动能及动能定理典型例题剖析
高考必刷题物理动能与动能定理题及解析
高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。
传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。
工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。
传送带长度为6m =L ,不计空气阻力。
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)
一、高中物理精讲专题测试动能与动能定理
1.如图所示,固定的粗糙弧形轨道下端B点水平,上端A与B点的高度差为h1=0.3 m,倾斜传送带与水平方向的夹角为θ=37°,传送带的上端C点到B点的高度差为h2=0.1125m(传送带传动轮的大小可忽略不计).一质量为m=1 kg的滑块(可看作质点)从轨道的A点由静止滑下,然后从B点抛出,恰好以平行于传送带的速度从C点落到传送带上,传送带逆时针传动,速度大小为v=0.5 m/s,滑块与传送带间的动摩擦因数为μ=0.8,且传送带足够长,滑块运动过程中空气阻力忽略不计,g=10 m/s2,试求:
;
由功能关系可得:
(另解:两个过程A球发生的位移分别为 、 , ,由匀变速规律推论 ,根据电场力做功公式有: )
(3)对A球由平衡条件得到: , ,
从A开始运动到发生第一次碰撞:
从第一次碰撞到发生第二次碰撞:
点睛:本题是电场相关知识与动量守恒定律的综合,虽然A球受电场力,但碰撞的内力远大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么A球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是发生第二次碰撞之前的相关过程,有涉及第二次以后碰撞,当然问题变得简单些.
所以
B到C根据动能定理有
高考物理动能与动能定理试题经典及解析
(2)如果传送带保持不动,玩具滑车到达传送带右端轮子最高点时的速度和落水点位置。
(3)如果传送带是在以某一速度匀速运动的(右端轮子顺时针转),试讨论玩具滑车落水点与传送带速度大小之间的关系。
【答案】(1)80N;(2)6m/s,6m;(3)见解析。
【解析】
【详解】
【点睛】
经典力学问题一般先对物体进行受力分析,求得合外力及运动过程做功情况,然后根据牛顿定律、动能定理及几何关系求解。
2.如图所示,斜面ABC下端与光滑的圆弧轨道CDE相切于C,整个装置竖直固定,D是最低点,圆心角∠DOC=37°,E、B与圆心O等高,圆弧轨道半径R=0.30m,斜面长L=1.90m,AB部分光滑,BC部分粗糙.现有一个质量m=0.10kg的小物块P从斜面上端A点无初速下滑,物块P与斜面BC部分之间的动摩擦因数μ=0.75.取sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,忽略空气阻力.求:
高考物理动能与动能定理试题经典及解析
一、高中物理精讲专题测试动能与动能定理
1.如图所示,半径R=0.5 m的光滑圆弧轨道的左端A与圆心O等高,B为圆弧轨道的最低点,圆弧轨道的右端C与一倾角θ=37°的粗糙斜面相切。一质量m=1kg的小滑块从A点正上方h=1 m处的P点由静止自由下落。已知滑块与粗糙斜面间的动摩擦因数μ=0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10 m/s2。
【解析】
试题分析:小物块从开始运动到与挡板碰撞,重力、摩擦力做功,运用动能定理。求小物块经过B点多少次停下来,需要根据功能转化或动能定理求出小物块运动的路程,计算出经过B点多少次。小物块经过平抛运动到达D点,可以求出平抛时的初速度,进而求出在BC段上运动的距离以及和当班碰撞的次数。
动能定理题型及例题讲解
动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与物体受力产生的功之间的关系。
动能定理的数学表达式是:动能的变化量等于物体受力所产生的功。
动能定理可以用来研究运动物体的动能与受到的力与加速度的关系,进而预测物体的行为元素、制造机器等。
动能定理题型:1. 给出物体的初速度和末速度,求物体所受到的力所做的功;2. 给出物体的初速度和末速度,求物体从初速度到末速度所经过的路程;3. 以动能定理为基础,解决与碰撞有关的问题。
例题讲解:【例题1】一个质量为 2kg 的物体,以 10m/s 的速度移动,在 100N 的恒力作用下移动了 5s,这个物体的末速度是多少?解答:根据动能定理,物体动能的变化量等于所受到的力所做的功(KE= W)。
可以用以下公式计算物体末速度:v^2 = v0^2 + 2ad,其中v为物体末速度,v0为物体初速度,d为物体运动路程,a为物体加速度。
由于物体是在恒力的作用下移动了 5s,我们可以计算其加速度:F=ma,a=F/m=100N/2kg=50m/s^2物体的起点速度为 10m/s,这意味着 v0 = 10m/s。
为了计算物体的末速度,我们需要知道物体移动的路程。
d = 1/2at^2 = 1/2* 50m/s^2 * 5s^2 = 125m现在我们可以使用上面的公式计算出物体的末速度:v^2 = v0^2 + 2adv^2 = (10 m/s)^2 + 2*(50 m/s^2)*125 mv^2 = 100 m^2/s^2+ 12500 m^2/s^2v^2 = 12600 m^2/s^2v = √(12600 m^2/s^2) ≈ 112.25 m/s因此,这个物体的末速度约为 112.25 m/s。
【例题2】一颗质量为 500g 的小球位于 500m 高的悬崖上。
该小球自由落体直落地面,那么它击中地面时的速度是多少?解答:这道题可以用动能定理和重力势能来解决。
动能和动能定理,机械能守恒典型例题和练习
学习目标1. 能够推导并理解动能定理知道动能定理的适用X 围2. 理解和应用动能定理,掌握外力对物体所做的总功的计算,理解“代数和〞的含义。
