.2细胞凋亡的内部内质网途径2.3细胞凋亡的外部死亡受体途径1.细胞凋亡的概念细胞凋亡是指机体在生理或病理条件下,为了维持自身内环境的稳态,通过基因调控使细胞产生主动、有序的死亡;同时伴随着一系列形态和生化方面的变化,包括核固缩、DNA片段化、细胞膜重塑和起泡、细胞皱缩、形成凋亡小体等,最后凋亡的细胞被巨噬细胞吞噬而消亡。
细胞凋亡是细胞为了更好地适应其内外环境而引发的死亡过程,它是一种正常的细胞死亡,涉及一系列基因的激活、表达及调控等。
在细胞凋亡整个过程中,质膜保持完整,细胞无内容物外溢,不引起炎症反应。
2.细胞凋亡的分类凋亡发生的途径分为内源性线粒体途径、内源性内质网途径、外源性死亡受体途径;或者某些条件下的granzyme B介导的凋亡过程。
2.1 细胞凋亡的内部线粒体途径细胞凋亡的内部线粒体途径:当细胞受到内部凋亡刺激因子作用,如癌基因的活化DNA损伤、细胞缺氧、细胞生长因子缺失等,可激活细胞内部线粒体凋亡途径,引起细胞凋亡;内部线粒体凋亡途径也可以被死亡配体所激活。
在该途径中,Bcl-2家族蛋白通过调节膜电位从而控制线粒体外膜通透性。
2.1.1Bcl-2家族Bcl-2家族蛋白是控制线粒体相关的凋亡因子释放的主要调节因子。
根据它们在细胞凋亡中的作用可分为两类:促凋亡蛋白和抗凋亡蛋白,其中促凋亡蛋白还可以分为具有BH1-3结构域的蛋白和只具有BH3结构域的蛋白。
促凋亡蛋白成员中的Bak以及抗凋亡蛋白成员如Bcl-2,Bcl-xL等主要存在于线粒体膜上;其他成员如Bid、Bad主要存在于胞质中。
Bax一般存在于胞质中,当接收到凋亡信号时,Bax重新定位于线粒体表面,在线粒体表面构成跨线粒体膜的孔,导致膜电位降低,膜通透性增加,从而释放凋亡因子。
目前关于Bax、Bak的激活方式,存在两种假说:直接激活模式和间接激活模式。
细胞凋亡通路中的信号转导组分分析

细胞凋亡通路中的信号转导组分分析细胞凋亡被认为是一种精密的调节过程,它是由一系列细胞信号转导分子的相互作用来实现的。
这些信号转导分子作为细胞内部信号分子的重要组成部分,在细胞凋亡中发挥着关键作用。
因此,对细胞凋亡通路中信号转导组分的研究具有重要的理论和实践意义。
目前,细胞凋亡通路中主要的信号转导组分包括细胞凋亡受体(Caspases)、Bcl-2 家族、信号转导与激酶(MAPK)家族和 Akt 等信号转导分子。
这些信号转导组分之间的正负调控关系,对于细胞凋亡的调控起着至关重要的作用。
下面我们来介绍一下这些信号转导分子。
一、细胞凋亡受体(Caspases)Caspases 是细胞凋亡过程中最重要的信号转导分子之一,它们是一类专门参与细胞自我死亡的蛋白酶。
Caspases 通常分为活化性 Caspases 和执行性 Caspases 两类。
它们之间存在着关键的激活关系。
活化性 Caspases 相互作用后即可激活执行性 Caspases,从而促进细胞死亡的实现。
这种敏感的相互作用关系,使得 Caspases 在细胞凋亡过程中扮演着非常关键的角色。
二、Bcl-2 家族Bcl-2 家族也是一个非常重要的信号转导组分,它们在调控细胞凋亡时发挥着重要作用。
Bcl-2 家族可分为两类:抗凋亡蛋白和促凋亡蛋白。
其中,Bcl-2、Bcl-xl 等抗凋亡蛋白具有抑制细胞凋亡的作用,而 Bad、Bid、Bax、Bak 等促凋亡蛋白则可激活 Caspases,引导细胞开始凋亡过程。
因此,Bcl-2 家族在细胞凋亡调控过程中发挥着重要的作用。
三、MAPK 家族MAPK 家族属于一类重要的信号转导分子,其中包括 ERK、JNK 和 p38 等三个重要的成员。
在细胞凋亡过程中,这些 MAPK 家族成员通过调节 Caspases 和Bcl-2 家族等信号转导分子的表达和活性,来完成对细胞凋亡的调控。
