华东师大八年级数学上册期末复习综合试题(有答案)
华东师大版八年级数学上册期末考试(带答案)
华东师大版八年级数学上册期末考试(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形7.下列四个图形中,线段BE 是△ABC 的高的是( )A. B.C. D.8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.若最简二次根式1a +与8能合并成一项,则a =__________.3.分解因式:3x -x=__________.4.如图,一次函数y=﹣x ﹣2与y=2x+m 的图象相交于点P (n ,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,AD ∥BC ,∠D=100°,CA 平分∠BCD ,则∠DAC=________度.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、B7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、x (x+1)(x -1)4、﹣2<x <25、96、40°三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、112x -;15.3、(1)102b -≤≤;(2)2 4、(1) 65°;(2) 25°.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大版八年级上册数学期末复习试卷(有答案)
∴∠AEF=90°,AE=10cm,EF=DF,
设CF=xcm,则DF=EF=CD﹣CF=(8﹣x)cm,
在Rt△ABE中由勾股定理得:AB2+BE2=AE2,
即82+BE2=102,
∴BE=6cm,
∴CE=BC﹣BE=10﹣6=4(cm),
在Rt△ECF中,由勾股定理可得:EF2=CE2+CF2,
18.解:原式=a2+6a+9﹣(a2﹣1)﹣4a﹣8
=2a+2,
∵a= ,
∴原式=1+2=3.
19.解:(1)(x+1)(x2﹣x+1)=x3﹣x2+x+x2﹣x+1=x3+1,
(2x+y)(4x2﹣2xy+y2)=8x3﹣4x2y+2xy2+4x2y﹣2xy2+y3=8x3+y3,
(2)(a+b)(a2﹣ab+b2)=a3+b3;
(3)若该校九年级共有400名学生,图2是根据各年级学生人数占全校学生总人数的百分比绘制的扇形统计图,请你估计全校学生中最喜欢篮球活动的人数约为多少?
24.请先观察下列算式,再填空:32﹣12=8×1,52﹣32=8×2.
①72﹣52=8×;
②92﹣()2=8×4;
③()﹣92=8×5;
④132﹣()2=8×;
C、结果是﹣2x+x2,故本选项符合题意;
D、结果是3x2,故本选项不符合题意;
故选:C.
3.解:袋子里有4个黑球,m个白球,若从中任取一个球恰好是白球的概率是 ,
根据题意可得: =0.2,
2022-2023学年华东师大版八年级上册数学期末复习试卷+
2022-2023学年华东师大版八年级上册数学期末复习试卷一.选择题(共8小题,满分24分,每小题3分)1.64的平方根为()A.8B.±8C.﹣8D.±42.若a x÷a n+1的运算的结果是a,则x为()A.3﹣n B.n+1C.n+2D.n+33.小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的频率是()A.0.6B.6C.0.4D.44.下列命题中,是假命题的是()A.两点之间,线段最短B.3a3b的系数是3C.位似图形必定相似D.若|a|=|b|,则a=b5.下列各组数中,以a,b,c为边的三角形不是直角三角形的是()A.a=7,b=25,c=24B.a=3,b=3,c=4C.a=6,b=8,c=10D.a=8,b=17,c=156.小李用7块长为8cm,宽为3cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AB=BC,∠ABC=90°),点B在DE上,点A和C分别与木墙的顶端重合,则两堵木墙之间的距离为()A.36B.32C.28D.217.如图,在Rt△ABC中,∠ACB=90°,∠BAC的平分线交BC于D.过C点作CG⊥AB 于G,交AD于E.过D点作DF⊥AB于F.下列结论:①∠CED=∠CDE;②∠ADF=2∠ECD;③S△AEC :S△AEG=AC:AG;④S△CED=S△DFB;⑤CE=DF.其中正确结论的序号是()A.①③④B.①②⑤C.③④⑤D.①③⑤8.在△ABC中,∠A=∠B=∠C,则△ABC()A.是锐角三角形B.是直角三角形C.是钝角三角形D.形状不能确定二.填空题(共6小题,满分18分,每小题3分)9.比较大小:3.10.分解因式:8m2n﹣6mn2+2mn=.11.如图,在等腰三角形ABC中,AB=AC,∠A=50°,直线MN垂直平分边AC,分别交AB,AC于点D,E,则∠BCD=.12.计算:4x3y2÷2xy=.13.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,∠APQ=度,∠B=度,∠BAC=度.14.如图,在Rt△ACB中,∠ACB=90°,BC=6,AC=9.折叠△ACB,使点A与BC的中点D重合,折痕交AB于E,交AC于点F,则CF=.三.解答题(共10小题,满分78分)15.(6分)计算:(1)(2)16.(6分)计算(1)4y•(﹣2xy2)(2)(﹣x2)•(﹣4x)(3)(3m2)•(﹣2m3)2(4)(﹣ab2c3)2•(﹣a2b)317.(6分)先化简,再求值:x(x2﹣x﹣)+4(x2+1)﹣x(﹣3x2+6x﹣1),其中x=﹣2.18.(7分)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.19.(7分)如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;并写出你所画三角形的三边长.(2)在图2中,画一个等腰三角形,使它的一条边长为2,另两边长为无理数;并写出你所画的三角形的三边长.写出每题的计算过程20.(8分)某区在今年四月开始了第一剂新冠疫苗接种,为了解疫苗的安全、有效情况,从全区已接种市民中随机抽取部分市民进行调查.调查结果根据年龄x(岁)分为四类:A类:18≤x<30;B类:30≤x<40;C类:40≤x<50;D类:50≤x≤59.现将调查结果绘制成如下不完整的统计图,请根据统计图中的信息解答下列问题:(1)本次随机抽取的市民中小于40岁的有人;(2)图2中D类区域对应圆心角的度数是度;(3)请补全条形统计图;(4)若本次抽取人数占已接种市民人数的5%,估计该区已接种第一剂新冠疫苗的市民有多少人?21.(8分)如图,车床齿轮箱壳要钻两个圆孔,两孔中心的距离是134mm,两孔中心的水平距离是77mm.计算两孔中心的垂直距离(结果保留小数点后一位).22.(8分)如图,四边形ABCD中,AB∥CD,∠C=110°,E为BC的中点,直线FG 经过点E,DG⊥FG于点G,BF⊥FG于点F.(1)如图1,当∠BEF=70°时,求证:DG=BF;(2)如图2,当∠BEF≠70°时,若BC=DC,DG=BF,请直接写出∠BEF的度数;(3)当DG﹣BF的值最大时,直接写出∠BEF的度数.23.(10分)【知识生成】用两种不同方法计算同一图形的面积,可以得到一个等式,如图1,是用长为a,宽为b(a>b)的四个全等长方形拼成一个大正方形,用两种不同的方法计算阴影部分(小正方形)的面积,可以得到(a﹣b)2、(a+b)2、ab三者之间的等量关系式:;【知识迁移】类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个等式,如图2,观察大正方体分割,可以得到等式:;【成果运用】利用上面所得的结论解答:(1)已知x+y=6,xy=,求x﹣y的值;(2)已知|a+b﹣6|+(ab﹣7)2=0,求a3+b3的值.24.(12分)如图,已知在△ABC中,AB=AC=10cm,BC=8cm,D为AB的中点.点P 在线段BC上以3cm/s的速度由点B出发向终点C运动,同时点Q在线段CA上以acm/s的速度由点C出发向终点A运动,设点P的运动时间为ts.(1)求CP的长;(用含t的式子表示)(2)若以C、P、Q为顶点的三角形和以B,D,P为顶点的三角形全等,且∠B和∠C 是对应角,求t,a的值.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:∵(±8)2=64,∴64的平方根是±8.故选:B.2.解:a x÷a n+1=a x﹣n﹣1=a,所以可得:x﹣n﹣1=1,x=2+n,故选:C.3.解:小明抛一枚硬币100次,其中有60次正面朝上,则反面朝上的有100﹣60=40次,所以反面朝上的频率为=0.4,故选:C.4.解:A、两点之间,线段最短,是真命题;B、3a3b的系数是3,是真命题;C、位似图形必定相似,是真命题;D、若|a|=|b|,则a=b或a=﹣b,原命题是假命题;故选:D.5.解:A、因为72+242=252,能构成直角三角形,此选项不符合题意;B、因为32+32≠42,不能构成直角三角形,此选项符合题意;C、因为62+82=102,能构成直角三角形,此选项不符合题意;D、因为82+152=172,能构成直角三角形,此选项不符合题意.故选:B.6.解:由题意得AB=BC,∠ABC=90°,AD⊥DE,CE⊥DE,∴∠ADB=∠BEC=90°,∴∠ABD+∠CBE=90°,∠BCE+∠CBE=90°,∴∠ABD=∠BCE,在△ABD和△BCE中,,∴△ABD ≌△BCE (AAS );由题意得AD =BE =24cm ,DB =EC =12cm , ∴DE =DB +BE =36cm ,答:两堵木墙之间的距离为36cm . 故选:A .7.解:∵∠ACB =90°,CG ⊥AB ,∴∠ACE +∠BCG =90°,∠B +∠BCG =90°, ∴∠ACE =∠B .∵∠CED =∠CAE +∠ACE ,∠CDE =∠B +∠DAB ,AE 平分∠CAB , ∴∠CED =∠CDE ,①正确; ∴CE =CD ,又AE 平分∠CAB ,∠ACB =90°,DF ⊥AB 于F , ∴CD =DF .∵E 到AC 与AG 的距离相等, ∴S △AEC :S △AEG =AC :AG ,③正确; ∵CE =CD ,CD =DF , ∴CE =DF ,⑤正确.无法证明∠ADF =2∠FDB 以及S △CED =S △DFB . 故选:D .8.解:设∠A =x °,则∠B =x °,∠C =2x °, 根据三角形的内角和可得:x °+x °+2x °=180°, 解得:x =45,即∠A =45°,∠B =45°,∠C =90°, 所以△ABC 是直角三角形.故选:B.二.填空题(共6小题,满分18分,每小题3分)9.解:∵3=,∴<3.故答案为:<.10.解:原式=2mn(4m﹣3n+1),故答案为:2mn(4m﹣3n+1)11.解:∵AB=AC,∠A=50°,∴∠ACB=∠B=×(180°﹣∠A)=65°,∵直线MN垂直平分边AC,∴AD=CD,∴∠ACD=∠A=50°,∴∠BCD=∠ACB﹣∠ACD=15°,故答案为:15°.12.解:4x3y2÷2xy=2x2y故答案为2x2y.13.解:∵PQ=AP=AQ∴∠APQ=∠AQP=∠PAQ=60°.∵BP=QC=AP=AQ∴∠B=∠BAP=30°,∠C=∠CAQ=30°∴∠BAC=120°.故填60、30、120.14.解:∵D是BC的中点,BC=6,∴CD=3,∵折叠△ACB,使点A与BC的中点D重合,∴AF=FD,∵AC=9,设AF=x,则FC=9﹣x,DE=x,∵∠ACB=90°,在Rt△CDF中,x2=9+(9﹣x)2,∴x=5,∴CF=4,故答案为4.三.解答题(共10小题,满分78分)15.解:(1)==﹣(2)=﹣1+2×=﹣1+1=016.解:(1)原式=﹣8xy3.(2)原式=10x3.(3)原式=(3m2)•4m6=12m8.(4)原式=a2b4c6•(﹣a6b3)=﹣a8b7c6.17.解:原式=x3﹣x2﹣x+4x2+4+x3﹣2x2+x =2x3+x2+4,当x=﹣2时,原式=2×(﹣2)3+(﹣2)2+4=﹣16+4+4=﹣8.18.解:(1)△ABC≌△DEC,理由如下:∵DC⊥AE,∴∠ACB=∠DCE=90°,在△ABC与△DEC中,,∴△ABC≌△DEC(SAS);(2)∵△ABC≌△DEC,∴∠A=∠D=20°,∴∠E=90°﹣∠D=90°﹣20°=70°.19.解:(1)如图1所示:∵AB=3,BC=4,∴AC==5,故答案为:3,4,5(答案不唯一);(2)如图2所示:DF=DE==,EF==2,故答案为:,,2(答案不唯一).20.解:(1)本次随机抽取的市民中小于40岁的有20+20=40(人),故答案为:40;(2)根据题意可得,其他三类的百分比为1﹣25%=75%,其他三类的人数和为20+20+50=90(人),抽取的总数为90÷75%=120(人),图2中D类区域对应圆心角的度数是360°×=150°,故答案为:150;(3)抽取的C类市民有120×25%=30(人),补全条形统计图如下:(4)30÷25%÷5%=2400(人),答:估计该区已接种第一剂疫苗的市民有2400 人.21.解:∵∠ACB=90°,∴AC==≈109.7mm,答:两孔中心的垂直距离为109.7mm.22.(1)证明:若CH⊥FG,垂足为H,∵∠BEF=70°,∠BCD=110°,∴∠BEF+∠BCD=180°,∴FG∥CD,∵DG⊥HG,CH⊥HG,∴∠DGH+∠CHG=90°+90°=180°,∴DG∥CH,∴四边形CHGD是长方形,∴DG=CH,∵∠CHE=∠F,∠CEH=∠BEF,BE=CE,∴△BEF≌△CEH(AAS),∴BF=CH,∴DG=BF;(2)解:连接BD,∵DG=BF,DG∥BF,由平移的性质知得,BD∥FG,∴∠CBD=∠CEH,∵CB=CD,∠BCD=110°,∴∠CBD=(180°﹣110°)÷2=35°,∴∠BEF=∠CEH=∠CBD=35°;(3)解:由(2)知DG﹣CH≤CD,∴当DG﹣BF的值最大时,此时点D,C,G三点共线,∵∠BCD=110°,∴∠ECG=70°,∴∠CEG=20°,∴∠BEF=∠CEG=20°.23.解:【知识生成】如图1,方法一:已知边长直接求面积为(a﹣b)2;方法二:阴影面积是大正方形面积减去四个长方形面积,∴面积为(a+b)2﹣4ab,∴由阴影部分面积相等可得(a+b)2﹣4ab=(a﹣b)2;故答案为:(a+b)2﹣4ab=(a﹣b)2;【知识迁移】方法一:正方体棱长为a+b,∴体积为(a+b)3,方法二:正方体体积是长方体和小正方体的体积和,即a3+b3+3a2b+3ab2,∴(a+b)3=a3+b3+3a2b+3ab2;故答案为:(a+b)3=a3+b3+3a2b+3ab2;(1)由(a+b)2﹣4ab=(a﹣b)2,可得(x﹣y)2=(x+y)2﹣4xy,∵x+y=6,xy=,∴(x﹣y)2=62﹣4×,∴(x﹣y)2=25,∴x﹣y=±5;(2)∵|a+b﹣6|+(ab﹣7)2=0,∴a+b=6,ab=7,∵(a+b)3=a3+b3+3a2b+3ab2;∴a3+b3=(a+b)3﹣3a2b﹣3ab2=63﹣3ab(a+b)=216﹣3×7×6=90.24.解:(1)CP的长为(8﹣3t)cm;(2)∵D为AB的中点,∴BD=5cm,∵AB=AC,∴∠B=∠C,∴当BD=CQ,BP=CP时,△BDP≌△CQP(SAS),即at=5,8﹣3t=3t,解得t=,a=;当BD=CP,BP=CQ时,△BDP≌△CPQ(SAS),即8﹣3t=5,3t=at,解得t=1,a=3;综上所述,t=,a=或t=1,a=3.。
华东师大版八年级数学上册期末试卷(带答案)
华东师大版八年级数学上册期末试卷(带答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,4.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=,B .210{3210x y x y --=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,6.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°7.在平面直角坐标中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.3.分解因式:3x -x=__________.4.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是a ,b ,c ,正放置的四个正方形的面积依次是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程(1)2250x x --= (2)1421x x =-+2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD =13S△BOC,求点D的坐标.5.已知平行四边形ABCD,对角线AC、BD交于点O,线段EF过点O交AD于点E,交BC于点F.求证:OE=OF.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、D6、A7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、22()1y x =-+3、x (x+1)(x -1)4、a+c56、8三、解答题(本大题共6小题,共72分)1、(1)1211x x ==(2)3x =是方程的解.2、22x -,12-.3、(1)12,32-;(2)略.4、(1)k=-1,b=4;(2)点D 的坐标为(0,-4).5、略.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大版八年级数学上册期末测试卷带答案