3. 确立运用动能定理分析解决具体问题的步骤与方法类型一 .常规题型例1. 用拉力F 使一个质量为m 的木箱由静止开始在水平冰道上移动了s ,拉力F 跟木箱前进的方向的夹角为,木箱与冰道间的动摩擦因数为,求木箱获得的速度αμ例2. 质量为m 的物体静止在粗糙的水平地面上,假设物体受水平力F 的作用从静止起通过位移s 时的动能为E1,当物体受水平力2F 作用,从静止开始通过一样位移s ,它的动能为E2,如此:A. E2=E1B. E2=2E1C. E2>2E1D. E1<E2<2E1针对训练 材料一样的两个物体的质量分别为m1和m2,且m m 124=,当它们以一样的初动能在水平面上滑行,它们的滑行距离之比s s 12:和滑行时间之比t t 12:分别是多少?〔两物体与水平面的动摩擦因数一样〕类型二、应用动能定理简解多过程问题例3:质量为m 的物体放在动摩擦因数为μ的水平面上,在物体上施加水平力F 使物体由静止开始运动,经过位移S 后撤去外力,物体还能运动多远?例4、一个物体从斜面上高h 处由静止滑下并紧接着在水平面上滑行一段距离后停止,测得停止处对开始运动处的水平距离为S ,如图2-7-6,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的动摩擦因数一样.求动摩擦因数μ.针对训练2 将质量m=2kg 的一块石头从离地面H=2m 高处由静止开始释放,落入泥潭并陷入泥中h=5cm 深处,不计空气阻力,求泥对石头的平均阻力。
〔g 取10m/s2〕针对训练3 质量为m 的球由距地面高为h 处无初速下落,运动过程中空气阻力恒为重力的0.2倍,球与地面碰撞时无能量损失而向上弹起,球停止后通过的总路程是多少?类型三、应用动能定理求变力的功例5. 质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用。
高考物理动能与动能定理试题(有答案和解析)
的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,
高中物理动能与动能定理常见题型及答题技巧及练习题(含答案)含解析
【解析】
【分析】
【详解】
(1)由图线2得知,小球的速度先增大,后减小.根据库仑定律得知,小球所受的库仑力逐渐减小,合外力先减小后增大,加速度先减小后增大,则小球沿斜面向上做加速度逐渐减小的加速运动,再沿斜面向上做加速度逐渐增大的减速运动,直至速度为零.
(2)由线1可得:
EP=mgh=mgssinθ
斜率:
联立可得:v3= 。
(3)飞船方向调整前后,其速度合成矢量如图所示:
因此tan = ,离子喷出过程中,系统的动量守恒:M v=Nmv3,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N=
9.一质量为m=0.5kg的电动玩具车,从倾角为 =30°的长直轨道底端,由静止开始沿轨道向上运动,4s末功率达到最大值,之后保持该功率不变继续运动,运动的v-t图象如图所示,其中AB段为曲线,其他部分为直线.已知玩具车运动过程中所受摩擦阻力恒为自身重力的0.3倍,空气阻力不计.取重力加速度g=10m/s2.
(1)求在A处的正离子的速度大小v2;
(2)正离子经过区域I加速后,离开PQ的速度大小v3;
(3)在第(2)问中,假设航天器的总质量为M,正在以速度v沿MP方向运动,已知现在的运动方向与预定方向MN成 角,如图所示。为了使飞船回到预定的飞行方向MN,飞船启用推进器进行调整。如果沿垂直于飞船速度v的方向进行推进,且推进器工作时间极短,为了使飞船回到预定的飞行方向,离子推进器喷射出的粒子数N为多少?
动能定理及其应用--高中物理模块典型题归纳(含详细答案)
动能定理及其应用--高中物理模块典型题归纳(含详细答案)一、单选题1.一个物体速度由0增加到v,再从v增加到2v,外力做功分别为W1和W2,则W1和W2关系正确的是-()A.W2=W1B.W2 =2W1C.W2 =3W1D.W2 =4W12.质量m=2㎏的物块放在粗糙水平面上,在水平拉力的作用下由静止开始运动,物块动能E K与其发生位移x之间的关系如图所示。
已知物块与水平面间的动摩擦因数μ=0.2,重力加速度g取10m/s2,则下列说法正确的是()A.x=1m时物块的速度大小为2m/sB.x=3m时物块的加速度大小为C.在前4m位移过程中拉力对物块做的功为9JD.在前4m位移过程中物块所经历的时间为2.8s3.如图所示,小球从倾斜轨道上由静止释放,经平直部分冲上圆弧部分的最高点A时,对圆弧的压力大小为mg,已知圆弧的半径为R,整个轨道光滑.则()A.在最高点A,小球受重力和向心力的作用B.在最高点A,小球的速度为C.在最高点A,小球的向心加速度为gD.小球的释放点比A点高为R4.如图所示,木板可绕固定水平轴O转动.木板从水平位置OA缓慢转到OB位置,木板上的物块始终相对于木板静止.在这一过程中,物块的重力势能增加了2J.用F N表示物块受到的支持力,用F f表示物块受到的摩擦力.在此过程中,以下判断正确的是()A.F N和F f对物块都不做功B.F N对物块做功为2 J,F f对物块不做功C.F N对物块不做功,F f对物块做功为2 JD.F N和F f对物块所做功的代数和为05.如图所示,水平传送带长为x,以速度v始终保持匀速运动,把质量为m的货物放到A点,货物与皮带间的动摩擦因数为μ,当货物从A点运动到B点的过程中,摩擦力对货物做的功不可能()A.等于mv2B.小于mv2C.大于μmgxD.小于μmgx6.如图所示,足够长的传送带与水平面夹角为θ=37o,以速度v0逆时针匀速转动.在传送带的上端轻轻放置一个质量为m的小木块,小木块与传送带间的动摩擦因数,则图中能客观地反映小木块的速度随时间变化关系的是()A. B. C. D.7.如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h.若将小球A换为质量为2m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力)()A. B. C. D.08.电磁轨道炮射程远、精度高、威力大.假设一款电磁轨道炮的弹丸(含推进器)质量为20.0kg,从静止开始在电磁驱动下速度达到2.50×103m/s.则此过程中弹丸所受合力做的功是()A.2.50×104JB.5.00×104JC.6.25×107JD.1.25×108J9.