例如,JNK 可通过连续激活 Bim 和 Bak 从而促进细胞死亡。
细胞凋亡(Apoptosis)信号通路

细胞凋亡(Apoptosis)是生物界广泛存在的一种基本生命现象,如同细胞生长、发育、增殖一样,起着十分重要的作用。
目前认为,诱导凋亡的细胞外刺激必须通过细胞内一系列信号传递,造成DNA选择性的在核小体之间断裂是其重要标志之一。
该名词在20世纪70年代被首次提出,指的是在生理或某些病理条件下由基因控制的一种单个细胞温和死亡形式。
多细胞生物在发生、发展过程中,为了保持正常的生理机能,一部分的细胞发生自发性细胞死亡,这种细胞死亡是被细胞内一系列相关的分子所调控,并伴随有典型的形态学改变,这种现象被称为细胞凋亡。
细胞凋亡是指细胞在一定的生理或病理条件下,受内在遗传机制的控制自动结束生命的过程。
而细胞程序性死亡(programmed cell death,PCD)是指生物在发育过程中对一定生理刺激的反应性死亡,它需要一定基因表达。
凋亡是对细胞死亡过程中一系列固定模式的形态变化的描述,而PCD则是侧重功能上的概念。
两者有差异,但常混为一谈。
细胞凋亡(Apptosis)或程序化细胞死亡(programmed cell death,PCD),是多细胞有机体为调控机体发育,维护内环境稳定Pb基因控制的细胞主动死亡过程。
目前,细胞自发退化死亡现象有种种命名。
较为常用的是程序化细胞死亡(Pr08Nmmed celld6ath,PcD),最初用于胚胎发育方面。
胚胎分化过程中特定部位的细胞自发退化死亡是由于该部位的细胞内基因按一定程序表达的结果,又称基因指令性细胞死亡、生理性细胞死、自然发生细胞死亡、细胞舍生、凋亡或细胞凋亡等。
细胞凋亡是以细胞核浓缩、染色体DNA被以核小体为单位切成梯状片段(ladder)、细胞缩小,最终形成细胞凋亡小体等形态变化为特征。
不引起周围细胞的溶解。
细胞凋亡是在细胞群中散发,阶段性进行,并且依存于ATP的供给和RNA、蛋白质的合成,是主动排除机制。
不仅在个体发育时和卵细胞退缩等生理状态下可观察到,而且在自身免疫性疾病、神经变质性疾病、缺血性疾病等很多疾病及病理状态下也可观察到。
信号通路1-—-Apoptosis

信号通路1-—-Apoptosis信号通路1 —ApoptosisApoptosis凋亡的启动由激活机制紧密调节,因为⼀旦凋亡开始,其不可避免地导致细胞死亡。
⽐较清楚的两个激活机制分别是内源性途径(也称为线粒体途径)和外源性途径。
⼀、内源性途径:线粒体是多细胞⽣命所必需的。
没有他们,细胞停⽌有氧呼吸,迅速死亡。
线粒体蛋⽩ SMACs (second mitochondria-derived activator of caspases) 随着线粒体膜渗透性的增加被释放到细胞质中,与抑制凋亡蛋⽩(IAPs,inhibitors of apoptosis proteins)结合,使IAPs失活,促进凋亡。
细胞⾊素c在线粒体凋亡诱导通道(MAC)形成后也从线粒体释放到线粒体外膜中,细胞⾊素c被释放后,与凋亡蛋⽩酶激活因⼦-1(Apaf-1)和ATP结合,然后ATP 结合pro-caspase-9产⽣⼀种蛋⽩质复合物,被称为凋亡体。
然后召集并激活caspase-3,进⽽引发caspases级联反应,导致细胞凋亡。
⼆、外源性途径:1. TNF pathTNF-α是主要由活化的巨噬细胞产⽣的细胞因⼦。
⼈体中的⼤多数细胞具有两种TNF-α受体:TNFR1和TNFR2。
TNF-α与TNFR1的结合通过中间膜蛋⽩TRADD(TNF receptor-associated death domain)和FADD(Fas-associated death domain protein)来活化caspase通路。