华东师大版八年级数学上册期末测试卷带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 6.计算()22b a a -⨯ 的结果为( ) A .b B .b - C . ab D .b a7.下列图形中,是轴对称图形的是( )A.B. C.D.8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A.乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度9.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,AB∥EF,CD⊥EF,∠BAC=50°,则∠ACD=()A.120°B.130°C.140°D.150°二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x<52x +|x-5|=________.(1)2.函数132y x x =--+中自变量x 的取值范围是__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x 轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标.5.如图1,在菱形ABCD中,AC=2,BD=23,AC,BD相交于点O.(1)求边AB的长;(2)求∠BAC的度数;(3)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A 处,绕点A左右旋转,其中三角板60°角的两边分别与边BC,CD相交于点E,F,连接EF.判断△AEF是哪一种特殊三角形,并说明理由.6.在“母亲节”前期,某花店购进康乃馨和玫瑰两种鲜花,销售过程中发现康乃馨比玫瑰销售量大,店主决定将玫瑰每枝降价1元促销,降价后30元可购买玫瑰的数量是原来购买玫瑰数量的1.5倍.(1)求降价后每枝玫瑰的售价是多少元?(2)根据销售情况,店主用不多于900元的资金再次购进两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、A4、D5、D6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分) 1、42、23x -<≤3、2x (x ﹣1)(x ﹣2).4、x >3.5、1(21,2)n n -- 6、32°三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、22x -,12-.3、8k ≥-且0k ≠.4、E (4,8) D (0,5)5、(1)2;(2)60︒ ;(3)见详解6、(1)2元;(2)至少购进玫瑰200枝.。
华东师大版八年级数学上册期末测试卷及答案【完美版】
华东师大版八年级数学上册期末测试卷及答案【完美版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211xx-+的值为0,则x的值为()A.0 B.1 C.﹣1 D.±12.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.如图,在四边形ABCD中,∠A=140°,∠D=90°,OB平分∠ABC,OC平分∠BCD,则∠BOC=()A.105°B.115°C.125°D.135°5.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是( )A.7086480x yx y+=⎧⎨+=⎩B.7068480x yx y+=⎧⎨+=⎩C.4806870x yx y+=⎧⎨+=⎩D.4808670x yx y+=⎧⎨+=⎩6.如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.187.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图所示,点A、B分别是∠NOP、∠MOP平分线上的点,AB⊥OP于点E,BC⊥MN于点C,AD⊥MN于点D,下列结论错误的是()A.AD+BC=AB B.与∠CBO互余的角有两个C.∠AOB=90°D.点O是CD的中点9.夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为()A.530020015030x yx y+=⎧⎨+=⎩B.530015020030x yx y+=⎧⎨+=⎩C.302001505300x yx y+=⎧⎨+=⎩D.301502005300x yx y+=⎧⎨+=⎩10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若最简二次根式1a+与8能合并成一项,则a=__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,AC的中点,点F是AD的中点.若AB=8,则EF=________.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:(x +2)(x -2)+x(4-x),其中x =14.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.如图,已知AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC=CD .(1)求证:△BCE ≌△DCF ;(2)求证:AB+AD=2AE.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、A6、C7、C8、B9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±32、13、204、145、26、32°三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32 x=-2、-3.3、(1)12b-≤≤;(2)24、略5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大新版八年级上学期数学期末练习试卷(附答案)
华东师大新版八年级上学期数学期末练习试卷一.选择题(共8小题,满分24分,每小题3分)1.若有意义,则a的取值范围是()A.a=﹣1B.a≠﹣1C.a=D.a≠2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.a6÷a2=a3D.(a+2b)(a﹣2b)=a2﹣4b23.一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,第5组的频率为0.20,则第6组的频数为()A.20B.22C.24D.304.对于命题“在同一平面内,若a∥b,a∥c,则b∥c”,用反证法证明,应假设()A.a⊥c B.b⊥c C.a与c相交D.b与c相交5.如图,在四边形ABCD中,AB∥DC,E为BC的中点,连接DE、AE,AE⊥DE,延长DE交AB的延长线于点F.若AB=5,CD=3,则AD的长为()A.2B.5C.8D.116.如图,在△ABC中,∠C=90°,线段AB的垂直平分线交BC于点D,连结AD.若CD =1,BD=2,则AC的长为()A.B.C.D.7.如图,在△ABC中,∠B=2∠C,以点A为圆心,AB长为半径作弧,交BC于点D,交AC于点G;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线AE交BC于点F,若以点G为圆心,GC长为半径作两段弧,一段弧过点C,而另一段弧恰好经过点D,则此时∠FAC的度数为()A.54°B.60°C.66°D.72°8.如图,△ABD与△AEC都是等边三角形,AB≠AC.下列结论中,①BE=CD;②∠BOD =60°;③∠BDO=∠CEO.其中正确的有()A.0个B.1个C.2个D.3个二.填空题(共6小题,满分18分,每小题3分)9.计算:•=.10.分解因式:x3﹣4x=.11.将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式.12.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.13.如图,在△ABC中,AB=AC,∠B=36°,点D在线段BC上运动(点D不与点B、C 重合),连接AD,作∠ADE=36°,DE交线段AC于点E,点D在运动过程中,若△ADE是等腰三角形,则∠BDA的度数为.14.如图,△ABC中,AB=AC,∠BAC=90°,点D在线段BC上,∠EDB=∠C,BE ⊥DE,垂足为E,DE与AB相交于点F,若BE=,则△BDF的面积为.三.解答题(共10小题,满分78分)15.(6分)计算:(1)x2y3•2x2(y2)2+(﹣3xy2)•xy;(2)(2x﹣1)(2x+1)﹣2(x﹣1)2.16.(6分)计算:(1)(1﹣)÷;(2)(1+)÷•.17.(6分)如图,在正方形网格中,每一个小方格的顶点叫做格点.(1)在图1中的正方形网格中,取A,B,C三个格点,连接AB,BC,CA,得到△ABC,求证:△ABC为直角三角形;(2)按下列要求画图:在图2和图3的两个正方形网格中,分别取三个格点,连接这三个格点,使之构成直角三角形,且图1、图2、图3中的三个三角形互不全等.18.(7分)如图,AB=AC,直线l过点A,BM⊥直线l,CN⊥直线l,垂足分别为M、N,且BM=AN.(1)求证△AMB≌△CNA;(2)求证∠BAC=90°.19.(7分)某地教研部门为了了解本地区学生在“停课不停学”在线学习期间的学习情况,进行了如下调查:要求每名学生在“优秀”、“良好”、“一般”和“较差”这四个选项中选择一项进行自我评价.调查组随机抽取了若干名学生的调查问卷进行统计并绘制了如下两幅不完整的统计图.请根据图中所给信息,解答下列问题:(1)在这次调查中,一共抽查了名学生;(2)在扇形统计图中,“良好”所对应的圆心角的度数为;(3)请将条形统计图补充完整.20.(7分)阅读材料:求1+2+22+23+…+22019+22020的值.解:设S=1+2+22+23+…+22019+22020①,将等式①的两边同乘以2,得2S=2+22+23+24+…+22020+22021②,用②﹣①得,2S﹣S=22021﹣1,即S=22021﹣1.即1+2+22+23+…+22019+22020=22021﹣1.请仿照此法计算:(1)请直接填写1+2+22+23的值为;(2)求1+5+52+53+…+510的值;(3)请直接写出1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣的值.21.(8分)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?22.(9分)如图,已知∠AOB=120°,OP平分∠AOB.D,E分别在射线OA,OB上.(1)在图1中,当∠ODP=∠OEP=90°时,求证:OD+OE=OP;(2)若把图1中的条件“∠ODP=∠OEP=90°”改为∠ODP+∠OEP=180°,其他条件不变,如图2所示,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.23.(10分)代数式a2±2ab+b2称为完全平方式.(1)若4a2+ka+9是完全平方式,那么k=;(2)已知x、y满足x2+y2+=2x+y,求x和y的值.24.(12分)(1)问题:如图①,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BC,DC,EC之间满足的等量关系式为;(2)探索:如图②,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A 旋转,使点D落在BC边上,试探索线段AD,BD,CD之间满足的等量关系,并证明结论;(3)应用:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=12,CD=4,求AD的长.参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.解:由题意知,2a﹣1≠0.所以a≠.故选:D.2.解:A、底数不变指数相加,故A错误;B、底数不变指数相乘,故B错误;C、底数不变指数相减,故C错误;D、两数和乘以这两个数的差等于这两个数的平方差,故D正确;故选:D.3.解:∵一组数据共100个,第5组的频率为0.20,∴第5组的频数是:100×0.20=20,∵一组数据共100个,分为6组,第1~4组的频数分别为10,14,16,20,∴第6组的频数为:100﹣20﹣10﹣14﹣16﹣20=20.故选:A.4.解:c与b的位置关系有c∥b和c与b相交两种,因此用反证法证明“c∥b”时,应先假设c与b相交.故选:D.5.解:∵E为BC的中点,∴BE=EC,∵AB∥CD,∴∠F=∠CDE,在△BEF与△CED中,,∴△BEF≌△CED(AAS)∴EF=DE,BF=CD=3,∴AF=AB+BF=8,∵AE⊥DE,EF=DE,∴AF=AD=8,故选:C.6.解:∵线段AB的垂直平分线交BC于点D,BD=2,∴AD=BD=2,在Rt△ACD中,AC===,故选:B.7.解:如图,连接AD,根据作图过程可知:AE是BD的垂直平分线,DG=CG,AB=AD=AG,设∠C=x,则∠CDG=x,∠AGD=2x,∴∠ADG=∠AGD=2x,∵∠B=2∠C,∴∠B=2x,∴∠ADB+∠ADG+∠GDC=2x+2x+x=180°,∴x=36°,∴∠FAC=90°﹣36°=54°.故选:A.8.解:∵△ABD与△AEC都是等边三角形,∴AD=AB,AE=AC,∠ADB=∠ABD=60°,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=DC,∠ADC=∠ABE,∵∠BOD=180°﹣∠ODB﹣∠DBA﹣∠ABE=180°﹣∠ODB﹣60°﹣∠ADC=120°﹣(∠ODB+∠ADC)=120°﹣60°=60°,∴∠BOD=60°,∴①正确;②正确;∵△ABD与△AEC都是等边三角形,∴∠ADB=∠AEC=60°,但根据已知不能推出∠ADC=∠AEB,∴③错误;故选:C.二.填空题(共6小题,满分18分,每小题3分)9.解:原式=•=1.故答案为:1.10.解:x3﹣4x,=x(x2﹣4),=x(x+2)(x﹣2).故答案为:x(x+2)(x﹣2).11.解:将命题“直角三角形斜边上的中线等于斜边的一半”改写成“如果…那么…”的形式为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.故答案为:如果一个三角形是直角三角形,那么它斜边上的中线等于斜边的一半.12.解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.13.解:∵AB=AC,∴∠B=∠C=36°,①当AD=AE时,∠ADE=∠AED=36°,∵∠AED>∠C,∴此时不符合;②当DA=DE时,即∠DAE=∠DEA=×(180°﹣36°)=72°,∵∠BAC=180°﹣36°﹣36°=108°,∴∠BAD=108°﹣72°=36°;∴∠BDA=180°﹣36°﹣36°=108°;③当EA=ED时,∠ADE=∠DAE=36°,∴∠BAD=108°﹣36°=72°,∴∠BDA=180°﹣72°﹣36°=72°;∴当△ADE是等腰三角形时,∠BDA的度数是108°或72°.故答案为:108°或72°.14.解:作BE与DH的延长线交于G点,如图,∵DH∥AC,∴∠BDH=∠C=45°,∴△HBD为等腰直角三角形∴HB=HD,而∠EBF=22.5°,∵∠EDB=∠C=22.5°,∴DE平分∠BDG,而DE⊥BG,∴BE=GE,即BE=BG,∵∠DFH+∠FDH=∠G+∠FDH=90°,∴∠DFH=∠G,∵∠GBH=90°﹣∠G,∠FDH=90°﹣∠G,∴∠GBH=∠FDH在△BGH和△DFH中,,∴△BGH≌△DFH(AAS),∴BG=DF,∴BE=FD,∵BE=,∴DF=2,=×2×=5,∴S△BDF故答案为:5.三.解答题(共10小题,满分78分)15.解:(1)原式=x2y3•2x2•y4+(﹣3xy2)•xy =x4y7﹣3x2y3;(2)原式=4x2﹣1﹣2(x2﹣2x+1)=4x2﹣1﹣2x2+4x﹣2=2x2+4x﹣3.16.