如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为()A.mgRB.mgRC.mgRD.mgR10.物体A和B质量相等,A置于光滑的水平面上,B置于粗糙水平面上,开始时都处于静止状态.在相同的水平力作用下移动相同的距离,则()A.力F对A做功较多,A的动能较大B.力F对B做功较多,B的动能较大C.力F对A和B做功相同,A和B的动能相同D.力F对A和B做功相同,但A的动能较大二、多选题11.如图所示,有两固定且竖直放置的光滑半圆环,半径分别为R和2R,它们的上端在同一水平面上,有两质量相等的小球分别从两半圆环的最高点处(如图所示)由静止开始下滑,以半圆环的最高点为零势点,则下列说法正确的是()A.两球到达最低点时的机械能相等B.A球在最低点时的速度比B球在最低点时的速度小C.A球在最低点时的速度比B球在最低点时的速度大D.两球到达最低点时的向心加速度大小相等12.某足球运动员罚点球直接射门,球恰好从横梁下边缘A点踢进,球经过A点时的速度为v,A点离地面的高度为h,球的质量为m,运动员对球做的功为,球从踢飞到A点过程中克服空气阻力做的功为,选地面为零势能面,下列说法正确的是()A.运动员对球做的功B.从球静止到A点的过程中,球的机械能变化量为-C.球刚离开运动员脚面的瞬间,球的动能为D.从球刚离开运动员脚面的瞬间到A点的过程中,球的动能变化量为-mgh13.如图所示,三角形传送带以1m/s的速度逆时针匀速转动,两边的传送带长都是2m且与水平方向的夹角均为37°.现有两个小物块A,B同时从传送带顶端都以1m/s的初速度沿传送带下滑,已知物块与传送带间的动摩擦因数都是0.5,sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2.下列说法正确的是()A.物块A,B运动的加速度大小不同B.物块A,先到达传送带底端C.物块A,B运动到传送带底端时重力的功率相等D.物块A,B在传送带上的划痕长度之比为1:314.如图所示,现有一端固定在地面上的两根长度相同竖直弹簧(K1>K2),两个质量相同的小球分别由两弹簧的正上方高为H处自由下落,落到轻弹簧上将弹簧压缩,小球落到弹簧上将弹簧压缩的过程中获得的最大弹性势能分别是E1和E2,在具有最大动能时刻的重力势能分别是E P1和E P2(以地面为重力势能的零势能),则()A.E1<E2B.E1>E2C.E P1=E P2D.E P1>E P215.如图所示,在a点由静止释放一个质量为m,电荷量为q的带电粒子,粒子到达b点时速度恰好为零,设ab所在的电场线竖直向下,a、b间的高度差为h,则()A.带电粒子带负电B.a、b两点间的电势差U ab=C.b点场强大于a点场强D.a点场强大于b点场强16.如图所示,光滑杆O′A的O′端固定一根劲度系数为k=10N/m,原长为l0=1m的轻弹簧,质量为m=1kg的小球套在光滑杆上并与弹簧的上端连接,OO′为过O点的竖直轴,杆与水平面间的夹角始终为θ=30°,开始杆是静止的,当杆以OO′为轴转动时,角速度从零开始缓慢增加,直至弹簧伸长量为0.5m,下列说法正确的是()A.杆保持静止状态,弹簧的长度为0.5mB.当弹簧伸长量为0.5m时,杆转动的角速度为rad/sC.当弹簧恢复原长时,杆转动的角速度为rad/sD.在此过程中,杆对小球做功为12.5J17.如图所示,在竖直平面内有一半径为R的圆弧轨道,半径OA水平、OB竖直,一个质量为m的小球自A的正上方P点由静止开始自由下落,小球沿轨道到达最高点B时,对轨道的压力为其重力的一半.已知AP=2R,重力加速度为g,则小球从P到B的运动过程中()A.机械能减少mgRB.动能增加mgRC.克服摩擦力做功mgRD.合外力做功mgR18.在水平向右的匀强电场中有一绝缘斜面,斜面上有一带电金属块沿斜面滑下,已知在金属块滑下的过程中动能增加了14J,金属块克服摩擦力做功10J,重力做功22J,则以下判断正确的是()A.金属块带正电荷B.金属块克服电场力做功8 JC.金属块的电势能减少2 JD.金属块的机械能减少8 J三、实验探究题19.某兴趣小组准备探究“合外力做功和物体速度变化的关系”,实验前组员们对初速为O的物体提出了以下几种猜想:①W∝v;②W∝v2;③W∝为了验证猜想,他们设计了如图甲所示的实验装置.PQ 为一块倾斜放置的木板,在Q处固定一个光电计时器(用来测量物体上的遮光片通过光电门时的挡光时间).(1)如果物体上的遮光片宽度为d,某次物体通过光电计时器挡光时间为△t,则物体通过光电计时器时的速度v=________.(2)实验过程中,让物体分别从不同高度无初速释放,测出物体初始位置到光电计时器的距离L1、L2、L3、L4…,读出物体每次通过光电计时器的挡光时间,从而计算出物体通过光电计时器时的速度v1、v2、v3、v4…,并绘制了如图乙所示的L﹣v图象.为了更直观地看出L 和v的变化关系,他们下一步应该作出:____________A.L﹣v2图象B.L﹣图象C.L﹣图象D.L﹣图象(3)实验中,物体与木板间摩擦力________(选填“会”或“不会”)影响探究的结果.四、综合题20.一质量为m=2kg的小滑块,从半径R=1.25m的1/4光滑圆弧轨道上的A点由静止滑下,圆弧轨道竖直固定,其末端B切线水平。
动能定理应用典型例题及解析
动能定理应用典型例题及解析
动能定理是经典力学中非常重要的一个定理,它描述了物体的动能与物体所受力的关系。
动能定理的数学表达式是:$K = \frac{1}{2}mv^2$,其中,$K$表示物体的动能,$m$表示物体的质量,$v$表示物体的速度。
下面是一个应用动能定理的典型例题及解析:
【例题】一个质量为 $m$ 的物体在 $t=0$ 时刻从高为 $h$ 的平台上自由落下,其速度在落地瞬间达到最大值 $v$。
假设空气阻力可以忽略不计,求物体与地面接触瞬间物体的动能。
【解析】由于物体自由落下,因此只受到重力的作用,根据牛顿第二定律,物体的加速度为 $g$,即 $a=g$。
根据匀加速直线运动的公式,可以得到物体从高为 $h$ 的平台上落到地面所需的时间为$t=\sqrt{\frac{2h}{g}}$,物体在落地瞬间的速度为$v=\sqrt{2gh}$。
根据动能定理,物体在落地瞬间的动能为:
$K = \frac{1}{2}mv^2 = \frac{1}{2}m(2gh) = mgh$
