2017动能及动能定理典型例题剖析.doc
高考必刷题物理动能与动能定理题及解析
高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
;
由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有
高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析
高考物理动能与动能定理解题技巧分析及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。
水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。
可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。
【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。
从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。
【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。
高考物理动能与动能定理试题经典及解析
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析
高考物理动能与动能定理解题技巧及经典题型及练习题(含答案)及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,不可伸长的细线跨过同一高度处的两个光滑定滑轮连接着两个物体A 和B ,A 、B 质量均为m 。
动能和动能定理,机械能守恒典型例题和练习
学习目标1. 能够推导并理解动能定理知道动能定理的适用X 围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和〞的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,假设物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过一样位移s ,它的动能为E2,如此:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料一样的两个物体的质量分别为m1和m2,且m m 124=,当它们以一样的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?〔两物体与水平面的动摩擦因数一样〕类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数一样.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
〔g 取10m/s2〕针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
高考物理动能定理理解经典题型分析
1、动能定理的理解【例题解析】物体在合外力作用下做直线运动的v -t 图象如图所示.下列表述正确的是( )A .在0~1 s 内,合外力做正功B .在0~2 s 内,合外力总是做负功C .在1~2 s 内,合外力不做功D .在0~3 s 内,合外力总是做正功 【答案】A【例题解析】(多选)如图所示,A 、B 质量相等,它们与地面间的动摩擦因数也相等,且F A = F B ,如果A 、B 由静止开始运动相同的距离,那么: ( ) A .F A 对A 做的功与F B 对B 做的功相同B .F A 对A 做功的平均功率大于F B 对B 做功的平均功率C .到终点时物体A 获得的动能大于物体B 获得的动能D .到终点时物体A 获得的动能小于物体B 获得的动能【答案】ABC 【解析】由题意可知,A 、B 水平方向上运动的距离相等,且F 1=F 2,根据W=FLcosα可知,F 1、F 2做的功相同,故A 正确;由牛顿第二定律可知,F 1cosα-μ(mg-F 1sinα)=ma A ;F 2cosα-μ(mg+F 2sinα)=ma B ;因为F 1=F 2,可知a A >a B ,在相同距离内t A <t B ,又两力做功相同,由WP t可知:P A >P B ,故B 正确;受力分析可知A 受到的摩擦力f 1=μ(mg-F 1sinα)小于B 受到的摩擦力f 2=μ(mg+F 2sinα),根据动能定理可知:对A :W 合A =F 1cosα-μ(mg-F 1sinα)]L 对B :W 合B =F 2cosα-μ(mg+F 2sinα)]L ;即W 合A >W 合B ,可知A 获得的动能大于B 获得的动能,故C 正确,D 错误;【例题解析】(单选)如图所示,固定斜面倾角为θ,整个斜面分为AB 、BC 两段,且1.5AB =BC 。
小物块P (可视为质点)与AB 、BC 两段斜面之间的动摩擦因数分别为μ1、μ2。
动能定理经典例题
态变化。
动能定理应用
根据动能定理列方程,求解未知量 。注意选择正方向,判断各力做功 的正负。
验证结果
将求解结果代入原方程进行验证, 确保结果正确无误。同时,可以进 一步分析结果的物理意义,加深对 问题的理解。
02
典型例题解析
例题一:光滑斜面滑块问题
问题描述
一滑块从光滑斜面的顶端由静止开始下滑,求滑块滑到底端时的速度。
解题思路
根据动能定理,滑块在下滑过程中只有重力做功,因此重力势能的减少等于动 能的增加。设滑块的质量为$m$,斜面的高度为$h$,则$mgh = frac{1}{2}mv^2$,解得$v = sqrt{2gh}$。
例题二:弹簧振子问题
例题四:变力做功问题
问题描述
一物体在变力作用下做直线运动,求变力对物体做的功。
解题思路
根据动能定理,变力对物体做的功等于物体动能的增加量。 设物体的质量为$m$,初速度为$v_0$,末速度为$v$,变力 对物体做的功为$W$,则有$frac{1}{2}mv^2 frac{1}{2}mv_0^2 = W$,解得$W = frac{1}{2}mv^2 frac{1}{2}mv_0^2$。
向。
求解合力大小
02
已知物体动能变化和位移,可求解物体所受合外力的大小。
分析多力作用下的物体运动
03
对于受多个力作用的物体,可以通过动能定理分析各力对物体
运动的影响。
04
解题技巧与注意事项
选择合适的研究对象
隔离法
将复杂系统中的某个物体或某个过程 隔离出来作为研究对象,使问题简化 。
整体法
将几个物体视为一个整体作为研究对 象,适用于物体间相互作用力为内力 的情况。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
动能及动能定理典型例题剖析