解:(1)(1﹣)÷==x;(2)(1+)÷•===﹣2.17.(1)证明:设小正方形的边长为1,由题意,AC﹣=5,AB==,BC==2,∴AC2=AB2+BC2,∴∠ABC=90°,即△ABC是直角三角形.(2)解:如图2,图3中,三角形即为所求.18.证明:(1)∵BM⊥直线l,CN⊥直线l,∴∠AMB=∠CNA=90°,在Rt△AMB和Rt△CNA中,,∴Rt△AMB≌Rt△CNA(HL);(2)由(1)得:Rt△AMB≌Rt△CNA,∴∠BAM=∠ACN,∵∠CAN+∠ACN=90°,∴∠CAN+∠BAM=90°,∴∠BAC=180°﹣90°=90°.19.解:(1)这次活动共抽查的学生人数为232÷40%=580(名);故答案为:580;(2)在扇形统计图中,“良好”所对应的圆心角的度数为360°×=108°;故答案为:108°;(3)“一般”的学生人数为580﹣92﹣174﹣232=82(名),将条形统计图补充完整如图:20.解:(1)1+2+22+23=1+2+4+8=15,故答案为:15;(2)设S=1+5+52+53+ (510)则5S=5+52+53+ (511)∴5S﹣S=511﹣1,∴4S=511﹣1,∴S=,即1+5+52+53+…+510=;(3)设S=1﹣10+102﹣103+104﹣105+…﹣102019+102020,则10S=10﹣102+103﹣104+105﹣…﹣102020+102021,∴S+10S=1+102021,∴11S=1+102021,∴S=,∴1﹣10+102﹣103+104﹣105+…﹣102019+102020﹣=﹣=.21.解:(1)学校C会受噪声影响.理由:如图,过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD==120(m),∵拖拉机周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.22.证明:∵∠AOB=120°,OP平分∠AOB,∴∠DOP=∠EOP=60°,∵∠DPO=∠PEO=90°,∴∠DPO=∠EPO=30°,在Rt△DPO中,∠DPO=30°,Rt△PEO中,∠EPO=30°,∴OP=2OD,OP=2OE,∴OD+OE=OP;(2)结论OD+OE=OP成立.理由如下:在OB上截取ON=OP,连接PN,∵∠PON=60°,∴△PON为等边三角形,∴OP=PN,∠PNE=60°,∵∠DOP=60°,∴∠DOP=∠ENP,∵∠ODP+∠OEP=180°,∠OEP+∠PEN=180°,∴∠ODP=∠PEN,∴△DOP≌△ENP(AAS),∴OD=EN,OP=PN,∴OD+OE=OE+EN=ON,∴OD+OE=OP.23.解:(1)∵4a2=(2a)2,9=32,∴k=±2×2×3=±12,故答案为:±12;(2)∵x2+y2+=2x+y,∴x2﹣2x+1+y2﹣y+=0,∴(x﹣1)2+(y﹣)2=0,∴x﹣1=0,y﹣=0,解得:x=1,y=.24.解:(1)BC=DC+EC,理由如下:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∴BC=BD+CD=EC+CD,故答案为:BC=DC+EC;(2)BD2+CD2=2AD2,理由如下:如图②,连接CE,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE,∠ACE=∠B,∴∠DCE=90°,∴CE2+CD2=ED2,在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴BD2+CD2=2AD2;(3)如图③,作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=12,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE2=CE2﹣CD2=122﹣42=128,∵∠DAE=90°,AD2+AE2=2AD2=128,∴AD=8。
2022-2023年华东师大版初中数学八年级上册期末考试检测试卷及答案(三套)
2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(一)一、选择题(每题3分,共30分)1.已知(a-2)2+|b-8|=0,则ab的平方根为()A .±12B .-12C .±2D .22.下列命题中,正确的是()A .如果|a|=|b|,那么a=bB .一个角的补角一定大于这个角C .直角三角形的两个锐角互余D .一个角的余角一定小于这个角3.如图,已知∠1=∠2,则不一定...能使△ABD≌△ACD 的条件是()A .BD=CDB .AB=AC C .∠B=∠CD .AD 平分∠BAC(第7题)(第8题)(第9题)(第10题)4.实数327,0,-π,16,13,0.1010010001…(相邻两个1之间依次多一个0),其中无理数有()A .1个B .2个C .3个D .4个5.下列各式运算正确的是()A .3a+2b=5abB .a 3·a 2=a 5C .a 8·a 2=a 4D .(2a 2)3=-6a 66.下列长度的四组线段中,可以构成直角三角形的是()A .4,5,6B .1.5,2,2.5C .2,3,4D .1,2,37.下列因式分解中,正确的个数为()①x 3+2xy+x=x(x 2+2y);②x 2+4x+4=(x+2)2;③-x 2+y 2=(x+y)(x-y).A .3个B .2个C .1个D .0个8.如图所示,所提供的信息正确的是()A .七年级学生最多B .九年级的男生人数是女生人数的2倍C .九年级女生比男生多D .八年级比九年级的学生多9.如图,在△MNP 中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN 至G,取NG=NQ,若△MNP 的周长为12,MQ=a,则△MGQ 的周长是()A .8+2a B .8+a C .6+a D .6+2a10.如图,在△ABC 中,∠C=90°,∠B=30°,以A 为圆心,任意长为半径画弧分别交AB、AC 于点M 和N,再分别以M、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P,连接AP,并延长交BC 于点D,则下列说法中正确的个数是()①AD 是∠BAC 的平分线;②∠ADC=60°;③点D 在AB 的垂直平分线上;④S △DAC ∶S △DAB =CD∶DB=AC∶AB.A .1B .2C .3D .4二、填空题(每题3分,共30分)11.a 的算术平方根为8,则a 的立方根是________.12.某校对1200名女生的身高进行测量,身高在1.58m ~1.63m 这一小组的频率为0.25,则该组的人数为________.13.因式分解:x 2y 4-x 4y 2=______________.14.如图,M,N,P,Q 是数轴上的四个点,这四个点中最适合表示7的是________.(第14题)(第16题)(第18题)(第19题)15.已知(a-b)m =3,(b-a)n =2,则(a-b)3m-2n=________16.将一副三角尺如图所示叠放在一起,若AC=14cm ,则阴影部分的面积是________cm 2.17.若x<y,x 2+y 2=3,xy=1,则x-y=________.18.如图,在△ABC 中,AB=AC=3cm ,AB 的垂直平分线分别交AB,AC 于点M,N,△BCN 的周长是5cm ,则BC 的长等于________cm.19.如图,在Rt △ABC 中,∠B=90°,AB=3,BC=4,将△ABC 折叠,使点B 恰好落在斜边AC 上,点B 与点B′重合,AE 为折痕,则EB′=________.20.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.小芸的作法如下:如图,(1)分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于C,D 两点;(2)作直线CD.老师说:“小芸的作法正确.”请回答:小芸的作图依据是____________.三、解答题(21,22题每题6分,23,24题每题8分,25,26题每题10分,27题12分,共60分)21.计算或因式分解:(1)181+3-27+(-2)2+(-1)2014;(2)a 3-a 2b+14ab 2.22.先化简,再求值:(x+y)(x-y)+(4xy 3-8x 2y 2)÷4xy,其中x=1,y=12.23.如图,在△ABC 和△ADE 中,AB=AC,AD=AE,∠BAC=∠DAE,点C 在DE 上.求证:(1)△ABD≌△ACE;(2)∠BDA=∠ADE.(第23题)24.某市为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图(如图).频数分布表(第24题)代码,和谁在一起生活,频数,频率A,父母,4200,0.7B,爷爷奶奶,660,aC,外公外婆,600,0.1D,其他,b,0.09合计,6000,1请根据上述信息,回答下列问题:(1)a=________,b=________;(2)在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是多少?25.如图,在△ABC中,∠C=90°,把△ABC沿直线DE折叠,使△ADE与△BDE重合.(1)若∠A=35°,则∠CBD的度数为________;(2)若AC=8,BC=6,求AD的长;(3)当AB=m(m>0),△ABC的面积为m+1时,求△BCD的周长.(用含m的代数式表示)(第25题)26.如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD的延长线与AB的延长线相交于点M.(1)求证:∠FMC=∠FCM;(2)AD与MC垂直吗?并说明理由.(第26题)27.如图,在△ABC中,AB=AC=2,∠B=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠BAD=________°,∠DEC=________°,点D从B向C运动时,∠BDA逐渐变________(填“大”或“小”);(2)当DC等于多少时,△ABD与△DCE全等?请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA 的度数.若不可以,请说明理由.(第27题)参考答案:一、 1.A 2.C 3.B 4.B 5.B 6.B 7.C 8.B 9.D 10.D 点拨:④过点D 作AB 的垂线,再利用等高的两个三角形的面积之比等于底之比判断.二、11.412.30013.x 2y 2(y+x)(y-x)14.点P15.274点拨:(a-b)3m-2n =(a-b)3m ÷(a-b)2n =[(a-b)m ]3÷[(a-b)n ]2=[(a-b)m ]3÷[(b-a)n ]2=33÷22=274.16.9817.-1点拨:(x-y)2=x 2+y 2-2xy=3-2×1=1,∵x<y,∴x-y<0,∴x-y=-1=-1.18.219.32点拨:在Rt △ABC 中,∠B=90°,AB=3,BC=4,∴AC=5,设BE=B′E=x,则EC=4-x,B′C=5-3=2,在Rt △B′EC 中,由勾股定理得EC 2=B′C 2+B′E 2,即(4-x)2=22+x 2,解得x=32.20.到线段两端距离相等的点在线段的垂直平分线上,两点确定一条直线三、21.解:(1)原式=19-3+2+1=19;2-ab+14b a-12b .22.解:原式=x 2-y 2+y 2-2xy=x 2-2xy,当x=1,y=12时,原式=1-2×1×12=0.23.证明:(1)∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,∴∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE(S .A .S .);(2)由△ABD≌△ACE,可得∠BDA=∠E.又AD=AE,∴∠ADE=∠E,∴∠BDA=∠ADE.24.解:(1)0.11;540(2)0.1×360°=36°,故在扇形统计图中,和外公外婆在一起生活的学生所对应的扇形的圆心角的度数是36°.25.解:(1)20°(2)设AD =x ,则BD =x ,DC =8-x .在Rt△BCD 中,DC 2+BC 2=BD 2,即(8-x )2+62=x 2,解得:x =254.∴AD 的长为254.(3)由题意知:AC 2+BC 2=m 2,12AC ·BC =m +1,∴(AC +BC )2-2AC ·BC =m 2,∴(AC +BC )2=m 2+2AC ·BC =m 2+4(m +1)=(m +2)2,∴AC +BC =m +2,∴△BCD 的周长=DB +DC +BC =AD +DC +BC =AC +BC =m +2.26.(1)证明:∵△ADE 是等腰直角三角形,点F 是AE 的中点,∴DF⊥AE,∠ADF=∠EDF=45°,∴∠DAF=∠AED=45°,DF=AF=EF,又∵∠ABC=90°,∴∠DCF,∠AMF 都与∠MAC互余,∴∠DCF =∠AMF.在△DFC 和△AFM 中,∴△DFC ≌△AFM(A .A .S .),∴CF=MF,∴∠FMC=∠FCM;(2)解:AD⊥MC.理由如下:由(1)知,∠MFC=90°,FD=EF,FM=FC,∴∠FDE=∠FMC=45°,∴DE∥CM,又∵AD⊥DE,∴AD⊥MC.27.解:(1)25;115;小(2)当DC=2时,△ABD≌△DCE.理由如下:∵AB=AC,∴∠C=∠B=40°,∴∠DEC+∠EDC =140°.又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(A .A .S .);(3)可以.∠BDA 的度数为110°或80°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(二)一、选择题(每小题4分,共40分)1.9的平方根是()C.3D.-3 A.±3B.±132.下列运算正确的是()A.x3·x4=x12B.(x3)4=x7C.x8÷x2=x6D.(3b3)2=6b63.将下列长度的三条线段首尾顺次连结,不能组成直角三角形的是() A.8、15、17B.7、24、25C.3、4、5D.2、3、74.已知关于x的二次三项式x2+kx+36可以写成一个两数和(差)的平方式,则k 的值是()A.6B.±6C.12D.±125.如图是某地PM2.5来源统计图,则根据统计图得出的下列判断中,正确的是()A.汽车尾气约为建筑扬尘的3倍B.表示建筑扬尘的占7%C.表示煤炭燃烧对应的扇形圆心角度数为126°D.煤炭燃烧的影响最大(第5题)(第6题)(第8题)6.如图,在△ABC 中,AB =AC ,过点A 作AD ∥BC ,若∠1=70°,则∠BAC的大小为()A .40°B .30°C .70°D .50°7.下列分解因式正确的是()A .-ma -m =-m (a -1)B .a 2-1=(a -1)2C .a 2-6a +9=(a -3)2D .a 2+3a +9=(a +3)28.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交AC 、AD 、AB 于点E 、O 、F ,则图中全等三角形的对数是()A .1B .2C .3D .49.如图,数轴上点A 、B 分别对应数1、2,PQ ⊥AB 于点B ,以点B 为圆心,AB 长为半径画弧,交PQ 于点C ,以原点O 为圆心,OC 长为半径画弧,交数轴于点M ,则点M 对应的数是()A.3B.5C.6D.7(第9题)(第10题)10.如图,过边长为1的等边三角形ABC 的边AB 上一点P ,作PE ⊥AC 于点E ,点Q 为BC 延长线上一点,当PA =CQ 时,连结PQ 交AC 于点D ,则DE 的长为()A.13 B.12C.23D .不能确定二、填空题(每小题4分,共24分)11.请写出一个大于1且小于2的无理数:________.12.已知x 2n =5,则(3x 3n )2-4(x 2)2n 的值为________.13.如图是小强根据全班同学最喜欢的四类电视节目的人数而绘制的两幅不完整的统计图,则最喜欢“体育”节目的人数是________.(第13题)(第15题)(第16题)14.有下列命题:①正实数都有平方根;②实数都可以用数轴上的点表示;③等边三角形有一个内角为60°;④全等三角形对应边上的角平分线相等.其中逆命题是假命题的是________.(填序号)15.如图,△ABC 中,∠ABC 与∠ACB 的平分线交于点O ,过O 作EF ∥BC 分别交AB 、AC 于点E 、F .若△ABC 的周长比△AEF 的周长大12,点O 到AB 的距离为3.5,则△OBC 的面积为________.16.如图所示,将一个边长为a 的正方形剪去一个边长为b 的小正方形,将剩余部分(阴影部分)对半剪开,恰好是两个完全相同的直角梯形,将它们旋转拼接后构成一个等腰梯形.利用图形的面积关系可以得到一个代数恒等式是____________________.三、解答题(本题共9小题,共86分)17.(8分)计算:(1)49-327+|1-2|(2)[x (x 2y 2-xy )-y (x 2-x 3y )]÷x 2y .18.