因此,物体与地面接触瞬间物体的动能为 $mgh$。
以上就是一个简单的应用动能定理的例题及解析。
动能定理是物理学中一个非常重要的定理,涉及到许多不同的物理问题,需要我们在学习时认真掌握并多做练习。
动能定理应用典型例题及解析
动能定理应用典型例题及解析
例题:一物体质量为2kg,速度为5m/s,撞向另一物体,两物体碰撞后,第一个物体反弹回来,速度为3m/s。
第二个物体
的质量为3kg,碰撞后向前运动的速度为多少?
解析:
首先,我们要明确动能定理的公式:
动能定理公式:$E_k=\frac{1}{2}mv^2$
动能定理的原理:物体所具有的动能的增量等于所受动力的功。
根据动能定理的公式,我们可以计算出碰撞前后两个物体的动能,然后通过它们在碰撞过程中的总动能守恒,来求解所需的速度。
1. 碰撞前,第一个物体的动能为:
$E_{k1}=\frac{1}{2}mv^2=\frac{1}{2} \times 2 \times 5^2=25
J$
2. 碰撞后,第一个物体的动能为:
$E'_{k1}=\frac{1}{2}mv'^2=\frac{1}{2} \times 2 \times 3^2=9 J$ 其中,$v'$表示第一个物体反弹后的速度。
3. 碰撞后,第二个物体的动能为:
$E_{k2}=\frac{1}{2}mv^2=\frac{1}{2} \times 3 \times v_f^2$ 其中,$v_f$表示第二个物体碰撞后向前运动的速度。
4. 动能守恒式:
$E_{k1}+E_{k2}=E'_{k1}+E'_{k2}$
代入数值,得到:
$25+\frac{1}{2} \times 3 \times v_f^2=9+\frac{1}{2} \times 3 \times v_f^2$
化简后得到$v_f=\frac{4}{3}m/s$。
因此,第二个物体碰撞后向前运动的速度为4/3m/s。
动能定理典型例题解析
动能定理典型例题解析动能定理是描述物体在运动过程中动能的变化情况的重要定律。
本文将通过解析几个典型的例题,深入探讨动能定理在物理学中的应用。
例题1:自由落体物体的动能变化假设一个质量为m的物体从高度h自由落下,忽略空气阻力。
求物体下落到地面时的动能变化。
解析:根据动能定理,动能的变化等于力做功的变化。
在自由下落的过程中,物体只受重力作用,而重力做的功等于质量乘以高度的变化。
因此,动能的变化为:$$ \\Delta KE = -mgh $$若取下落物体的位置高度为0,则最后动能为0,从高度h下降为0的过程中其动能减少为-mgh。
例题2:弹簧振子的动能变化考虑一个质量为m的弹簧振子,振子静止时拉伸了一段距离x。
当振子释放后振动,达到最大位移A时,求振子的动能变化。
解析:弹簧振子具有弹簧势能和动能。
在静止时,只有势能;在振动的过程中,势能和动能不断转化。
根据动能定理,动能变化等于合外力做的功。
在弹簧振动中,合外力主要是弹簧力,且弹簧力与位移成正比。
因此,动能的变化为:$$ \\Delta KE = -\\frac{1}{2} kA^2 $$振子从最大位移A回到平衡位置时动能增加1/2kA^2。
在振子做简谐振动的周期内,动能一直在势能和动能之间不断变化。
总结通过以上两个例题的分析,可以看出动能定理在不同情况下的应用。
动能定理是描述物体运动过程中动能变化的基本定律,它揭示了能量在运动过程中的转化与守恒规律,为分析力学中的问题提供了重要的工具和思路。
在物理学教学和研究中,动能定理都起到了不可替代的作用。
希望通过本文的讨论,读者能更深入理解动能定理的重要性和应用,为进一步学习物理学奠定基础。
以上是本文对动能定理中的典型例题进行详细解析的内容。
愿读者在学习物理学的道路上能够有所收获。
请保持好奇心,发现世界的美好!。
【物理】物理动能与动能定理练习题含答案及解析
【物理】物理动能与动能定理练习题含答案及解析一、高中物理精讲专题测试动能与动能定理1.如图所示,质量m =3kg 的小物块以初速度秽v 0=4m/s 水平向右抛出,恰好从A 点沿着圆弧的切线方向进入圆弧轨道。
圆弧轨道的半径为R = 3.75m ,B 点是圆弧轨道的最低点,圆弧轨道与水平轨道BD 平滑连接,A 与圆心D 的连线与竖直方向成37︒角,MN 是一段粗糙的水平轨道,小物块与MN 间的动摩擦因数μ=0.1,轨道其他部分光滑。
最右侧是一个半径为r =0.4m 的半圆弧轨道,C 点是圆弧轨道的最高点,半圆弧轨道与水平轨道BD 在D 点平滑连接。
已知重力加速度g =10m/s 2,sin37°=0.6,cos37°=0.8。
(1)求小物块经过B 点时对轨道的压力大小;(2)若MN 的长度为L 0=6m ,求小物块通过C 点时对轨道的压力大小; (3)若小物块恰好能通过C 点,求MN 的长度L 。
【答案】(1)62N (2)60N (3)10m 【解析】 【详解】(1)物块做平抛运动到A 点时,根据平抛运动的规律有:0cos37A v v ==︒ 解得:04m /5m /cos370.8A v v s s ===︒小物块经过A 点运动到B 点,根据机械能守恒定律有:()2211cos3722A B mv mg R R mv +-︒= 小物块经过B 点时,有:2BNB v F mg m R-= 解得:()232cos3762N BNBv F mg m R=-︒+=根据牛顿第三定律,小物块对轨道的压力大小是62N (2)小物块由B 点运动到C 点,根据动能定理有:22011222C B mgL mg r mv mv μ--⋅=- 在C 点,由牛顿第二定律得:2CNC v F mg m r+=代入数据解得:60N NC F =根据牛顿第三定律,小物块通过C 点时对轨道的压力大小是60N(3)小物块刚好能通过C 点时,根据22Cv mg m r=解得:2100.4m /2m /C v gr s s ==⨯=小物块从B 点运动到C 点的过程,根据动能定理有:22211222C B mgL mg r mv mv μ--⋅=- 代入数据解得:L =10m2.如图所示,在娱乐节目中,一质量为m =60 kg 的选手以v 0=7 m/s 的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A 时速度刚好水平,并在传送带上滑行,传送带以v =2 m/s 匀速向右运动.