动能和动能定理、重力势能·典型例题剖析例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?例5.如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次(g取10m/s2)?例5 (1)4.2m(2)6次例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为若V0已知,则板长L应满足若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?[思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.[解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有当机车达到最大速度时,F=f.所以当机车速度v=36km/h时机车的牵引力根据ΣF=ma可得机车v=36km/h时的加速度[小结]机车以恒定功率起动,直到最大速度,属于变力做功的问由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?[思路点拨]汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度vB与物体上升过程中的瞬时速度关系,应用动能定理即可求解.[解题过程]以物体为研究对象,开始动能Ek1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为vQ,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29[小结]此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有vQ=vB1=vBcosθ=vBcos45°.例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?[思路点拨]由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.[解题过程]物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以因此F乙=3F甲.设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔEk,代入F乙=3F甲,F甲·S+3F甲·S=ΔEk,所以恒力甲和乙做的功分别为[小结]本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为若V0已知,则板长L应满足若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。
动能定理应用典型例题及解析
动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理应用典型例题及解析
动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。
第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。
根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。
1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。
3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。
4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。
因此,第二个物体碰撞后向前运动的速度为4/3m/s。
动能定理典型例题解析
动能定理典型例题解析动能定理是描述物体在运动过程中动能的变化情况的重要定律。
本文将通过解析几个典型的例题,深入探讨动能定理在物理学中的应用。
例题1:自由落体物体的动能变化假设一个质量为m的物体从高度h自由落下,忽略空气阻力。
求物体下落到地面时的动能变化。
解析:根据动能定理,动能的变化等于力做功的变化。
在自由下落的过程中,物体只受重力作用,而重力做的功等于质量乘以高度的变化。
因此,动能的变化为:$$ \\Delta KE = -mgh $$若取下落物体的位置高度为0,则最后动能为0,从高度h下降为0的过程中其动能减少为-mgh。
例题2:弹簧振子的动能变化考虑一个质量为m的弹簧振子,振子静止时拉伸了一段距离x。
当振子释放后振动,达到最大位移A时,求振子的动能变化。
解析:弹簧振子具有弹簧势能和动能。
在静止时,只有势能;在振动的过程中,势能和动能不断转化。
根据动能定理,动能变化等于合外力做的功。
在弹簧振动中,合外力主要是弹簧力,且弹簧力与位移成正比。
因此,动能的变化为:$$ \\Delta KE = -\\frac{1}{2} kA^2 $$振子从最大位移A回到平衡位置时动能增加1/2kA^2。
在振子做简谐振动的周期内,动能一直在势能和动能之间不断变化。
总结通过以上两个例题的分析,可以看出动能定理在不同情况下的应用。
动能定理是描述物体运动过程中动能变化的基本定律,它揭示了能量在运动过程中的转化与守恒规律,为分析力学中的问题提供了重要的工具和思路。
在物理学教学和研究中,动能定理都起到了不可替代的作用。
希望通过本文的讨论,读者能更深入理解动能定理的重要性和应用,为进一步学习物理学奠定基础。
以上是本文对动能定理中的典型例题进行详细解析的内容。
愿读者在学习物理学的道路上能够有所收获。
请保持好奇心,发现世界的美好!。
【物理】物理动能与动能定理练习题含答案及解析
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)及解析
高中物理动能与动能定理常有题型及答题技巧及练习题( 含答案 ) 及分析 (1)一、高中物理精讲专题测试动能与动能定理1.以下图,两物块A、 B 并排静置于高h=0.80m 的圆滑水平桌面上,物块的质量均为M=0.60kg .一颗质量m=0.10kg的子弹 C 以v0=100m/s的水平速度从左面射入A,子弹射穿A 后接着射入 B 并留在 B 中,此时A、 B 都没有走开桌面.已知物块 A 的长度为0.27m, A 走开桌面后,落地址到桌边的水平距离s=2.0m.设子弹在物块A、 B 中穿行时遇到的阻力大小相等,g 取10m/s 2. (平抛过程中物块当作质点)求:(1)物块 A 和物块 B 走开桌面时速度的大小分别是多少;(2)子弹在物块 B 中打入的深度;(3)若使子弹在物块 B 中穿行时物块 B 未走开桌面,则物块 B 到桌边的最小初始距离.【答案】( 1) 5m/s ;10m/s ;( 2)L B 3.5 10 2 m (3)2.5 102m【分析】【剖析】【详解】试题剖析: (1)子弹射穿物块 A 后, A 以速度 v A沿桌面水平向右匀速运动,走开桌面后做平抛运动:h 1gt 2解得:t=0.40s 2A 走开桌边的速度v A s,解得: v A=5.0m/s t设子弹射入物块 B 后,子弹与 B 的共同速度为v B,子弹与两物块作用过程系统动量守恒:mv0 Mv A ( M m)v BB 走开桌边的速度v =10m/sB(2)设子弹走开 A 时的速度为v1,子弹与物块 A 作用过程系统动量守恒:mv0mv12Mv Av1=40m/s子弹在物块 B 中穿行的过程中,由能量守恒fL 1Mv21 mv21(M m)v2①B2A212B 子弹在物块 A 中穿行的过程中,由能量守恒fL A 1mv021mv121( M M )v A2②222由①② 解得 L B 3.5 10 2 m(3)子弹在物块A 中穿行过程中,物块A 在水平桌面上的位移为s 1,由动能定理:fs1(MM )v 2 0 ③1 2A子弹在物块 B 中穿行过程中,物块 B 在水平桌面上的位移为s 2,由动能定理fs 21Mv B21Mv A 2 ④22由②③④解得物块 B 到桌边的最小距离为: s min s 1 s 2 ,解得: s min2.5 10 2 m考点:平抛运动;动量守恒定律;能量守恒定律.2. 