这些活化的caspase可将细胞内的重要蛋⽩降解,引起细胞凋亡。
TNFR1的信号传导也可能以不依赖caspase的⽅式诱导细胞凋亡。
2. Fas pathFas受体(也称为Apo-1或CD95)是结合Fas配体(FasL)的TNF家族的跨膜蛋⽩。
Fas和FasL相互作⽤导致死亡诱导信号转导复合物(DISC)的形成,其包含FADD,caspase-8和caspase-10。
细胞凋亡的原理及不同信号通路

细胞凋亡概念细胞凋亡(apoptosis)是指为维持内环境稳定,在一定的条件下,细胞遵循固细胞凋亡与细胞坏死不同,细胞凋亡不是一件被动的过程,而是主动过程,它涉及一系列基因的激活、表达以及调控等的作用;它并不是病理条件下,自体损伤的一种现象,而是为更好地适应生存环境而主动争取的一种死亡过程。
从形态学上看,细胞凋亡是一变化的过程。
首先细胞变圆,随即与周围细胞脱离;细胞失去微绒毛,胞浆浓缩,内质网扩张呈泡状并与细胞膜融合,核染色质密度增高,凝聚在核膜周边;然后核染色质断裂为大小不等的片段,与某些细胞器如线粒体聚集在一起,被反折的细胞膜包围。
从外观上看,细胞表面产生了许多泡状或芽状突起;接着这些突起逐渐分隔,形成单个的凋亡小体(apoptotic body);最后凋亡小体被邻近的正常细胞吞噬并消化。
细胞凋亡过程中有一些标志性的生物化学变化:细胞膜上的磷脂酰丝氨酸(PS)由膜内侧面翻到外侧面;胞质内蛋白酶活化,发生级联反应,同时有能量消耗、新基因转录或蛋白质合成等变化;细胞核内染色质DNA被核酸酶酶切成以核小体180~200bp为重复单位的片段,如果将从凋亡细胞中提取的DNA进行琼脂糖凝胶电泳,会形成梯状的DNA条带(DNA ladder)。
从细胞功能上看,细胞凋亡对多细胞生物体具有重要的意义。
一方面在生物发育过程中细胞凋亡可以清除没有功能的、不需要的、不正常的和有害的细胞,优化组织器官的结构和细胞数目,确保正常个体发育。
另一方面在生物体整个生命过程中,每天都会产生许多功能异常的细胞,如癌变细胞、衰老细胞、被微生物侵袭的细胞等。
细胞凋亡可以将这些细胞清除,并且由新诞生的功能正常的细胞替换。
因此,体内细胞的诞生和死亡处于动态平衡,从而维持机体组织器官中细胞数量稳定和功能正常。
细胞凋亡信号转导通路细胞凋亡的过程大致可分为以下几个阶段:接受凋亡信号→凋亡调控分子间的相互作用→蛋白水解酶的活化(Caspase)→进入连续反应过程。
八大类细胞信号通路

八大类细胞信号通路八大类细胞信号通路是指细胞内外因子通过特定的信号传递机制,调控细胞内各种生物学过程的一种细胞信号通路。
这八大类细胞信号通路包括:细胞外基质信号通路、离子通道信号通路、G蛋白偶联受体信号通路、酪氨酸激酶受体信号通路、细胞内钙信号通路、细胞周期调控通路、细胞凋亡信号通路和细胞核转录因子信号通路。
一、细胞外基质信号通路细胞外基质信号通路是指细胞外基质分子通过与细胞表面受体结合,激活细胞内信号传导分子,最终调控细胞增殖、迁移和分化等生物学过程的通路。
其中,整合素受体信号通路是最重要的一类细胞外基质信号通路,它通过整合素受体激活下游信号分子,参与细胞间相互作用和细胞与基质之间的相互作用。
二、离子通道信号通路离子通道信号通路是指离子通道蛋白介导的离子流动通过调节细胞膜电位和细胞内离子浓度,从而影响细胞的生理功能的通路。
钠通道信号通路、钾通道信号通路和钙离子通道信号通路是离子通道信号通路的三个主要类型。
其中,钠通道信号通路参与了神经传导、心肌收缩等生理过程,钾通道信号通路参与了细胞膜电位的调节,钙离子通道信号通路参与了细胞内钙离子浓度的调节。