已知绳子的悬挂点到抓手的距离为L =6 m ,传送带两端点A 、B 间的距离s =7 m ,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g =10 m/s 2,sin 37°=0.6,cos 37°=0.8)求:(1)选手放开抓手时的速度大小; (2)选手在传送带上从A 运动到B 的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】试题分析:(1)设选手放开抓手时的速度为v 1,则-mg (L -Lcosθ)=mv 12-mv 02,v 1=5m/s(2)设选手放开抓手时的水平速度为v 2,v 2=v 1cosθ① 选手在传送带上减速过程中 a =-μg② v =v 2+at 1③④匀速运动的时间t 2,s -x 1=vt 2⑤ 选手在传送带上的运动时间t =t 1+t 2⑥ 联立①②③④⑤⑥得:t =3s(3)由动能定理得W f =mv 2-mv 22,解得:W f =-360J 故克服摩擦力做功为360J . 考点:动能定理的应用3.如图所示是一种特殊的游戏装置,CD 是一段位于竖直平面内的光滑圆弧轨道,圆弧半径为10m ,末端D 处的切线方向水平,一辆玩具滑车从轨道的C 点处下滑,滑到D 点时速度大小为10m/s ,从D 点飞出后落到水面上的B 点。
动能和动能定理、重力势能·典型例题剖析
动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则对物体在全过程中应用动能定理:ΣW=ΔEk.mgl·sinα-μmgl·cosα-μmgS2=0得h-μS1-μS2=0.式中S1为斜面底端与物体初位置间的水平距离.故[小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?[思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.[解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有当机车达到最大速度时,F=f.所以当机车速度v=36km/h时机车的牵引力根据ΣF=ma可得机车v=36km/h时的加速度[小结]机车以恒定功率起动,直到最大速度,属于变力做功的问由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?[思路点拨]汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度vB与物体上升过程中的瞬时速度关系,应用动能定理即可求解.[解题过程]以物体为研究对象,开始动能Ek1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为vQ,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29[小结]此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有vQ=vB1=vBcosθ=vBcos45°.例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?[思路点拨]由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.[解题过程]物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以因此F乙=3F甲.设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔEk,代入F乙=3F 甲,F甲·S+3F甲·S=ΔEk,所以恒力甲和乙做的功分别为[小结]本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为若V0已知,则板长L应满足若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。
动能定理题型及例题讲解
动能定理题型及例题讲解动能定理是物理学中的一个重要定理,描述了物体的动能与力的关系。
根据动能定理,物体的动能的变化等于作用在物体上的合外力的做功。
动能定理题型主要包括以下几类:1. 给定物体的质量、速度和加速度,求物体所受合外力的大小和方向。
例题:一个质量为2kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体所受合外力的大小和方向。
2. 给定物体的质量、速度和作用在物体上的合外力,求物体的加速度。
例题:一个质量为3kg的物体受到作用力为15N的力,使其速度从5m/s增加到15m/s,求物体的加速度。
3. 给定物体的质量、速度和加速度,求物体在某段距离上所做的功。
例题:一个质量为4kg的物体以速度10m/s向东运动,在2s内速度变为20m/s向东,求物体在这段距离上所做的功。
4. 给定物体的质量、速度和作用在物体上的合外力,求物体在某段距离上所做的功。
例题:一个质量为5kg的物体受到作用力为20N的力,使其速度从8m/s增加到20m/s,求物体在这段距离上所做的功。
解题时,首先需要根据题目给出的条件,利用动能定理的公式进行计算。
公式为:物体的动能变化等于作用在物体上的合外力的做功,即ΔKE = W。
然后,根据题目所求的量,进行代入计算。
注意单位的转换,确保计算结果的准确性。
最后,根据题目所给的信息,判断物体所受合外力的方向以及物体在某段距离上所做的功的正负。
通过练习动能定理题型,可以帮助学生巩固对动能定理的理解,并提高解题能力。
在解题过程中,需要灵活运用物理学的知识,结合实际情况进行分析和计算,培养学生的物理思维能力和解决问题的能力。
动能定理应用及典型例题(最新整理)
动能定理及应用动能及动能定理1 动能表达式:221υm E K =2 动能定理(即合外力做功与动能关系):12K K E E W -=3理解:①F 合在一个过程中对物体做的功,等于物体在这个过程中动能的变化。
F 合做正功时,物体动能增加;F 合做负功时,物体动能减少。
②动能定理揭示了合外力的功与动能变化的关系。