以下图,在娱乐节目中,一质量为 m =60 kg 的选手以 v 0= 7 m/s 的水平速度抓住竖直绳下端的抓手开始摇动,当绳摆到与竖直方向夹角 θ= 37°时,选手松开抓手,放手后的上升过程中选手水平速度保持不变,运动到水平传递带左端A 时速度恰巧水平,并在传递带上滑行,传递带以 v =2 m/s 匀速向右运动.已知绳索的悬挂点到抓手的距离为 L = 6 m ,传 送带两头点 A 、B 间的距离 s = 7 m ,选手与传递带间的动摩擦因数为μ= 0.2 ,若把选手看成质点,且不考虑空气阻力和绳的质量.(g = 10 m/s 2, sin 37 = 0°.6, cos 37 =°0.8)求:(1)选手松开抓手时的速度大小; (2)选手在传递带上从A 运动到B 的时间;(3)选手在传递带上战胜摩擦力做的功. 【答案】 (1)5 m/s (2)3 s (3)360 J【分析】试题剖析:( 1)设选手松开抓手时的速度为 v 1,则- mg (L - Lcos θ)= mv 12 - mv 0 2,v 1= 5m/s(2)设选手松开抓手时的水平速度为 v 2, v 2= v 1cos θ①选手在传递带上减速过程中a =- μg ② v = v 2+ at 1③④匀速运动的时间 t 2, s - x 1= vt 2⑤选手在传递带上的运动时间 t = t 1+ t 2⑥联立 ①②③④⑤⑥ 得: t = 3s(3)由动能定理得W f = mv 2- mv 22,解得: W f =- 360J故战胜摩擦力做功为360J .考点:动能定理的应用3.以下图,竖直平面内有一固定的圆滑轨道ABCD AB是足够长的水平轨道,B端,此中与半径为 R 的圆滑半圆轨道 BCD 光滑相切连结,半圆的直径BD 竖直, C 点与圆心 O 等高.现有一质量为 m 的小球 Q 静止在 B 点,另一质量为 2m 的小球 P 沿轨道 AB 向右匀速运动并与Q 发生对心碰撞,碰撞后瞬时小球 Q 对半圆轨道 B 点的压力大小为自己重力的 7 倍,碰撞后小球P 恰巧抵达 C 点.重力加快度为 g.(1)求碰撞前小球P 的速度大小;(2)求小球Q 走开半圆轨道后落回水平面上的地点与 B 点之间的距离;(3)若只调理圆滑半圆轨道 BCD半径大小,求小球 Q 走开半圆轨道 D 点后落回水平面上的地点与 B 点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【分析】【剖析】【详解】设小球 Q 在 B 处的支持力为;碰后小球 Q 的速度为,小球 P 的速度为;碰前小球 P 的速度为;小球 Q 抵达 D 点的速度为 .(1)由牛顿第三定律得小球Q 在 B 点碰后小球Q 在 B 点由牛顿第二定律得:碰后小球P 恰巧到 C 点,由动能定理得:P、Q 对心碰撞,由动量守恒得:联立解得 :(2)小球 Q 从 B 到 D 的过程中,由动能定理得:解得,所以小球Q 能够抵达 D 点由平抛运动规律有:联立解得(3)联立解得 :当时 x 有最大值所以【点睛】解决此题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确剖析能量是怎样转变,分段运用能量守恒定律列式是重点.4.以下图,斜面高为h,水平面上D、C 两点距离为L。
高考物理动能与动能定理技巧和方法完整版及练习题及解析
高考物理动能与动能定理技巧和方法完整版及练习题及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,竖直平面内有一固定的光滑轨道ABCD,其中AB是足够长的水平轨道,B端与半径为R的光滑半圆轨道BCD平滑相切连接,半圆的直径BD竖直,C点与圆心O等高.现有一质量为m的小球Q静止在B点,另一质量为2m的小球P沿轨道AB向右匀速运动并与Q发生对心碰撞,碰撞后瞬间小球Q对半圆轨道B点的压力大小为自身重力的7倍,碰撞后小球P恰好到达C点.重力加速度为g.(1)求碰撞前小球P的速度大小;(2)求小球Q离开半圆轨道后落回水平面上的位置与B点之间的距离;(3)若只调节光滑半圆轨道BCD半径大小,求小球Q离开半圆轨道D点后落回水平面上的位置与B点之间的距离最大时,所对应的轨道半径是多少?【答案】(1)(2)(3)【解析】【分析】【详解】设小球Q在B处的支持力为;碰后小球Q的速度为,小球P的速度为;碰前小球P 的速度为;小球Q到达D点的速度为.(1)由牛顿第三定律得小球Q在B点碰后小球Q在B点由牛顿第二定律得:碰后小球P恰好到C点,由动能定理得:P、Q对心碰撞,由动量守恒得:联立解得:(2)小球Q从B到D的过程中,由动能定理得:解得,所以小球Q能够到达D点由平抛运动规律有:联立解得(3)联立解得:当时x 有最大值所以【点睛】解决本题时要抓住弹簧的形变量相等时弹性势能相等这一隐含的条件,正确分析能量是如何转化,分段运用能量守恒定律列式是关键.2.如图所示,半径为R 的四分之三圆周轨道固定在竖直平面内,O 为圆轨道的圆心,D 为圆轨道的最高点,圆轨道内壁光滑,圆轨道右侧的水平面BC 与圆心等高.质量为m 的小球从离B 点高度为h 处(332R h R ≤≤)的A 点由静止开始下落,从B 点进入圆轨道,重力加速度为g ).(1)小球能否到达D 点?试通过计算说明; (2)求小球在最高点对轨道的压力范围;(3)通过计算说明小球从D 点飞出后能否落在水平面BC 上,若能,求落点与B 点水平距离d 的范围.【答案】(1)小球能到达D 点;(2)03F mg ≤'≤;(3)()()21221R d R ≤≤【解析】 【分析】 【详解】(1)当小球刚好通过最高点时应有:2Dmv mg R =由机械能守恒可得:()22Dmv mg h R -=联立解得32h R =,因为h 的取值范围为332R h R ≤≤,小球能到达D 点; (2)设小球在D 点受到的压力为F ,则2Dmv F mg R ='+ ()22Dmv mg h R ='- 联立并结合h 的取值范围332R h R ≤≤解得:03F mg ≤≤ 据牛顿第三定律得小球在最高点对轨道的压力范围为:03F mg ≤'≤(3)由(1)知在最高点D 速度至少为min D v =此时小球飞离D 后平抛,有:212R gt =min min D x v t =联立解得min x R =>,故能落在水平面BC 上,当小球在最高点对轨道的压力为3mg 时,有:2max 3Dv mg mg m R+=解得max D v =小球飞离D 后平抛212R gt =', max max D x v t ='联立解得max x =故落点与B 点水平距离d 的范围为:)()11R d R ≤≤3.