(8分)先化简,再求值:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab ),其中a =12,b =-12.19.(8分)如图,在△ABC 中,AB =CB ,∠ABC =90°,D 为AB 延长线上一点,点E 在BC 边上,且BE =BD ,连结AE 、DE 、DC .(第19题)(1)求证:△ABE ≌△CBD ;(2)若∠CAE =30°,求∠BDC 的度数.20.(8分)如图,在△ABC 和△A ′B ′C ′中,∠B =∠B ′,∠C =∠C ′,AD 平分∠BAC交BC于点D.(1)在△A′B′C′中,作出∠B′A′C′的平分线A′D′交B′C′于点D′;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若AD=A′D′,求证:BD=B′D′.(第20题)21.(8分)(1)如图1所示,将两个边长为1的正方形分别沿对角线剪开,得到四个等腰直角三角形,即可拼成一个大正方形.易知这个大正方形的面积是2,所以大正方形的边长为________.(2)观察下列各方格图中阴影所示的图形(每一小方格的边长为1),如图2,将左图阴影部分剪开,重新拼成右图的正方形,那么所拼成的正方形的边长为________.请你模仿图2的方法,将图3、图4阴影所示的图形剪拼成一个正方形,并在图中作出适当的标注.(第21题)22.(10分)某校为了解学生百米跑成绩,在各个年级抽取部分同学开展百米跑测试.成绩分为A、B、C、D四个等级,并绘制成以下两幅不完整的统计图.(1)求这次测试抽取的学生总人数,并补全条形统计图;(2)求C等级在扇形统计图中对应的圆心角的度数;(3)若成绩为A等级或B等级为合格,已知该校共有1400人,试估计全校合格的学生人数.(第22题)23.(10分)课间,小明拿着老师的等腰直角三角尺玩,不小心将三角尺掉到了两墙之间,如图所示.(1)求证:△ADC≌△CEB;(2)由三角尺的刻度可知AC=25,请你帮小明求出砌墙砖块的厚度a的大小(每块砖块的厚度相等).(第23题)24.(12分)【知识介绍】换元法是数学中重要的解题方法.通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决.换元的实质是转化,关键是构造元和设元.均值换元法是换元法主要形式之一.【典例分析】已知实数x,y满足x+y=4,试求代数式x2+y2的最小值.【分析】均值换元法:由x+y=4,得x与y的均值为2,所以可以设x=2+t,y=2-t,再代入代数式换元求解.【解法】因为x+y=4,所以设x=2+t,y=2-t,所以x2+y2=(2+t)2+(2-t)2=2t2+8≥8,所以x2+y2的最小值是8.【理解应用】根据以上知识背景,回答下列问题:(1)若实数a、b满足a+b=2,求代数式a2+b2+2的最小值;(2)已知△ABC的三边长为a、b、c,满足b+c=8,bc=a2-8a+32,请判断△ABC的形状,并求△ABC的周长.25.(14分)【问题初探】如图①,△ABC中,∠BAC=90°,AB=AC,点D是BC上一点,连结AD,以AD为一边作△ADE,使∠DAE=90°,AD=AE,连结BE,猜想BE和CD 有怎样的数量关系,并说明理由.【类比再探】如图②,△ABC中,∠BAC=90°,AB=AC,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作△MDE,使∠DME=90°,MD=ME,连结BE,则∠EBD=________.(直接写出答案,不写过程)【方法迁移】如图③,△ABC是等边三角形,点D是BC上一点,连结AD,以AD为一边作等边三角形ADE,连结BE,则BD、BE、BC之间有怎样的数量关系?答案:________.(直接写出答案,不写过程)【拓展创新】如图④,△ABC是等边三角形,点M是AB上一点,点D是BC上一点,连结MD,以MD为一边作等边三角形MDE,连结BE.猜想∠EBD的度数,并说明理由.(第25题)答案一、1.A 2.C3.D4.D5.C6.A7.C8.D9.B 10.B二、11.3(答案不唯一)12.102513.1014.①③④15.21提示:∵∠ABC 与∠ACB 的平分线交于点O ,∴∠EBO =∠OBC ,∠FCO =∠OCB .∵EF ∥BC ,∴∠EOB =∠OBC ,∠FOC =∠OCB ,∴∠EOB =∠EBO ,∠FOC =∠FCO ,∴OE =BE ,OF =FC ,∴EF =BE +CF ,∴AE +EF +AF =AB +AC .∵△ABC 的周长比△AEF 的周长大12,∴(AB +BC +AC )-(AE +EF +AF )=12,∴BC =12.∵O 到AB 的距离为3.5,且O 在∠ABC 的平分线上,∴O 到BC的距离也为3.5,∴△OBC 的面积是12×12×3.5=21.16.a 2-b 2=(a +b )(a -b )三、17.解:(1)原式=7-3+2-1+13=103+ 2.(2)原式=(x 3y 2-x 2y -x 2y +x 3y 2)÷x 2y=(2x 3y 2-2x 2y )÷x 2y =2xy -2.18.解:[(ab -2)(ab +3)-5a 2b 2+6]÷(-ab )=(a 2b 2-2ab +3ab -6-5a 2b 2+6)÷(-ab )=(-4a 2b 2+ab )÷(-ab )=4ab -1.当a =12,b =-12时,原式=4×12×1=-1-1=-2.19.(1)证明:在△ABE 和△CBD 中,∵AB =CB ,∠ABE =∠CBD =90°,BE =BD ,∴△ABE ≌△CBD (S.A.S.).(2)解:∵AB =CB ,∠ABC =90°,∴∠BAC =∠ACB =45°.∵∠CAE =30°,∴∠AEB =∠ACB +∠CAE =45°+30°=75°.由(1)知△ABE ≌△CBD ,∴∠BDC =∠AEB =75°.20.(1)解:如图所示,A ′D ′为∠B ′A ′C ′的平分线.(第20题)(2)证明:∵∠B =∠B ′,∠C =∠C ′,∴∠BAC =∠B ′A ′C ′.∵AD 平分∠BAC ,A ′D ′平分∠B ′A ′C ′,∴∠BAD =12∠BAC ,∠B ′A ′D ′=12∠B ′A ′C ′,∴∠BAD =∠B ′A ′D ′.又∵∠B =∠B ′,AD =A ′D ′,∴△ABD ≌△A ′B ′D ′,∴BD =B ′D ′.21.解:(1)2(2)5拼法及标注如图所示.(答案不唯一)(第21题)22.解:(1)120÷30%=400,所以这次测试抽取的学生总人数为400,所以B 等级的人数为400-120-80-40=160.补全条形统计图如图所示.(第22题)(2)360°×80400=72°,所以C等级在扇形统计图中对应的圆心角的度数为72°.(3)1400×120+160400=980,所以估计全校合格的学生人数为980.23.(1)证明:由题意,得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠DAC=90°.又∵∠ACD+∠BCE=90°,∴∠DAC=∠ECB.在△ADC和△CEB中,∵∠ADC=∠CEB,∠DAC=∠ECB,AC=CB,∴△ADC≌△CEB(A.A.S.).(2)解:由题意,得AD=4a,BE=3a.∵△ADC≌△CEB,∴DC=BE=3a.在Rt△ACD中,根据勾股定理,得AD2+CD2=AC2,∴(4a)2+(3a)2=252,解得a=5(负值已舍去),∴砌墙砖块的厚度a为5.24.解:(1)因为a+b=2,所以设a=1+t,b=1-t,所以a2+b2+2=(1+t)2+(1-t)2+2=1+2t+t2+1-2t+t2+2=2t2+4≥4,所以a2+b2+2的最小值为4.(2)因为b+c=8,所以设b=4+t,c=4-t,因为bc=a2-8a+32,所以(4+t)(4-t)=a2-8a+32,16-t2=a2-8a+32,(a2-8a+16)+t2=0,即(a-4)2+t2=0,所以a=4,t=0,所以b=4+t=4,c=4-t=4,所以a=b=c,所以△ABC为等边三角形,所以△ABC的周长为12. 25.解:【问题初探】BE=CD.理由:∵∠DAE=∠BAC=90°,∴∠BAE=∠CAD.又∵AB=AC,AE=AD,∴△BAE≌△CAD(S.A.S.),∴BE=CD.【类比再探】90°【方法迁移】BC=BD+BE【拓展创新】∠EBD=120°.理由:过点M作MG∥AC交BC于点G,如图,则∠BMG=∠A=60°,∠BGM=∠C=60°,(第25题)∴△BMG是等边三角形,∴BM=GM.∵∠DME=∠BMG=60°,∴∠BME=∠GMD.又∵ME=MD,∴△BME≌△GMD(S.A.S.),∴∠MBE=∠MGD=60°,∴∠EBD=∠MBE+∠MBG=120°.2022-2023年华东师大版数学八年级上册期末考试测试卷及答案(三)一、选择题(每题4分,共40分)1.在实数-227,0,-6,503,π,0.101中,无理数的个数是() A.2B.3C.4D.52.已知一次函数y=kx+2(k≠0)的函数值y随x的增大而增大,则该函数的图象大致是()3.如图所示,以A为圆心的圆交数轴于B,C两点,若A,B两点表示的数分别为1,2,则点C表示的数是()A.2-1B.2-2C.22-2D.1-2(第3题)(第5题)4.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下:锻炼时间/h5678人数2652则这15名学生一周在校参加体育锻炼时间的中位数和众数分别为()A .6h ,7hB .7h ,7hC .7h ,6hD .6h ,6h5.如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是()A .30°B .40°C .50°D .60°6.如图,x 轴是△AOB 的对称轴,y 轴是△BOC 的对称轴,点A 的坐标为(1,2),则点C 的坐标为()A .(-1,-2)B .(1,-2)C .(-1,2)D .(-2,-1)7=-2,=1是关于x ,y +by =1,+ay =7的解,则(a +b )(a -b )的值为()A .-356 B.356C .16D .-168.我国古代著名的“赵爽弦图”的示意图如图①所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图②所示“数学风车”,则这个风车的外围周长是()A .413B .810C .413+12D .810+129.我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托;折回索子却量竿,却比竿子短一托.”其大意:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y 尺,则符合题意的方程组是()x =y +5,12x =y -5x =y -5,12x =y +5x =y +5,2x =y -5x =y -5,2x =y +510.甲、乙两车同时从A 地出发,以各自的速度匀速向B 地行驶,甲车先到达B 地后,立即按原路以相同速度匀速返回(停留时间不考虑),直到两车相遇.若甲、乙两车之间的距离y (km)与两车行驶的时间x (h)之间的关系如图所示,则A ,B 两地之间的距离为()A .150kmB .300kmC .350kmD .450km二、填空题(每题4分,共24分)11.64的算术平方根是________.12.“共和国勋章”获得者、“杂交水稻之父”袁隆平为世界粮食安全作出了杰出贡献.全球共有40多个国家引种杂交水稻,中国境外种植面积达800万公顷.某村引进了甲、乙两种超级杂交水稻品种,在条件(肥力、日照、通风……)不同的6块试验田中同时播种并核定亩产,统计结果为:x 甲=1042千克/亩,s 2甲=6.5,x 乙=1042千克/亩,s 2乙=1.2,则________品种更适合在该村推广.(填“甲”或“乙”)13.一条有破损的长方形纸带,按如图折叠,纸带重合部分中的∠α的度数为________.14.如图,正比例函数y 1=2x 和一次函数y 2=kx +b 的图象交于点A (a ,2),则当y 1>y 2时,x 的取值范围是____________.(第14题)(第16题)15.我国明代数学读本《算法统宗》有一道题,其题意为客人一起分银子,若每人7两,还剩4两;若每人9两,则差8两,银子共有________两.16.如图,△ABC 中,AC =BC ,∠ACB =90°,点D 在边BC 上,BD =6,CD=2,点P 是边AB 上一点,则PC +PD 的最小值为________.三、解答题(22~23题每题10分,24题12分,25题14分,其余每题8分,共86分)17.计算:24×13-4×18×(1-2)0+32.18x+2y=9,x-y=2.19.如图,在正方形网格中,每个小正方形的边长都是1,四边形ABCD的四个顶点都在格点上.解答下列问题:(1)在图中建立直角坐标系,使点A,C的坐标分别为(-2,0)和(1,4),则B(____,____)和D(____,____);(2)求四边形ABCD的周长.20.如图,已知AD∥BE,∠1=∠2,∠3=∠4,求证:AB∥CD.21.某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),下表为每辆汽车装运甲、乙两种家电的台数.若用8辆汽车装运甲、乙两种家电190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?家电种类甲乙每辆汽车能装运的台数203022.为了从甲、乙两名同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两名同学6次选拔赛的成绩,分别绘制了如下统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90________93乙________87.585(2)分别求出甲、乙两名同学6次成绩的方差.(3)你认为选择哪一名同学参加知识竞赛比较好?请说明理由.23.在△ABC中,AC=21,BC=13,点D是AC所在直线上的点,BD⊥AC,BD=12.(1)求AD的长;(2)若点E是AB边上的动点,连接DE,求线段DE的最小值.24.某超市计划按月购买一种酸奶,每天进货量相同,进货成本为每瓶4元,售价为每瓶6元,未售出的酸奶以每瓶2元的价格当天全部降价处理完.根据往年销售经验,每天的需求量与当天本地最高气温有关.为了确定今年六月份的购买计划,计划部对去年六月份每天的最高气温x(℃)及当天售出(不含降价处理)的酸奶瓶数y的数据统计如下:x/℃15≤x<2020≤x<2525≤x<3030≤x≤35天数610113y/瓶270330360420以最高气温位于各范围的频率代替最高气温位于该范围的概率.(1)试估计今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率;(2)根据供货方的要求,今年这种酸奶每天的进货量必须为100瓶的整数倍.问今年六月份这种酸奶一天的进货量为多少时,平均每天销售这种酸奶获得的利润最大?25.如图,在平面直角坐标系中,直线y=-x+6与x轴和y轴分别交于点B和点C,与直线OA交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求点B和点C的坐标.(2)求△OAC的面积.S△OAC?若存在,求出此时点M的坐标;若不存在,(3)是否存在点M,使S△OMC=14请说明理由.答案一、1.A 2.A 3.B 4.D 5.B 6.A 7.D8.D9.A10.D二、11.2212.乙13.75°14.x>115.4616.10三、17.解:原式=24×13-4×24×1+42=22-2+42=5 2.183x+2y=9,①5x-y=2,②由②,得y=5x-2,③将③代入①,得3x+2(5x-2)=9,所以x=1,把x=1代入③,得y=3.x=1,y=3.19.解:(1)建立直角坐标系如图所示.4;0;-3;2(2)由勾股定理得AD =12+22=5,CD =42+22=25,BC =32+42=5,所以四边形ABCD 的周长=AB +AD +CD +BC =6+5+25+5=11+35.20.证明:因为AD ∥BE ,所以∠3=∠CAD ,因为∠3=∠4,所以∠4=∠CAD ,因为∠1=∠2,所以∠1+∠CAE =∠2+∠CAE ,即∠BAE =∠CAD ,所以∠4=∠BAE ,所以AB ∥CD .21.解:设装运甲种家电的汽车有x 辆,装运乙种家电的汽车有y 辆.x +y =8,20x +30y =190,x =5,y =3.答:装运甲种家电的汽车有5辆,装运乙种家电的汽车有3辆.22.解:(1)91;90(2)s 2甲=16[(85-90)2+(82-90)2+(89-90)2+(98-90)2+(93-90)2+(93-90)2]=863,s 2乙=16[(95-90)2+(85-90)2+(90-90)2+(85-90)2+(100-90)2+(85-90)2]=1003.(3)选择甲同学.理由:因为两人的平均数相同,说明两人实力相当,但甲的方差小于乙的方差,说明甲同学发挥更稳定,因此选择甲同学参加知识竞赛比较好.(理由不唯一)23.