4适用范围:适用于恒力、变力做功;适用于直线运动,也适用于曲线运动。
5应用动能定理解题步骤:a 确定研究对象及其运动过程b 分析研究对象在研究过程中受力情况,弄清各力做功情况c 确定研究对象在运动过程中初末状态,找出初、末动能d 列方程、求解。
例1、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
例2.一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s 。
人和雪橇的总质量为60kg ,下滑过程中克服阻力做的功。
基础练习1、一个质量是0.20kg 的小球在离地5m 高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N ,求它落地时的速度。
2、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m 。
已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。
3、一辆5吨的载重汽车开上一段坡路,坡路上S=100m ,坡顶和坡底的高度差h=10m ,汽车山坡前的速度是10m/s ,上到坡顶时速度减为5.0m/s 。
汽车受到的摩擦阻力时车重的0.05倍。
求汽车的牵引力。
4、质量为4×103Kg 的汽车由静止开始以恒定功率前进,经s,前进了425m ,这时它达到1003最大速度15m/s ,设阻力不变,求机车的功率。
5:如图过山车模型,小球从h 高处由静止开始滑下,若小球经过光滑轨道上最高点不掉下来, 求h的最小值?6、如图所示,半径R = 0.4m 的光滑半圆轨道与粗糙的水平面相切于A 点,质量为 m = 1kg 的小物体(可视为质点)在水平拉力F 的作用下,从C 点运动到A 点,物体从A 点进入半圆轨道的同时撤去外力F ,物体沿半圆轨道通过最高点B 后作平抛运动,正好落在C 点,已知AC = 2m ,F = 15N ,g 取10m/s2,试求:(1)物体在B 点时的速度以及此时半圆轨道对物体的弹力.(2)物体从C 到A 的过程中,摩擦力做的功.7、如图所示,质量m=1kg 的木块静止在高h=1.2m 的平台上,木块与平台间的动摩擦因数 =0.2,用水平推力F=20N ,使木块产生位移S 1=3m 时撤去,木块又滑行S 2求木块落地时速度的大小?(空气阻力不计,g=10m/s 2) 拓展提升1. 一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
动能定理分类例题讲解
一、动能定理求解多过程问题1,钢球从高处向下落,最后陷入泥中,如果空气阻力可忽略不计,陷入泥中的阻力为重力的n 倍, 求:钢珠在空中下落的高度H 与陷入泥中的深度h 的比值H ∶h=?2,如右图所示,水平传送带保持1m/s 的速度运动。
一质量为1kg 的物体与传送带间的动摩擦因数为0.2。
现将该物体无初速地放到传送带上的A 点,然后运动到了距A 点1m 的B 点,则皮带对该物体做的功为( ) A. 0.5J B. 2J C. 2.5J D. 5J二、动能定理求解曲线运动3,质量为m 的跳水运动员从高为H 的跳台上以速率v 1起跳,落水时的速率为v 2 ,运动中有空气阻力,那么运动员起跳后在空中运动克服空气阻力所做的功是多少?4,如下图所示,一个质量为m 的小球从A 点由静止开始滑到B 点,并从B 点抛出,若在从A 到B 的过程中,机械能损失为E ,小球自B 点抛出的水平分速度为v ,则小球抛出后到达最高点时与A 点的竖直距离是。
三、动能定理求解往返运动5,地面上有一钢板水平放置,它上方3m 处有一钢球质量 m=1kg ,以向下的初速度v 0=2m/s 竖直向下运动,假定小球运动时受到一个大小不变的空气阻力 f=2N ,小球与钢板相撞时无机械能损失,小球最终停止运动时,它所经历的路程S 等于多少?( g=10m/s 2 )6,如图,足够长的斜面的倾角为a ,质量为m 的滑块距挡板P 为S 0,以初速度v 0沿斜面上滑,滑块与斜面间的动摩擦因数为u,且u<tana ,若滑块每次与挡板相碰均无机械能损失,求滑块经过的路程练一练1.如图所示,质量为m 的物块从高h 的斜面顶端O 由静止开始滑下,最后停止在水平面上B 点。
若物块从斜面顶端以初速度v 0沿斜面滑下,则停止在水平面的上C 点,已知,AB=BC , 则物块在斜面上克服阻力做的功为。
(设物块经过斜面与水平面交接点处无能量损失)2.斜面倾角为α,长为L , AB 段光滑,BC 段粗糙,AB =L/3, 质量为m 的木块从斜面顶端无初速下滑,到达C 端时速度刚好为零。
动能定理典型例题及解析(全聿物理)
⑵ ⑶若 F 为恒力,而且拉到该位置时小球的速度刚好为零来自应用动能定理解决多过程问题
2. 如图所示, ABC 为一固定的半圆形轨道, 轨道半径 R=0.4m, A、 C 两点在同一水平面上. 现从 A 点正上方 h=2m 的地方以 v0=4m/s 的初速度竖直向下抛出一质量 m=2kg 的小球(可视为质点) ,小球刚 好从 A 点进入半圆轨道.不计空气阻力,重力加速度 g 取 10 m/s2 . (1)若轨道光滑,求小球下落到最低点 B 时的速度大小; (2)若轨道光滑,求小球相对 C 点上升的最大高度; (3)实际发现小球从 C 点飞出后相对 C 点上升的最大高度为 h ' 2.5m,求小球在半圆轨 道上克服摩擦力所做的功. 【答案】 (1)8m/s; (2)2.8m; (3)6J
1 ' mvB 0 ,解得: s ' 1.6m 2
考点:考查了动能定理,圆周运动,牛顿第二定律的应用 4.【答案】 (1)2s ; (2) 6m/s ; (3) 8m 【解析】 试题分析: (1)物块先沿斜面匀加速下滑,设 AB 长度为 L,动摩擦因数为 μ, 下滑的加速度 mgsinθ-μmgcosθ=ma 解得:a=gsinθ-μgcosθ=3.6m/s2; 到达 B 点时速度 v
1 2 gt 2
v2 在最高点根据向心力公式 mg F m ,解得:F=3N R
由牛顿第三定律知小物块对轨道的压力 F F 3N (2)从出发到运动到轨道最高点的过程根据动能定理: mg 2 R 解得: v0 4 2 m s (3)设物块恰好能过轨道最高点时速度为 v ,则 mg m 再由动能定理: W f mg 2 R 代入数据解得: W f 0.6 J 考点:本题考查平抛运动、圆周运动及动能定理,意在考查学生的综合能力。