三、G蛋白偶联受体信号通路G蛋白偶联受体信号通路是指G蛋白偶联受体激活下游信号分子,最终调控细胞内多种生物学过程的通路。
G蛋白偶联受体通常包括G蛋白偶联受体本身、G蛋白和效应器等组成。
这一信号通路参与了多种细胞功能的调节,如细胞分化、细胞增殖和细胞凋亡等。
四、酪氨酸激酶受体信号通路酪氨酸激酶受体信号通路是指酪氨酸激酶受体激活下游信号分子,最终调控细胞内多种生物学过程的通路。
酪氨酸激酶受体包括单个膜通道的酪氨酸激酶受体和多个膜通道的酪氨酸激酶受体两类。
这一信号通路参与了细胞的增殖、分化和凋亡等生物学过程。
五、细胞内钙信号通路细胞内钙信号通路是指细胞内钙离子浓度的变化通过调控钙结合蛋白和钙离子通道等组分,最终调控细胞内多种生物学过程的通路。
细胞内钙信号通路参与了细胞的分化、增殖、凋亡和细胞骨架的重组等生物学过程。
凋亡内在途径

凋亡内在途径
凋亡内在途径指的是生物体或细胞内部控制凋亡过程的机制。
凋亡(apoptosis)是一种程序性细胞死亡的过程,它对于生物
体的正常发育、组织形成和维持正常组织功能非常重要。
凋亡内在途径主要涉及一系列基因和信号通路的激活和调控。
凋亡内在途径主要包括以下几个步骤:
1. 信号识别和传导:凋亡诱导信号(如DNA损伤、细胞因子
的诱导等)被细胞表面的受体识别并传导到细胞内。
2. 细胞凋亡相关基因及激活:一些细胞凋亡相关基因(如p53、Bax等)在信号传导后被激活或表达上调。
这些基因的激活可
以导致细胞凋亡的发生。
3. 信号通路激活和调节:一系列的信号通路被激活和调节,如线粒体途径和穿孔通路等。
线粒体途径中,细胞内部的千万级别的粒状线粒体蛋白质释放到细胞质中,导致细胞凋亡。
穿孔通路中,膜上的蛋白被激活构成穿孔的复合物,导致细胞凋亡。
4. 凋亡的执行:凋亡执行蛋白酶(如半胱天冬酶家族)在上述激活和调节的基础上,开始凋亡执行阶段。
这个阶段的主要特征是细胞的核和细胞质结构的断裂和解体,形成凋亡小体。
凋亡内在途径具有高度的调控性、精确性和可逆性,能够帮助生物体调节细胞数量和组织结构。
凋亡的异常与多种疾病的发生和发展密切相关,包括肿瘤、心脏病、神经退行性疾病等。
因此,深入理解凋亡内在途径对于疾病的防治以及基因治疗等方面具有重要的意义。
介导细胞凋亡的信号通路讲解

即死亡促进因子。 3、释放氧自由基 4、线粒体膜渗透性改变,线粒体内高渗
状态细胞骨架蛋白受压→凋亡
一、死亡受体的信号途径
• 参与死亡受体信号转导的接头蛋白: (死亡结构 域蛋白death domain protein)
P53的产物主要存在于细胞核内,在依赖P53蛋 白的细胞凋亡中,P53基因是通过调节Bc1-2和 Bax基因的表达来影响细胞凋亡的。P53蛋白能 特异地抑制Bc1-2的表达,相反对Bax的表达则 有明显的促进作用。研究表明,P53蛋白是Bax 基因的直接的转录活化因子。在这些细胞中, P53蛋白的积累和活动引起了细胞凋亡。
空泡化
固缩
出芽
边集
凋亡时细胞的形态学改变 凋亡小体
2、生化特征: ⑴胞浆内Ca2+浓度升高。 ⑵DNA内切酶活性被激活升高,双链DNA在 核小体之间切断形成10~185bp为基数的有序 片段。
⑶Ⅱ型谷氨酰胺转移酶和需钙蛋白酶( Calpain)活性升高。
细胞凋亡的生化改变
DNA的片段 化断裂 蛋白质的降解
• MADD:活化MAP激酶的死亡结构域蛋白
细胞凋亡的膜受体通路
• FASL+FAS
+FADD
•
凋亡诱导复合物(DISC)
• 胞质中游离的caspase8聚集到这个复合物上
• 细胞有足够caspase8
细胞caspase8浓度不够
• 死亡受体活化,
•
细胞凋亡
•
切割Bid tBid从胞质到线粒体 CtyC 释放