如图所示,半径为R 1=1.8 m 的14光滑圆弧与半径为R 2=0.3 m 的半圆光滑细管平滑连接并固定,光滑水平地面上紧靠管口有一长度为L =2.0 m 、质量为M =1.5 kg 的木板,木板上表面正好与管口底部相切,处在同一水平线上,木板的左方有一足够长的台阶,其高度正好与木板相同.现在让质量为m 2=2 kg 的物块静止于B 处,质量为m 1=1 kg 的物块从光滑圆弧顶部的A 处由静止释放,物块m 1下滑至B 处和m 2碰撞后不再分开,整体设为物块m (m =m 1+m 2).物块m 穿过半圆管底部C 处滑上木板使其从静止开始向左运动,当木板速度为2 m/s 时,木板与台阶碰撞立即被粘住(即速度变为零),若g =10 m/s 2,物块碰撞前后均可视为质点,圆管粗细不计.(1)求物块m 1和m 2碰撞过程中损失的机械能; (2)求物块m 滑到半圆管底部C 处时所受支持力大小;(3)若物块m 与木板及台阶表面间的动摩擦因数均为μ=0.25,求物块m 在台阶表面上滑行的最大距离.【答案】⑴12J ⑵190N ⑶0.8m 【解析】试题分析:(1)选由机械能守恒求出物块1m 下滑到B 点时的速度;1m 、2m 碰撞满足动量守恒,由221B 1122E m v mv =-共机求出碰撞过程中损失的机械能;(2)物块m 由B 到C 满足机械能守恒,在C 点由牛顿第二定律可求出物块m 滑到半圆管底部C 处时所受支持力大小;(3)根据动量守恒定律和动能定理列式即可求解. ⑴设物块1m 下滑到B 点时的速度为B v ,由机械能守恒可得:2111B 12m gR m v =解得:B 6/v m s =1m 、2m 碰撞满足动量守恒:1B 12()m v m m v =+共解得;2/v m s 共=则碰撞过程中损失的机械能为:221B 111222E m v mv J =-=共机 ⑵物块m 由B 到C 满足机械能守恒:222C 11222mv mg R mv 共+⨯= 解得:C 4/v m s =在C 处由牛顿第二运动定律可得:2CN 2v F mg m R -=解得:N 190F N =⑶设物块m 滑上木板后,当木板速度为22/v m s =时,物块速度为1v , 由动量守恒定律得:C 12mv mv Mv =+ 解得:13/v m s =设在此过程中物块运动的位移为1x ,木板运动的位移为2x ,由动能定理得: 对物块m :2211C 1122mgx mv mv μ-=- 解得:1 1.4x m = 对木板M :22212mgx Mv μ= 解得:20.4x m =此时木板静止,物块m 到木板左端的距离为:3211x L x x m =+-= 设物块m 在台阶上运动的最大距离为4x ,由动能定理得:23411()02mg x x mv μ-+=-解得:40.8x m =4.如图所示,AB 是一倾角为θ=37°的绝缘粗糙直轨道,滑块与斜面间的动摩擦因数=0.30μ,BCD 是半径为R =0.2m 的光滑圆弧轨道,它们相切于B 点,C 为圆弧轨道的最低点,整个空间存在着竖直向上的匀强电场,场强E = 4.0×103N/C ,质量m = 0.20kg 的带电滑块从斜面顶端由静止开始滑下.已知斜面AB 对应的高度h = 0.24m ,滑块带电荷q = -5.0×10-4C ,取重力加速度g = 10m/s 2,sin37°= 0.60,cos37°=0.80.求:(1)滑块从斜面最高点滑到斜面底端B 点时的速度大小; (2)滑块滑到圆弧轨道最低点C 时对轨道的压力. 【答案】(1) 2.4m/s (2) 12N 【解析】 【分析】(1)滑块沿斜面滑下的过程中,根据动能定理求解滑到斜面底端B 点时的速度大小; (2)滑块从B 到C 点,由动能定理可得C 点速度,由牛顿第二定律和由牛顿第三定律求解. 【详解】(1)滑块沿斜面滑下的过程中,受到的滑动摩擦力:()cos370.96N f mg qE μ=+︒=设到达斜面底端时的速度为v 1,根据动能定理得:()211sin 372h mg qE h fmv +-=o解得:v 1=2.4m/s(2)滑块从B 到C 点,由动能定理可得:()()222111=1cos3722m mg q v E v m R +︒-- 当滑块经过最低点时,有:()2N 2F mg qE v m R-+= 由牛顿第三定律:N N 11.36N F F ==,方向竖直向下. 【点睛】本题是动能定理与牛顿定律的综合应用,关键在于研究过程的选择.5.夏天到了,水上滑梯是人们很喜欢的一个项目,它可简化成如图所示的模型:倾角为θ=37°斜滑道AB 和水平滑道BC 平滑连接(设经过B 点前后速度大小不变),起点A 距水面的高度H =7.0m ,BC 长d =2.0m ,端点C 距水面的高度h =1.0m .一质量m =60kg 的人从滑道起点A 点无初速地自由滑下,人与AB 、BC 间的动摩擦因数均为μ=0.2.(取重力加速度g =10m/s 2,sin 37°=0.6,cos 37°=0.8,人在运动过程中可视为质点),求: (1)人从A 滑到C 的过程中克服摩擦力所做的功W 和到达C 点时速度的大小υ; (2)保持水平滑道端点在同一竖直线上,调节水平滑道高度h 和长度d 到图中B′C′位置时,人从滑梯平抛到水面的水平位移最大,则此时滑道B′C′距水面的高度h ′.【答案】(1) 1200J ;45当h '=2.5m 时,水平位移最大 【解析】 【详解】(1)运动员从A 滑到C 的过程中,克服摩擦力做功为:11W f s mgd μ=+ f 1=μmg cos θ s 1=sin H hθ- 解得W =1200Jmg (H -h )-W =12mv 2 得运动员滑到C 点时速度的大小v =45 m/s(2)在从C 点滑出至落到水面的过程中,运动员做平抛运动的时间为t ,h '=12gt 2 下滑过程中克服摩擦做功保持不变W =1200J 根据动能定理得:mg (H -h ')-W =12mv 02 运动员在水平方向的位移:x =v 0t x =4'(5')h h -当h '=2.5m 时,水平位移最大.6.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上与圆弧的圆心O 等高的P 点由静止释放,结果它能在两轨道间做往返运动.已知物体与轨道AB 间的动摩擦因数为μ,重力加速度为g .试求:(1)物体释放后,第一次到达B 处的速度大小,并求出物体做往返运动的整个过程中在AB 轨道上通过的总路程s ;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力的大小;(3)为使物体能顺利到达圆弧轨道的最高点D (E 、O 、D 为同一条竖直直径上的3个点),释放点距B 点的距离L 应满足什么条件.【答案】(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…【解析】 【分析】 【详解】(1)设物体释放后,第一次到达B 处的速度为1v ,根据动能定理可知:21cos 1cos cos sin 2R mgR mg mv θθμθθ-= 解得:B v =物体每完成一次往返运动,在AB 斜面上能上升的高度都减少一些,最终当它达B 点时,速度变为零,对物体从P 到B 全过程用动能定理,有cos cos 0mgR mgL θμθ-=得物体在AB 轨道上通过的总路程为RL μ=(2)最终物体以B 为最高点在圆弧轨道底部做往返运动,设物体从B 运动到E 时速度为2v v ,由动能定理知:221(1cos )2v mgR m θ-=在E 点,由牛顿第二定律有22N mv F mg R-= 解得物体受到的支持力(32cos )N F mg θ=-根据牛顿第三定律,物体对轨道的压力大小为(32cos )N N F F mg θ'==-,方向竖直向下.