动能和动能定理、重力势能·典型例题精析
动能和动能定理、重力势能·典型例题精析[例题1]一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔE K=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则对物体在全过程中应用动能定理:ΣW=ΔE k.mg l·sinα-μmg l·cosα-μmgS2=0得 h-μS1-μS2=0.式中S1为斜面底端与物体初位置间的水平距离.故[小结] 本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.[例题2] 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?[思路点拨] 因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·v m,可求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.[解题过程] (1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔE k,有当机车达到最大速度时,F=f.所以当机车速度v=36km/h时机车的牵引力根据ΣF=ma可得机车v=36km/h时的加速度[小结] 机车以恒定功率起动,直到最大速度,属于变力做功的问由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.[例题3] 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为v B.求车由A移到B的过程中,绳Q端的拉力对物体做的功?[思路点拨] 汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度v B与物体上升过程中的瞬时速度关系,应用动能定理即可求解.[解题过程] 以物体为研究对象,开始动能E k1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为v Q,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29[小结] 此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有v Q=v B1=v B cosθ=v B cos45°.[例题4] 在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?[思路点拨] 由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.[解题过程] 物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以因此F乙=3F甲.设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F 乙·S=ΔE k,代入F乙=3F甲,F甲·S+3F甲·S=ΔE k,所以恒力甲和乙做的功分别为解析二:因位移大小相等,时间间隔又相等,所以两阶段运动的平均速度大小必相等,得--所以即得[小结] 本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.[例题5] 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?[思路点拨] A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.[解题过程] 若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为若V0已知,则板长L应满足若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B 在A的右端,则若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有[小结] 在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的物理过程进行讨论,分别得出结果.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动能和动能定理、重力势能·典型例题剖析例1一个物体从斜面上高h处由静止滑下并紧接着在水平面上滑行一段距离后停止,量得停止处对开始运动处的水平距离为S,如图8-27,不考虑物体滑至斜面底端的碰撞作用,并设斜面与水平面对物体的摩擦因数相同.求摩擦因数μ.
[思路点拨]以物体为研究对象,它从静止开始运动,最后又静止在平面上,考查全过程中物体的动能没有变化,即ΔEK=0,因此可以根据全过程中各力的合功与物体动能的变化上找出联系.
[解题过程]设该面倾角为α,斜坡长为l,则物体沿斜面下滑时,
物体在平面上滑行时仅有摩擦力做功,设平面上滑行距离为S2,则
对物体在全过程中应用动能定理:ΣW=ΔEk.
mgl·sinα-μmgl·cosα-μmgS2=0
得h-μS1-μS2=0.
式中S1为斜面底端与物体初位置间的水平距离.故
[小结]本题中物体的滑行明显地可分为斜面与平面两个阶段,而且运动性质也显然分别为匀加速运动和匀减速运动.依据各阶段中动力学和运动学关系也可求解本题.比较上述两种研究问题的方法,不难显现动能定理解题的优越性.用动能定理解题,只需抓住始、末两状态动能变化,不必追究从始至末的过程中运动的细节,因此不仅适用于中间过程为匀变速的,同样适用于中间过程是变加速的.不仅适用于恒力作用下的问题,同样适用于变力作用的问题.
例2 质量为500t的机车以恒定的功率由静止出发,经5min行驶2.25km,速度达到最大值54km/h,设阻力恒定且取g=10m/s2.求:(1)机车的功率P=?(2)机车的速度为36km/h时机车的加速度a=?