解:(1)①当∠ACB 为锐角时,∵BD ⊥AC ,BC =13,BD =12,∴CD =BC 2-BD 2=132-122=5,∴AD =AC -CD =21-5=16;②当∠ACB 为钝角时,同理可得CD =5,∴AD =AC +CD =21+5=26.综上,AD 的长为16或26.(2)当DE ⊥AB 时,线段DE 有最小值.①当∠ACB 为锐角时,AB =AD 2+BD 2=162+122=20.∵S △ABD =12AD ·BD =12AB ·DE ,∴DE =AD ·BD AB =16×1220=9.6;②当∠ACB 为钝角时,AB =AD 2+BD 2=262+122=2205,同理可得DE =AD ·BD AB =26×122205=156205205.综上,线段DE 的最小值为9.6或156205205.24.解:(1)依题意,得今年六月份每天售出(不含降价处理)的酸奶瓶数不高于360瓶的概率为6+10+1130=0.9.(2)由题意可知该超市当天售出一瓶酸奶可获利2元,降价处理一瓶酸奶亏损2元.设今年六月份这种酸奶一天的进货量为n 瓶,平均每天的利润为W 元,则当n =100时,W =100×2=200;当n =200时,W =200×2=400;当n =300时,W =130×[(30-6)×300×2+6×270×2-6×(300-270)×2]=576;当n =400时,W =130×[6×270×2+10×330×2+11×360×2+3×400×2-6×(400-270)×2-10×(400-330)×2-11×(400-360)×2]=544;当n ≥500时,与n =400时比较,亏本售出多,所以其平均每天的利润比n =400时平均每天的利润少.综上,当n =300时,W 的值达到最大,即今年六月份这种酸奶一天的进货量为300瓶时,平均每天销售这种酸奶获得的利润最大.25.解:(1)在y =-x +6中,令y =0,则x =6;令x =0,则y =6.故点B 的坐标为(6,0),点C 的坐标为(0,6).(2)S △OAC =12OC ×|x A |=12×6×4=12.(3)存在点M ,使S △OMC =14S △OAC .设点M 的坐标为(a ,b ),直线OA 的表达式是y =mx .∵A (4,2)在直线OA 上,∴4m =2,解得m =12.∴直线OA 的表达式是y =12x .∵S △OMC =14S △OAC ,∴12×OC ×|a |=14×12.又∵OC =6,∴a =±1.如图①,当点M 在线段OA 上时,a =1,此时b =12a =12,∴点M如图②,当点M在射线AC上时,若a=1,则b=-a+6=5,∴点M1的坐标是(1,5);若a=-1,则b=-a+6=7,∴点M2的坐标是(-1,7).综上所述,点M(1,5)或(-1,7).。
_华东师大版八年级上册数学期末复习综合试卷(有答案)
2020-2021学年华东师大新版八年级上册数学期末复习试卷一.选择题(共10小题,满分40分,每小题4分)1.一个正数a的平方根是2x﹣3与5﹣x,则这个正数a的值是()A.25B.49C.64D.812.下列实数中,无理数是()A.B.3πC.D.3.下列计算中正确的是()A.b3•b2=b6B.x3+x3=x6C.a2÷a2=0D.(﹣a3)2=a6 4.如图,是根据某市2014年至2018年工业生产总值绘制的折线统计图,观察统计图获得以下信息,其中判断错误的是()A.2014年至2018年工业生产总值逐年增加B.2018年的工业生产总值比前一年增加了40亿元C.2016年与2017年每一年与前一年比,其增长额相同D.2015年至2018年,每一年与前一年比,2018 年的增长率最大5.下列各组数是勾股数的一组是()A.6,7,8B.1,,2C.5,12,13D.0.3,0.4,0.56.如图,数轴上的A、B、C、D四点中与表示数﹣的点最接近的是()A.点D B.点C C.点B D.点A7.下列四个命题中,真命题有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A.1个B.2个C.3个D.4个8.在△ABC中,∠A=60°,∠B=50°,AB=8,下列条件能得到△ABC≌△DEF的是()A.∠D=60°,∠E=50°,DF=8B.∠D=60°,∠F=50°,DE=8C.∠E=50°,∠F=70°,DE=8D.∠D=60°,∠F=70°,EF=89.下列命题中,是假命题的是()A.过直线外一点,有且只有一条直线与已知直线平行B.一个三角形中至少有两个锐角C.两直线平行,同位角相等D.相等的角是对顶角10.一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是()A.20B.25C.30D.32二.填空题(共6小题,满分24分,每小题4分)11.计算:+=.12.等腰△ABC周长为16cm,其中两边长的差为2cm,则腰长为cm.13.一组数据中共有40个数,其中53出现的频率为0.3,则这40个数中,53出现的频数为.14.如图,在△ABC中,高AD和BE交于点H,且BH=AC,则∠ABC=.15.若x+y=3且xy=1,那么代数式x2﹣2xy+3y=.16.如图,△ABC中,AB=AC,∠B=40°,D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=40°,DE交线段AC于E.以下四个结论:①∠CDE=∠BAD;②当D为BC中点时,DE⊥AC;③当∠BAD=30°时,BD=CE;④当△ADE为等腰三角形时,∠BAD=30°.其中正确的结论是(把你认为正确结论的序号都填上).三.解答题(共9小题,满分86分)17.计算:(1)2a2•a4+(﹣3a3)2﹣3a6;(2)x(x﹣1)﹣2x(5﹣2x).18.分解因式:(1)﹣3a2+6ab﹣3b2;(2)9a2(x﹣y)+4b2(y﹣x).19.先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=.20.如图,四边形ABCD的对角线AC、BD相交于点O,OA=OB,OC=OD.求证:(1)AB∥CD;(2)△ABC≌△BAD.21.班长小李对他所在班级(八年级2班)全体同学的业余兴趣爱好进行了一次调查,据采集到的数据绘制了下面的统计图表,根据调查他想写一个调查报告交给学校,建议学校根据学生的个人兴趣爱好,适当的安排一些特长培养或合理安排学生在校期间的课余活动,请你根据图中提供的信息,帮助小李完成信息采集.(1)该班共有学生人;(2)在图1中,请将条形统计图补充完整;(3)在图2中,在扇形统计图中,“音乐”部分所对应的圆心角的度数度;(4)求爱好“书画”的人数占该班学生数的百分数.22.如图,在铁路线CD附近有两个村庄A,B,到铁路的距离分别是2km和1km,作AC ⊥CD,BD⊥CD,垂足分别为C、D,且CD=4km.现在要在铁路线旁建一个农副产品收购站E,使A、B两村到E站的距离相等.(1)请利用尺规作图确定站E的位置.(不写作法,保留作图痕迹)(2)求出CE长度.23.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2),直接写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系.(4)根据(3)中的等量关系,解决如下问题:对于任意的有理数x和y,若x+y=9,xy=18,求x﹣y的值.。
华东师大版八年级数学上册期末考试卷及答案【全面】
华东师大版八年级数学上册期末考试卷及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.矩形具有而平行四边形不一定具有的性质是( )A .对边相等B .对角相等C .对角线相等D .对角线互相平分3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩ 6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,在数轴上表示实数15的点可能是( )A .点PB .点QC .点MD .点N8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.两个一次函数1y ax b 与2y bx a ,它们在同一直角坐标系中的图象可能是( )A .B .C .D .10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.分解因式:22a 4a 2-+=__________.3.分解因式:3x -x=__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、A6、C7、C8、C9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、82、()2 2a1-3、x(x+1)(x-1)4、10.5、96、8三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、1a b-+,-13、(1)略(2)1或24、略.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
华东师大版八年级数学上册期末测试卷(带答案)
华东师大版八年级数学上册期末测试卷(带答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2C .m <3D .m <3且m ≠2 5.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 6.计算()22b a a -⨯的结果为( ) A .b B .b - C . ab D .b a7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°9.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.如图,▱ABCD 中,AC 、BD 相交于点O ,若AD=6,AC+BD=16,则△BOC 的周长为________.5.如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若5DE=,则GE的长为__________.6.如图所示,在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的垂直平分线,点E、N在BC上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解下列方程组:(1)257320x yx y-=⎧⎨-=⎩(2)134342x yx y⎧-=⎪⎨⎪-=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.4.如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.5.如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足4a +|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动.(1)a= ,b= ,点B的坐标为;(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、A4、D5、D6、A7、B8、C9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、13、2x (x ﹣1)(x ﹣2).4、145、49136、32°三、解答题(本大题共6小题,共72分)1、(1)55x y =⎧⎨=⎩;(2)64x y =⎧⎨=⎩.2、22x -,12-.3、(1)12,32-;(2)略.4、(1)略;(2)4.5、(1)4,6,(4,6);(2)点P 在线段CB 上,点P 的坐标是(2,6);(3)点P 移动的时间是2.5秒或5.5秒.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
华东师大版八年级数学上册期末考试及答案【全面】
华东师大版八年级数学上册期末考试及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a ≤﹣3 B .a <﹣3 C .a >3 D .a ≥32.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5--3.已知13x x +=,则2421x x x ++的值是( ) A .9 B .8 C .19 D .184.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知一个多边形的内角和为1080°,则这个多边形是( )A .九边形B .八边形C .七边形D .六边形6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.若a =7+2、b =2﹣7,则a 和b 互为( )A .倒数B .相反数C .负倒数D .有理化因式8.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图,菱形ABCD 的周长为28,对角线AC ,BD 交于点O ,E 为AD 的中点,则OE 的长等于( )A .2B .3.5C .7D .1410.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是_________.2.若式子x 1x+有意义,则x 的取值范围是__________. 3.因式分解:a 3﹣2a 2b+ab 2=________.4.如图,在ABC 中,点A 的坐标为()0,1,点B 的坐标为()0,4,点C 的坐标为()4,3,点D 在第二象限,且ABD 与ABC 全等,点D 的坐标是______.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:4311213x y x y -=⎧⎨+=⎩2.先化简,再求值:2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =.3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、B5、B6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、±32、x 1≥-且x 0≠3、a (a ﹣b )2.4、(-4,2)或(-4,3)5、706、8三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、22x -,12-.3、(1)102b -≤≤;(2)2 4、略.5、(1)略;(2)8.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
华东师大版八年级数学上册期末考试卷带答案
华东师大版八年级数学上册期末考试卷带答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.若32a 3a +=﹣a 3a +,则a 的取值范围是( )A .﹣3≤a ≤0B .a ≤0C .a <0D .a ≥﹣32.(-9)2的平方根是x ,64的立方根是y ,则x+y 的值为( )A .3B .7C .3或7D .1或73.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .24.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图所示,下列推理及括号中所注明的推理依据错误的是( )A .∵∠1=∠3,∴AB ∥CD (内错角相等,两直线平行)B .∵AB ∥CD ,∴∠1=∠3(两直线平行,内错角相等)C .∵AD ∥BC ,∴∠BAD+∠ABC =180°(两直线平行,同旁内角互补)D .∵∠DAM =∠CBM ,∴AB ∥CD (两直线平行,同位角相等)10.下列选项中,不能判定四边形ABCD 是平行四边形的是( )A .AD //BC ,AB //CDB .AB //CD ,AB CD =C .AD //BC ,AB DC = D .AB DC =,AD BC =二、填空题(本大题共6小题,每小题3分,共18分)1.已知1<x <52(1)x -+|x-5|=________.2.若式子x 1x+有意义,则x 的取值范围是__________. 3.4的平方根是 .4.如图,将三个同样的正方形的一个顶点重合放置,那么1∠的度数为__________.5.如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有__________对全等三角形.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程组:4311 213 x yx y-=⎧⎨+=⎩2.先化简,再求值:2222222a ab b a aba b a a b-+-÷--+,其中a,b满足2(2)10a b-+=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、B6、C7、C8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、42、x 1≥-且x 0≠3、±2.4、20°.5、36、6三、解答题(本大题共6小题,共72分)1、53x y =⎧⎨=⎩.2、1a b-+,-1 3、8k ≥-且0k ≠.4、(1) 65°;(2) 25°.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