(3)设物体刚好到达D 点时的速度为D v 此时有2Dmv mg R= 解得:D v =设物体恰好通过D 点时释放点距B 点的距离为0L ,有动能定理可知:2001[sin (1cos )]cos 2D mg L R mg L mv θθμθ-+-=联立解得:0(32cos )2(sin cos )RL θθμθ+=-则:(32cos )2(sin cos )R L θθμθ+-… 答案:(1)2(sin cos )tan B gR v θμθθ-=;RL μ= (2)(32cos )N F mg θ=-; (3)(32cos )2(sin cos )RL θθμθ+-…7.如图所示,ABC 为竖直面内一固定轨道,AB 段是半径为R 的14光滑圆弧,水平段与圆弧轨道相切于B ,水平段BC 长度为L ,C 端固定一竖直挡板.一质量为m 的小物块自A 端从静止开始沿圆轨道下滑,与挡板共发生了两次碰撞后停止在水平段B 、C 之间的某处,物块每次与挡板碰撞不损失机械能(即碰撞前、后速率相同).不计空气阻力,物块与水平段BC 间的动摩擦因数为μ,重力加速度为g .试求物块 (1)第一次与挡板碰撞时的速率; (2)在水平轨道上滑行的总路程;(3)最后一次滑到圆轨道底端B 处对圆轨道的压力.【答案】(1) 12()v g R L μ-RS μ=(3) 物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫 【解析】 【详解】(1)对物块第一次从A 到C 过程,根据动能定理:2112mgR mgL mv -=μ ① 解得第一次碰撞挡板的速率12()v g R L μ-(2)设物块质量为m ,在水平轨道上滑行的总路程为S ,对物块从开始下滑到停止在水平轨道上的全过程,根据动能定理:mgR -μmg ·S =0③解得RS μ=④(3)设物块最后一次经过圆弧轨道底端B 时的速率为v 2,对圆轨道的压力为FN ,则:22N v F mg m R-= ⑤第一种可能情况:物块与挡板第二次碰撞后,向右运动还未到B 点时即停下,则:22122mgR mg L mv -⋅=μ⑥由⑤⑥解得43N L F mg R ⎛⎫=- ⎪⎝⎭μ ⑦第二种可能情况:物块与挡板第二次碰撞后,向右可再一次滑上光滑圆弧轨道,则:22142mgR mg L mv -⋅=μ ⑧由⑤⑧解得83N L F mg R μ⎛⎫=- ⎪⎝⎭⑨物块最后一次滑到底端B 处对圆轨道的压力可能为43L mg R μ骣琪-琪桫或83Lmg R μ骣琪-琪桫8.如图所示,在方向竖直向上、大小为E=1×106V/m 的匀强电场中,固定一个穿有A 、B 两个小球(均视为质点)的光滑绝缘圆环,圆环在竖直平面内,圆心为O 、半径为R=0.2m .A 、B 用一根绝缘轻杆相连,A 带的电荷量为q=+7×10﹣7C ,B 不带电,质量分别为m A =0.01kg 、m B =0.08kg .将两小球从圆环上的图示位置(A 与圆心O 等高,B 在圆心O 的正下方)由静止释放,两小球开始沿逆时针方向转动.重力加速度大小为g=10m/s 2 .(1)通过计算判断,小球A 能否到达圆环的最高点C ? (2)求小球A 的最大速度值.(3)求小球A 从图示位置逆时针转动的过程中,其电势能变化的最大值. 【答案】(1)A 不能到达圆环最高点 (2)223m/s (3)0.1344J 【解析】 【分析】 【详解】试题分析:A 、B 在转动过程中,分别对A 、B 由动能定理列方程求解速度大小,由此判断A 能不能到达圆环最高点; A 、B 做圆周运动的半径和角速度均相同,对A 、B 分别由动能定理列方程联立求解最大速度;A 、B 从图示位置逆时针转动过程中,当两球速度为0时,根据电势能的减少与电场力做功关系求解.(1)设A 、B 在转动过程中,轻杆对A 、B 做的功分别为W T 和T W ',根据题意有:0T T W W +'=设A 、B 到达圆环最高点的动能分别为E KA 、E KB对A 根据动能定理:qER ﹣m A gR +W T1=E KA对B 根据动能定理:1T B W m gR E '-=联立解得:E KA +E KB =﹣0.04J由此可知:A 在圆环最高点时,系统动能为负值,故A 不能到达圆环最高点(2)设B 转过α角时,A 、B 的速度大小分别为v A 、v B ,因A 、B 做圆周运动的半径和角速度均相同,故:v A =v B对A 根据动能定理:221sin sin 2A T A A qER m gR W m v αα-+=对B 根据动能定理:()2211cos 2T B B B W m gR m v α='-- 联立解得: ()283sin 4cos 49A v αα=⨯+-由此可得:当3tan 4α=时,A 、B 的最大速度均为max /v s = (3)A 、B 从图示位置逆时针转动过程中,当两球速度为零时,电场力做功最多,电势能减少最多,由上可式得:3sinα+4cosα﹣4=0 解得:24sin 25α=或sinα=0(舍去) 所以A 的电势能减少:84sin 0.1344625P E qER J J α=== 点睛:本题主要考查了带电粒子在匀强电场中的运动,应用牛顿第二定律求出加速度,结合运动学公式确定带电粒子的速度和位移等;根据电场力对带电粒子做功,引起带电粒子的能量发生变化,利用动能定理进行解答,属于复杂题.9.雨滴落到地面的速度通常仅为几米每秒,这与雨滴下落过程中受到空气阻力有关,雨滴间无相互作用且雨滴质量不变,重力加速度为g ;(1)质量为m 的雨滴由静止开始,下落高度h 时速度为u ,求这一过程中空气阻力所做的功W .(2)研究小组同学观察发现,下雨时雨滴的速度跟雨滴大小有关,较大的雨滴落地速度较快,若将雨滴看作密度为ρ的球体,设其竖直落向地面的过程中所受空气阻力大小为f =kr 2v 2,其中v 是雨滴的速度,k 是比例常数,r 是球体半径.a. 某次下雨时,研究小组成员测得雨滴落地时的速度约为v 0,试计算本场雨中雨滴半径r 的大小;b. 如果不受空气阻力,雨滴自由落向地面时的速度会非常大,其v -t 图线如图所示,请在图中画出雨滴受空气阻力无初速下落的v -t 图线.(3)为进一步研究这个问题,研究小组同学提出下述想法:将空气中的气体分子看成是空间中均匀分布的、静止的弹性质点,将雨滴的下落看成是一个面积为S 的水平圆盘在上述弹性质点中竖直向下运动的过程.已知空气的密度为ρ0,试求出以速度v 运动的雨滴所受空气阻力f 的大小.(最后结果用本问中的字母表示)【答案】(1)212W mu mgh =- (2)2034kv r g πρ=,(3)22f Sv ρ= 【解析】【详解】(1)由动能定理:212mgh W mu +=解得:212W mu mgh =- (2)a. 雨滴匀速运动时满足:322043r g kr v ρπ⋅=,解得2034kv r gπρ= b. 