[思路点拨]因为机车的功率恒定,由公式P=Fv可知随着速度的增加,机车的牵引力必定逐渐减小,机车做变加速运动,虽然牵引力是变力,但由W=P·t可求出牵引力做功,由动能定理结合P=f·vm,可
求出36km/h时的牵引力,再根据牛顿第二定律求出机车的加速度a.
[解题过程](1)以机车为研究对象,机车从静止出发至达速度最大值过程,根据ΣW=ΔEk,有
当机车达到最大速度时,F=f.所以
当机车速度v=36km/h时机车的牵引力
根据ΣF=ma可得机车v=36km/h时的加速度
[小结]机车以恒定功率起动,直到最大速度,属于变力做功的问
由于速度增大导致加速度减小,汽车做加速度逐渐减小而速度逐渐变大的变加速运动.此类问题应用牛顿第二定律求解,在中学物理范围内是无法求解的.但应用动能定理求解变力做功,进而求解相关物理量是一种简捷优化的解题思路与方法.
例3 一辆车通过一根跨过定滑轮的绳PQ提升井中质量为m的物体,如图8-28所示:绳的P端拴在车后的挂钩上,Q端拴在物体上,设绳的总长不变;绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A点,左右两侧绳都已绷紧并且是竖直的,左侧绳绳长为H.提升时,车加速向左运动,沿水平方向从A经过B驶向C.设A到B的距离也为H,车经过B点时的速度为vB.求车由A移到B的过程中,绳Q端的拉力对物体做的功?
[思路点拨]汽车从A到B把物体提升的过程中,物体只受到拉力和重力的作用,根据物体速度的变化和上升的高度,特别是汽车运动速度vB与物体上升过程中的瞬时速度关系,应用动能定理即可求解.
[解题过程]以物体为研究对象,开始动能Ek1=0,随着车的加速拖动,重物上升,同时速度在不断增加.当车运动至B点时,左边的绳与水平面所成角θ=45°,设物体已从井底上升高度h,此时物体速度为vQ,即为收绳的速度,它等于车速沿绳子方向的一个分量,如图8-29
[小结]此题需明确:速度分解跟力的分解相似,两个分速度方向应根据运动的实际效果确定.车子向左运动时,绳端(P)除了有沿绳子方向的分运动外(每一瞬间绳均处于张紧的状态),还参与了绕定滑轮O的转动分运动(绳与竖直方向的夹角不断变化),因此还应该有一个绕O点转动的分速度,这个分速度垂直于绳长的方向.所以车子运动到B点时的速度分解如图8-29所示,有vQ=vB1=vBcosθ=vBcos45°.
例4在光滑水平面上有一静止的物体,现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J,则在整个过程中,恒力甲做的功和恒力乙做的功各等于多少?
[思路点拨]由题意:物体先做匀加速运动,后做匀减速运动回到原处.整个过程中的
位移为零,根据牛顿第二定律和运动学公式,即可确定两个力的大小关系,然后根据全过程中两个力做功和动能的变化即可得解.
[解题过程]物体从静止受水平恒力F甲作用,做匀加速运动,经过一段时间t后的速度为
经时间t后回到原处,前后两段时间内的位移大小相等,方向相反,所以
因此F乙=3F甲.
设在F甲作用下物体的位移为S,对全过程应用动能定理F甲·S+F乙·S=ΔEk,代入F乙=3F 甲,F甲·S+3F甲·S=ΔEk,所以恒力甲和乙做的功分别为
[小结]本题属多阶段物理过程求功问题,运动往复性的不同阶段有不同的恒力作用,运用功能定理从整体上考证功能转换比从力和运动关系去研究要简便.当然此题也可根据两个力作用时间相同、两个物理过程中的位移大小相等,由平均速度的大小相等找出两者末速度的关系求解;也可以利用v-t图线更直观地得到启发,根据图线上下方与t轴间的面积相等求两段加速度之比,进而求解.
例5 如图8-30所示,长为L,质量为m1的木板A置于光滑水平面上,在A板上表面左端有一质量为m2的物块B,B与A的摩擦因数为μ,A和B一起以相同的速度v 向右运动,在A与竖直墙壁碰撞过程中无机械能损失,要使B一直不从A上掉下来,v 必须满足什么条件(用m1、m2、L、μ表示)?倘若V0已知,木板B的长度L应满足什么条件(用m1、m2、V0、μ表示)?
[思路点拨]A和墙壁碰撞后,A以大小为v的速度向左运动,B仍以原速向右运动.以后的运动过程有三种可能:(1)若m1>m2,则m1和m2最后以某一共同速度向左运动;
(2)若m1=m2,则A、B最后都停在水平面上,但不可能与墙壁发生第二次碰撞;(3)若m1<m2,则A将多次和墙壁碰撞、最后停在靠近墙壁处.
[解题过程]若m1>m2,碰撞后的总动量方向向左,以向左为正方向,系统Δp=0,m1v-m2v=(m1+m2)v′,
若相对静止时B刚好在A板右端,则系统总机械能损失应为μm2gL,则功能关系为
若V0已知,则板长L应满足
若m1=m2,碰撞后系统总动量为零,最后都静止在水平面上,设静止时B在A的右端,则
若m1<m2,则A与墙壁将发生多次碰撞,每次碰撞后总动量方向都向右,而B相对于A 始终向右运动,设最后A静止在靠近墙壁处,B静止在A的右端,则有
[小结]在有些用字母表示已知物理量的题目中,物理过程往往随着已知量的不同取值范围而改变.对于这类题目,通常是将物理量的取值分成几个范围来讨论,分别在各个范围内求解.如本题中,由于m1和m2的大小关系没有确定,在解题时必须对可能发生的
物理过程进行讨论,分别得出结果.。