华东师大版八年级数学上册期末考试卷及答案【一套】
华东师大版八年级数学上册期末考试卷及答案【一套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.如图,在四边形ABCD 中,∠A=140°,∠D=90°,OB 平分∠ABC ,OC 平分∠BCD ,则∠BOC=( )A .105°B .115°C .125°D .135°5.已知a 与b 互为相反数且都不为零,n 为正整数,则下列两数互为相反数的是( )A .a 2n -1与-b 2n -1B .a 2n -1与b 2n -1C .a 2n 与b 2nD .a n 与b n6.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .37.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.若二次根式x1-有意义,则x的取值范围是▲.3.若m+1m=3,则m2+21m=________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b++=________.5.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、B5、B6、A7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分) 1、12、x 1≥.3、74、()()2a b a b ++.5、96、6三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3x3、(1)略(2)1或24、略.5、24°.6、(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析。
华师大八年级数学上期末复习题及答案
八年级(上)期末复习水平测试一、选择题(每小题3分,共30分)1,化简(-2a )·a -(-2a )2 的结果是( )B.2a 2C.-6a 2D.-4a 22,分解因式a 2-a 的结果是( )A.4a a ⨯B.)1(4-⨯a a ;C.)1)(1(22-+⨯a a a ;D.)1)(1)(1(2-++⨯a a a a3,若4x 2-9=0,则x 的值是( )A.32B.-32C.32± D.6± 4,下列说法正确的是( )的平方根是1 的算术平方根是1 C.-2是2的平方根 D.-1的平方根是-1 5,下列图形中,既是轴对称图形的,又是中心对称图形的是( )A.圆B.平行四边形C.等腰三角形D.等腰梯形6,下列说法正确的是( )A.矩形的对角线互相垂直B.菱形的对角线相等C.正方形的对角线相等且互相垂直D.等腰梯形的对角线互相平分7,三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A.等边三角形B.钝角三角形C.直角三角形D.锐角三角形.8,直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )B.120 D.不能确定 9,有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为( ) ,4,8 ,8,10C.6,8,10 ,10,1210,如图1所示,□ABCD 中,EF 过对角线的交点O ,如果AB =6cm ,AD =5cm ,OF =2cm ,那么四边形BCEF 的周长为( )A.13cmB.15cmC.11cmD.9.5cm图1二、填空题(每小题3分,共30分)11,12是________的平方根,5是______的平方根.12,分解因式:x2-bx-a2+ab=.13,一个正方形要绕它的中心至少旋转_______,才能和原来图形重合.14,在26个大写英文字母中,是中心对称图形的共有________个.15,在□ABCD中,AE⊥BC于E,AF⊥CD于F,∠BAD=120o,则∠EAF=______.16,在Rt△ABC中,∠C=90°,如果a=5,b=12,则c=,如果a=15,b=20,则c=.17,如果矩形的一条对角线与一边的夹角为40°,那么两条对角线所夹锐角的度数为.18,如图2,矩形ABCD的AB边长为4,M为BC的中点,∠AMD=90°,则矩形ABCD 的周长是_________.19,小红的步长为a米,她量得她家客厅的长为12步,宽为8步,则小红家客厅的面积是_______平方米.20,请你观察如图3,依据图形面积间的关系(不需要添加辅助线),便可得到一个你非常熟悉的公式,这个公式是________.三、解答题(共60分)21,计算:(1)12x(2x2-4x+6);(2)(x+3y)(x-y)-xy;(3)(x+3)2-(x+2)(x-2).图3图222,把下列各式分解因式:(1)-a 2+14a 2b 2;(2)64x 2-16xy +y 2.23,(1)已知(x -6)2+ 2(26)x y -+│3y +2x │=0,求(x -y )2-z 2的值.(2)若21m - 与13n -互为相反数,则m ∶n 的值是多少?24,已知x -y =1,x 2+y 2=25,求xy 的值.25,如图4所示,△ABC 绕O 点旋转后,顶点C 的对应点为F ,试确定旋转后三角形的位置.26,如图5,在梯形ABCD 中,AD ∥BC ,AD =AB ,BC =BD ,∠A =120o ,求梯形ABCD其它内角的度数.27,如图6,用完全相同的四块瓷砖拼成一个正方形,使拼成的图案成轴对称,请你在下面的图案中各画出一种拼法(要求三种拼法各不相同,所画图案中的阴影部分用斜线表示.)28,如图7,小李准备建一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料薄膜遮盖, 不计墙的厚度,请计算阳光透过的最大面积.29,如图8,AB 为一棵大树,在树上距地面10m 的D 处有两只猴子,它们同时发现地面上图6B A D C图5 图4的C 处有一筐水果,一只猴子从D 处上爬到树顶A 处,利用拉在A 处的滑绳AC ,滑到C 处,另一只猴子从D 处滑到地面B ,再由B 跑到C ,已知两猴子所经路程都是15m ,求树高AB .30,观察下列各式及验证过程: 32213121=-.验证:3213121⨯=-32213222=⨯; )4131(21-=8331.验证:833143224321)4131(212=⨯⨯=⨯⨯=-; 15441)5141(31=-.验证:1544154345431)5141(312=⨯⨯=⨯⨯=-; (1)按照上述三个等式及其验证过程的基本思路,猜想)6151(41-的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n ≥2的自然数)表示的等式,并进行验证.参考答案:一、1,C ;2,D ;3,C ;4,A ;5,A ;6,C ;7,C ;8,C ;9,C ;10,B .解析:因为平行四边形的对称中心为O 点,所以有OE =OF =2cm ,所以△DOE 和△BOF 为关于O 点成中心对称的图形,所以有DE =BF ,L 四边形BCEF =(6-DE )+4+BF +5=15. 图8图7二、11,14、5;12,(x-a)(x + a-b);13,90°;14,7;15,60o;16,13、25;17,80°;18,24;19,96a2;20,(x-y)2=x2-2xy+y2.三、21,(1)原式=x3-2x2+3x,(2)原式=x3-xy+3xy-3y2-xy=x2+xy-3y2,(3)原式=x2+6x+9-(x2-4)=6x+13;22,(1)原式=a2⎝⎛⎭⎫12b+1⎝⎛⎭⎫12b-1或-a2⎝⎛⎭⎫1+12b⎝⎛⎭⎫1-12b,(2)原式=(8x-y)2;23,(1)∵60260320xx yy z-=⎧⎪-=⎨⎪+=⎩∴623xyz=⎧⎪=⎨⎪=-⎩∴原式=7,(2)3∶2;24,由x-y=1,得(x-y)2=1,即x2+y2-2xy=1.又x2+y2=25,∴2xy=25-1,xy=12;25,如答图所示;26,∵AD=AB且∠A=120o,∴∠ABD=∠ADB=30o.∵AD∥BC,∴∠DBC=30o.又∵BC=BD,∴∠C=∠BDC=75o.∴∠ABC=30o + 30o=60o,∠ADC=30o + 75o =105o27,如图:28,100m 2;29,设AD =x 米,则AB 为(10+x )米,AC 为(15-x )米,BC 为5米,∴(x +10)2+52=(15-x )2,解得x =2,∴10+x =12(米);30,(1)24551)6151(41=-验证略, (2))2(111)2111(1+++=+-+n n n n n n n 验证略.。
华师大版八年级数学上册期末测试题含答案
华师大版八年级数学上册期末测试题含答案期末测试题(一)测试时间:120分钟满分:120分一.选择题(满分40分,每小题4分)1.的算术平方根是()A.2B.4C.±2D.±42.下列运算正确的是()A.a2•a2=2a2B.(a4)4=a8C.(﹣2a)2=﹣4a2D.a7÷a5=a23.有下列各数:3.14159,﹣,0.131131113…(相邻两个3之间依次多一个1),﹣π,,﹣,其中无理数有()A.1个B.2个C.3个D.4个4.一个正方形的面积为17,估计它的边长大小为()A.2与3之间B.3与4之间C.4与5之间D.5与6之间5.一个正数的两个不同平方根分别是a﹣1和5﹣2a,则这个正数是()A.1B.4C.9D.166.观察下列几个命题:①相等的角是对顶角;②同位角都相等;③三个角相等的三角形是等边三角形;④两直线平行,内错角相等;⑤若a2=b2,则a=b.其中真命题的个数有()A.0个B.1个C.2个D.3个7.2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019年的签约金额的增长量最多C.签约金额的年增长速度最快的是2016年D.2018年的签约金额比2017年降低了22.98%8.如图,在等腰△ABC中,顶角∠A=40°,AB的垂直平分线MN交AC于点D,若AB=m,BC=n,则△DBC的周长是()A.m+2n B.2m+n C.2m+2n D.m+n9.如图,这是用面积为24的四个全等的直角三角形△ABE,△BCF,△CDG和△DAH拼成的“赵爽弦图”,如果AB=10,那么正方形EFGH的边长为()A.1B.2C.3D.410.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④二.填空题(满分24分,每小题4分)11.8的立方根是.12.已知一组数据含有20个数据:68,69,70,66,68,65,64,65,69,62,67,66,65,67,63,65,64,61,65,66,如果分成5组,那么64.5~66.5这一小组的频数为,频率为.13.若A=(2+1)(22+1)(24+1)(28+1)(216+1)+1,则A+2018的末位数字是.14.a+b=0,ab=﹣7,则a2b+ab2=.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D 到AB的距离为6,则BC等于.16.如图,在△ABC中,∠A=45°,点D为AC中点,DE⊥AB于点E,BE=BC,BD=,则AC的长为.三.解答题17.(8分)计算:(1)(2)(2x2y)3•(5xy2)÷(﹣10x2y4)18.(8分)因式分解(1)9a2(x﹣y)+4b2(y﹣x);(2)4a(b﹣a)﹣b219.(7分)先化简,再求值:[(m+3n)(m﹣3n)+(2n﹣m)2+5n2(1﹣m)﹣2m2]÷mn,其中m=3,n=2.20.(9分)为了了解某校学生对以下四个电视节目:A《最强大脑》、B《中国诗词大会》、C《朗读者》、D《出彩中国人》的喜爱情况,随机抽取了部分学生进行调查,要求每名学生选出并且只能选出一个自己最喜爱的节目,根据调查结果,绘制了如下两幅不完整的统计图.请你根据图中所提供的信息,完成下列问题:(1)本次调查的学生人数为;(2)在扇形统计图中,A部分所占圆心角的度数为;(3)请将条形统计图补充完整;(4)若该校共有3000名学生,估计该校最喜爱《中国诗词大会》的学生有多少名.21.(8分)如图,OA=OB,∠A=∠B,D在OB上,C在OA上,BC与DA相交于点E.(1)试判断图中共有哪几对全等三角形?都罗列出来,并选出其中的一对证明;(2)判断点E是否在∠O的平分线上?并说明理由.22.(10分)如图,圆柱形杯子高9cm,底面周长18cm,在杯口点B处有一滴蜂蜜,此时蚂蚁在杯外底部与蜂蜜相对的点A处.(1)求蚂蚁从A到B处杯壁爬行吃到蜂查的最短距离;(2)若妈蚁出发时发現有蜜蜂正以每秒钟1cm沿杯内壁下滑,3秒钟吃到了蜂蜜,求蚂蚁的平均速度至少是多少?23.(7分)若(x2+px+8)(x2﹣3x﹣q)的展开式中不含有x3和x2项,求2p+q的值.24.(12分)如图,现有5张写着不同数字的卡片,请按要求完成下列问题:(1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是.(2)若从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是.(3)若从中取出4张卡片,请运用所学的计算方法,写出两个不同的运算式,使四个数字的计算结果为24.25.(12分)在平面直角坐标系中,A(a,0),C(0,c)且满足:(a+6)2+=0,长方形ABCO在坐标系中(如图),点O为坐标系的原点.(1)求点B的坐标.(2)如图1,若点M从点A出发,以2个单位/秒的速度向右运动(不超过点O),点N 从原点O出发,以1个单位/秒的速度向下运动(不超过点C),设M、N两点同时出发,在它们运动的过程中,四边形MBNO的面积是否发生变化?若不变,求其值;若变化,求变化的范围.(3)如图2,E为x轴负半轴上一点,且∠CBE=∠CEB,F是x轴正半轴上一动点,∠ECF 的平分线CD交BE的延长线于点D,在点F运动的过程中,请探究∠CFE与∠D的数量关系,并说明理由参考答案一.选择题1.A.2.D.3.C.4.C.5.C.6.C.7.C.8.D.9.B.10.D.二.填空题11.2.12.8,0.4.13.414.0.15.14.16.4.三.解答题17.解:(1)原式=6﹣(﹣2)+1=9;(2)原式=8x6y3•5xy2÷(﹣10x2y4)=40x7y5÷(﹣10x2y4)=﹣4x5y.18.解:(1)原式=9a2(x﹣y)﹣4b2(x﹣y)=(x﹣y)(3a+2b)(3a﹣2b);(2)原式=﹣(4a2﹣4ab+b2)=﹣(2a﹣b)2.19.解:原式=(m2﹣9n2+4n2﹣4mn+m2+5n2﹣5mn2﹣2m2)÷mn=(﹣4mn﹣5mn2)÷mn=﹣4﹣5n,当m=3,n=2时,原式=﹣4﹣10=﹣14.20.解:(1)66÷55%=120,故答案为:120;(2)×360°=54°,故答案为:54°;(3)C:120×25%=30,如图所示:(4)3000×55%=1650,答:该校最喜爱《中国诗词大会》的学生有1650名.21.解:(1)图中共有2对全等三角形:△AOD≌△BOC,△ACE≌△BDE;证明△AOD≌△BOC,理由如下:∵∠O=∠O,OA=OB,∠A=∠B,∴△AOD≌△BOC(ASA);(2)点E在∠O的平分线上,理由如下:连接OE,如图:∵△AOD≌△BOC,∴OD=OC,∵OA=OB,∴BD=AC,又∵∠A=∠B,∠AEC=∠BED,∴△ACE≌△BDE(AAS),∴CE=DE,又∵OD=OC,OE=OE,∴△OCE≌△ODE(SSS),∴∠DOE=∠COE,∴点E在∠O的平分线上.22.解:(1)如图所示,∵圆柱形玻璃容器高9cm,底面周长18cm,∴AD=9cm,∴AB===9(cm).答:蚂蚁要吃到食物所走的最短路线长度是9cm;(2)∵AD=9cm,∴蚂蚁所走的路程==15,∴蚂蚁的平均速度=15÷3=5(cm/s).答:蚂蚁的平均速度至少是5cm/s.23.解:(x2+px+8)(x2﹣3x﹣q)=x4﹣3x3﹣qx2+px3﹣3px2﹣pqx+8x2﹣24x﹣8q=x4+(﹣3+p)x3+(﹣q﹣3p+8)x2+(﹣pq﹣24)x﹣8q,展开式中不含有x3和x2项,∴,解得:.故2p+q=6﹣1=5.24.解:(1)若从中取出2张卡片,使这2张卡片上数字的乘积最大,则乘积的最大值是:(﹣7)×(﹣3)=21,故答案为:21;(2)从中取出2张卡片,使这2张卡片上数字相除的商最小,则商的最小值是:(﹣7)÷1=﹣7,故答案为:﹣7;(3)由题意可得,如果抽取的数字是﹣7,﹣3,1,2,则(﹣7)×(﹣3)+1+2=24,(﹣7+1﹣2)×(﹣3)=24;如果抽取的数字是﹣3,1,2,5,则(1﹣5)×(﹣3)×2=24,[5﹣(﹣3)]×(1+2)=24.25.