雨滴下落时,做加速度逐渐减小的加速运动,最后匀速下落,图像如图.(3)设空气分子与圆盘发生弹性碰撞.在极短时间∆t 内,圆盘迎面碰上的气体质点总质量为:m S v t ρ∆=⋅⋅∆以F 表示圆盘对气体分子的作用力,对气体根据动量定理有:F·t ∆=∆m·2v 解得:22F Sv ρ=由牛顿第三定律可知,圆盘所受空气阻力22F F Sv ρ=='10.如图所示,AB 为倾角37θ=︒的斜面轨道,BP 为半径R =1m 的竖直光滑圆弧轨道,O 为圆心,两轨道相切于B 点,P 、O 两点在同一竖直线上,轻弹簧一端固定在A 点,另一端在斜面上C 点处,轨道的AC 部分光滑,CB 部分粗糙,CB 长L =1.25m ,物块与斜面间的动摩擦因数为μ=0.25,现有一质量m =2kg 的物块在外力作用下将弹簧缓慢压缩到D 点后释放(不栓接),物块经过B 点后到达P 点,在P 点物块对轨道的压力大小为其重力的1.5倍,sin370.6,37cos 0.8︒︒==,g=10m/s 2.求:(1)物块到达P 点时的速度大小v P ;(2)物块离开弹簧时的速度大小v C ;(3)若要使物块始终不脱离轨道运动,则物块离开弹簧时速度的最大值v m .【答案】(1)5m/s P v = (2)v C =9m/s (3)6m/s m v =【解析】【详解】(1)在P 点,根据牛顿第二定律:2P P v mg N m R+= 解得: 2.55m/s P v gR ==(2)由几何关系可知BP 间的高度差(1cos37)BP h R =+︒物块C 至P 过程中,根据动能定理:2211sin 37cos37=22BP P C mgL mgh mgL mv mv μ-︒--︒- 联立可得:v C =9m/s(3)若要使物块始终不脱离轨道运动,则物块能够到达的最大高度为与O 等高处的E 点, 物块C 至E 过程中根据动能定理:21cos37sin 37sin 53=02m mgL mgL mgR mv μ-︒-︒-︒- 解得:6m/s m v =11.如图,质量为m=1kg 的小滑块(视为质点)在半径为R=0.4m 的1/4圆弧A 端由静止开始释放,它运动到B 点时速度为v=2m/s .当滑块经过B 后立即将圆弧轨道撤去.滑块在光滑水平面上运动一段距离后,通过换向轨道由C 点过渡到倾角为θ=37°、长s=1m 的斜面CD 上,CD 之间铺了一层匀质特殊材料,其与滑块间的动摩擦系数可在0≤μ≤1.5之间调节.斜面底部D 点与光滑地面平滑相连,地面上一根轻弹簧一端固定在O 点,自然状态下另一端恰好在D 点.认为滑块通过C 和D 前后速度大小不变,最大静摩擦力等于滑动摩擦力.取g=10m/s 2,sin37°=0.6,cos37°=0.8,不计空气阻力.(1)求滑块对B 点的压力大小以及在AB 上克服阻力所做的功;(2)若设置μ=0,求质点从C 运动到D 的时间;(3)若最终滑块停在D 点,求μ的取值范围.【答案】(1)20N , 2J ;(2)13s ;(3)0.125≤μ<0.75或μ=1. 【解析】【分析】(1)根据牛顿第二定律求出滑块在B点所受的支持力,从而得出滑块对B点的压力,根据动能定理求出AB端克服阻力做功的大小.(2)若μ=0,根据牛顿第二定律求出加速度,结合位移时间公式求出C到D的时间.(3)最终滑块停在D点有两种可能,一个是滑块恰好从C下滑到D,另一种是在斜面CD 和水平面见多次反复运动,最终静止在D点,结合动能定理进行求解.【详解】(1)滑块在B点,受到重力和支持力,在B点,根据牛顿第二定律有:F−mg=m2vR,代入数据解得:F=20N,由牛顿第三定律得:F′=20N.从A到B,由动能定理得:mgR−W=12mv2,代入数据得:W=2J.(2)在CD间运动,有:mgsinθ=ma,加速度为:a=gsinθ=10×0.6m/s2=6m/s2,根据匀变速运动规律有:s=vt+12at2代入数据解得:t=13 s.(3)最终滑块停在D点有两种可能:a、滑块恰好能从C下滑到D.则有:mg sinθ•s−μ1mg cosθ•s=0−12mv2,代入数据得:μ1=1,b、滑块在斜面CD和水平地面间多次反复运动,最终静止于D点.当滑块恰好能返回C有:−μ1mg cosθ•2s=0−12mv2,代入数据得到:μ1=0.125,当滑块恰好能静止在斜面上,则有:mgsinθ=μ2mgcosθ,代入数据得到:μ2=0.75.所以,当0.125≤μ<0.75,滑块在CD和水平地面间多次反复运动,最终静止于D点.综上所述,μ的取值范围是0.125≤μ<0.75或μ=1.【点睛】解决本题的关键理清滑块在整个过程中的运动规律,运用动力学知识和动能定理进行求解,涉及到时间问题时,优先考虑动力学知识求解.对于第三问,要考虑滑块停在D点有两种可能.12.如图所示,水平轨道BC的左端与固定的光滑竖直1/4圆轨道相切与B点,右端与一倾角为30°的光滑斜面轨道在C 点平滑连接(即物体经过C 点时速度的大小不变),斜面顶端固定一轻质弹簧,一质量为2Kg 的滑块从圆弧轨道的顶端A 点由静止释放,经水平轨道后滑上斜面并压缩弹簧,第一次可将弹簧压缩至D 点,已知光滑圆轨道的半径R =0.45m ,水平轨道BC 长为0.4m ,其动摩擦因数μ=0.2,光滑斜面轨道上CD 长为0.6m ,g 取10m/s 2,求(1)滑块第一次经过B 点时对轨道的压力(2)整个过程中弹簧具有最大的弹性势能;(3)滑块最终停在何处?【答案】(1)60N ,竖直向下;(2)1.4J ;(3)在BC 间距B 点0.15m 处.【解析】【详解】(1)滑块从A 点到B 点,由动能定理可得:mgR=12mv B 2 解得:v B =3m/s ,滑块在B 点,由牛顿第二定律:F-mg=m 2B v R 解得:F =60N ,由牛顿第三定律可得:物块对B 点的压力:F ′=F =60N ;(2)滑块从A 点到D 点,该过程弹簧弹力对滑块做的功为W ,由动能定理可得:mgR ﹣μmgL BC ﹣mgL CD sin30°+W =0,其中:E P =﹣W ,解得:E P =1.4J ;(3)滑块最终停止在水平轨道BC 间,从滑块第一次经过B 点到最终停下来的全过程, 由动能定理可得:2102B mg s mv μ-⋅=-解得:s =2.25m则物体在BC 段上运动的次数为:n =2.250.45=5.625, 说明物体在BC 上滑动了5次,又向左运动0.625×0.4=0.25m ,故滑块最终停止在BC 间距B 点0.15m 处(或距C 点0.25m 处);【点睛】本题考查动能定理及牛顿第二定律等内容,要注意正确受力分析;对于不涉及时间的问题,优先选用动能定理.。
动能定理应用及典型例题(最新整理)
动能定理及应用动能及动能定理1 动能表达式:221υm E K =2 动能定理(即合外力做功与动能关系):12K K E E W -=3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。
②动能定理揭示了合外力的功与动能变化的关系。
4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。
5应用动能定理解题步骤:a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功情况c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。