4、活性氧(ROS)的生成增加、 Ca 2+内流增加也以促进Cyt C的释放 , 从而导致细胞损伤。
细胞信号通路大全

1 PPAR信号通路:过氧化物酶体增殖物激活受体( PPARs) 是与维甲酸、类固醇和甲状腺激素受体相关的配体激活转录因子超家族核激素受体成员。
它们作为脂肪传感器调节脂肪代谢酶的转录。
PPARs由PPARα、PPARβ和PPARγ 3种亚型组成。
PPARα主要在脂肪酸代谢水平高的组织,如:肝、棕色脂肪、心、肾和骨骼肌表达.他通过调控靶基因的表达而调节机体许多生理功能包括能量代谢、生长发育等.另外,他还通过调节脂质代谢的生物感受器而调节细胞生长、分化与凋亡。
PPARa同时也是一种磷酸化蛋白,他受多种磷酸化酶的调节包括丝裂原激活蛋白激酶( ERK—和p38.M APK) ,蛋白激酶A和C( PKA,PKC) ,AM PK和糖原合成酶一3( G SK3)等调控.调控PPARa生长信号的酶报道有M APK、PKA和G SK3.PPARβ广泛表达于各种组织,而PPAR γ主要局限表达在血和棕色脂肪,其他组织如骨骼肌和心肌有少量表达。
PPAR—γ在诸如炎症、动脉粥样硬化、胰岛素抵抗和糖代谢调节,以及肿瘤和肥胖等方面均有着举足轻重的作用,而其众多生物学效应则是通过启动或参与的复杂信号通路予以实现。
鉴于目前人们对PPAR—γ信号通路尚不甚清,PPARs通常是通过与9—cis维甲酸受体( RXR)结合实现其转录活性的.2 MAPK信号通路:mapk简介:丝裂原激活蛋白激酶(mitogen—activated protein kinase,MAPK)是广泛存在于动植物细胞中的一类丝氨酸/苏氨酸蛋白激酶。
作用主要是将细胞外刺激信号转导至细胞及其核内,并引起细胞的生物化学反应(增殖、分化、凋亡、应激等).MAPKs家族的亚族 :ERKs(extracellular signal regulated kinase):包括ERK1、ERK2。
生长因子、细胞因子或激素激活此通路,介导细胞增殖、分化. JNKs(c—Jun N-terminal kinase)包括JNK1、JNK2、JNK3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• Fas 具有三个富含半胱氨酸的胞外区 和 一 个 称 为 死 亡 结 构 域 ( Death domain,DD)的胞内区。
• Fas 的配体 FasL(Fas ligand)与 Fas 结合后, Fas 三聚化使胞内的 DD区构 fas 又称作 APO-1,属 TNF 肿瘤坏死因子受体和 象 改 受体家族。 变 , 然 后 与 接 头 蛋 白 FADD NGF ( Fas-associated death domain ) 的 1993 年人白细胞分型国际会议统一命名为 CD95。 DD 区结合,而后 FADD 的 N 端 DED 区 ( death effector domain ) 就能 与 Fas 蛋白(受体)与 Fas 配体组成 Fas 系统,二者 Caspase-8 (或 -10 )前体蛋白结合, 形 成 DISC (death-inducing signaling 的结合导致靶细胞走向凋亡。 complex ),引起caspase-8、10通过自 身剪激活,它们启动 caspase 的级联 反应,使 caspase-3 、 -6 、 -7 激活,这 几种Caspase可降解胞内结构蛋白和功 能蛋白,最终导致细胞凋亡。
2
4 4 2 2
2
4 4 2 2
9、植物生长发育的膜外调节信号转 导机制
10、细胞信号转导的研究方法
合 计
34
34
• • • • •