解:(1)∵(a+6)2+=0,∴a=﹣6,c=﹣3∴A(﹣6,0),C(0,﹣3)∵四边形OABC是长方形∴AO∥BC,AB∥OC,AB=OC=3,AO=BC=6∴B(﹣6,﹣3)(2)四边形MBNO的面积不变.设M、N同时出发的时间为t,则S四边形MBNO =S长方形OABC﹣S△ABM﹣S△BCN=18﹣×2t×3﹣×6×(3﹣t)=9.与时间无关.∴在运动过程中面积不变.是定值9(3)∠CFE=2∠D.理由如下:如图∵∠CBE=∠CEB∴∠ECB=180°﹣2∠BEC∵CD平分∠ECF∴∠DCE=∠DCF∵AF∥BC∴∠CFE=180°﹣∠DCF﹣∠DCE﹣∠BCE=180°﹣2∠DCE﹣(180°﹣2∠BEC)∴∠CFE=2∠BEC﹣2∠DCE∵∠BEC=∠D+∠DCE∴∠CFE=2(∠D+∠DCE)﹣2∠DCE∴∠CFE=2∠D期末测试题(二)一、选择题:(满分42分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下. 1.9的平方根是()A.3 B.±3 C.±D.±812.下列说法中,正确的是()A.﹣4的算术平方根是2 B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1 D.=±53.下列实数中,属于无理数的是()A.B.0 C.D.3.144.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a25.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y6.下列各式由左边到右边的变形中,属于分解因式的是()A.3(a+b)=3a+3b B.x2+6x+9=x(x+6)+9C.ax﹣ay=a(x﹣y)D.a2﹣2=(a+2)(a﹣2)7.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±48.若m为大于0的整数,则(m+1)2﹣(m﹣1)2一定是()A.2的倍数B.4的倍数C.6的倍数D.16的倍数9.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°10.如图,在△ABC中,点D在BC上,若AD=BD=DC,则∠BAC等于()A.60°B.80°C.90°D.100°11.如图,在△ABC中,AB=AC=2,∠B=60°,AD平分∠BAC,则AD等于()A.1 B.C.D.1.512.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11 B.12 C.14 D.1613.如图,已知AC∥BD,要使△ABC≌△BAD需再补充一个条件,下列条件中,不能选择的是()A.BC∥AD B.AC=BD C.BC=AD D.∠C=∠D14.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1二、填空题(每小题4分,共16分)15.(4x2y3)2÷2xy2=16.若m﹣n=2,则m2﹣2mn+n2=.17.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=.18.如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DE⊥AB于点E,则△BED的周长为.三、解答题(共62分)19.(17分)计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.20.(8分)把下列多项式分解因式(1)a3﹣ab2(2)(x﹣2)(x﹣4)+1.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有人;(2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是;(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是度.22.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC的顶点在格点上.(1)在△ABC中,AB的长为,AC的长为;(2)在网格中,直接画出所有与△ABC全等的△DBC.23.(8分)如图,AM∥BN,BC是∠ABN的平分线.(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D.(要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)(2)求证:AC=BD.24.(13分)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.(1)求证:△ABD≌△ACE.(2)求证:AE+CE=BE.(3)求∠BEC的度数.参考答案与试题解析一、选择题:(满分42分,每小题3分)下列各题都有A、B、C、D四个答案供选择,其中只有一个答案是正确的,请把你认为正确的答案前面的字母编号写在相应的题号下. 1.9的平方根是()A.3 B.±3 C.±D.±81【分析】直接利用平方根的定义计算即可.【解答】解:∵±3的平方是9,∴9的平方根是±3.故选:B.【点评】此题主要考查了平方根的定义,要注意:一个非负数的平方根有两个,互为相反数,正值为算术平方根.2.下列说法中,正确的是()A.﹣4的算术平方根是2 B.﹣是2的一个平方根C.(﹣1)2的立方根是﹣1 D.=±5【分析】根据平方根、算术平方根、立方根的定义判断即可.【解答】解:A、﹣4没有算术平方根,故本选项错误;B、2的平方根有两个,是,﹣,故本选项正确;C、(﹣1)2=1,即(﹣1)2的立方根是1,故本选项错误;D、=5,故本选项错误;故选:B.【点评】本题考查了对平方根、算术平方根、立方根的定义的应用,主要考查学生的理解能力和计算能力.3.下列实数中,属于无理数的是()A.B.0 C.D.3.14【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A.是分数,属于有理数;B.0是整数,属于有理数;C.是无理数;D.3.14是有限小数,即分数,属于有理数;故选:C.【点评】此题主要考查了无理数的定义.初中范围内学习的无理数有:π,2π等;开方开不尽的数以及像0.1010010001…,等有这样规律的数.4.下列计算正确的是()A.a2•a3=a6B.3a2﹣a2=2 C.a6÷a2=a3D.(﹣2a)2=4a2【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a2﹣a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(﹣2a)2=4a2,正确.故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.5.若()×(﹣xy)=3x2y2,则括号里应填的单项式是()A.﹣3y B.3xy C.﹣3xy D.3x2y【分析】直接利用单项式与单项式的乘除运算法则计算得出答案.【解答】解:∵()×(﹣xy)=3x2y2,∴括号里应填的单项式是:3x2y2÷(﹣xy)=﹣3xy.故选:C.【点评】此题主要考查了单项式与单项式的乘除运算,正确掌握相关运算法则是解题关键.6.下列各式由左边到右边的变形中,属于分解因式的是()A.3(a+b)=3a+3b B.x2+6x+9=x(x+6)+9C.ax﹣ay=a(x﹣y)D.a2﹣2=(a+2)(a﹣2)【分析】根据因式分解是把一个多项式转化成几个整式的积,可得答案.【解答】解:ax﹣ay=a(x﹣y),故C说法正确,故选:C.【点评】本题考查了因式分解,注意因式分解是把一个多项式转化成几个整式的积.7.已知x2+kx+4可以用完全平方公式进行因式分解,则k的值为()A.﹣4 B.2 C.4 D.±4【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k 的值.【解答】解:∵x2+kx+4=x2+kx+22,∴kx=±2x•2,解得k=±4.故选:D.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.8.若m为大于0的整数,则(m+1)2﹣(m﹣1)2一定是()A.2的倍数B.4的倍数C.6的倍数D.16的倍数【分析】原式利用完全平方公式化简,即可作出判断.【解答】解:原式=m2+2m+1﹣m2+2m﹣1=4m,∵m>0的整数,∴(m+1)2﹣(m﹣1)2一定是4的倍数,故选:B.【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.9.等腰三角形一个角的度数为50°,则顶角的度数为()A.50°B.80°C.65°D.50°或80°【分析】等腰三角形一内角为50°,没说明是顶角还是底角,所以有两种情况.【解答】解:(1)当50°角为顶角,顶角度数为50°;(2)当50°为底角时,顶角=180°﹣2×50°=80°.故选:D.【点评】本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10.如图,在△ABC中,点D在BC上,若AD=BD=DC,则∠BAC等于()A.60°B.80°C.90°D.100°【分析】依据等腰三角形的性质以及三角形内角和定理,即可得到∠BAC=90°.【解答】解:∵AD=BD=DC,∴△ADB和△ADC都是等腰三角形∴∠B=∠BAD,∠C=∠CAD,∵∠B+∠BAD+∠CAD+∠C=180°,∴∠BAD+∠CAD=90°,即∠BAC=90°.故选:C.【点评】本题主要考查了等腰三角形的性质,解题时注意:等腰三角形的两个底角相等.11.如图,在△ABC中,AB=AC=2,∠B=60°,AD平分∠BAC,则AD等于()A.1 B.C.D.1.5【分析】根据等边三角形的性质得到AD⊥BC,BD=CD,根据三角函数的定义可得到结论.【解答】解:∵AB=AC=2,∠B=60°,∴∠ADB=90°,∴AD=AB=,故选:C.【点评】本题考查了等边三角形的性质,熟练掌握等边三角形的性质是解题的关键.12.如图,在△ABC中,AB=AC,DE是AC的垂直平分线,△BCD的周长为24,BC=10,则AC等于()A.11 B.12 C.14 D.16【分析】根据线段垂直平分线的性质可得AD=CD,再根据△BCD的周长为24可得AB+BC =24,进而得到AC的长.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∵△BCD的周长为24,∴BD+CD+BC=24,∴AB+BC=24,∵BC=10,∴AC=AB=24﹣10=14.故选:C.【点评】此题主要考查了等腰三角形的性质,线段垂直平分线的性质,关键是掌握垂直平分线上任意一点,到线段两端点的距离相等.13.如图,已知AC∥BD,要使△ABC≌△BAD需再补充一个条件,下列条件中,不能选择的是()A.BC∥AD B.AC=BD C.BC=AD D.∠C=∠D【分析】根据平行线的性质得到∠CAB=∠DBA,根据全等三角形的判定定理判断即可.【解答】解:∵AC∥BD,∴∠CAB=∠DBA,当BC∥AD时,∠CBA=∠DAB,在△ABC和△BAD中,,∴△ABC≌△BAD(ASA),A能选择;当AC=BD时,在△ABC和△BAD中,,∴△ABC≌△BAD(SAS),B能选择;当BC=AD,△ABC与△BAD不一定全等,C不能选择;当∠C=∠D时,,∴△ABC≌△BAD(AAS),D能选择;故选:C.【点评】本题考查的是全等三角形的判定,掌握全等三角形的判定定理、平行线的性质定理是解题的关键.14.我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.1【分析】根据正方形的面积公式以及勾股定理,结合图形进行分析发现:大正方形的面积即直角三角形斜边的平方25,也就是两条直角边的平方和是25,四个直角三角形的面积和是大正方形的面积减去小正方形的面积即2ab=24.根据完全平方公式即可求解.【解答】解:由于大正方形的面积25,小正方形的面积是1,则四个直角三角形的面积和是25﹣1=24,即4×ab=24,即2ab=24,a2+b2=25,则(a+b)2=25+24=49.故选:A.【点评】本题考查了勾股定理的应用,解题的关键是注意完全平方公式的展开:(a+b)2=a2+b2+2ab,还要注意图形的面积和a,b之间的关系.二、填空题(每小题4分,共16分)15.(4x2y3)2÷2xy2=8x3y4【分析】根据整式的除法即可求出答案.【解答】解:原式=16x4y6÷2xy2=8x3y4,故答案为:8x3y4【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.16.若m﹣n=2,则m2﹣2mn+n2=4.【分析】根据m﹣n=2,利用完全平方公式将所求式子进行分解因式,即可求得所求式子的值,本题得以解决.【解答】解:∵m﹣n=2,∴m2﹣2mn+n2=(m﹣n)2=22=4,故答案为:4【点评】本题考查因式分解的应用,解答本题的关键是明确题意,利用因式分解的方法解答.17.如图△ABC≌△FED,∠A=30°,∠B=80°,则∠EDF=70°.【分析】根据三角形内角和定理求出∠ACB,根据全等三角形的性质解答.【解答】解:∵∠A=30°,∠B=80°,∴∠ACB=180°﹣30°﹣80°=70°,∵△ABC≌△FED,∴∠EDF=∠ACB=70°,故答案为:70°.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解题的关键.18.如图,在△ABC中,∠C=90°,AB=10,BC=8,AD是∠BAC的平分线,DE⊥AB于点E,则△BED的周长为12.【分析】根据勾股定理可得AC的长,再依据AD是∠BAC的平分线,DE⊥AB,∠C=90°,AD=AD,即可得出△ADE≌△ADC(AAS),且CD=ED,即可得到△BED的周长=BD+CD+BE =BD+CD+BE=BC+BE.【解答】解:∵∠C=90°,AB=10,BC=8,∴由勾股定理可得,Rt△ABC中,AC=6,∵AD是∠BAC的平分线,DE⊥AB,∠C=90°,AD=AD,∴△ADE≌△ADC(AAS),∴CD=ED,AE=AC=6,又∵AB=10,∴BE=4,∴△BED的周长=BD+CD+BE=BD+CD+BE=BC+BE=8+4=12,故答案为:12.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.三、解答题(共62分)19.(17分)计算:(1)(x+y)2﹣2x(x+y);(2)(a+1)(a﹣1)﹣(a﹣1)2;(3)先化简,再求值:(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy,其中x=﹣3,y=.【分析】(1)原式利用完全平方公式,以及单项式乘以多项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用平方差公式,多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)(x+y)2﹣2x(x+y)=x2+2xy+y2﹣2x2﹣2xy=y2﹣x2;(2)(a+1)(a﹣1)﹣(a﹣1)2=a2﹣1﹣(a2﹣2a+1)=2a﹣2;(3)(x+2y)(x﹣2y)﹣(2x3y﹣4x2y2)÷2xy=x2﹣4y2﹣x2+2xy=﹣4y2+2xy,当x=﹣3,y=时,原式=﹣1﹣3=﹣4.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.20.(8分)把下列多项式分解因式(1)a3﹣ab2(2)(x﹣2)(x﹣4)+1.【分析】(1)直接提取公因式a,再利用平方差公式分解因式即可;(2)直接去括号,进而利用完全平方公式分解因式即可.【解答】解:(1)a3﹣ab2=a(a2﹣b2)=a(a﹣b)(a+b);(2)(x﹣2)(x﹣4)+1=x2﹣6x+9=(x﹣3)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.21.(8分)某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有200人;(2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是10%;(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是162度.【分析】(1)根据赞同的人数和所占的百分比求出总人数,再乘以无所谓所占的百分比求出无所谓的人数,用总人数减去其它的人数求出很赞同的人数,然后乘以360°求出“很赞同”初中生带手机上学的家长所对应的圆心角的度数;(2)根据(1)求出无所谓的人数可直接画出条形统计图;(3)根据学生现在正需要好好地学习,不应该带手机,网络这么发达,会影响学习.【解答】解:(1)本次调查的学生家长有=200(名),无所谓的人数是:200×20%=40(人),很赞同的人数是:200﹣50﹣40﹣90=20(人),故答案为200人.