例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。
人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。
基础练习1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。
2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。
3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。
汽车受到的摩擦阻力时车重的0.05倍。
求汽车的牵引力。
4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经s,前进了425m ,这时它达到1003最大速度15m/s ,设阻力不变,求机车的功率。
5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h的最小值?6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力.(2)物体从C 到A 的过程中,摩擦力做的功.7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2求木块落地时速度的大小?(空气阻力不计,g=10m/s 2) 拓展提升1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
动能定理典型例题及解析(全聿物理)
⑵ ⑶若 F 为恒力,而且拉到该位置时小球的速度刚好为零来自应用动能定理解决多过程问题
2. 如图所示, ABC 为一固定的半圆形轨道, 轨道半径 R=0.4m, A、 C 两点在同一水平面上. 现从 A 点正上方 h=2m 的地方以 v0=4m/s 的初速度竖直向下抛出一质量 m=2kg 的小球(可视为质点) ,小球刚 好从 A 点进入半圆轨道.不计空气阻力,重力加速度 g 取 10 m/s2 . (1)若轨道光滑,求小球下落到最低点 B 时的速度大小; (2)若轨道光滑,求小球相对 C 点上升的最大高度; (3)实际发现小球从 C 点飞出后相对 C 点上升的最大高度为 h ' 2.5m,求小球在半圆轨 道上克服摩擦力所做的功. 【答案】 (1)8m/s; (2)2.8m; (3)6J
1 ' mvB 0 ,解得: s ' 1.6m 2
考点:考查了动能定理,圆周运动,牛顿第二定律的应用 4.【答案】 (1)2s ; (2) 6m/s ; (3) 8m 【解析】 试题分析: (1)物块先沿斜面匀加速下滑,设 AB 长度为 L,动摩擦因数为 μ, 下滑的加速度 mgsinθ-μmgcosθ=ma 解得:a=gsinθ-μgcosθ=3.6m/s2; 到达 B 点时速度 v
1 2 gt 2
v2 在最高点根据向心力公式 mg F m ,解得:F=3N R
由牛顿第三定律知小物块对轨道的压力 F F 3N (2)从出发到运动到轨道最高点的过程根据动能定理: mg 2 R 解得: v0 4 2 m s (3)设物块恰好能过轨道最高点时速度为 v ,则 mg m 再由动能定理: W f mg 2 R 代入数据解得: W f 0.6 J 考点:本题考查平抛运动、圆周运动及动能定理,意在考查学生的综合能力。
动能和动能定理、重力势能·典型例题精析
动能和动能定理、重力势能·典型例题精析[例题1]一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔE K=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则对物体在全过程中应用动能定理:ΣW=ΔE k.mg l·sinα-μmg l·cosα-μmgS2=0得 h-μS1-μS2=0.式中S1为斜面底端与物体初位置间的水平距离.故[小结] 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.[例题2] 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?[思路点拨] 因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·v m,可求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.[解题过程] (1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔE k,有当机车达到最大速度时,F=f.所以当机车速度v=36km/h时机车的牵引力根据ΣF=ma可得机车v=36km/h时的加速度[小结] 机车以恒定功率起动,直到最大速度,属于变力做功的问由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.[例题3] 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为v B.求车由A移到B的过程中,绳Q端的拉力对物体做的功?[思路点拨] 汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度v B与物体上升过程中的瞬时速度关系,应用动能定理即可求解.[解题过程] 以物体为研究对象,开始动能E k1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为v Q,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29[小结] 此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有v Q=v B1=v B cosθ=v B cos45°.[例题4] 在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?[思路点拨] 由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.[解题过程] 物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以因此F乙=3F甲.设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F 乙·S=ΔE k,代入F乙=3F甲,F甲·S+3F甲·S=ΔE k,所以恒力甲和乙做的功分别为解析二:因位移大小相等,时间间隔又相等,所以两阶段运动的平均速度大小必相等,得--所以即得[小结] 本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.[例题5] 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?[思路点拨] A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.[解题过程] 若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为若V0已知,则板长L应满足若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B 在A的右端,则若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有[小结] 在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。