(1)Caspase蛋白 (2)线粒体凋亡通路 (3)死亡受体介导的凋亡通路 (4)p53蛋白 (5)Bcl-2家族蛋白
细胞凋亡的途径主要有两条
★一条是通过胞外信号激活细胞内的凋亡 酶caspase
末端有一穿膜的结构域 (transmembrane region,TM)。其中BH4是抗凋
亡蛋白所特有的结构域,BH3是与促进凋亡有关的结构域。 ◆根据功能和结构可将Bcl-2基因家族分为两类:
-----抗凋亡的(anti-apoptotic),如:Bcl-2、Bcl-xl、Bcl-w、Mcl-1;
caspase 超家族成员及其相应底物
名称及其别名 caspase-1(ICE) caspase-2(Nedd-2/ICH1) caspase-3(apopain/CPP32/Yama) caspase-4(Tx/ICH2/ICE rel-II) caspase-5(ICE rel-III/TY) caspase-6(Mch)
死亡受体凋亡通路
fas 又称作 APO-1, TNFR( 肿瘤坏死因子受体)和 NGF 受体家族。
1993 年人白细胞分型国际会议统一命名为 CD95。 Fas 蛋白(受体)与 Fas 配体组成 Fas 系统,二者
的结合导致靶细胞走向凋亡。
=TNF
★启动者(initiator):如 caspase-8、9,受到信号后,能通
过自剪接而激活,然后引起 caspase 级联反应,如 caspase-8 可 依次激活 caspase-3、6、7。
★执行者(executioner或effector):如caspase-3、6、7,它们
可直接降解胞内的结构蛋白和功能蛋白,引起凋亡,但不能通 过自催化或自剪接的方式激活;
p53
p53 是一种抑癌基因,其生物学功能是在G期监视 DNA的完整性。如有损伤,则抑制细胞增殖,直到 DNA修复完成。如果DNA不能被修复,则诱导其 调亡。
在依赖P53蛋白的细胞凋亡中,P53蛋白能特异地抑
制 Bcl-2 的表达,但对 Bax 的表达则有明显的促进
作用。在这些细胞中, P53蛋白的积累和活动引起
作业
1、阅读p53信号转导图,用文字表述 图中所有信息。 2、自行查找一幅信号转导图(打印 附在作业纸上),表述图中主要信 息。
信号转导研究方法
• 免疫共沉淀 • 荧光共振能量转移(FRET) • 荧光漂白恢复 • 荧光相关光谱 • 免疫荧光显微技术 • 电镜显微技术
Caspase 自身以非活化的 Procaspase存在,其激活依赖于其他的 Caspase 在它的天冬氨酸位点裂解活化或自身活化。 Caspase-8自剪切活化,激活 Caspase-3,Caspase-7成为凋亡的执行者。 Caspase-3 激活 Caspase-6。 Caspase 可降解结构蛋白、信号蛋白、转录调控蛋白、周期蛋白等等。 Caspase 还可降解CAD的调节蛋白,释放出CAD,CAD进入细胞核降 解 DNA。 –CAD 为caspase-activated Dnase(脱氧核苷酸酶),存在于胞质中。
-----促进凋亡的(pro-apoptotic),如:Bax、Bak、Bad、Bid、Bim,在 促凋亡蛋白中还有一类仅含BH3结构,如Bid、Bad、PUMA。
BCL-2家族成员
基因产物 BCL-2 BCL-x BCL-w Bax Bak MCL-1 Bad Ced-9 E1B19K 功 能 凋亡抑制剂,可和 Bax 及 Bak 结合 其 L 型抑制凋亡,S 型促进凋亡,与 Bax 及 Bak 结合 凋亡抑制剂 凋亡促进剂,可与 BCL-2,BCL-XL,EIB19K 结合
了细胞凋亡。
本章完
学习报告