(2)根据(1)求出的无所谓的人数是40,补图如下:(3)×100%=10%.故答案为10%.(4)“不赞同”的家长部分所对应扇形的圆心角度数360°×=162°,故答案为162.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)如图,在6×8的正方形网格中,每个小正方形的边长都为1,△ABC的顶点在格点上.(1)在△ABC中,AB的长为,AC的长为2;(2)在网格中,直接画出所有与△ABC全等的△DBC.【分析】(1)根据勾股定理计算可得结论;(2)直接画出三角形即可,注意有多种可能性.【解答】解:(1)由勾股定理得:AB==,AC==2,故答案为:,2;(2)如图2,△D1BC、△D2BC、△D3BC即为所求.【点评】本题考查了勾股定理的运用、三角形全等的判定及网格作图问题,熟练掌握网格结构与全等三角形的判定是关键.23.(8分)如图,AM∥BN,BC是∠ABN的平分线.(1)过点A作AD⊥BC,垂足为O,AD与BN交于点D.(要求:用尺规作图,并在图中标明相应字母,保留作图痕迹,不写作法.)(2)求证:AC=BD.【分析】(1)根据角平分线的作法即可得到结论;(2)根据平行线的性质得到∠ACB=∠CBN,根据角平分线的定义得到∠ABC=∠CBN,等量代换得到∠ABC=∠ACB,根据等腰三角形的性质即可得到结论.【解答】解:(1)如图,AD即为所求;(2)∵AM∥BN,∴∠ACB=∠CBN,∵BC是∠ABN的平分线,∴∠ABC=∠CBN,∴∠ABC=∠ACB,∴AB=AC,∵AD⊥BC,∴∠1=∠2,∵AM∥BN,∴∠2=∠3,∴∠1=∠3,∴AB=BD,∴AC=BD.【点评】本题考查了作图﹣基本作图,平行线的性质,角平分线的定义,正确的作出图形是解题的关键.24.(13分)如图,△ABC和△ADE都是等边三角形,点B在ED的延长线上.(1)求证:△ABD≌△ACE.(2)求证:AE+CE=BE.(3)求∠BEC的度数.【分析】(1)依据等边三角形的性质,即可得到判定△ABD≌△ACE的条件.(2)依据等边三角形的性质以及全等三角形的性质,即可得出BD=CE,DE=AE,进而得到AE+CE=BE.(3)依据等边三角形的性质以及全等三角形的性质,即可得出∠BEC的度数.【解答】证明:(1)∵△ABC和△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE.∴△ABD≌△ACE(SAS).(2)∵△ABD≌△ACE,∴BD=CE.∵△ADE是等边三角形,∴DE=AE.∵DE+BD=BE,∴AE+CE=BE.(3)∵△ADE是等边三角形,∴∠ADE=∠AED=60°.∴∠ADB=180°﹣∠ADE=180°﹣60°=120°.∵△ABD≌△ACE,∴∠AEC=∠ADB=120°.∴∠BEC=∠AEC﹣∠AED=120°﹣60°=60°.【点评】本题考查的是等边三角形的判定和性质、全等三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华东师大八年级数学上册期末复习综合试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 下列计算中正确的是( )A.√16=±4B.±√9=3C.√−93=−3D.−√−83=22. 如果□×2a 2b =−6a 3b 3,则□内应填的式子是( )A.3ab 2B.−3ab 2C.−ab 2D.−3b 23. 下列各式从左到右的变形属于分解因式的是( )A.(m −2)(m −3)=(2−m )(3−m )B.3a −6b +3=3(a −2b )C.(x +1)(x −1)=x 2−1D.x 2−7x +12=(x −3)(x −4)4. 下列各数是有理数的是( )A.πB.√3C.√83D.√85. 下列多项式中,不能分解因式的是( )A.a 3b 3−abB.(x −y)2+y −xC.14+(−x)2D.x 2+6xy +9y 26. 下列因式分解错误的是( )A.3x 2−6xy =3x(x −2y)B.x 2−9y 2=(x −3y)(x +3y)C.4x 2+4x +1=(2x +1)2D.x 2−y 2+2y −1=(x +y +1)(x −y −1) 7. 下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是( )A.2cm ,4cm ,2√3cmB.1cm ,1cm ,√2cmC.1cm ,2cm ,√5cmD.√3cm ,2cm ,√5cm8. 满足−√2<x <√5的整数x 的个数是( )A.4个B.3个C.2个D.5个9. 对于实数a ,b ,现用“☆”定义新运算:a ☆b =a 3−ab ,那么将多项式a ☆4因式分解,其结果为()A.a(a+2)(a−2)B.a(a+4)(a−4)C.(a+4)(a−4)D.a(a2+4)10. 如图,长方形ABCD中∠DAC=68∘,请依据尺规作图的痕迹,求出∠α等于()A.34∘B.44∘C.56∘D.68∘二、填空题(本题共计10 小题,每题3 分,共计30分,)11. 计算:−√9+1=________.12. 写出命题“如果两个实数都是正数,那么它们的积是正数”的逆命题是________.13. a m−2÷a m−3=________(a≠O);(a2b)n+1÷(a2b)n−1=________(a≠0, b≠0).×103)=________.14. 计算:(3×102)2×(1315. 如图,△ABC中,∠ACB=90∘,D、E是边AB上两点,且CD垂直平分BE,CE平分∠ACD,若BC=2,则AC的长为________.16. 如图,AB // DC,请你添加一个条件使得△ABD≅△CDB,可添条件是________.(添一个即可)17. 如图所示,A、B在一水池的两侧,若BE=DE,∠B=∠D=90∘,CD=8m,则水池宽AB=________m.18. 已知多项式x2+nx+3与多项式x2−3x+m的乘积中不含x2和x3项,则m+n的值是________.19. 如图,在△ABC中,∠BAC=50∘,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,则∠DEF=________度.20. 如图,△ABC与△ADC中,∠B=∠D=90∘,要使△ABC≅△ADC,还需添加的一个条件是________(写一个即可).三、解答题(本题共计6 小题,共计60分,)21. 如图,△ABC是等腰三角形,AB=AC,∠A=36∘.(1)尺规作图:作∠ABC 的角平分线BD ,交AC 于点D (保留作图痕迹,不写作法);(2)判断△DBC 是否为等腰三角形,并说明理由.22. 计算:(1)√36+√−83+2√14(2)(8a 3b −6a 2b 2)÷4ab .23. 如图,以Rt △ABC 的三边分别向外作三个正方形ACDE 、BCNM 、ABGH ,其面积分别为S 1,S 2,S 3,设Rt △ABC 的两条直角边长为a ,b ,斜边长为c ,请证明:S 3=S 1+S 2.24. 已知:如图,△ABC是等边三角形,D是BC延长线上一点,连接AD,以AD为边作等边△ADE.连接CE.(1)求证:AC+CD=CE;(2)求∠DCE的度数.25. 如图,已知在△ABC中,∠ACB=90∘,∠BAC=60∘,AE是∠BAC的平分线,延长AC至点D,使CD=AC.(1)求证:DE=BE;(2)连接BD,判断△ABD的形状,并说明理由.26.(1)如图所示,∠BAC=90∘,AD⊥BC,垂足为D,BE平分∠ABC,交AD于E,交AC于F,试判断△AEF的形状,并说明理由;(2)如图所示,已知∠BAC=90∘,AD⊥BC,垂足为D,AE=AF,试说明BE平分∠ABC.参考答案与试题解析一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【解答】A.√16=4,故本选项不符合题意;B.±√9=±3,故本选项不符合题意;C.√−93是最简根式,故本选项不符合题意;D.−√83=−2,正确.2.【答案】B【解答】解:由题知:▫=−6a 3b 3÷2a 2b =−3ab 2.故选B .3.【答案】D【解答】解:(m −2)(m −3)=(2−m )(3−m ),不是因式分解,左边不是多项式;3a −6b +3=3(a −2b +1),分解错误;(x +1)(x −1)=x 2−1,不是因式分解,是整式乘法;x 2−7x +12=(x −3)(x −4),是因式分解.故选D .4.【答案】C【解答】√83=2,所以√83是有理数,故C 符合题意;5.【答案】C【解答】解:A 、a 3b 3−ab =ab(ab +1)(ab −1),不合题意;B 、(x −y)2+y −x =(x −y)2−(x −y)=(x −y)(x −y −1),不合题意;C 、14+(−x)2不能分解因式,符合题意;D、x2+6xy+9y2=(x+3y)2,不合题意.故选C.6.【答案】D【解答】解:A、3x2−6xy=3x(x−2y),正确,不合题意;B、x2−9y2=(x−3y)(x+3y),正确,不合题意;C、4x2+4x+1=(2x+1)2,正确,不合题意;D、x2−y2+2y−1=x2−(y−1)2=(x+y−1)(x−y+1),故此选项错误,符合题意.故选D.7.【答案】D【解答】解:A、∵22+(2√3)2=16=42,∴能够成直角三角形,故本选项错误;B、∵12+12=2=(√2)2,∴能够成直角三角形,故本选项错误;C、∵12+22=5=(√5)2,∴能够成直角三角形,故本选项错误;D、∵(√3)2+22=7≠(√5)2,∴不能够成直角三角形,故本选项正确.故选D.8.【答案】A【解答】解:∵−√2<x<√5,∴满足−√2<x<√5的整数有:−1,0,1,2,∴共有4个.故选A.9.【答案】A【解答】解:a☆4=a3−4a=a(a2−4)=a(a+2)(a−2).故选A.10.【答案】C【解答】如图,由尺规作图的痕迹得:AE是∠DAC的角平分线,直线)是AC的垂直平分线,:∠DAC=68∘∠OAE=12∠DAC=34∘,∠AOE=90∘∠AEO=90∘−∠OAE=56∘由对顶角相等得:∠α=∠AEO=56∘故选:C.二、填空题(本题共计10 小题,每题 3 分,共计30分)11.【答案】−2【解答】−√9+1=−3+1=−212.【答案】如果两个实数的积是正数,那么这两个数都是正数【解答】解:命题“如果两个实数都是正数,那么它们的积是正数”的逆命题是如果两个实数的积是正数,那么这两个数都是正数.故答案为如果两个实数的积是正数,那么这两个数都是正数.13.【答案】a,a4b2【解答】解:a m−2÷a m−3=a m−2−m+3=a;(a2b)n+1÷(a2b)n−1,=(a2b)n+1−n+1,=(a2b)2,=a4b2.故答案为:a;a4b2.14.【答案】3×107【解答】解:(3×102)2×(13×103)=9×104×13×103=3×107.故答案为:3×107.15.【答案】2√3【解答】∵CD垂直平分BE,∴CE=CB,∠BDC=90∘,∴CD平分∠BCE,即∠BCD=∠ECD,∵CE平分∠ACD,∴∠ECD=∠ACE,而∠ACB=90∘,∴∠BCD=13∠ACB=30∘,∴∠B=60∘,∴∠A=30∘,∴AC=√3BC=2√3.16.【答案】AB=CD等(答案不唯一)【解答】解:∵AB // DC,∴∠ABD=∠CDB,又BD=BD,①若添加AB=CD,利用SAS可证两三角形全等;②若添加AD // BC,利用ASA可证两三角形全等.(答案不唯一)故填AB=CD等(答案不唯一)17.【答案】8【解答】解:∵∠B=∠D,BE=DE,∠AEB=∠CED,∴△ABE≅△CDE,∴ AB =CD =8m .故填8.18.【答案】9【解答】∵ 多项式x 2+nx +3与多项式x 2−3x +m 的乘积中不含x 2和x 3项,∴ (x 2+nx +3)×(x 2−3x +m)=x 4−3x 3+mx 2+nx 3−3nx 2+mnx +3x 2−9x +3m=x 4+(n −3)x 3+(m −3n +3)x 2+mnx −9x +3m∴ {n −3=0m −3n +3=0解得:{m =6n =3∴ m +n =6+3=9,19.【答案】25【解答】解:∵ ∠BAC =50∘,DE ⊥AB ,DF ⊥AC ,∴ ∠EDF =130∘,∵ AD 为∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴ DE =DF ,∴ ∠DEF =∠DFE =25∘,故答案为:25.20.【答案】CB =CD (答案不唯一)【解答】解:已知∠B =∠D ,AC 是公共边,故添加CB =CD 、AB =AD 、∠1=∠2、∠3=∠4后可分别根据HL ,AAS ,AAS 能判定△ABC ≅△ADC .三、 解答题 (本题共计 6 小题 ,每题 10 分 ,共计60分 )21.【答案】解:(1)作图,如图所示:(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36∘,∴∠ABC=∠ACB=(180∘−36∘)÷2=72∘,∵BD平分∠ABC,∴∠ABD=∠DBC=36∘,∴∠BDC=36∘+36∘=72∘=∠ACB,∴BD=BC,∴△DBC是等腰三角形.【解答】解:(1)作图,如图所示:(2)∵AB=AC,∴∠ABC=∠C,∵∠A=36∘,∴∠ABC=∠ACB=(180∘−36∘)÷2=72∘,∵BD平分∠ABC,∴∠ABD=∠DBC=36∘,∴∠BDC=36∘+36∘=72∘=∠ACB,∴BD=BC,∴△DBC是等腰三角形.22.【答案】=6−2+1=5;解:(1)原式=6−2+2×12(2)原式=2a2−32ab.【解答】解:(1)原式=6−2+2×12=6−2+1=5;(2)原式=2a2−32ab.23.【答案】证明:∵在Rt△ABC中,AC2+BC2=AB2,又由正方形面积公式得S1=AC2,S2=BC2,S3=AB2,∴S3=S1+S2.【解答】证明:∵在Rt△ABC中,AC2+BC2=AB2,又由正方形面积公式得S1=AC2,S2=BC2,S3=AB2,∴S3=S1+S2.24.【答案】(1)证明:∵△ABC是等边三角形,∴AC=AB,∠BAC=60∘.同理,AE=AD,∠EAD=60∘,∴∠BAC=∠EAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≅△CAE(SAS),∴CE=BD,又∵AC=BC,∴AC+CD=BD=CE.(2)解:由(1)知,△BAD≅△CAE,∴ ∠ACE=∠B=60∘.∴ ∠DCE=180∘−60∘−60∘=60∘.【解答】(1)证明:∵△ABC是等边三角形,∴AC=AB,∠BAC=60∘.同理,AE=AD,∠EAD=60∘,∴∠BAC=∠EAD,∴∠BAD=∠CAE,在△BAD和△CAE中,{AB=AC,∠BAD=∠CAE,AD=AE,∴△BAD≅△CAE(SAS),∴CE=BD,又∵AC=BC,∴AC+CD=BD=CE.(2)解:由(1)知,△BAD≅△CAE,∴ ∠ACE=∠B=60∘.∴ ∠DCE=180∘−60∘−60∘=60∘.25.【答案】(1)证明:在△ACE和△DCE中,{AC=CD∠ACE=∠DCE=90∘CE=CE,∴△ACE≅△DCE(SAS),∴AE=DE,∵∠BAC=60∘,AE是角平分线,∴∠CAE=∠BAE=30∘,在Rt△ABC中,∵∠ACB=90∘,∠BAC=60∘,∴∠ABC=30∘,∴∠BAE=∠ABC,∴AE=BE,∴DE=BE.(2)解:结论:△ABD是等边三角形.理由:∵CE垂直平分AD,∴点B在CE的延长线上,∴BA=BD,∵∠BAC=60∘,∴△ABD是等边三角形.【解答】(1)证明:在△ACE和△DCE中,{AC=CD∠ACE=∠DCE=90∘CE=CE,∴△ACE≅△DCE(SAS),∴AE=DE,∵∠BAC=60∘,AE是角平分线,∴∠CAE=∠BAE=30∘,在Rt△ABC中,∵∠ACB=90∘,∠BAC=60∘,∴∠ABC=30∘,∴∠BAE=∠ABC,∴AE=BE,∴DE=BE.(2)解:结论:△ABD是等边三角形.理由:∵CE垂直平分AD,∴点B在CE的延长线上,∴BA=BD,∵∠BAC=60∘,∴△ABD是等边三角形.26.【答案】(1)解:△AEF是等腰三角形,理由如下:∵BF平分∠ABC,∴∠ABF=∠DBF,又∵∠BAC=90∘,AD⊥BC,∴∠AFE=90∘−∠ABF,∠DEB=90∘−∠DBF,∴∠AFE=∠DEB,又∵∠DEB=∠AEF,∴∠AEF=∠AFE,∴△AEF是等腰三角形;(2)证明:∵∠BAC=90∘,AD⊥BC,∴∠AFE+∠ABF=90∘,∠DEB+∠DBF=90∘,∵AE=AF,∴∠AFE=∠AEF=∠DEB,∴∠ABF=∠DBF,∴BF平分∠ABC.【解答】(1)解:△AEF是等腰三角形,理由如下:∵BF平分∠ABC,∴∠ABF=∠DBF,又∵∠BAC=90∘,AD⊥BC,∴∠AFE=90∘−∠ABF,∠DEB=90∘−∠DBF,∴∠AFE=∠DEB,又∵∠DEB=∠AEF,∴∠AEF=∠AFE,∴△AEF是等腰三角形;(2)证明:∵∠BAC=90∘,AD⊥BC,∴∠AFE+∠ABF=90∘,∠DEB+∠DBF=90∘,∵AE=AF,∴∠AFE=∠AEF=∠DEB,∴∠ABF=∠DBF,∴BF平分∠ABC.。