高考物理动能与动能定理解析版汇编及解析
高考物理动能与动能定理解析版汇编及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,圆弧轨道AB是在竖直平面内的14圆周,B点离地面的高度h=0.8m,该处切线是水平的,一质量为m=200g的小球(可视为质点)自A点由静止开始沿轨道下滑(不计小球与轨道间的摩擦及空气阻力),小球从B点水平飞出,最后落到水平地面上的D 点.已知小物块落地点D到C点的距离为x=4m,重力加速度为g=10m/s2.求:(1)圆弧轨道的半径(2)小球滑到B点时对轨道的压力.【答案】(1)圆弧轨道的半径是5m.(2)小球滑到B点时对轨道的压力为6N,方向竖直向下.【解析】(1)小球由B到D做平抛运动,有:h=12gt2x=v B t解得:10410/220.8Bgv x m sh==⨯=⨯A到B过程,由动能定理得:mgR=12mv B2-0解得轨道半径R=5m(2)在B点,由向心力公式得:2Bv N mg mR -=解得:N=6N根据牛顿第三定律,小球对轨道的压力N=N=6N,方向竖直向下点睛:解决本题的关键要分析小球的运动过程,把握每个过程和状态的物理规律,掌握圆周运动靠径向的合力提供向心力,运用运动的分解法进行研究平抛运动.2.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v =0.5 m/s ,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g =10 m/s 2,试求:(1).滑块运动至C 点时的速度v C 大小;(2).滑块由A 到B 运动过程中克服摩擦力做的功W f ; (3).滑块在传送带上运动时与传送带摩擦产生的热量Q . 【答案】(1)2.5 m/s (2)1 J (3)32 J【解析】本题考查运动的合成与分解、动能定理及传送带上物体的运动规律等知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.
[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.
[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,
物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则
对物体在全过程中应用动能定理:ΣW=ΔEk.
mgl·sinα-μmgl·cosα-μmgS2=0
得h-μS1-μS2=0.
式中S1为斜面底端与物体初位置间的水平距离.故
[小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.
例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?
[思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可
求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.
[解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有
当机车达到最大速度时,F=f.所以
当机车速度v=36km/h时机车的牵引力
根据ΣF=ma可得机车v=36km/h时的加速度
[小结]机车以恒定功率起动,直到最大速度,属于变力做功的问
由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.
例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?
[思路点拨]汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度vB与物体上升过程中的瞬时速度关系,应用动能定理即可求解.
[解题过程]以物体为研究对象,开始动能Ek1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为vQ,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29
[小结]此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有vQ=vB1=vBcosθ=vBcos45°.
例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?
[思路点拨]由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过
程中两个力做功和动能的变化即可得解.
[解题过程]物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为
经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以
因此F乙=3F甲.
设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔEk,代入F乙=3F 甲,F甲·S+3F甲·S=ΔEk,所以恒力甲和乙做的功分别为
[小结]本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.
例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?
[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;
(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.
[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,
m1v-m2v=(m1+m2)v′,
若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为
若V0已知,则板长L应满足
若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则
若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有
[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。