• 以细胞凋亡通路为主要内容; • 内容不要求深度广度,只要说明某个问题/专题即 可;建议内容来源于科研文献。 • 学习笔记请标清楚日期、主题、关键词和参考文 献。 • 讲述自然精炼,能提出问题,也能回答问题; • 每人10min叙述+回答问题。 • 学习报告内容及提问与答问记录、学习笔记作为 成绩评分依据。
caspase-7(ICE-LAP3/Mch3/CMH-1)
底物 Pro-IL ; pro-caspase 3,7 PARP ; SREBP ; DFF ; DNA-PK
Lamin A ; keratin 18 PARP ; pro-caspase 6 ; DFF
caspase-8(FLICE/MACH/Mch5) caspase-9(ICE-LAP6/Mch6) caspase-10(Mch4/FLICE2) caspase-11(ICH3) PARP
Bcl-2 家族
◆Bcl-2 是 一 种 原 癌 基 因 , 名 称 来 源 于 B 细 胞 淋 巴 瘤 / 白 血 病 -2(B-cell lymphoma/Leukemia-2,bcl-2)。
◆ bcl-2 蛋白,是膜的整合蛋白,主要存在于线粒体外膜、核膜及部分内质
网中。 ◆ Bcl-2家族成员都含有 1-4个Bcl-2同源结构域(BH1-4),并且通常羧基
Procaspase3,另一方面使Bid 裂解成 2 个片
段,其中含 BH3 结构域的 C-端片段被运送
到线粒体,与 Bcl-2/Bax 的 BH3 结构域形成
复合物,导致Cyt c释放。Cyt c 与胞质中
Ced4 同源物 Apaf-1(凋亡蛋白酶活化因子
apoptosis protease activating factor)结合并 活Apaf-1,活化的 Apaf-1 再活化 Procaspase9,最后引起细胞凋亡。
细胞中还具有
caspase 的抑制因子,称为 IAPs(inhibitors of
apoptosis proteins),属于一个庞大的蛋白家族。它们能通过
BIR 结构域(baculovirus IAP repeats domain)与 caspase 结合,
抑制其活性,如XIAP。
Bcl-2家族,结合抑制。
凋亡促进剂,亦可作抑制剂,可与 BCL-2,BCL-X 和 E1B19K 结合
凋亡抑制剂 凋亡促进剂,与 BCL-2 和 BCL-XL 结合 线虫中的凋亡抑制剂,BCL-2 同源物 腺病毒凋亡抑制剂,与 Bax 和 Bak 结合
Bcl-2家族 引自Katja C. Zimmermann等2001
◆当 Caspase8 活化后,它一方面作用
★一条是通过线粒体释放凋亡酶激活因子
激活caspase
Caspase 家族与凋亡
1、Caspase家族 Caspase属于半胱氨酸蛋白酶,相当于线虫中的ced-3,这些蛋白酶是 引起细胞凋亡的关键酶,一旦被信号途径激活,能将细胞内的蛋白质降解, 使细胞不可逆的走向死亡。它们均有以下特点: ①酶活性依赖于半胱氨酸残基的亲核性; ②裂解靶蛋白位点是天冬氨酸残基后的肽键,所以命名为caspase ( Cysteine aspartic acid specific protease ),方便起见称之为凋亡酶; ③都是由两大、两小亚基组成的异四聚体,大、小亚基由同一基因编码, 前体被切割后产生两个活性亚基。
生物信号转导
细胞凋亡信号通路
2011.5
生 物 信 号 转 导 主 要 教 学 内 容
教学内容 1、生物信号转导概论
讲授 6
合 计 6
2、受体及跨膜信号转换
3、G蛋白耦联的信号传递通路 4、细胞内的信使物质――第二信使 5、蛋白激酶和蛋白磷酸酶
4
4 4 2
4
4 4 2
6、细胞周期调控信号途径
7、细胞凋亡信号通路 8、细胞信号转导与癌症